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Abstract Android malware detection has been an active area of research. In the9

past decade, several machine learning-based approaches based on different types10

of features that may characterize Android malware behaviors have been proposed.11

The usually-analyzed features include API usages and sequences at various ab-12

straction levels (e.g., class and package), extracted using static or dynamic analy-13

sis. Additionally, features that characterize permission uses, native API calls and14

reflection have also been analyzed. Initial works used conventional classifiers such15

as Random Forest to learn on those features. In recent years, deep learning-based16

classifiers such as Recurrent Neural Network have been explored. Considering vari-17

ous types of features, analyses, and classifiers proposed in literature, there is a need18
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of comprehensive evaluation on performances of current state-of-the-art Android1

malware classification based on a common benchmark.2

In this study, we evaluate the performance of different types of features and3

the performance between a conventional classifier, Random Forest (RF) and a4

deep learning classifier, Recurrent Neural Network (RNN). To avoid temporal and5

spatial biases, we evaluate the performances in a time- and space-aware setting6

in which classifiers are trained with older apps and tested on newer apps, and7

the distribution of test samples is representative of in-the-wild malware-to-benign8

ratio. Features are extracted from a common benchmark of 7,860 benign samples9

and 5,912 malware, whose release years span from 2010 to 2020. Among other10

findings, our study shows that permission use features perform the best among11

the features we investigated; package-level features generally perform better than12

class-level features; static features generally perform better than dynamic features;13

and RNN classifier performs better than RF classifier when trained on sequence-14

type features.15

Keywords Malware detection, machine learning, deep learning, Android16

1 Introduction17

Android platform has dominated the smart phone market for years now. With18

currently more than three billion devices running Android, it is the most popular19

end-user operating system in the world. Unsurprisingly, its enormous user base,20

coupled with the popularity of mobile apps led to the launch of several malicious21

applications by hackers. Symantec [60] reported that in 2018, it detected an average22

of 10,573 mobile malware per day; found that one in 36 mobile devices has high23

risk apps installed; and one in 14.5 apps accesses high risk user data.24

To detect Android malware, several approaches have been proposed by the re-25

search community. These approaches have built detection models utilizing either26

sequence of API call features [62,33,47], use of API call features [54,16,71,9] or27

frequency of API call features [1,28]. API call features represent invocations of An-28

droid APIs. Some approaches [24,51,30,37,54,16,9,35] categorized Android APIs29

according to privilege levels (known as Android permissions). In Android, APIs30

are classified into four privilege levels — normal, signature, dangerous, and special.31

These approaches rely on the concept that malware typically require privileged op-32

erations (i.e., dangerous permissions) such as read/send SMS, read contact, read33

location, etc. Given that modern malware often use reflections and system (native34

API) calls, to hide their true behaviours and implement their malicious function-35

alities, some approaches such as [28,59,2] utilized features that represent native36

API calls and reflections, in an attempt to further distinguish malware from be-37

nign apps. In addition to permission uses, Kim et al. [34] also investigated the use38

of app components as features. Hence, a study of the significance of those features39

for Android malware detection on a common benchmark would be beneficial.40

The API calls can be extracted at various abstraction levels such as method,41

class, package, and family. Since there are millions of unique methods in Android,42

some approaches [28,47,32] have proposed to abstract API calls at class and pack-43

age levels. This reduced the number of features significantly and yet produced44

comparable or even better results [28,47,32] than using API calls at method level.45
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To extract these features, in general, two types of techniques are used —1

static analysis [9,16,69,28,47,32] and dynamic analysis [23,62,2]. Typically, static2

analysis-based features cover more information since static analysis can reason3

with the whole program code whereas dynamic analysis-based features are limited4

to the code that is executed. On the other hand, static analysis may have issues5

dealing with complex code such as code obfuscation, and modern malware is usu-6

ally crafted with obfuscated code [28]. In general, static analysis and dynamic7

analysis complement each other. Hence, some approaches such as [35] perform8

both analyses and use both types of features.9

Once these features have been extracted using program analyses, machine10

learning classifiers, such as Support Vector Machines (SVM), K-Nearest Neigh-11

bours, and Random Forest, are used to train on the features to build malware12

detectors. For instance, DadiDroid [32] and MamaDroid [47] used all the three13

classifiers mentioned above; RevealDroid [28] used SVM; Huang et al. [30] used14

AdaBoost, Naive Bayes, Decision Tree, and SVM. In parallel, other studies [62,41,15

33,68] have focused on the use of deep learning classifiers, such as Convolutional16

Neural Network and Recurrent Neural Network, to build malware detectors. Deep17

learning classifiers use several neural network layers to study various levels of repre-18

sentations and extract higher-level features from the given lower-level ones. Hence,19

in general, they have a built-in feature selection process and are better at learning20

complex patterns. On the other hand, it generally comes with a much larger cost21

in terms of computational resources. Deep learning classifiers also typically have22

more parameters to tune and typically require intensive fine-tuning to match the23

characteristics of datasets.24

In terms of evaluating the malware detection performance, cross validation or25

random split schemes are commonly used in literature [35,9,2,33]. But, as reported26

by Allix et al. [4] and Pendlebury et al. [49], these evaluation schemes are biased27

because data from the ‘future’ is used in training the classifier. Fu and Cai [27]28

showed that F-measure drops from 90% to 30% when training and test data are29

split based on one year gap. Additionally, Pendlebury et al. [49] reported an issue30

with spatial bias where the evaluation does not consider the realistic distribution31

between malware and benign samples.32

In view of the proposals of different types of features, different types of under-33

lying analyses used for feature extraction, and different types of classifiers, there34

is a need for a comprehensive evaluation on the performance of current state-of-35

the-art in Android malware classification on a common benchmark. There is also36

a need to evaluate the performances in a time- and space-aware setting. Hence, in37

this study, we evaluate the malware detection accuracy of features, analyses, and38

classifiers based on a common benchmark. Our evaluation includes the compari-39

son between 14 types of features, the comparison between conventional machine40

learning classifier and deep learning classifier, the study of the impact of additional41

features such as native API calls and reflection, and combined static and dynamic42

features, and the robustness of features over Android evolution.43

The experiments are conducted on a benchmark of 13,772 apps (7,860 benign44

apps and 5,912 malware) that are released from 2010 to 2020. Benign samples were45

collected from Androzoo repository [6] while malware samples were collected from46

both Androzoo and Drebin [9] repositories. We extract static features from call47

graph of Android package (apk) codes and dynamic features by executing the app48
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in an Android emulator using our in-house intent-fuzzer combined with Android’s1

Monkey testing framework [8].2

Our preliminary study, documented in our conference paper [53], evaluated3

the performance between sequence of API calls features and use of API calls fea-4

tures and evaluated the performance between un-optimized classifiers. This paper5

extends the previous work and makes the following new contributions:6

– We conduct a more systematic evaluation of the performances of features and7

classifiers. More specifically, we evaluate the performances in a time- and space-8

aware setting in which classifiers are trained with older apps and tested on9

newer apps and the distribution of benign and malware samples is representa-10

tive of in-the-wild malware-to-benign ratio. These biases were not considered11

in our previous work.12

– We significantly increase the size of our dataset. Our earlier work used the13

dataset of 6,971 apps. In this extension, we use the dataset of 13,772 apps14

collected over a period of 11 years.15

– We analyze sequence/use/frequency of API calls features at two different ab-16

straction levels — class and package. We consider additional features that char-17

acterize reflection, native API calls, and permission uses and app component18

uses in our evaluation.19

– We perform a series of optimizations on the deep learning classifier and the20

conventional machine learning classifier and compare their performance.21

More specifically, the new research questions investigated in this study are:22

– RQ1: Features. Which types of features perform the best? Are class-level fea-23

tures or package-level features better? Are static analysis-based features or24

dynamic analysis-based features better?25

Finding. Permission use features perform the best; Package-level features gen-26

erally perform better than class-level features. Static features generally perform27

better than dynamic features.28

– RQ2: Classifiers. When optimized, which type of classifiers — conventional29

machine learning (ML) classifier or deep learning (DL) classifier — performs30

better?31

Finding. In our previous work [53], the un-optimized DL classifiers did not32

perform as well as the best conventional ML classifier (Random Forest). In33

this evaluation, we observed that when optimized, the DL classifier (Recurrent34

Neural Network) performs better than the conventional ML classifier (Random35

Forest) on sequence-type features.36

– RQ3: Additional features. Does the inclusion of features that characterize re-37

flection, native API calls, and API calls that are classified as dangerous (dan-38

gerous permissions) improve the malware detection accuracy? Does combining39

static analysis-based and dynamic analysis-based features help?40

Finding. Overall, inclusion of reflection feature, native API calls features, dan-41

gerous permission features does not improve the performances significantly;42

combining static and dynamic-based features in a naive manner results in a43

worse performance.44

– RQ4: Robustness. How robust are the malware detectors against evolution in45

Android framework and malware development?46

Finding. Generally, the performance of malware detectors is sensitive to changes47

in Android framework and malware development.48
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Data Availability. The scripts used in our experiments and sample datasets1

are available at our github page 1. We provide more detailed results and the2

complete dataset upon request.3

The rest of the paper is organized as follows. Section 2 discusses related work4

and motivates our work. Section 3 discuses the methodology — it explains the5

data collection and features extraction processes, and the machine learning and6

deep learning classifiers we optimized and used. Section 4 presents the empirical7

comparisons and discusses the results. Section 5 draws conclusions from this study8

and provides insights for Android malware researchers. Section 6 provides the9

concluding remarks and proposals for future studies.10

2 Related Work on Android Malware Detection11

Surveys. Naway and Li [46] reviewed the use of deep learning in combination with12

program analysis for Android malware detection. Recently, Liu et al. [38] also13

reviewed the use of deep learning for Android malware defenses. In contrast to14

Naway and Li [46], Liu et al. additionally reviewed critical aspects of using deep15

learning to prevent/defend against malicious behaviors (e.g., malware evolution,16

adversarial malware detection, deployment, malware families). However, the con-17

tributions of both studies is a literature survey, focusing on the use of deep learning18

for Android malware detection, rather than an empirical study like ours.19

Empirical studies. There are a few empirical studies [5,4,40,15] in literature,20

which contrast different types of features and classifiers to detect Android malware.21

Among them, Zhuo et al.’s study [40] is closely related to ours as it also inves-22

tigates static sequence/use/frequency features extracted from control flow graph.23

The main differences between Zhuo et al.’s study and ours are a) we consider24

both static and dynamic analysis, b) we evaluate the use of native calls, reflection,25

permissions, and API calls at class level and package level, c) we evaluate a DL26

algorithm whereas we evaluate both conventional ML and DL algorithms, d) most27

importantly, Zhuo et al’s study applied cross validation for performance evalua-28

tion, which introduces temporal and spatial biases whereas our evaluation takes29

measures to address these biases. In general, the other studies focus on a single30

dimension such as features, analyses, classifiers, or temporal and spatial aspects.31

By contrast, our study look at all those aspects and evaluate them on a common32

benchmark.33

Allix et al. [4] conducts a large-scale empirical study on the dataset sizes used34

in Android malware detection approaches. Allix et al. [5] also investigates the35

relevance of timeline in the construction of training datasets. Both studies [5,4]36

observed that performance of malware detector significantly dropped when they37

are tested against the malware in the wild, i.e., malware that were not seen in the38

training. Allix et al. [5] presents a critical literature review of Android malware39

classification based on supervised machine learning. They define a dataset to be40

historically coherent when the apps in the training set are all historically ante-41

rior to all the apps in the testing set. According to their experiment, when the42

dataset is not historically coherent, classification performances (e.g., F-measure)43

are artificially inflated. According to their literature review, a relevant portion44

1 https://github.com/Jesper20/msoftx

https://github.com/Jesper20/msoftx
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of the papers uses historically incoherent datasets, causing results to be biased.1

Another study [49] additionally discussed the importance of space-aware setting2

that consider the realistic distribution of malware and benign samples during both3

training and testing. We took measure to mitigate these two biases in our evalua-4

tions. The need of retraining an ML-based malware detector is defined by Cai [15]5

as the sustainability problem. Cai [15] compares five malware detectors, revealing6

limitations with respect to sustainability of the learned model. Our results confirm7

these findings. These existing studies were conducted on limited types of analyses8

(static analysis) and features (e.g., sequence of API calls), and limited span of9

app released years (≤ 3 years). Our work addresses the gap by investigating the10

relevance of timeline in the construction of datasets representing different types of11

features extracted from apps released in a wide time span of 11 years. We provide12

complementary, additional findings to these existing studies.13

Static analysis-based features. Several approaches rely on static analysis to14

extract features from the app such as permissions [24,65,51,30,37,54,16,9,59], the15

sequence of API calls [41,18,55,33,47,56,76], the use of API calls [54,73,16,71,9,16

59,32,67,12,64], or the frequency of API calls [1,18,26,28]. A few approaches [28,17

59] also relied on features that characterize native API calls and reflections. Since18

these approaches evaluate various types of features independently and majority19

of these approaches were not evaluated in a time- and/or space-aware manner,20

our work addresses this by evaluating all these types of features on a common21

benchmark in a time- and space-aware manner. In addition, our study evaluates22

features extracted not only with static analysis but also with dynamic analysis and23

with both static and dynamic analysis combined. And we evaluate these features24

on both ML and DL classifiers. Considering that analysis at method level leads25

to millions of features, resulting in long training time and memory consumption,26

some approaches [47,32,69] abstracted features at class, package, family, or entity27

levels, to save memory and time. Our study evaluates features at class level and28

package level.29

Dynamic analysis-based features.Dynamic analysis-based approaches such as [23,30

62,2,58] have mainly focused on features at native API calls (system calls). Narudin31

et al. [45] evaluate the performance of five ML classifiers on network features (API32

calls that involve network communication) extracted with dynamic analysis. Most33

dynamic analysis approaches have largely used Monkey (UI) test generator [46].34

But Monkey test generator only focuses on exercising UI components and could35

miss out component interactions. In contrast to these approaches, our approach36

employs a combination of Monkey test generator and intent fuzzing.37

Hybrid analysis-based features. As reported in Liu et al. [38], possibly due38

to high computational cost, very few approaches [72,36,7,58,14] combine static39

analysis and dynamic analysis. And, these approaches focus on extracting spe-40

cific features that are generally considered to be dangerous, such as sending SMS41

and connecting to Internet. For example, Droid-sec [72] uses features that char-42

acterize permission requested and permission use, which are coarse-grained and43

prone to false positives [24]. DDefender [7] uses features that are based on per-44

missions, network activities and native API calls. Monkey tool was also used in45

the dynamic analysis; thus it may not be able to generate all the events that a46

malware can make. Mobile-Sandbox [58] applies static analysis of manifest file47

and bytecode to guide the dynamic analysis process. It then analyzes native API48

calls during the application’s execution. AASandbox [14] uses static analysis to49
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extract suspicious code patterns, such as the use of Runtime.exec() and functions1

related to reflection. During the dynamic step, AASandbox runs the app in a con-2

trolled environment and monitors system calls. In contrast to the above-mentioned3

approaches, we evaluate more types of features, and evaluate both conventional4

machine learning and deep learning classifiers. We also employ a combination of5

Monkey test generator and intent fuzzing to cover both UI events and component6

interactions. Marvin [35] also uses both static analysis and dynamic analysis to7

extract features that are similar to the features extracted by our work. The fea-8

tures extracted include permissions, reflection, native calls, Java classes, etc. But9

its classifier is evaluated by randomly splitting training and test data, without10

considering the timeline in the construction of training data, which could produce11

biased results.12

Robust classifiers. While Zhang et al. [74] proposes a way to mitigate the prob-13

lem of model aging, Fu and Cai [27], MaMaDroid [47], Afonso [2], and Reveal-14

Droid [28] propose the use of features that could be robust against the evolution15

of apps (timeline). Our empirical study complements their work by evaluating16

which combination of features, program analyses, and classifiers produces robust17

malware detectors, on a common benchmark.18

3 Methodology19

This section explains the workflow of our empirical study. As illustrated in Fig-20

ure 1, it consists of three phases. In the first phase, static analysis is used to21

extract manifest files and call graphs; dynamic analysis is used to generate execu-22

tion traces, from benign and malware apps. In the second phase, various features23

— sequence/use/frequency of API calls features at class level and package level,24

permission uses, and app component uses — are extracted from call graphs and25

execution traces. Each type of features forms a distinct dataset. Each record in26

the dataset, representing an app, is tagged with its known label. In the last phase,27

classifiers — Random Forest (RF) and Recurrent Neural Network (RNN) — are28

trained and tested on the labeled datasets in a time- and space-aware setting and29

produce the evaluation results.30

The following subsections discuss each phase in detail. As a running example,31

we will use a malicious app called com.test.mygame released in year 2017, which32

has been flagged as malware by 27 anti-viruses. It is a variant of the SmsPay33

malware where a legitimate app is repackaged with covert functions to send and34

receive SMS messages, potentially causing unexpectedly high phone charges.35

3.1 Program Analysis36

In this phase, static analysis and dynamic analysis are performed on the given37

Android Application Packages (APKs).38

Static analysis. Given an APK, we use apktool2 to extract Android manifest39

file and use FlowDroid [10] to extract call graph. Call graph contains paths from40

public entry points of the app to the program termination. Those paths contain41

2 https://ibotpeaches.github.io/Apktool/

https://ibotpeaches.github.io/Apktool/
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Fig. 1: The workflow of our experiments

sequences of API calls. FlowDroid is based on Soot [57]. Firstly, Soot converts a1

given APK (i.e., the DEX code) into an intermediate representation called Jimple2

and FlowDroid performs flow analysis on the Jimple code. The analysis is flow-3

and context-sensitive. FlowDroid also handles common native API calls. Using4

some heuristics, it tracks data flow across some commonly used native calls.5

Dynamic analysis. Static call graphs characterize all possible program behav-6

iors, in terms of API calls. But static analysis has inherent limitations, such as7

dealing with code obfuscation and reflection. FlowDroid can only resolve reflective8

API calls when the arguments used in the call are all string constants. Dynamic9

analysis can overcome this limitation. Hence, the goal of dynamic analysis here10

is to execute test inputs to observe concrete program behaviors. Since mobile11

apps are event driven in general, a good test generator needs to be able to gen-12
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erate various kinds of events. In Android, events are typically triggered by means1

of inter-component communication (intent messages sent by app components) or2

GUI inputs. Hence, we use two different test generators — an Intent fuzzer and3

a GUI fuzzer. Our Intent fuzzer was developed in our previous work [21]. Firstly,4

it analyzes call graph of the app to extract paths from public entry-points (i.e.,5

inter/intra-component communication interfaces) to the leaf nodes. Similar to the6

static analysis phase, we generate the call graph of the app using Soot with Flow-7

Droid plugin for Android. The call graph is then traversed forward in depth-first8

search manner starting from the root node until a leaf node is reached. The out-9

put of this step is paths from component entry points to the different leaf nodes10

(method calls without outgoing edges). Once the list of paths is available, the11

intent fuzzer generates inputs in an attempt to execute each path (target). The12

given app is installed and executed on a fresh Android emulator. The generated13

inputs are Intent messages that are sent to the app under test via Android De-14

bug Bridge (ADB) commands. With ADB’s privilege, we can also invoke private15

components as well as send events that can only be generated by the system (e.g.,16

BOOT COMPLETED). Execution traces are then collected using ADB logcat17

command. A genetic algorithm is used to guide the test generation, where fitness18

function is defined based on the coverage of nodes in the target path. To this end,19

we first instrument the app to collect execution traces and install the app on an20

Android emulator. We then run our intent fuzzer with statically collected values21

(such as static strings) from the app as seed (initial values). The generated inputs22

are Intent messages that are sent to the app under test via the Android Debug23

Bridge (ADB). Our goal is to maximize coverage and collect as many traces as24

possible. The traces are also used to guide the test generation.25

While the Intent fuzzer exercises code parts that involve inter-/intra-component26

communications, it does not address user interactions through GUI. Therefore, to27

complement our intent fuzzer, we use Google’s Android Monkey GUI fuzzer [8].28

Monkey comes with the Android SDK and is used to randomly generate GUI input29

events such as tap, input text or toggle WiFi in an attempt to trigger abnormal30

app behaviors. We used Monkey because the random exploration of Monkey has31

been found to yield higher statement coverage than tools utilizing advanced ex-32

ploration techniques [19]. And by complementing Monkey’s approach with other33

strategies (in this case inter-/intra communication), we expect that the coverage34

could be further improved.35

We measure the coverage achieved by this approach. Since code coverage is36

difficult to measure due to the usage of libraries, we measured component coverage,37

by measuring the ratio of the components that are executed when performing38

dynamic analysis and the components that are listed in the Android manifest file.39

Component coverage is shown in the histogram in Figure 2. While on average40

component coverage is approximately 43%, a remarkable number of apps reach41

100% coverage. This degree of coverage is in line with literature results [19].42

3.2 Features Extraction43

From the call graphs and the execution traces generated in the previous phase,44

we extract sequence features, use features, and frequency features at class level45

and package level. Each type of features forms a distinct dataset. From the ex-46
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tracted API calls, we identify API calls that require dangerous permissions. We1

also identify native API calls (e.g., API calls that require system services and2

access hardware devices). Finally, we identify reflections (i.e., classes that start3

with java.lang.reflect) and mark them as additional features. From the Android4

manifest files, we extract features that represent permission uses (permission re-5

quests) and Android component uses as well, which are also considered as distinct6

datasets.7

Note that the API calls that we extract here are abstracted at class level and8

package level. The rationale for choosing class and package level features instead of9

method level features is to reduce the amount of features, following the recent state-10

of-the-art approaches [28,69,47,32]. Method level features would result in millions11

of features that cost significantly long training time. Those recent approaches have12

reported that, despite the cost, the classifiers may not achieve a better accuracy13

since the feature vectors of the samples would be sparse and abstracted API calls14

features characterize Android malware even better. The abstraction also provides15

robustness against API changes in Android framework because methods are often16

subject to changes and deprecation. Figure 3 shows an example of an API at17

different levels.18

Regarding the extraction of dangerous features, we implemented an in-house19

tool that crawls the Android permission documentation website3 and maps API20

calls to dangerous permissions. This tool is similar to PScout [11] but PScout only21

supports up to Andriod 5.11. Our tool supports Android 11 (API 30)4.22

Sequence Features Extraction. We extract sequence of API calls from23

call graphs and execution traces. Given a call graph, we traverse the graph in a24

3 https://developer.android.com/guide/topics/permissions/overview
4 our crawling tool is available in https://github.com/Jesper20/msoftx

https://developer.android.com/guide/topics/permissions/overview
https://github.com/Jesper20/msoftx
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javax.crypto.spec.SecretKeySpec: void <init>(byte[],java.lang.String)

package

method

class

Fig. 3: An example of an API and its package, class, and method

depth first search manner and extract class/package signatures5 as we traverse1

(hence, sequence). If there is a loop, the signature is traversed only once. Note2

that we only extract Android framework classes/packages, Java classes/packages,3

and standard org classes/packages (org.apache, org.xml, etc.). This is because4

it is common for malware to be obfuscated to circumvent malware detectors. The5

obfuscation often involves renaming of custom (user-defined) library and classes/-6

packages. Hence, a malware detector will not be robust against obfuscation if it7

is trained on custom library and classes/packages. A study [50] has shown that8

a simple renaming obfuscation can prevent popular anti-malware products from9

detecting the transformed malware samples. Hence, we filtered classes/packages10

that are not from the above-mentioned standard packages. Similarly, we extract11

classes/packages from the execution traces. However, since execution traces are12

already sequences, depth first search is not necessary. An excerpt of sequences of13

API calls extracted from a repackaged malware app com.test.mygame is shown in14

Figure 4.15

Next, we discretized the sequence of API calls we extract above so that it can16

be processed by the classifiers. More precisely, we replace each unique class/pack-17

age signature with an identifier, resulting in a sequence of numbers. We build a18

dictionary that maps each class to its identifier. During the testing or deployment19

phase, we may encounter unknown API calls. To address this, (1) we consider a20

large dictionary that covers over 160k class signatures and 4605 package signa-21

tures from standard libraries and (2) we replace all unknown signatures with a22

fixed identifier.23

The length of the sequences varies from one app to another. The sequence24

length determines the number of features and to have a fixed number of features,25

it is necessary to unify the length of the sequences. Since we have two types of26

API calls sequences — from call graphs and from execution traces — we chose two27

different uniform sequence lengths. Initially, we extracted the whole sequences. We28

then took the median length of sequences from call graphs as the uniform sequence29

size, denoted as Lcg, for call graph-based sequence features and took the median30

length of sequences from execution traces as the uniform sequence, denoted as Ltr,31

for execution traces-based sequence features6. If the length of a given sequence is32

less than L, we pad the sequence with zeros; if the length is longer than L, we33

trim it to L, from the right. Hence, for each app, we end up with a sequence of34

numbers which is a feature vector. Each number in the sequence corresponds to35

the categorical value of a feature. The number of features is the uniform sequence36

5 note that package level features and class level features result in distinct datasets.
6 Lcg=85000, Ltr=21000
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length L. As a result, we obtain static-sequence features from call graphs at class1

level and package level, denoted as ssfc and ssfp, respectively. Likewise, we obtain2

dynamic-sequence features from execution traces at class level and package level,3

denoted as dsfc and dsfp respectively. As an example, Table 1 shows a sample4

dataset containing sequence features.5

org.json.JSONObject a(android.telephony.TelephonyManager,
android.telephony.SubscriptionManager,int)

java.lang.reflect.AccessibleObject: void setAccessible(boolean)
android.app.Dialog: void dismiss()
android.content.ComponentName: java.lang.String toString()
java.lang.StringBuilder: java.lang.StringBuilder append(java.lang.String)
android.telephony.SmsMessage$SubmitPdu: java.lang.String toString()

Fig. 4: An excerpt of sequence of API calls from a malware sample. It shows the
sequence of API calls that require dangerous permissions (Telephony and Sms)
and invoke a (potentially malicious) functionality via reflection.

Use Features Extraction. We extract use of API calls at class level and6

package level from call graphs and execution traces. The extraction process is the7

same for both call graphs and execution traces. We initially build a database that8

stores unique classes and packages. Again for obfuscation resiliency, we only con-9

sider the Android framework, Java, and standard org classes similar to extracting10

sequence features. Given call graphs or execution traces, we scan the files and ex-11

tract the class signatures and the package signatures (sequence does not matter in12

this case). Each unique class or package in our database corresponds to a feature13

(Table 5). The value of a feature is 1 if the corresponding class/package is found14

in a given call graph or execution trace; otherwise, it is 0. As a result, we obtain15

static-use features from call graphs at class level and package level, denoted as16

sufc and sufp, respectively. Likewise, we obtain dynamic-use features from execu-17

tion traces at class level and package level, denoted as dufc and dufp respectively.18

Table 2 shows a sample dataset containing use features at class level.19

Frequency Features Extraction. We extract frequency of API calls from20

call graphs and execution traces in a similar way to use of API calls features.21

Except that, for each unique class/package signature, we record the number of22

its occurrences in the given call graph or execution trace, instead of recording23

the value 1 to denote the presence of a class/package signature. As a result, we24

obtain static-frequency features from call graphs at class level and package level,25

denoted as sffc and sffp respectively. Likewise, we obtain dynamic-frequency fea-26

tures from execution traces at class level and package level, denoted as dffc and27

dffp respectively. Table 3 shows a sample dataset containing frequency features.28

Permission and App Component Features Extraction. Android mani-29

fest file specifies permissions requested and app components used by the app. Some30

approaches have used features that characterize permission uses [24,16,9,35] and31

app component uses [34] to detect Android malware. Therefore, it is important to32

analyze those features as well. We wrote a Python script to extract those features33

from Android manifest files. Figure 5 shows a snippet of AndroidManifest file. Line34

1 shows the definition of the permission RECEIVE BOOT COMPLETE the app35
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Table 1: An excerpt of sequence features extracted from static call graphs. Sequence
length L is fixed at 21,000 for dynamic features and 85,000 for static features, which
are the median lengths observed in our datasets.

seq1 seq2 . . . seqL label
benign1 4921 6172 . . . 84111 0
benign2 29011 4490 . . . 3923 0
mal1 23712 8122 . . . 0 1
mal2 213 6311 . . . 0 1

Table 2: An excerpt of use features including additional (native calls and reflection)
features

telephony. app. reflect. hardware. label
SmsMessage Dialog AccessibleObject Camera

benign1 1 1 0 0 0
benign2 0 1 1 1 0
mal1 1 1 1 0 1
mal2 0 0 0 1 1

Table 3: An excerpt of frequency features including additional (native calls and
reflection) features

telephony. app. reflect. hardware. label
SmsMessage Dialog AccessibleObject Camera

benign1 3 9 0 0 0
benign2 0 10 2 3 0
mal1 4 1 2 0 1
mal2 0 0 0 2 1

wishes to be granted to receive system notification when the device completes boot-1

ing. Line 3 shows the definition of a Broadcast Receiver app component Restart-2

ServiceReceiver that will handle the system notification for the boot-complete.3

Table 4 shows a sample dataset containing permission-use features.4

1 <uses−permiss ion android : name=”android . permiss ion .RECEIVE BOOT COMPLETED”/>
2
3 <r e c e i v e r android : name=”org . mysampleapp . Res ta r tSe rv i c eRece ive r ”>
4 <intent− f i l t e r>
5 <act ion android : name=”android . i n t en t . ac t i on .BOOT COMPLETED”/>
6 </ intent− f i l t e r>
7 </ r e c e i v e r>

Fig. 5: AndroidManifest snippet showing permission and component definition

Table 5 shows a summary of the features (datasets) extracted in this study.5

There are 14 types of features based on Type and Level of features and Analysis6

method used.7
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Table 4: An excerpt of permission-use features

CAMERA CALL PHONE READ SMS INTERNET label
benign1 1 0 1 0 0
benign2 0 1 1 0 0
mal1 0 0 1 0 1
mal2 0 0 0 1 1

Table 5: Characteristics of the features (datasets) extracted
# Dataset Type Level Analysis #features
1 dsfc Sequence Class Dynamic 21,000
2 dsfp Sequence Package Dynamic 21,000
3 ssfc Sequence Class Static 85,000
4 ssfp Sequence Package Static 85,000
5 dufc Use Class Dynamic 28,816
6 dufp Use Package Dynamic 1,255
7 sufc Use Class Static 161,240
8 sufp Use Package Static 4,605
9 dffc Frequency Class Dynamic 28,816
10 dffp Frequency Package Dynamic 1,255
11 sffc Frequency Class Static 161,240
12 sffp Frequency Package Static 4,605
13 pu Use Permission Static 4,242
14 cu Use App Component Static 116822

3.3 Classifiers1

In the last phase, classifiers are trained and tested on the datasets. The following2

describes the classifiers used in our evaluations.3

3.3.1 Deep Learning (DL) Classifier4

Deep learning is a class of machine learning algorithms that uses multiple layers to5

progressively extract higher level features from raw input features. Deep learning6

classifiers typically comprise an input layer, one or more hidden layers, and an7

output layer. In our previous work [53], we studied three kinds of DL classifiers —8

standard deep neural network (DNN), convolutional neural network (CNN), and9

recurrent neural network (RNN). However, in this work, we decided to use only10

one DL classifier due to the huge amount of computation required for tuning and11

evaluating DL classifiers in general. We chose RNN and our rationale is as follows:12

The main principles behind CNN are sparse interaction, parameter sharing and13

equivariant representations to implement filter operators (i.e., kernels), particularly14

fitting for the image recognition problem. But, in our context, API calls features15

hardly enjoy these properties. Recurrent Neural Network (RNN) is suitable for16

learning serial events such as language processing or speech recognition [22]. Unlike17

feed-forward neural networks like standard DNN and CNN, RNN can use their18

internal memory to process arbitrary sequences of inputs. More specifically, RNN19

has memory units, which retain the information of previous inputs or the state20

of hidden layers and its output depends on previous inputs, i.e., what API is21

used last will impact what API is used next. Hence, by design, RNN is suitable22

for sequence-type features. Furthermore, in our previous work [53], we observed23
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that RNN performs well for use features. Therefore, we opted for RNN in our1

evaluation.2

For use and frequency features, we use the RNN with one input layer, one3

LSTM layer, one hidden layer, and the output layer with Softmax function. The4

input layer accepts use or frequency features as vectors (Section 3.2). Each vector5

represents an app instance. These vectors are directly fed to the LSTM layer.6

The LSTM layer is used to avoid the error vanishing problem by fixing weight of7

hidden layers to avoid error decay and retaining not all information of input but8

only selected information which is required for future outputs.9

Unlike use and frequency features, sequence features are not suitable for di-10

rectly feeding to the LSTM layer because numerical values for the features will11

then be treated as frequency values by the classifier. As discussed in [33,41], it12

requires an additional vectorization technique that preserves the sequential pat-13

terns. Therefore, for sequence features, we add a vectorization step as follows: the14

RNN input layer accepts sequence features of each app instance (Section 3.2) as15

a vector. Each class/package identifier in the input vector is transformed into a16

vector using one-hot encoding [41,63]. The output from this input layer is then fed17

to the LSTM layer. Alternative to one-hot encoding, embedding techniques such18

as word2vec [42], apk2vec [44], node2vec [29] and graph2vec [43] can also be ap-19

plied. However, we leave the problem of evaluating various embedding techniques20

in Android malware detection context as future work.21

3.3.2 Conventional Machine Learning (ML) Classifier22

Random Forest (RF) has been proven to be a highly accurate classifier for malware23

detection [25]. In our previous work [53], RF classifier was evaluated to be the best24

classifier among ML classifiers. Since we are not comparing the performance among25

ML classifiers in this extension work, we use only RF classifier as the flagship of ML26

classifiers7. RF is an ensemble of classifiers using many decision tree models [13]. A27

different subset of training data is selected with a replacement to train each tree.28

The remaining training data serves to estimate the error and variable importance.29

We used Scikit-learn [48] to run the RF classifier. Similar to RNN, we applied30

one-hot encoding for sequence features.31

3.3.3 Optimizing the Classifiers32

We tuned the hyper-parameters of both classifiers to achieve optimal performances33

as follows.34

Tuning the hyper-parameters of RNN. For tuning the parameters, we sampled35

the data from year 2013 and year 2014 (see Table 8), which is never used as test36

data in our experiments. In total, the data contains about 1000 malware and 100037

benign samples. During the preliminary tuning, we observed that different datasets38

require different parameter configuration for improved results. In our preliminary39

phase, it took about 10 days to tune a relatively small dataset (dufc). It would40

take about 30 days each for the larger ones. Since it is intractable to do the tuning41

for each of the datasets. We decided to do tuning for only dsfc, dufc and dffc42

7 To cross validate the results, we also ran Logistic Regression and Support Vector Machines
for one of the datasets. The results are briefly discussed in Section 4.3.
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datasets. We then used the same optimal configuration of dsfc for other sequence-1

type datasets, i.e., dsfp, ssfc, and ssfp. The same is done for use and frequency2

datasets. We used Optuna, a hyper-parameter optimization framework [3], to tune3

the following hyper-parameters:4

– Optimizer (ADAM, SGD, or RMSprop)5

– learning rate (lr)6

– number of neurons in hidden layer (hidden sz)7

– dropout ratio (p)8

– Epoch9

– decay weight10

Table 6 shows the tuned hyper-parameter values and the F-measure results before11

and after hyper-parameter optimization.12

Table 6: Results of RNN before tuning and after tuning, on the benchmark of apps
from year 2013 and year 2014. F1 (bf.) represents the results before optimization;
F1 (aft.) represents the results after optimization; Optimizer represents the
optimizer used; lr represents the learning rate; hidden sz represents the number
of neurons used in hidden layer; p represents the drop out ratio; Epoch defines
the number of times that the learning algorithm will work through the training
dataset to update the parameters

Dataset F1 (bf.) F1 (aft.) Optimizer lr hidden sz p Epoch
dsfc (#1 in Table 5) 0.317 0.556 ADAM 0.0007 120 0.25 30
dufc (#5 in Table 5) 0.86 0.873 ADAM 0.001 30 0.25 30
dffc (#9 in Table 5) 0.748 0.872 ADAM 0.0007 70 0.25 30

Tuning the hyper-parameters of RF. Scikit-learn provides two widely-used tun-13

ing libraries — Exhaustive grid search and Randomized parameter optimization14

— for auto-tuning the hyper-parameters of a given classifier to a given dataset8.15

We combined both tuning methods as follows:16

We first apply Randomized parameter optimization, which basically conducts17

a randomized search over parameters, where each setting is sampled from a dis-18

tribution over possible parameter values. This gives us a good combination of19

hyper-parameter values efficiently. We then widen those hyper-parameter values20

to a reasonable range9 and use exhaustive grid search to search for the best hypyer-21

parameter values among the given range. We followed the same process of tuning22

the RNN classifier. That is, we used the same apps from year 2013 and year 201423

as a basis to tune the RF classifier and we only tuned for dsfc, dufc, and dffc24

datasets. This results in the optimized hyper-parameters of random forest for An-25

droid malware classification as shown in Table 7.26

3.4 Data Preprocessing27

Imbalanced data causes the learning algorithm to bias towards the dominant28

classes, resulting in misclassification of minority classes. One effective way to im-29

8 https://scikit-learn.org/stable/modules/grid_search.html
9 Reasonable range is determined according to the time budget of 5 hours.

https://scikit-learn.org/stable/modules/grid_search.html
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Table 7: Results of RF before tuning and after tuning, on the benchmark of apps
from year 2013 and year 2014. F1 (bf.) represents the results before optimization;
F1 (aft.) represents the results after optimization; n estimators represents the
number of trees used; min samples split represents the minimum samples re-
quired for splitting a branch; max depth represents the maximum depth of the
tree.

Dataset F1 (bf.) F1 (aft.) n estimators min samples split max depth
dsfc (#1 in Table 5) 0.605 0.657 200 5 90
dufc (#5 in Table 5) 0.817 0.823 94 2 60
dffc (#9 in Table 5) 0.827 0.835 10 5 100

prove the performance of classifiers is the synthetic generation of minority in-1

stances during the training phase. In our experiments, we use synthetic minority2

oversampling technique (smote) [17] to balance the training data.3

4 Evaluation4

This section presents the experimental comparison results of features, analyses,5

and classifiers for Android malware detection. Specifically, we investigate the fol-6

lowing research questions:7

– RQ1: Features. Which types of features perform better?8

– RQ2: Classifiers. When optimized, which type of classifiers — conventional9

machine learning classifier or deep learning classifier — performs better?10

– RQ3: Additional features. Does the inclusion of features that characterise re-11

flection, native API calls, and API calls classified as dangerous (dangerous12

permissions) improve the malware detection accuracy? Does combining static13

analysis-based and dynamic analysis-based features help?14

– RQ4: Robustness. How robust are the malware detectors against evolution in15

Android framework and malware development?16

4.1 Experiment Design17

Dataset. Our benchmark consists of 13,772 apps — 7,860 benign samples and18

5,912 malware samples. The apps are released in a time-period between 201019

and 2020. Benign samples were collected from Androzoo repository [6]. Malware20

samples were collected from Androzoo repository [6] and Drebin repository [9].21

The labeling of malware samples is confirmed by at least 10 antivirus software via22

VirusTotal10. Zhao et al. [75] highlighted the importance of considering sample23

duplication. That is, a dataset might contain the same or very similar apps with24

minor modification which might cause duplication bias. To avoid this bias, we25

randomized the download process. Initially, we downloaded over 50k samples from26

the repositories. However, as we evaluate the use of both static and dynamic27

analysis-based features, we had to filter those samples that can be analyzed by28

both static and dynamic analysis tools. When we use FlowDroid [10] tool to extract29

10 https://www.virustotal.com

https://www.virustotal.com
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call graphs, some of the apps caused exceptions. But the main bottleneck was1

dynamic analysis as our intent-fuzzing test generation tool encountered crashes2

or exceptions for several apps. Therefore, we were not able to extract features for3

those cases. Note that these are the limitations of the underlying program analysis4

tools and the objective of this experiment is to compare features and classifiers5

and not to assess the feature extraction components. We took the intersection of6

the apps that can be commonly analyzed by static and dynamic analysis tools7

and ended up with 13,772 apps. Several malware samples from our datasets are8

obfuscated. This is important to reflect the real world setting because malware9

authors heavily rely on obfuscation to hide the true behaviors. Table 8 shows the10

statistics of the datasets according to app release years.11

Table 8: Dataset Statistics

Year Malware Benign Total
2010 723 352 1075
2011 1407 683 2090
2012 450 470 920
2013 684 512 1196
2014 365 501 866
2015 639 347 986
2016 170 786 956
2017 866 401 1267
2018 467 3552 4019
2019 130 219 349
2020 11 37 48
Overall Total 5912 7860 13772

In comparison, Table 9 shows the sizes of dataset used by Android malware12

detection approaches in related work. But note that in comparison with these13

studies, we evaluate different types of features and both conventional machine14

learning and deep learning classifiers. Hence, it was intractable for us to use a15

larger dataset size. Yet, our dataset size is comparable to the sizes used in some16

recent studies such as [55,69].17

Table 9: Statistics of datasets of some popular malware detection approaches
Reference #Benign #Malware

Droid-sec [72] 250 250
DroidSift [73] 13500 2200
Drebin [9] 123453 5560

Narudin et al. [45] 20 1000
Maldozer [33] 37627 33066

RevealDroid [28] 24679 30203
Shen et al. [55] 3899 3899
EnMobile [69] 1717 4897
MaMadroid [47] 8447 35493
DaDiDroid [32] 43262 20431
Marvin [35] 84980 11733

Allix et al. [5] 200000
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Performance measure. We use F-measure (F1) to evaluate the performances,1

which is a standard measure typically used for evaluating malware detection accu-2

racy [28,47]. F1 score reports an optimal blend (harmonic mean) of precision and3

recall, instead of a simple average because it punishes extreme values. A classifier4

with a precision of 1.0 and a recall of 0.0 has a simple average of 0.5 but an F15

score of 0. It can be computed as F1 = 2∗(precision∗recall)/(precision+recall).6

Evaluation Procedure. To avoid temporal bias problem as discussed in [4,49],7

we split the data based on their release years. We then train the classifier on8

the data released in a sequence of years and test it on the data released in the9

subsequent years. To avoid spatial bias problem as discussed in [49], we sample the10

malware instances from the test dataset so that malware-to-benign ratio is 18%11.11

We note from [49] that malware-to-benign ratio in the wild ranges from 6% to12

18% and we did evaluate the features and classifiers with both ratios. But we will13

discuss the results based on the 18% ratio only.14

Our general evaluation procedure to investigate our research questions is as15

follows: For a given feature (listed in Table 5), we run 21 training and test exper-16

iments with the given classifier (RF or RNN) as shown in Table 10.17

Table 10: Time- and space-aware train and test procedure used in our experiments

No Train Years Test Year Malware-to-Benign
Ratio (%) in test dataset

1 2010-2014 2015 18
2 2010-2014 2016 18
3 2010-2014 2017 18
4 2010-2014 2018 18
5 2010-2014 2019 18
6 2010-2014 2020 18
7 2010-2015 2016 18
8 2010-2015 2017 18
9 2010-2015 2018 18
10 2010-2015 2019 18
11 2010-2015 2020 18
12 2010-2016 2017 18
13 2010-2016 2018 18
14 2010-2016 2019 18
15 2010-2016 2020 18
16 2010-2017 2018 18
17 2010-2017 2019 18
18 2010-2017 2020 18
19 2010-2018 2019 18
20 2010-2018 2020 18
21 2010-2019 2020 18

Hardware used. The experiments were performed on two Linux machines —18

1) 40 cores Intel CPU E5-2640 2.40GHz 330GB RAM and 2) 12 cores Intel CPU19

E5-2603 1.70GHz 204GB RAM. It took about three months to extract call graphs20

and execution traces from all the 50k plus samples. It took about one month to21

extract the features from the final benchmark which contains 13,772 samples in22

total. It took about three months to conduct the machine learning experiments.23

11 if the size of malware samples does not amount to 18% (which is the case for year 2018
dataset), we use all available malware instances without sampling.
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4.2 RQ1: Comparison among features1

To investigate this research question, we compare the performance of 14 types2

of features listed in Table 5. Since we are not comparing the performance of the3

classifiers in this case, we shall use only Random Forest classifier to evaluate the4

features. For each feature listed in Table 5, we run 21 training and test experiments5

with the RF classifier as shown in Table 10.6

Figure 6 shows the boxplot, mean, and standard deviation of F1 scores of7

Random Forest classifier with 14 different types of features based on the 21 train8

and test evaluations. We apply the Wilcoxon rank-sum test to perform pairwise9

comparison among features. For each feature, we perform the Wilcoxon rank-sum10

test against a different feature and test whether its F1 scores are statistically the11

same as the F1 scores of that feature (null hypothesis). The corresponding p-values12

are reported in Table 11.13

We assume a standard significance level of 95% (α = 0.05), i.e., we reject the14

null hypothesis if p-value < 0.05. Table 12 shows the comparison result of each15

feature against other features based on the p-values reported in Table 11. Each16

feature, say f , in a given row is compared against the features in the ‘columns’.17

The label < or > in a given cell indicates whether the feature, f , is worse than18

or better than the feature listed in the corresponding column or not. The label !19

denotes that there is no significant difference. For example, in the first row, the20

feature dsfc is compared against other features. It performs worse than dufc, dufp,21

sufc, sufp, dffc, dffp, sffc, sffp, and pu features; it has no statistical difference with22

other features.23

dsfc dsfp ssfc ssfp dufc dufp sufc sufp dffc dffp sffc sffp pu cu
feature

0.0

0.2

0.4

0.6

0.8

F1

dsfc dsfp ssfc ssfp dufc dufp sufc sufp dffc dffp sffc sffp pu cu
Mean 0.29 0.32 0.26 0.35 0.45 0.41 0.5 0.57 0.46 0.46 0.47 0.5 0.64 0.24
Stdev 0.07 0.08 0.06 0.13 0.18 0.15 0.22 0.23 0.18 0.19 0.21 0.22 0.26 0.23

Fig. 6: Comparison of features based on F1 scores. See Table 5 regarding the
feature notations.

Overall, we can observe that permission-use feature (see row ‘pu’) significantly24

outperformed all other features, except class-level and package-level static-use fea-25

tures (sufc and sufp). It achieved the best F1 mean score at 0.64. The second best26
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Table 11: P-values of the Wilcoxon rank-sum test between each pair of features

dsfp ssfc ssfp dufc dufp sufc sufp dffc dffp sffc sffp pu cu
dsfc 0.372 0.097 0.232 0.009 0.009 0.001 0.000 0.005 0.009 0.007 0.002 0.000 0.064
dsfp 0.023 0.831 0.015 0.021 0.007 0.001 0.009 0.014 0.025 0.006 0.000 0.040
ssfc 0.004 0.004 0.001 0.000 0.000 0.001 0.002 0.002 0.000 0.000 0.102
ssfp 0.107 0.155 0.015 0.002 0.076 0.087 0.063 0.031 0.001 0.013
dufc 0.392 0.571 0.054 0.831 0.597 0.580 0.308 0.003 0.002
dufp 0.308 0.021 0.159 0.174 0.314 0.174 0.003 0.003
sufc 0.399 0.642 0.678 0.697 1.000 0.058 0.001
sufp 0.051 0.080 0.170 0.302 0.222 0.000
dffc 0.725 0.529 0.443 0.004 0.002
dffp 0.753 0.505 0.004 0.002
sffc 0.763 0.014 0.002
sffp 0.040 0.000
pu 0.000

Table 12: Comparison of features. The label ! denotes no statistical difference; the
labels < and > denote whether the F1 scores of a feature are statistically worse
or better than the other feature, respectively.

dsfc dsfp ssfc ssfp dufc dufp sufc sufp dffc dffp sffc sffp pu cu
dsfc NA ! ! ! < < < < < < < < < !
dsfp ! NA > ! < < < < < < < < < >
ssfc ! < NA < < < < < < < < < < !
ssfp ! ! > NA ! ! < < ! ! ! < < >
dufc > > > ! NA ! ! ! ! ! ! ! < >
dufp > > > ! ! NA ! < ! ! ! ! < >
sufc > > > > ! ! NA ! ! ! ! ! ! >
sufp > > > > ! > ! NA ! ! ! ! ! >
dffc > > > ! ! ! ! ! NA ! ! ! < >
dffp > > > ! ! ! ! ! ! NA ! ! < >
sffc > > > ! ! ! ! ! ! ! NA ! < >
sffp > > > > ! ! ! ! ! ! ! NA < >
pu > > > > > > ! ! > > > > NA >
cu ! < ! < < < < < < < < < < NA

type of features is package-level static-use feature (sufp) with the F1 mean score of1

0.57. Component-use feature performed the worst with the F1 mean score at 0.24.2

In general, we observe that package-level features achieve better or equal F1 scores3

against their class-level counterparts, e.g., sufp=0.57 vs sufc=0.5 and sffp=0.5 vs4

sffc=0.47, except for the dynamic-use case. This result is consistent with the ob-5

servation made in Onwuzurike et al. [47]. We also observe that static features6

achieve better F1 scores against their dynamic counterparts, e.g., sufp=0.57 vs7

dufp=0.41 and sufc=0.5 vs dufc=0.45, except for the dynamic-sequence case. We8

also observe that Sequence features did not perform well in general as they all9

achieved less than 0.35 F1 mean score. All these results (of low F1 scores) show10

that Android malware detection is not actually a solved problem even though ma-11

jority of the approaches in literature reported near perfect accuracy scores in their12

experiments. We believe that this is because those approaches did not take into13

account the biases that we considered in our experiments.14
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Summary-RQ1: permission-use achieved the best F1 mean score at 0.64, fol-
lowed by another static analysis-based feature (sufp). In terms of the abstraction
level, package-level features mostly perform better than class-level features. Given
that the number of class-level features are much more than the number of package-
level features (see Table 5), class-level features are also computationally costly. In
terms of the analysis, static analysis-based features mostly perform better than
dynamic analysis-based features. Hence, package-level and static features should
be preferred.

1

4.3 RQ2: Optimized DL classifier vs Optimized Conventional ML classifier2

In this section, we compare the performance of RF classifier and RNN classifier3

based on the following 7 types of features: dsfp, ssfp, dufp, sufp, dffp, sffp, and pu.4

Essentially we omitted class-level features and component use features because a)5

those datasets contain a large number of features and it would be computationally6

intractable to run all those datasets with deep learning classifier and b) in RQ1,7

it is already established that those omitted features do not perform as well as8

the others. To provide a baseline comparison, we also additionally compare our9

classifiers here against a state-of-the-art approach, MaMaDroid [47]. The train and10

test procedure is the same as the one applied in RQ1.11

Figure 7 shows the boxplot of F1 scores of Random Forest classifier and RNN12

classifier based on the 7 types of features evaluated with the 21 train and test13

procedure (Table 10). Assuming a significance level of 95% (α = 0.05), we apply14

Wilcoxon rank-sum test to perform the following pairwise comparisons:15

1. RF-dsfp vs RNN-dsfp16

2. RF-ssfp vs RNN-ssfp17

3. RF-dufp vs RNN-dufp18

4. RF-sufp vs RNN-sufp19

5. RF-dffp vs RNN-dffp20

6. RF-sffp vs RNN-sffp21

7. RF-pu vs RNN-pu22

Table 13 shows the comparison results between RF classifier and RNN classifier23

based on the Wilcoxon rank-sum tests. In previous work [53], we observed that24

un-optimized RNN classifier performs badly compared to ML classifiers. Here, we25

see that the optimization results in an improved performance for RNN classifier,26

especially for sequence features where RNN performed statistically better than RF27

in terms of F1 means. On the other hand, RF classifier performed better than RNN28

on four other features (but not statistically significant), especially for frequency29

and permission features. Overall, RNN achieved statistically better performance30

than RF on 2 out of 7 cases whereas RF performed better for 4 out of 7 cases31

though statistically not significant.32

For the sake of completeness, we also evaluated RNN classifier using word33

embedding for sequence features (dsfp and ssfp). It achieved the F1 means of34

0.325 and 0.354 for dsfp and ssfp datasets, respectively. This result is not better35

than that of RNN classifier with one-hot encoding but is still better than the RF36

classifier. These results align with the general agreement that RNN is suitable for37

learning serial events [22], especially since we used LSTM-based RNN that has the38
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ability to effectively capture both long-term and short-term dependencies. On the1

other hand, we note that word embedding was much more efficient as it produces2

more compact vectors compared to one-hot encoding [42]. Time taken to train3

RNN with word embedding is in the order of hours whereas time taken to train4

RNN with one-hot encoding was in the order of days, for one round of training.5

It may be surprising that the DL classifier, the more advanced classifier, does6

not perform significantly better than the ML classifier, except for sequence-type7

features. However, recent empirical studies [66,39] also found that DL classifiers8

are not always the overall winner. Even though those studies are conducted on9

different application domains (predicting relatedness in stack overflows [66] and10

generation of commit messages [39]), they also performed similar optimizations of11

the classifiers as us and used similar experiment designs. Typically, DL classifier12

needs thorough fine-tuning to the characteristics of the data. Although fine-tuning13

was done, it is only done on year 2013 and year 2014 data. App characteristics14

change with the evolution of Android, and this degrades the performance of both15

types of classifiers. But it seems to affect the DL classifier more. This is discussed16

in more detail in Section 4.5. Note that fine-tuning to fit all data is intractable, as17

it is computationally expensive. And it would also bias the results.18

RF-dsfp
RNN-dsfp

RF-ssfp
RNN-ssfpRF-dufp

RNN-dufp
RF-sufp

RNN-sufp
RF-dffp

RNN-dffp
RF-sffp

RNN-sffpRF-pu
RNN-pu

MaMaDroid

classifier-feature

0.2

0.4

0.6

0.8

F1

Fig. 7: Comparison between optimized ML classifier and optimized DL classifier
based on F1 scores. RF-dsfp denotes Random Forest classifier tested with package-
level dynamic sequence features; RNN-dsfp denotes Recurrent Neural Network
classifier tested with package-level dynamic sequence features, and similarly for
the rest. The last box plot shows the F1 scores of MaMaDroid [47] which is used
as a baseline comparison.

Note that our previous work observed that Random Forest classifier achieved19

the best performance overall. Hence, we chose Random Forest as the Flagship of20

conventional ML algorithms for comparing against a DL algorithm. For a sanity21

check, we also evaluated Logistic Regression and Linear Support Vector Machines22

on package-level static-frequency features using the same training and test pro-23

cedure. These classifiers achieved the F1 means of 0.48 and 0.41, respectively. In24
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Table 13: Wilcoxon test of F1 scores for RF and RNN classifiers. At significant
level of 0.05, RNN performs statistically better than RF for dsfp and ssfp datasets.

Feature RF RNN p-value
F1 mean F1 mean

dsfp 0.317 0.393 0.020
ssfp 0.350 0.047 0.011
dufp 0.413 0.430 0.763
sufp 0.565 0.481 0.182
dffp 0.460 0.420 0.268
sffp 0.503 0.476 0.538
pu 0.640 0.582 0.466

comparison, RF classifier achieved 0.503. Hence, RF classifier achieved a better1

result.2

To provide a baseline comparison, we also additionally compare our classifiers3

here against a state-of-the-art malware detector, MaMaDroid [47], which is based4

on sequence-type features. MaMaDroid builds a model from sequences obtained5

from the call graph of an app as Markov chains. Sequences are extracted at class6

level, package level, and family level. Four types of classifiers — Random Forest, 1-7

Nearest Neighbour, 3-Nearest Neighbor (3-NN), and Support Vector Machines are8

used to learn on the extracted sequence features. As a data preprocessing, Princi-9

pal Component Analysis is applied. Random Forests achieved the best results in10

MaMaDroid’s experiments. We used MaMaDroid tool12(used as-is) to extract the11

sequence features from our benchmark apps. For the sake of consistency, we ex-12

tracted package-level features13. We then used the same configuration of Random13

Forests classifier stated in MaMaDroid [47]. The last boxplot in Figure 7 shows14

the F1 scores of MaMaDroid classifier evaluated on our datasets with the same15

train and test procedure in Table 10. As we can observe in Figure 7, MaMaDroid16

achieved similar performance to our classifiers with sequence-type features but17

generally it does not perform as well as other classifier+feature configurations we18

used here.19

Summary-RQ2:When optimized, the DL classifier (RNN) performed better than
the ML classifier (RF) on sequence-type features. But DL classifiers do not neces-
sarily always perform better than conventional ML classifiers. DL classifiers may
be less useful, especially when the characteristics of test data often change.

20

4.4 RQ3: Additional Features21

In this RQ, we perform two kinds of comparisons: (1) to determine whether addi-22

tional features, which represent native calls, reflection, and API calls that require23

dangerous permissions, would improve the performance (2) to determine whether24

combining the static analysis-based features and the dynamic analysis-based fea-25

tures (hence “hybrid” features) would improve the performance. For both com-26

parisons, we use Random Forest as a classifier.27

12 https://bitbucket.org/gianluca_students/mamadroid_code/src/master/
13 In MaMaDroid’s experiments [47], class-level and package-level features produced compa-
rable performance

https://bitbucket.org/gianluca_students/mamadroid_code/src/master/
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Regarding the first kind of comparison, we evaluate the RF classifiers trained1

with additional features based on the datasets: dsfp, ssfp, dufp, sufp, dffp, and2

sffp. ‘with additional features’ means that a given dataset is concatenated with3

its corresponding additional features. For example, dsfp ‘with’ denotes dynamic-4

sequence features concatenated with sequence of native calls features, reflection,5

and API calls that require dangerous permissions. The train and test procedure is6

the same as the one applied in RQ1.7

Figure 8 shows the box plots of the F1 scores for ‘without’ and ‘with’ additional8

features. Similar to RQ2, we apply Wilcoxon rank-sum test to perform pairwise9

comparisons and Table 16 reports the F1 means and the statistical test results.10

We observe that the performance significantly improved for the dynamic-sequence11

features when additional features are included. The F1 mean also increases for12

static-sequence and dynamic-use features but the improvements are not statisti-13

cally significant. The F1 mean actually decreases for other types of features.14

dsfp

`without' dsfp
`with' ssfp

`without' ssfp
`with' dufp

`without' dufp
`with' sufp

`without' sufp
`with' dffp

`without' dffp
`with' sffp

`without' sffp
`with'

feature without and with additionals

0.0
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0.8
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Fig. 8: Comparison of “without” and “with” additional features. dsfp ‘with’ de-
notes that dynamic-sequence features are concatenated with sequence of native
calls features, reflection, and API calls that require dangerous permissions; like-
wise for the others.

Table 14: Wilcoxon test of F1 scores for “without” and “with” additional features.
“without” and “with” columns show the F1 means. Only dynamic-sequence feature
shows statistical improvement when incorporated with additional features.

Feature without with p-value
dsfp 0.317 0.419 0.004
ssfp 0.350 0.363 0.633
dufp 0.413 0.436 0.385
sufp 0.565 0.448 0.195
dffp 0.460 0.423 0.642
sffp 0.503 0.416 0.268
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To explain this behavior, we performed principal component analysis of the1

static-use datasets containing only the additional features, i.e., use of native API2

calls, reflection, and dangerous permissions. Figure 11 shows the PCA plot of six3

most significant features from year 2015 to year 2020 datasets. As shown in the4

figure, the data points of malware samples largely overlaps with those of benign5

samples. Therefore, there is no difference between malware samples and benign6

samples in terms of the use of additional features.7

This can be explained by the fact that it is legitimate for mobile apps to use8

those features to implement their services. That is, mobile apps do need to request9

dangerous permissions to access camera, microphone, heart rate (body sensor),10

etc. It is also common to use native calls to use system services like reading and11

writing to files, and use reflection to dynamically load new functionalities. For12

example, Figure 9 shows an excerpt of API calls extracted from a benign app13

biart.com.flashlight that we sampled from our dataset. It contains the use of14

native API calls for accessing system services and dangerous permissions to use15

camera device.16

We note that both benign and malware apps use API call features as well.17

And yet API call features can still discriminate malware. It is likely because each18

set of additional features look at a specific aspect of app behaviors, e.g., whether19

an app uses dangerous permission or not, whereas API call features cover the20

complete app behaviors based on call graphs or execution traces and thus, specific21

behaviors covered by additional features may have already been implicitly covered22

by API call features. Hence, we believe that API call features better profile the23

app behaviors and additional features do not further discriminate malware.24

java.lang.System: long currentTimeMillis()
android.hardware.Camera: void startPreview()
java.lang.Thread: java.lang.Thread currentThread()
android.media.MediaPlayer: int getVideoHeight()

Fig. 9: An excerpt of API calls found in a benign app sample.

Regarding the second kind of comparison, we combine static analysis-based25

features and dynamic analysis-based features to determine whether the hybrid26

features would improve the performance. We concatenate static-sequence features27

and dynamic-sequence features, let us denote as hsfp = ssfp ∥ dsfp. Table 15 shows28

an example of hsfp. Likewise, we concatenate static-use features and dynamic-use29

features, and concatenate static-frequency features and dynamic-frequency fea-30

tures, denoted as hufp and hffp, respectively. We then perform the 21 training and31

test evaluations on those 3 new types of features using Random Forest as classi-32

fier. Note that we simply concatenate the two types of features without any data33

processing.34

Figure 10 shows the F1 scores for “without” and “with” combining the static35

analysis-based features and the dynamic analysis-based features. Table 16 shows36

the Wilcoxon test results. As we can observe, the F1 mean actually decreases when37

the two types of features are combined, although there is no statistical difference38

according to Wilcoxon tests. This is likely due to overlapped features from the39
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Table 15: An excerpt of hybrid-sequence features.

hsfp
ssfp dsfp

s-seq1 s-seq2 . . . s-seqL d-seq1 d-seq2 . . . d-seqL label
benign1 4921 6172 . . . 84111 74921 567 . . . 84111 0
benign2 29011 4490 . . . 3923 12901 4490 . . . 3923 0
mal1 23712 8122 . . . 0 23712 6812 . . . 0 1
mal2 213 6311 . . . 0 23 63011 . . . 0 1

two analyses since both analyses extract features from the same app. For example,1

both analyses extract the package android.net as a feature. Assuming use features,2

static analysis will report the value 1 for this feature if it detects the presence of3

this package in the call graph. But dynamic analysis will report a value 0 for the4

same feature if it does not observe the execution of this package at runtime. On the5

other hand, static analysis will report the value 0 for android.net feature if it does6

not detect the presence of this package in the call graph; but dynamic analysis will7

report the value 1 for android.net if the app invokes this package using dynamic8

code loading, which is not presented in the static call graph. Hence, the conflicting9

values in the overlapped features may be confusing to the classifier, resulting in10

worse performance. Dealing with such overlapped features deserves a separate,11

thorough investigation as it requires to investigate how to leverage different types12

of information conveyed by static and dynamic analyses and extract the semantic13

meaning provided by these analyses together, rather than simply concatenating14

the two types of features.15

dsfp ssfp hsfp dufp sufp hufp dffp sffp hffp
dynamic features, static features vs combined (static + dynamic) features
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0.7

0.8

0.9

F1

dsfp ssfp hsfp dufp sufp hufp dffp sffp hffp
Mean 0.317 0.35 0.276 0.413 0.565 0.507 0.46 0.503 0.501
Stdev 0.084 0.129 0.084 0.151 0.226 0.149 0.186 0.217 0.210

Fig. 10: F1 scores for “without” and “with” combining features
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Table 16: Wilcoxon test of F1 scores for “without” and “with” combining features.
No statistical difference was observed at a significance level of 0.05.

Comparison p-value
hsfp vs dsfp 0.195
hsfp vs ssfp 0.074
hufp vs dufp 0.068
hufp vs sufp 0.308
hffp vs dffp 0.385
hffp vs sffp 0.860

Summary-RQ3: Including features that characterize reflection, native API calls,
and dangerous permissions on top of API-call features does not further discrim-
inate Android malware from benign apps because benign apps often use those
features to implement their services. Combining the two types of analyses requires
a means to deal with overlapped features because simply concatenating the two
types of features results in worse performance compared to its static or dynamic
counterparts.

1

4.5 RQ4: Robustness Against Android Evolution2

In this research question, we investigate which combination of classifiers and fea-3

tures is most robust against Android evolution over time. Figure 12 shows the4

F1 score of different classifier-feature combinations against time. In Figure 12,5

we observe that most of the classifier-feature combinations show similar patterns6

in terms of F1 score over time, which means that those features are all sensitive7

to changes in Android permissions and API calls, and malware construction. For8

example, in late 2015, Google released Android 6 that introduced a redesigned9

app permission model. As in the previous version, apps are no longer automati-10

cally granted all the permissions they request at install-time. Users are required11

to grant or deny the specified permissions when an application needs to use it for12

the first time. The user can also revoke these permission at anytime. This caused13

a shift in the characteristics of benign apps in terms of permission and API us-14

age. Furthermore, malware authors are also constantly advancing their malware15

so as to bypass the detection mechanisms, for example, by using obfuscation or16

applying adversarial learning [52]. Adversarial learning [31] is a technique that17

generates samples (e.g., malware variants) which are carefully crafted/perturbed18

to evade detection. Clearly, such changes in Android permissions and API calls,19

and malware construction affect malware detection performances.20

Based on Figure 12, among the classifier+feature combinations, the RF classi-21

fier with permission-use (RF-pu), followed by the RNN classifier with permission-22

use (RNN-pu) could be considered most robust. When trained on year 2010-201423

dataset (Figure 12a), all other combinations did not achieve more than 0.65 F124

score on the datasets from subsequent test years whereas RF-pu and RNN-pu25

maintained above 0.65 F1 score, except for test year 2017 and 2018. We also26

observe that the RF classifier with static-use (RF-sufp) is an interesting combina-27

tion. When trained on year 2010-2014 dataset, it did not perform well; but when28

trained with more data, i.e., year 2010-2015 dataset and subsequent ones, it pro-29

duced a performance similar to RF-pu and RNN-pu. But its classifier counterpart30
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  Fig. 11: Principal component analysis (6 components) of additional features used in

malware and benign apps. Yellow color indicates malware and blue color indicates
benign apps.

RNN-sufp did not perform quite as well and it is likely that RNN needs further1

fine tuning in this case. When there is sufficient training data, RF-sufp may be2

considered another robust classifier+feature combination.3

We expected that the performances of classifiers+features will generally de-4

crease over time. As observed in Figure 12a, this is the case from year 2015 to year5

2018. But we observe that the performances actually improve in year 2019 and6
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2020, especially for RF-pu and RNN-pu. To understand this behavior, we did the1

PCA analysis of permission-use features in malware apps from years 2010-20142

versus malware apps from year 2019 and the PCA analysis of permission-use fea-3

tures in malware apps from years 2010-2014 versus malware apps from year 2020.4

The goal is to analyze the difference in characteristics between malware from those5

different released years. The result is shown in Figure 13. We observe that malware6

characteristics in terms of the use of permissions are similar. To further investigate7

the behavior shown in Figure 12(a), we extracted the most informative permission-8

use features for Random Forest for making classification decisions14. We found9

that most informative features from years 2010-2014 and from year 2019 and year10

2020 commonly include READ PHONE STATE, SEND SMS, READ SMS, and11

GET TASKS. Therefore, it is likely that those common features improved the12

detection performance for year 2019 dataset and year 2020 dataset.13

Other commonly informative permission-use features across years (i.e., 2015,14

2016, 2017, 2018) include ACCESS WIFI STATE, CHANGE WIFI STATE, IN-15

STALL SHORTCUT, INTERNET, and WRITE EXTERNAL STORAGE. Like-16

wise, we analyzed the most informative static-use features across years; they17

include org.apache.http.conn, org.apache.http.client, java.security.cert, java.lang.18

annotation, android.net.wifi, android.transition, android.support.v4.accessibility19

service, android.media.session, javax.net, android.telephony, com.google.ads.20

mediation, and com.google.android.gms.ads. The functionality of these APIs range21

from network connection and telephony services to media and advertisement ser-22

vices. Hence, these APIs can be considered as good predictors of malware.23

To evaluate whether time-aware and space-aware evaluation setting is impor-24

tant, we also ran 10-fold cross validation on RF classifier, with all the datasets25

combined (from year 2010 to year 2020). Table 17 compares the results. As shown26

in Table 17, the cross validated results are clearly better than the results of time-27

aware and space-aware evaluation setting (Table 10). That is, time and space28

biases unfairly report improved results. Allix et al. [5] reported that the F1 scores29

of Android malware classifier were lower than 0.7 in a time-aware scenario. Simi-30

larly, our best classifier achieved 0.64 F1 mean score. Fu and Cai [27] also reported31

that the F1 score dropped from about 90% to below 30% with a span of one year.32

Our results not only corroborate with the results of previous studies [5,27] but33

also confirm that the biased improvement occurs regardless of features used. From34

this observation, we can conclude that timeline is an important aspect in malware35

detection. That is, malware detector should be re-trained whenever possible.36

Table 17: Comparison of F1 mean scores between ten fold cross validation and
time- and space-aware classification settings)

Feature 10-fold CV time- and space-aware settings
dsfp 0.695 0.317
ssfp 0.670 0.35
dufp 0.797 0.413
sufp 0.824 0.565
dffp 0.795 0.46
sffp 0.796 0.503
pu 0.673 0.64

14 using feature importance library in Scikit-learn
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Fig. 12: Performance vs Time

Summary-RQ4: Malware detectors are sensitive to Android evolution. That is,
changes in app characteristics — benign or malware — result in fluctuation in
the malware detector’s performance regardless of the features and the classifiers
used. Therefore, we recommend that malware detector should be re-trained with
most relevant training samples whenever possible. Among the classifier-feature
combinations that we investigated, the Random Forest with permission-use feature
can be considered as the most robust.

1

4.6 Threats to Validity2

Here we discuss the main threats to the validity of our findings.3

Threats to the conclusion validity are concerned with issues that affect the abil-4

ity to draw the correct conclusion. To limit this threat, we applied a statistical test5

(i.e., Wilcoxon rank-sum test) that is non-parametric, thus it does not assume ex-6

perimental data to be normally distributed. Additionally, to increase heterogeneity7

of samples in the data set, we considered apps from multiple markets (Androzoo8

and Drebin) and released over multiple years (from 2010 to 2020).9

Threats to internal validity concern the subjective factors that might have10

affected the results. To limit this threat, apps have been randomly selected and11
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Fig. 13: Principal Component Analysis of permission use features from malware
apps. Yellow color indicates malware and blue color indicates benign apps.

downloaded from markets among those that satisfy our experimental settings (year1

2010 to 2020) and experimental constraints (that they work with FlowDroid static2

analysis tool and with Monkey testing tool).3

The threats to construct validity concern the data collection and analysis pro-4

cedures. Labeling case studies as benign/malware is based on a standard approach,5

that is (i) relying on VirusTotal classification available as metadata information6

for apps from Androzoo; and (ii) manually recognized malicious behavior for apps7

from Drebin. Empirical results are based on F-measure, which is a standard per-8

formance measure. Moreover, to limit bias, we split the training data and the test9

data based on their release years and a realistic malware-to-benign distribution. A10

threat regarding the analysis procedure is the code coverage. As we explained in11

Section 3.1, we used a combination of GUI fuzzer and Intent fuzzer so as to cover12

both GUI events and inter-component communications which are typical and es-13

sential behaviors in mobile apps. However, like any other test generation-based14

approach, the code coverage of our test generator is also limited. Although we ap-15

ply genetic algorithm, a state-of-the-art technique for Intent generation developed16

in our previous work [21], it was not able to generate test cases (Intents) for some17

of the paths in the call graphs. This could result in missing information in dynamic18

features and we acknowledge that this may explain the reason why static features19

perform better than dynamic features.20

Regarding the analysis of sequence features, we trimmed the call sequences21

that are too long, taking into account the variances in sequence length among22

apps (see Section 3.2). One may argue that this may result in missing information23

in sequence features. However, our rationale is that using a longer sequence length24

result in many zero-features for most of the apps, resulting in several redundant25

features. We did some preliminary experiments using a longer sequence length26

and observed that the performance actually decreases. Another analysis-related27

threat is regarding the extraction of API-permission mapping (to extract danger-28

ous permission features). We looked at the official Android documentation, which29

includes the mappings for public APIs only. The mappings for hidden and private30

APIs (which can be invoked through reflection) were not included. Thus, we ac-31

knowledge that such APIs, which may be in the dangerous permission category,32



Title Suppressed Due to Excessive Length 33

would be missed by our approach. However, our argument here is that undoc-1

umented APIs change frequently and it is intractable for us to document them2

comprehensively, especially since we are dealing with versions across 11 years.3

Also from malware detection point of view, we believe that relying on a more4

consistent (official) list of APIs to build malware detector is more robust.5

Threats to external validity concern the generalization of our findings due to6

the relatively smaller size of our dataset compared to the literature (Table 9). This7

is due to our consideration of several features and types of analyses (static and8

dynamic). By contrast, existing work that uses larger dataset size tends to focus9

on static analysis. However, as both static analysis- and dynamic analysis-based10

features are relevant and useful for malware detection, we decided to evaluate them11

in this work. Despite our best efforts, we were able to analyse only 13,772 apps due12

to the time taken and the computation complexity of our analyses. Especially our13

test generation tool took a long time to complete. It also encountered compatibility14

issues due to changes in different versions of the Android platform and we had to15

adapt our tool. On the other hand, to mitigate the issue, we considered apps from16

multiple app stores and released over 11 years.17

5 Insights18

For Antivirus vendors. In RQ1, we found that features at permission level or19

package level produce the best performances, while they are also computation-20

ally more efficient compared to more fine-grained features at class level. Deep21

learning algorithms have recently been used in the context of Android malware22

detection. They have the ability to learn hierarchical features and complex se-23

quential features. But this usually comes at the cost of careful fine-tuning the24

hyper-parameters, which may take some time. On the other hand, conventional25

machine learning classifiers have been shown to be effective at Android malware26

detection. Especially, ensemble classifiers like Random Forest aggregates multiple27

classifiers to learn complex patterns. It achieves good classification results with-28

out much hyper-parameter tuning. In our experiments, we tuned both types of29

classifiers. But in RQ2, we observed that tuning Random Forest takes much less30

time and effort compared to RNN, the deep learning classifier. Yet the results are31

comparable, except for sequence features. Hence, our recommendation to antivirus32

vendors is that it is more cost-effective to use conventional machine learning clas-33

sifiers for Android malware detection when using other types of features. In RQ4,34

we learnt that malware detectors’ performance is sensitive to changes in Android35

framework and malware construction. Our recommendation to antivirus vendors36

is to take these findings into consideration when building and evaluating malware37

detectors and update them often.38

For research community. In RQ1, we observed that dynamic features do not39

perform as well as static features in general. We discussed in Section 4.6, this could40

be due to code coverage issue by our test generator. Essentially, the test genera-41

tor fails to generate test inputs when the target path requires satisfying certain42

conditions in the application logic or if the path involves user interaction (e.g., a43

click action). Researchers could improve on this aspect by combining dynamic test44

generation with static constraint solving techniques such as Thome et al. [61] for45

more effective test generation. In RQ3, we learnt that features that characterize46
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reflection, native API calls, and dangerous permissions on top of API calls features1

do not further discriminate Android malware from benign apps. In Android, all2

the features, including native API calls, reflection and dangerous permissions are3

designed to be used, to serve their various functional purposes. However, mali-4

cious apps often abuse this to conduct malicious activities like accessing sensitive5

information. Hence, the empirical study conducted in this work is not complete.6

Distinct apps might have very different functionalities. What is considered legiti-7

mate of a particular set of apps (e.g., sharing contacts for a messaging app) can8

be considered a malicious behavior for other apps (e.g., a piece of malware that9

steals contacts, to be later used by spammers). A more accurate ML model should10

also take into consideration the main functionalities that are declared by an app,11

such as the ones proposed in [70,20]. Hence, the future study should investigate12

the use of clustering to group apps with similar functionalities and evaluate based13

on clusters of those similar apps. In another note, we found that combining static-14

based features and dynamic-based features does not result in better performance.15

But in this case, we simply concatenated the two types of features without any16

data preprocessing to filter overlapped or redundant features. Future studies could17

consider applying an appropriate feature reduction technique, such as Principal18

Component Analysis, t-distributed Stochastic Neighbor Embedding, Multidimen-19

sional Scaling, Isometric mapping, etc., to deal with overlapped features.20

In RQ4, we learnt that cross validation, which is typically used in Android21

malware detection approaches, allow malware “from the future” to be part of the22

training sets and thus, produce biased results. Allix et al. [5] observed that such a23

biased construction of training datasets has a positive impact on the performance24

of the classifiers and thus, the results are unreliable. In addition, Pendlebury et25

al. [49] also reported an issue with spatial bias where the evaluation does not con-26

sider the realistic distribution between malware and benign samples. Our studies27

also produced similar findings, despite different types of features we used. There-28

fore, researchers from Android malware detection community should validate their29

proposed state-of-the-art approaches again, taking into consideration the temporal30

and spatial biases.31

6 Conclusion32

In this work, we evaluated various techniques commonly used for building Android33

malware detectors. More specifically, we evaluated 14 types of features. We applied34

both static and dynamic analyses to extract those features. We evaluated two types35

of classifiers (conventional machine learning classifier and deep learning classifier).36

We also evaluated additional features (native API calls, reflection, and APIs that37

require dangerous permissions) and combined (static+dynamic) features. We in-38

vestigated which types of features perform better; evaluated which types of clas-39

sifiers perform better when optimized; evaluated whether additional features can40

improve the performance; and evaluated which combination of features and clas-41

sifiers are more robust against the evolution of Android. We conducted the exper-42

iments in a time- and space-aware setting. We conducted all the experiments on a43

common benchmark containing 7,860 benign samples and 5,912 malware samples,44

collected over a period of 11 years (from year 2010 to 2020). We observed that45

permission-use features performed the best among features, followed by static-use46
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package-level features; package-level features represent a good abstraction level as1

they perform well and are computationally efficient; static features perform better2

than dynamic features. We also observed that even when optimized, deep learn-3

ing algorithm does not always perform better than conventional machine learning4

algorithm. Due to the tendency of benign apps to use reflection, native API calls,5

and APIs that require dangerous permissions, inclusion of those features does not6

further improve the accuracy of malware classification. Lastly, we found that mal-7

ware classifier needs to be updated whenever applicable, regardless of features and8

classifiers used, as they are sensitive to changes in Android APIs and malware9

construction. In future work, we intend to further investigate other deep learning10

classifiers, given that we only evaluated one deep learning classifier in this work11

due to the time and resource required for optimization and evaluation. We also12

intend to investigate the effect of clustering the apps based on their functional13

similarities and performing the training and testing according to the clusters of14

apps.15
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