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Abstract: In this study, the authors improve the faster criterion in vehicle routing by extending the bi-delta distribution to the bi-
normal distribution, which is a reasonable assumption for travel time on each road link. Based on this assumption, theoretical
models are built for an arbitrary path and subsequently adopted to evaluate two candidate paths through probabilistic
comparison. Experimental results demonstrate the bi-normal behaviour of link travel time in practice, and verify the faster
criterion's superiority in determining the optimal path either on an artificial network with bi-normal distribution modelling link
travel time or on a real road network with real traffic data. This study also validates that when the link number of one path is
large, the probability density function of the whole path can be simplified by a normal distribution which approximates the sum of
bi-normal distributions for each link.

1 Introduction
With the increase in vehicles and human populations as well as
economic activities, the roads in urban areas, such as Guangzhou in
China and Singapore, are likely to get ever busier, which inevitably
lead to traffic jams. Traffic jam has always been an urgent and
common problem, and it attracts broad attention from both industry
and academic community because of its close relation to people's
daily life. So travellers are more and more accustomed to get an
optimal path from the navigator before their travels to avoid traffic
congestion. Nowadays, it is not challenging for a navigation
systems to find an optimal path in terms of the shortest distance [1,
2]. However, the shortest distance does not always guarantee a
desirable travel time because there are many uncertain factors on
road. This may prevent the driver from travelling on a real reliable
route [3–5], since the traffic is always random, and the optimal
criterion of the stochastic shortest path (SSP) is not unique. A
different criterion needs different ways to explore the traffic data
and results in different performance [6]. So it is crucial to analyse

these criteria for the SSP problem, which aim to find an optimal
path in stochastic traffic. Below are some commonly used criteria
for the optimal path definition under a stochastic environment.

Least expected travel time (LET). In a SSP problem, the LET is
often used as one routing criterion. According to this criterion, the
path is optimal only if it guarantees the minimum expected travel
time. The travel time for each road link always follows a kind of
distribution, so the mean of the travel time is usually fixed. In that
case, finding the optimal path with LET is equal to solving one
deterministic shortest path problem [7, 8], where the fixed weight
for each road link is its expected travel time. Therefore, the general
A∗ or Dijkstra can be employed. However, a route with a minimum
expected travel time might have a high variance due to the factors
like weather and traffic signals, which may yield high risk of
severe delay [9]. This can be intuitively illustrated by two
probability distribution functions of travel time. As shown in
Fig. 1, path 1 has a smaller mean and it is optimal according to
LET. However, compared with path 2, path 1 has a higher variance,
which means that the travellers on path 1 have less chance to
traverse it using the expected travel time, namely, path 1 has a
higher risk of a longer travel time. So, finding the SSP [10, 11] for
a driver is much more desirable than merely returning a
deterministic shortest path.

Mean-risk model. A mean-risk model is another widely used
criterion in the SSP problem and on the basis of it, considerable
work has been developed [12, 13]. In the mean-risk model, it seeks
one path which minimises the weighted combination of the path's
expected travel time and its standard deviation (i.e. minimise
E(x) + γ Var(x), where x is the path's travel time distribution). This
is a convex combination problem [14, 15], which can be converted
into a deterministic shortest path problem with arc lengths being
the linear combination of corresponding mean and variance. The
mean-risk model does help solve the risk problem to some extent,
but it still has one obvious limitation: the drivers may not
understand the physical meaning of this model and they also do not
know which γ is suitable.Fig. 1  PDFs for two paths under a LET criterion

 
IET Intell. Transp. Syst., 2017, Vol. 11 Iss. 10, pp. 685-694
© The Institution of Engineering and Technology 2017

685



Travel time-based network performance model. In fact, the
effectiveness of the routing strategy depends on its modelling of
the real-world traffic data, which is generally stochastic, time-
dependent and link-correlated. Numerous research works have
managed to derive the realistic description of traffic network
performance. Celikoglu [16] adopts conical delay function
generated data to configure several neural networks for the
approximation of flow rate-delay function, which is used to
describe traffic dynamics. He also proposes an analytical node-
based approach to solve the dynamic network loading problem,
which integrates nodal rules with a link load computing process to
simulate the acceleration behaviour of discrete vehicle packets
[17]. Dell'Orco et al. [18] construct a quasi-anisotropic traffic flow
model in which travel time prediction is based on a dynamic
network loading process and the traffic assignment is implemented
by bee colony optimisation. The research of a dynamic network
loading model for travel time estimation has been developed in
[19–21]. Additionally, Deniz et al. [22] conduct reliability
evaluation of a macroscopic and a microscopic traffic model,
respectively, analysing the distribution of reconstructed travel time
by a random variable approach and comparing its statistical
indicators. Celikoglu et al. [23] use dynamic classification and
clustering technique to categorise flow patterns, evaluating the
performance of a macroscopic flow model. Sun et al. [24] combine
quadratic and constant basis function of time as piecewise
truncated quadratic function to model speed trajectory, which can
be used for travel time prediction. More research works on travel
time estimation or network performance modelling can be found in
[25, 26].

Stochastic routing over television networks. When the desirable
network performance is well modelled, the real-time predicted
travel data can be consulted in stochastic routing over a time-
varying network. Laporte et al. [27] describe a routing problem
with stochastic service and travel time as a chance constrained
model and a recourse model, respectively, and solve them
uniformly through branch and cut algorithm. Tas et al. [28]
propose a vehicle routing model which minimises weighted sum of
transportation cost and service cost and study on the trade-off
between two types of costs and their impact on the optimal path.
Miller-Hooks [29] considers updated arc traversal time en route
and formulates recourse decisions as an adaptive LET hyper-path
problem in a stochastic and time-varying (STV) network to
determine optimal paths in different departure times. Cao et al. [30]
formulate stochastic routing as a cardinality minimisation problem,
approximating the probability of a path being the optimal by
frequency technique. STV-based criteria can also be referenced in
[31–33].

Faster criterion. Except for the above criteria that minimises
the expected travel time, some other optimality conditions of
routing is derived from the perspective of probability. Fastenrath
and Becker [34] and Sigal et al. [35] propose a faster criterion.
Under this criterion, the SSP problem can be determined based on
a probabilistic comparison, which is much more reliable and easier
to understand. Specifically, the optimal path is the one having the
highest probability of being faster than all alternatives. To find the

optimal path under this faster criterion, Fastenrath and Becker [34]
first assume that only two traffic situations exist for each road link:
congestion and congestion-free. In other words, there are two peaks
for the travel time of each road link. The reason to assume two
peaks is that traffic jam usually happens during the rush hours or
the traffic flow stays fluent. So the travel time for each road link
follows a bi-model distribution which has been proven by
analysing the traffic data detected from a road sensor network in
one city of Germany [34]. When the path traffic situations are
independent of each other, the probability of one path being faster
than all the alternatives can be expressed as a multiplication, each
multiplier of which means the probability that it is faster than each
individual alternative. Finally, the path with highest probability
would be the optimal path which is probabilistically faster than all
alternatives. The basis of this criterion is achieving a probabilistic
fastest path by probability comparisons between all path pairs,
which is more desirable for travellers, rather than relying on mere
comparison among the expected travel time. In other words, this
faster criterion is much more robust and reliable [34, 35].

Our contributions. The faster criterion is promising because it
involves a comprehensive probabilistic comparison. However,
there are still some limitations in [34]. It is reasonable to assume a
bi-model distribution for the travel time of each road link;
however, it only employs the bi-delta distribution as the bi-model,
which means that for one specific road link, there would be only
two single values for the travel time. It is not reasonable because
generally, as long as the travel time is around one comparatively
high value, we will believe traffic jam happens. On the other hand,
if it is around one comparatively small value, we will believe there
is no traffic jam [36]. So, the travel time for each of the two traffic
situations is one range instead of one fixed value. Therefore it is
more convincing to assume that the travel time follows a bi-normal
distribution rather than the bi-delta distribution [37] and
accordingly, in this study, we extend the bi-delta distribution in
[34] to the bi-normal distribution. More specifically, we develop
original theoretical models and draw some crucial conclusions for
the optimal paths computation.

2 Problem formulation for faster criterion
In this section, we first formulate the faster criterion for simple
paths, each of which only consists of one road link, and then we
extend it to complex paths, each of which consists of multiple road
links.

2.1 Faster criterion for simple paths

As we have stated in Section 1, the most important part to
determine the faster path is to compute the probability that one path
is faster than an individual alternative. To make this objective more
formal, one path (i.e. path 1) will be faster than another path (i.e.
path 2) if it meets the following requirement

P(T1 ≤ T2) > P(T1 > T2), (1)

where Ti is the travel time for path i, and P( ⋅ ) is the probability
function. More specifically, P(T1 ≤ T2) is computed by the
following equation:

P(T1 ≤ T2) = ∫
0

∞
P(T1 ≤ t) ⋅ ρ2(t) dt, (2)

where ρi( ⋅ ) is the probability density function (PDF) for path i. At
the same time, it is important to note that

P(T1 > T2) = 1 − P(T1 ≤ T2) . (3)

To better illustrate the principle of this faster criterion, we suppose
each path only consists of one road link. In addition, travel time for
each road link is modelled by the bi-delta distribution [34], one
example of which is shown in Fig. 2. With this assumption, only
two traffic situations exist, i.e. congestion and congestion free, and
only one value of travel time is assigned to each situation.

Fig. 2  Illustrative example for the bi-delta distribution
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Moreover, each situation is also associated with one probability,
which represents the chance that corresponding traffic situation
will happen.

If we assume the travel time of path i (i = 1, 2) for congestion
situation is Ti, c, for free of congestion situation is Ti, f, and Ti, f
should be smaller than Ti, c. At the same time, the probability for
congestion situation of path 1 is p, and path 2 is q, and therefore,
the probability for free of congestion situation would be 1 − p and
1 − q, respectively. In this case, the PDF regarding the travel time
for the two paths can be, respectively, expressed as follows:

ρ1(t) = p ⋅ δ(t − T1, c) + (1 − p) ⋅ δ(t − T1, f), (4)

ρ2(t) = q ⋅ δ(t − T2, c) + (1 − q) ⋅ δ(t − T2, f), (5)

where δ( ⋅ ) is the impulse function. Based on these two PDFs, we
can further compute the probability that path 1 is faster than path 2
by integration, the result of which is stated as follows: (see (6)) 
where

Θ(x) = 1, x ≥ 0
0, x < 1 (7)

To justify that the faster criterion is more reliable than others (i.e.
LET), we show one example of finding a faster path with the
following settings: T1,f = 10 min, T2,f = 12 min, T1,c = 30 min, T2,c 
= 14 min, p = 0.4 and q = 0.6. According to the LET criterion, the
expected travel time for path 1 is 18 min, path 2 is 13.2 min, and
the better path would be path 2. However, according to the faster
criterion, we can get the corresponding probability as

P(T1 ≤ T2) = 0.6 × 0.4 × 1 + 0.6 × 0.6 × 1
+0.4 × 0.4 × 0 + 0.4 × 0.6 × 0

= 0.6
(8)

Therefore, path 1 is probabilistically faster and more reliable
because it has a higher probability of being faster than path 2.
Moreover, a probabilistic comparison is more robust than a pure
expected travel time comparison.

2.2 Faster criterion for complex paths

In Section 2.1, we assume that each path consists of only one road
link. However, it is more realistic that one path consists of multiple

road links. To this end, we first assume that each path consists of
two road links (for situation of more than two links, it is easy to be
achieved based on the situation of two links). For the first road link
of path 1, the travel time for its congestion situation is T1, c

1 , the
probability is p1, and the travel time for the free of congestion
situation is T1, f

1  and the probability is 1 − p1. Similarly, for the
second road link, we have T1, c

2 , p2, T1, f
2  and 1 − p2. Thus, we can get

the PDF regarding the travel time for each road link as follows:

ρ1
1(t) = p1 ⋅ δ(t − T1, c

1 ) + (1 − p1) ⋅ δ(t − T1, f
1 ) (9)

ρ1
2(t) = p2 ⋅ δ(t − T1, c

2 ) + (1 − p2) ⋅ δ(t − T1, f
2 ) (10)

Based on integration of (9) and (10), we can compute the PDF of
entire path 1 as (see (11)) The PDF of path 2 can be obtained in the
same way, and then we insert these two functions into (2) so that
we can obtain the probability that path 1 is faster than path 2,
which is computed according to (6). On the basis of this method,
we can further extend to implement the probabilistic comparison
for much more complex paths.

3 Extension from the bi-delta to bi-normal
distribution
For the sake of computation simplification, the bi-delta distribution
for the travel time of each road link is assumed in Section 2.
However, the real travel time for each of the two traffic situations
should be an arrangement rather than a single value. Therefore, it is
more reasonable to assume the bi-normal distribution for each road
link instead of the bi-delta distribution. This has been justified by
analysing the traffic data detected by the road sensor network [38–
40]. Accordingly, in this section, we will extend the bi-delta
distribution to the bi-normal distribution for both simple path and
complex path. We would like to remark that, we assume all the
distributions we discussed in Sections 3 and 4 are independent of
each other.

3.1 Mathematical model for the bi-normal distribution

The most important factor for a distribution is the PDF. For bi-
normal PDF ρ(t), it is usually expressed by a weighted sum of two
single normal PDFs as follows:

ρ(t) = ϕ ⋅ ρf(t) + (1 − ϕ) ⋅ ρc(t), (12)

where

ρf(t) = 1
2πσf

e−((t − μf)2/2σf
2), ρc(t) = 1

2πσc
e−((t − μc)2/2σc2) .

In this formula, ρf(t) is the PDF for the free of congestion situation
and ρf(c) is for congestion situation. ϕ represents the weight
coefficient with 0 ≤ ϕ ≤ 1. For the parameters in two PDFs,
μf < μc is established obviously. Fig. 3 shows an example of bi-
normal PDF with μf = 30, σf = 5; μc = 80, σc = 8, ϕ = 0.7. 

3.2 Faster criterion for simple paths

In this section, we assume that each path consists of only one road
link and the travel time of each link follows a bi-normal
distribution. We first suppose that there are two paths, and for paths
1 and 2, the PDFs are separately formulated as follows:

P(T1 ≤ T2) = (1 − p) ⋅ (1 − q) ⋅ Θ(T2, f − T1, f) + (1 − p) ⋅ q ⋅ Θ(T2, c − T1, f)
+ p(1 − q) ⋅ Θ(T2, f − T1, c) + p ⋅ q ⋅ Θ(T2, c − T1, c),

(6)

ρ1(T1 = t) = p1p2δ(t − (T1, c
1 − T1, c

2 )) + p1(1 − p2)δ(t − (T1, c
1 − T1, f

2 ))
+(1 − p1)p2δ(t − (T1, f

1 − T1, c
2 )) + (1 − p1)(1 − p2)δ(t − (T1, f

1 + T1, f
2 ))

(11)

Fig. 3  Illustrative example for the bi-normal PDF
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ρ1(t) = ϕ1 ⋅ ρ1, f(t) + (1 − ϕ1) ⋅ ρ1, c(t) (13)

ρ2(t) = ϕ2 ⋅ ρ2, f(t) + (1 − ϕ2) ⋅ ρ2, c(t) (14)

The mean and standard deviation of ρ1, f(t) are μ1, f and σ1, f, and
ρ1, c(t) are μ1, c and σ1, c, respectively. Similarly, μ2, f, σ2, f and μ2, c, σ2, c
represent the mean and standard deviation of ρ2, f(t) and ρ2, c(t),
respectively. We also assume that the travel time of path i is Ti.
Then a double integral of ρ1, f(t1)ρ2, f(t2) is calculated to determine
the probability that path 1 is faster than path 2, which is expressed
as

P(T1 ≤ T2) = ∫
−∞

+∞
[∫

−∞

t2
ρ1(t1) dt1] ⋅ ρ2(t2) dt2

= ϕ1ϕ2∫
−∞

+∞∫
−∞

t2
ρ1, f(t1) ⋅ ρ2, f(t2) dt1 dt2

+ϕ1(1 − ϕ2)∫
−∞

+∞∫
−∞

t2
ρ1, f(t1) ⋅ ρ2, c(t2) dt1 dt2

+(1 − ϕ1)ϕ2∫
−∞

+∞∫
−∞

t2
ρ1, c(t1) ⋅ ρ2, f(t2) dt1 dt2

+(1 − ϕ1)(1 − ϕ2)∫
−∞

+∞∫
−∞

t2
ρ1, c(t1) ⋅ ρ2, c(t2) dt1 dt2

(15)

where the four parts in the sum can be individually represented as

PA = ϕ1ϕ2∫
−∞

+∞∫
−∞

t2
ρ1, f(t1) ⋅ ρ2, f(t2) dt1 dt2 (16)

PB = ϕ1(1 − ϕ2)∫
−∞

+∞∫
−∞

t2
ρ1, f(t1) ⋅ ρ2, c(t2) dt1 dt2 (17)

PC = (1 − ϕ1)ϕ2∫
−∞

+∞∫
−∞

t2
ρ1, c(t1) ⋅ ρ2, f(t2) dt1 dt2 (18)

PD = (1 − ϕ1)(1 − ϕ2)∫
−∞

+∞∫
−∞

t2
ρ1, c(t1) ⋅ ρ2, c(t2) dt1 dt2 (19)

Each of the four parts can be further expressed as a more compact
form. An example of PA is shown here and we suppose variables
X1, f and X2, f follow normal distributions with PDF ρ1, f(t) and ρ2, f(t),
respectively. Looking into PA in (16), we can reformulate it as

PA = ϕ1ϕ2P(X1, f ≤ X2, f)
= ϕ1ϕ2P(X1, f − X2, f ≤ 0) (20)

Since X1, f and X2, f are two normal variables and it is reasonable to
assume another normal variable XA = X1, f − X2, f, whose mean and
standard deviation are μA = μ1, f − μ2, f and σA

2 = σ1, f
2 + σ2, f

2 ,
respectively [41]. So we can obtain the compact form of PA as

PA = ϕ1ϕ2 ⋅ ΨμA, σA
2(0), (21)

where ΨμA, σA
2(0) is the probability that normal variable XA is not

larger than 0, with mean μA and standard deviation σA. Similarly,
we can obtain the compact form for PB, PC and PD, and the
simplified result of (15) is eventually expressed as

P(T1 ≤ T2) = ϕ1ϕ2ΨμA, σA
2(0) + ϕ1(1 − ϕ2)ΨμB, σB

2(0)
+(1 − ϕ1)ϕ2ΨμC, σC

2(0) + (1 − ϕ1)(1 − ϕ2)ΨμD, σD
2(0)

(22)

According to the value of P(T1 ≤ T2) in (22), we can determine
which path is faster based on probability. This criterion refers to
the historical observations of travel time and the final decision
avoids the uncertainty caused by travel time variation which is ill-
considered in the LET criterion.

3.3 Faster criterion for complex paths

Similar to Section 2.2, we assume that each path consists of two
road links and the travel time of each link follows a bi-normal
distribution. For the first link, the PDF is expressed as follows:

ρ1(t) = ϕ1 ⋅ ρ1, f(t) + (1 − ϕ1) ⋅ ρ1, c(t) (23)

where

ρ1, f(t) = 1
2πσ1, f

e−((t − μ1, f)2/2σ1, f
2 ), ρ1, c(t)

= 1
2πσ1, c

e−((t − μ1, c)2/2σ1, c
2 )

(24)

and for the second road link, the PDF can be expressed in the same
way as

ρ2(t) = ϕ2 ⋅ ρ2, f(t) + (1 − ϕ2) ⋅ ρ2, c(t), (25)

where

ρ2, f(t) = 1
2πσ2, f

e−((t − μ2, f)2/2σ2, f
2 ), ρ2, c(t)

= 1
2πσ2, c

e−((t − μ2, c)2/2σ2, c
2 )

(26)

Consequently, we can obtain the PDF for the whole path as

ρ(t) = ∫
−∞

t
ρ1(τ) ⋅ ρ2(t − τ)dτ

= ρ1(t) ∗ ρ2(t)
= ϕ1ϕ2ρ1, f(t) ∗ ρ2, f(t) + ϕ1(1 − ϕ2)ρ1, f(t) ∗ ρ2, c(t)

+(1 − ϕ1)ϕ2ρ1, c(t) ∗ ρ2, f(t) + (1 − ϕ1)(1 − ϕ2)ρ1, c(t) ∗ ρ2, c(t),
(27)

where ∗ is the convolution operator. Since each ρi, {f, c}(t) in (27) is a
normal PDF, and the convolution of them is another normal PDF
according to the following fact [42]:

g1(t) = ρ1, f(t) ∗ ρ2, f(t)

= 1
2π(σ1, f

2 + σ2, f
2 )

e−((t − (μ1, f + μ2, f))2/2(σ1, f
2 + σ2, f

2 )) (28)

So all convolutions between two PDFs can be replaced by one
normal PDF and the travel time regarding the whole path can be
further expressed as

ρ(t) = ϕ1ϕ2g1(t) + ϕ1(1 − ϕ2)g2(t)
+(1 − ϕ1)ϕ2g3(t) + (1 − ϕ1)(1 − ϕ2)g4(t),

(29)

where gi(t) represents a new normal PDF and its mean and standard
deviation could be easily derived based on (28). Similarly, we can
also compute the PDF for any path with N (e.g. N > 2) road links.
After obtaining the PDF for each whole path, we can use (15) and
(22) to determine the optimal path according to the faster criterion.

4 Using the normal distribution to approximate
the bi-normal distribution
In this section, we prove and conclude that the normal distribution
can be used to approximate the bi-normal distribution so that in
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general, the computation would be greatly simplified and more
efficient with travel time following a normal distribution.

4.1 PDF of the whole path by individual normal distributions

First we still assume one bi-normal PDF ρi(t) for road link i, which
is described in the same way as (23). Then for validating the
proposed argument, we approximate the bi-normal distribution by a
normal distribution with the mean and standard deviation achieved
as follows:

μi = ∫
−∞

+∞
t ⋅ ρi(t) dt = ϕiμi, f + (1 − ϕi)μi, c (30)

(see (31)) We suppose that there are N road links for the whole
path, each of which follows a bi-normal distribution with the same
parameters. Then the parameters of the approximated normal
distribution can be computed by (30) and (31). Consequently, the
PDF of the whole path by the approximated normal distribution
can be expressed as

h(t) = 1
2πσh

e−((t − μh)2/2σh
2) (32)

where

μh = N[ϕμf + (1 − ϕ)μc] (33)

σh
2 = N[ϕ(1 − ϕ)(μc − μf)2 + ϕσf

2 + (1 − ϕ)σc
2] (34)

4.2 PDF of the whole path by individual bi-normal
distributions

In contrast, if we directly use the bi-normal distribution, then the
accurate PDF of the same path can be described as

g(t) = ρ(t)N∗
( ∗ means convolution)

= ∑
i = 0

N N
i

ϕi(1 − ϕ)N − iρf(t)i∗ ∗ ρc(t)(N − i)∗
(35)

Since convolutions of several normal PDF is another normal PDF,
we can get that

ρc
i∗ ∗ ρf

(N − i)∗ = ρi, N − i(t) (36)

where ρi, N − i(t) is a new normal PDF with

μi, N − i = iμf + (N − i)μc (37)

σi, N − i
2 = iσf

2 + (N − i)σc
2 (38)

so g(t) can be simplified as

g(t) = ∑
i = 0

N N
i

ϕi(1 − ϕ)N − iρi, N − i(t) (39)

4.3 Comparison of the approximated and accurate PDFs

The integrated square difference between the approximated PDF
h(t) and the accurate PDF g(t) can be expressed as

∫
−∞

+∞
(g(t) − h(t))2 dt

= ∫
−∞

+∞
[∑

i = 0

N N
i

ϕi(1 − ϕ)N − iρi, N − i(t)]2 dt + ∫
−∞

+∞
h(t)2 dt

−2∫
−∞

+∞
∑
i = 0

N N
i

ϕi(1 − ϕ)N − iρi, N − i(t)h(t) dt,

(40)

where we note that the production of two normal PDFs is another
weighted normal PDF [43] because (see (41)) So we can simplify
the (40) as follows:

∫
−∞

+∞
(g(t) − h(t))2 dt

= ∑
i = 0

N
[ N

i
ϕi(1 − ϕ)N − i]2Ci, i − 2∑

i = 0

N N
i

ϕi(1 − ϕ)N − iCi, h

+2 ∑
i = 0

N − 1
∑

j = i + 1

N N
i

N
j

ϕi(1 − ϕ)N − iϕ j(1 − ϕ)N − jCi, j + Ch, h

(42)

Based on (41) and (42), we can derive that

Ci, i = 1
2π 2σi

2 (43)

σi
2 = ∫

−∞

+∞
(t − μi)2 ⋅ ρi(t) dt

= ∫
−∞

+∞
[t − (ϕiμi, f + (1 − ϕi)μi, c)]2[ϕi ⋅ ρi, f(t) + (1 − ϕi) ⋅ ρi, c(t)] dt

= ϕi(1 − ϕi)(μi, f − μi, c)2 + ϕiσi, f
2 + (1 − ϕi)σi, c

2

(31)

Fig. 4  Integration of (g(t) − h(t))2 with different N
 

1
2πσ1

e−((t − μ1)2/2σ1
2) 1

2πσ2
e−((t − μ2)2/2σ2

2) = 1
2π σ1

2 + σ2
2 e−((μ1 − μ2)2/2(σ1

2 + σ1
2))

× 1
2π(σ1σ2/ σ1

2 + σ2
2)

e−((t − ((σ2
2μ1 + σ1

2μ2)/(σ1
2 + σ2

2)))
2

/2(σ1
2σ2

2/(σ1
2 + σ2

2)))
(41)

IET Intell. Transp. Syst., 2017, Vol. 11 Iss. 10, pp. 685-694
© The Institution of Engineering and Technology 2017

689

 17519578, 2017, 10, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-its.2016.0288, W

iley O
nline L

ibrary on [24/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



where σi
2 = iσf

2 + (N − i)σc
2

Ch, h = 1
2π 2σh

2 (44)

where σh
2 = N[ϕ(1 − ϕ)(μc − μf)2 + ϕσf

2 + (1 − ϕ)σc
2].

Ci, j = 1
2π σi

2 + σ j
2 e−((μi − μj)2/2(σi

2 + σ j
2)) (45)

where μi = iμf + (N − i)μc, μj = jμf + (N − j)μc,
σi

2 = iσf
2 + (N − i)σc

2 and σ j
2 = jσf

2 + (N − j)σc
2

Ci, h = 1
2π σi

2 + σh
2 e−((μi − μh)2/2(σi

2 + σh
2)) (46)

where μi = iμf + (N − i)μc, μh = N[ϕμf + (1 − ϕ)μc],
σi

2 = iσf
2 + (N − i)σc

2 and
σh

2 = N[ϕ(1 − ϕ)(μf − μc)2 + ϕσf
2 + (1 − ϕ)σc

2].
To visualise the result, we plot the integration of the square

difference against the road link number N in Fig. 4 from which we
observe that as N increases, the difference between the accurate
and approximate PDF of the travel time for the whole path
becomes smaller.With large N, e.g. ten or larger, it is clear that the
normal distribution can well approximate the bi-normal
distribution.

This result is promising since the normal distribution is much
easier for transformation and computation, and many conclusions

have been drawn regarding the normal distribution of travel time in
vehicle routing algorithms.

5 Experimental results and analysis
In this section, we provide experimental results and analysis to
justify that our faster criterion is superior to the LET. The whole
experiment is implemented in MATLAB 2014a, and divided into
two parts containing tests on an artificial road network and a real
road network, respectively. The artificial road network is
represented by a directed graph, which is shown in Fig. 5. The real
traffic data are derived from an area of Beijing in which some link
travel times will be displayed with histogram to show their bi-
normal behaviours. In addition, we must emphasise that the routing
problem here only involves two candidate paths, for convenience
to compare the travel time distribution on paths and analyse the
comparison result. In the real-world scenario, our criterion can be
used when we extend the probability comparison to all candidate
paths between the origin and destination.

5.1 Experiments on the artificial road network with artificial
data

5.1.1 Faster road in one-to-one case: We first compare the
faster criterion with LET in one-to-one case, which means two
simple paths both with one link are considered to determine the
better one. A varied value of ϕ and variance is assigned to show
results under various road conditions.

The experimental setting is stated as follows:

• We randomly generate the uf, σf, uc and σc for each bi-normal
distribution.

• We randomly generate 100 traffic data (travel time) for each link
according to the bi-normal distribution.

• We randomly choose O–D pairs, satisfying D is reachable from
O and both roads consist of one link.

• According to these data, we compute the optimal path Pf with
the highest probability of being fastest (i.e. the path with the
most times being fastest), and Pl with the LET.

• The first four steps are repeated for 200 times and the number of
Pf and Pl being different is recorded.

• The values of Φi(i = 1, 2) is adjusted from 0.0 to 1.0 for each bi-
normal distribution, and the previous steps are repeated to obtain
the corresponding difference numbers.

The left subfigure in Fig. 6 shows a one-to-one case with low
variance. Table 1 displays difference numbers with varied values of
Φ1 and Φ2 which represent probability of congestion in paths 1 and
2, respectively. Due to the low variance, the bi-normal distribution
is close to the bi-delta distribution, and the result can be similarly
analysed by an example in Section 2.1. The difference is that
sample size is assumed to be sufficient in a previous example but is
merely 100 in the test which is more common in practical
applications. As we can see, when Φ1 ≤ 0.4 and Φ1 ≥ 0.8,
difference number is equal to or close to zero, which meansFig. 5  65-node, 123-arc artificial network

 

Fig. 6  Bi-normal distributions in two one-to-one cases
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optimal paths determined by two criteria always keep the same. In
these situations, Φ1 is small or large enough to guarantee a path has
large probability of less travel time than the other and meanwhile
has less mean of travel time, or the opposite. Obviously, difference
number appears large when 0.5 ≤ Φ1 ≤ 0.7, and it is affected by
both Φ1 and Φ2. When Φ1 = 0.6 and 0.7, the proposed criterion
mostly regards path 1 as the optimal during 200 comparisons, but
the changed Φ2 lead to the reduction of the mean of travel times in
path 2, so that the LET criterion gradually inclines to path 2 as the
optimal and therefore difference number rises rapidly. The case of
Φ1 = 0.5 can be analysed in the same way, where LET generally
takes path 2 as the optimal, but the proposed criterion assigns
almost the same chance (i.e. 50%) to two paths to be the optimal
one.

To validate the impact of variance on difference number, the
experiment is repeated with variance which is set ten times as
much as the value used above. The bi-normal distributions are
displayed as the right subfigure in Fig. 6 and Table 2 contains the
test result. Evidently, Table 2 shares the similar pattern with
Table 1 when Φ1 ≥ 0.6, but its result distributes more widely along
the values of Φ1 considering the much more uncertainty caused by
high variance. However, we find that the difference number
reduces when Φ1 ≤ 0.5. In these situations, the probability
calculated by (15) has changed because of the variance. So the
faster criterion gradually selects path 2 as the optimal path when Φ2
turns larger, which has the same trend as LET. In a word, we can
conclude that in one-to-one cases, there are always some values of
Φ1 and Φ2 corresponding to certain road conditions, which cause
different choices of optimal roads determined by two criteria. It is
wise for travellers to adopt the faster criterion in order to avoid the
risk of a long travel time induced easily by LET.

5.1.2 Faster road in many-to-many cases: Based on Section
5.1.1, we extend the simple one-to-one case to many-to-many
cases, taking more multiple-link roads into consideration.
However, it is intractable to implement the test by the same method
in simple cases, since the number of parameters significantly
increases with the link number. We can no longer display the
variation trend of the difference number with Φi(i = 1, 2, . . . , N)
in detail due to the excessive combinations of Φi(i = 1, 2, . . . , N).
To better reveal the distribution of difference number in each case,
we randomly generate 200 groups of Φi and for each group,
comparison between the faster criterion and LET is repeated 100
times to determine the difference number. The procedure is
performed with respect to changing variance and different cases are
verified. Fig. 7 shows one 3 links-to-4 links case, where we notice
the bi-normal PDFs for each link differs from the ones in Fig. 6,
because they have been computed by (12) 

Table 3 shows the experimental results in four many-to-many
cases. The difference number is counted recorded according to
seven intervals to reveal its distribution. We can easily find that a
similar pattern is shared by different cases, no matter how many
links both roads contain. In addition, more conclusions can be
made: (i) in each case, the most of the difference numbers is
always 0, which means the most combinations of Φi (i.e. quantities
of congestion situations) generate the same decision about optimal
road by the faster criterion and LET; (ii) the distribution of
difference number is remarkably reduced, as the interval rises and
there are barely occurrences of difference number being larger than
40; (iii) with the increase of variance in bi-normal PDFs, difference
number is generally increased and more difference numbers
concentrate on 1–40, which means the optimal roads determined by
two criteria become more distinct, and the result is more explicit

Table 1 Difference number with low variance
Probability for congestion situation of path 1 Φ1

Φ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 0 0 0 7 107 101 1 0 0
0.2 0 0 0 5 105 150 8 0 0
0.4 0 0 0 6 101 179 44 0 0
0.6 0 0 0 3 104 192 82 2 0
0.8 0 0 0 6 104 194 126 4 0
1.0 0 0 0 6 113 196 180 18 0

 

Table 2 Difference number with high variance
Probability for congestion situation of path 1 Φ1

Φ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 0 0 8 41 92 88 20 2 0
0.2 0 1 8 38 96 90 28 1 0
0.4 0 1 2 24 81 126 49 5 0
0.6 0 0 1 16 85 142 82 13 0
0.8 0 0 0 11 66 143 112 22 0
1.0 0 0 0 7 60 134 148 44 0

 

Fig. 7  Bi-normal distributions in one 3 links-to-4 links case
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when comparison is carried out between roads with more links. In
summary, there always exist some road conditions leading to clear
distinction between the faster criterion and LET like10–40
differences in 100 comparisons, which is notable in practical
applications. As the faster criterion is based on the historical
observations of travel time data, it bears less risk of long travel

time than LET. Therefore, the faster criterion is more reasonable
and worth adopting.

5.2 Experiments on the real road network with real traffic
data

Table 3 The distribution of difference number in different many-to-many cases
Different cases with varied variance Difference number intervals

0 1–10 11–20 21–30 31–40 41–50 51–100
3 links-to-4 links
 low variance 115 33 20 9 7 7 9
 medium variance 102 71 27 28 5 1 0
 high variance 95 48 27 20 10 0 0
5 links-to-6 links
 low variance 131 37 11 16 4 1 0
 medium variance 122 36 25 17 0 0 0
 high variance 89 56 37 18 2 0 0
7 links-to-7 links
 low variance 148 25 12 13 2 0 0
 medium variance 134 35 16 15 0 0 0
 high variance 111 46 25 18 0 0 0
8 links-to-8 links
 low variance 114 53 20 13 0 0 0
 medium variance 99 50 26 24 1 0 0
 high variance 64 72 37 23 4 0 0

 

Fig. 8  Histograms of travel times on some road links in Beijing
(a) 5257 samples, Link ID:192086, (b) 4397 samples, Link ID:192087, (c) 3899 samples, Link ID:29450, (d) 2297 samples, Link ID:183085, (e) 1657 samples, Link ID:32174, (f)
1424 samples, Link ID:95029, (g) PMF of travel time on Link 192086, (h) Fitting PDF for travel time on link 192086
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To better apply our theoretical results to the real road network and
further conduct the contrast experiment of faster criterion and LET,
firstly, we demonstrate bi-normal behaviours of real travel times on
real road links. Herein, we use sampled trajectory data in the
dataset given in [44]. The sampled trajectory data contains
trajectories generated by over 30,000 taxicabs during one day in
Beijing, which is recorded with four types of information, i.e. road
segments ID, user ID, time slots, and travel time. Indeed, most link
travel times in practice bear the bi-normal distribution, and we
extract travel times on various links and display their histograms in
Fig. 8 which readers can refer to.

There are six histograms shown in Fig. 8, and each of them
approximates a diverse discrete bi-normal pattern, which reveal the
bi-normal behaviour of link travel time in practice. Furthermore, as
can be seen, the number of samples in each histogram is distinct,
and it is clear that in Figs. 8a–f, the larger number of samples
generates a smoother appearance. These changing cases of
roughness rely on the character of the histogram, which is said that
the statistical noise (i.e. roughness) of histogram is inversely

proportional to the square root of sample quantity. As a
consequence, we can deduce that with the number of samples
increasing, the intact bi-normal curves will be obtained. In fact, we
can convert the histogram into probability mass function (PMF),
i.e. discrete PDF, and perfectly fit the PMF with two specified
normal PDFs. As an example, Figs. 8g and h display the PMF and
fitting normal PDFs of the histogram in Fig. 8a, in which the PMF
of link travel time accords with two given normal PDFs obviously.
Thus, the hidden bi-normal distribution of link travel time in a real-
world scenario can be confirmed.

5.2.2 Contrast experiment in a real-world scenario: On the
basis of bi-normal behaviour of link travel time, we further
implement the contrast experiment of two criteria on the real road
network with real traffic data, considering that more stochastic
factors exist under real traffic conditions. To this end, we adopt the
dataset in [44], which contains the information of road connection,
to construct a directed graph corresponding to the real road
network in Beijing. Fig. 9 displays a directed graph associated with
part of the road network, in which the components are weakly
connected and the paths can be derived. Using the directed graph,
we find out various cases in the real-world scenario, and carry on
the contrast experiment. The experimental result is given out in
Table 4. It needs to be emphasised that, we do not set difference
number intervals as we did in Section 5.1.2, since the probability of
congestion is hidden in real travel times on each link (i.e. the
parameters Φ1 and Φ2 are fixed). Instead, we show the average
difference of optimal path by two criteria in 100 tests, when
different number of samples are used. As can be seen, Table 4
contains various cases and each case corresponds to a contrast of
two paths sharing the same origin and destination. It is clear that
the difference of two criteria in the decision of the optimal path is
fairly common, no matter how many links the two alternative paths
have. In fact, the difference number is not correlated with link
number, but the whole travel time of two paths. In some cases (e.g.
2 links-to-3 links and 5 links-to-5 links in Table 4), the whole
travel times on two paths differ greatly, i.e. a path is always faster
than the other, so there is almost no difference between two
criteria. For other cases, the travel time distributions of two paths
overlap, and there is chance that two criteria achieve different
optimal paths. Even in the same case, like 2 links-to-2 links in
Table 4, the difference number holds different patterns on each two
paths due to various travel time distributions on them. Furthermore,
the result shows that the difference of the optimal path by two
criteria exists commonly, no matter how many samples we use in
two criteria. When more samples are used, the optimal path
determined by LET will tend to be fixed, which depends on the
expected value of travel time on two paths. However, what matters
in routing is not only the LET, but also the travel time variation.
The decision by LET neglects the stochasticity of travel time in a
real-world scenario. In contrast, the faster criterion focuses on
probability comparison of the whole travel time on alternative
paths, and reflects the travel time variation by samples from real
travel times on each path, so it is more reliable than LET.
Furthermore, the effect will be more evident when sample size
rises, because the travel time distribution can be better
approximated. As a consequence, the superiority of the faster
criterion is also validated on the real road network with real traffic
data and it is more reasonable and reliable than LET.

6 Conclusion and future works
This study aims at finding an optimal path under a faster criterion
by exploring the traffic data, the essential part of which is
performing a probabilistic comparison between two candidate
paths. Regarding this comparison, a bi-model distribution of travel
time for each road link is usually assumed. This study improves the
faster criterion by extending the bi-delta distribution to the bi-
normal distribution and deriving some theoretical models for both a
simple path and a complex path. In addition, the result in Fig. 4
shows that as the road link number increases, it can generate a
similar result if we approximate the bi-normal distribution of each
road link by one normal distribution. The experimental result

Fig. 9  Directed graph extracted from the real road network in Beijing
 

Table 4 Difference number of optimal path by two criteria
with real traffic data
Different cases in a real-world scenario Sample size

100 200 500 1000
1 links-to-2 links 18.28 12.19 3.94 0.79
2 links-to-2 links 26.08 20.00 10.62 3.59

49.20 47.79 59.70 71.68
11.98 4.85 0.49 0.005

2 links-to-3 links 5.35 0.87 0 0
2 links-to-4 links 29.80 27.72 23.89 17.54
3 links-to-3 links 20.37 14.43 5.63 1.24
3 links-to-5 links 37.35 32.16 22.00 12.75
5 links-to-5 links 1.82 0.17 0 0
5 links-to-6 links 39.29 46.11 62.92 78.98
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shows that, when the bi-normal distribution is significant on the
road link, it is reasonable and beneficial to use the faster criterion
to evaluate the paths. Moreover, via the experiment on a real road
network with real traffic date, the criterion's superiority is also
validated in practical terms, after the demonstration of the bi-
normal distribution hidden in real link travel time is provided.

In the future, we would like to extend our work in the following
aspects: first, more attention will be paid on how to directly
determine the optimal path among all the alternatives instead of
pair comparisons; second, for the result in Fig. 4, each road link is
assumed following the same bi-normal distribution for the sake of
computation simplification, we will improve it with random
parameters; third, we will further implement experiments to
compare with other routing criteria such as SSP methods.
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