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Abstract—Hybrid fuzzing that combines fuzzing and concolic execution has become an advanced technique for software vulnerability

detection. Based on the observation that fuzzing and concolic execution are complementary in nature, state-of-the-art hybrid fuzzing

systems deploy “optimal concolic testing” and “demand launch” strategies. Although these ideas sound intriguing, we point out several

fundamental limitations in them, due to unrealistic or oversimplified assumptions. Further, we propose a novel “discriminative dispatch”

strategy and design a probabilistic hybrid fuzzing system to better utilize the capability of concolic execution. Specifically, we design a

Monte Carlo-based probabilistic path prioritization model to quantify each path’s difficulty, and then prioritize them for concolic

execution. Our model assigns the most difficult paths to concolic execution. We implement a prototype named DigFuzz and evaluate

our system with two representative datasets and real-world programs. Results show that the concolic execution in DigFuzz outperforms

than those in state-of-the-art hybrid fuzzing systems in every major aspect. In particular, the concolic execution in DigFuzz contributes

to discovering more vulnerabilities (12 versus 5) and producing more code coverage (18.9 versus 3.8 percent) on the CQE dataset than

the concolic execution in Driller.

Index Terms—Software security, fuzz testing, concolic execution, hybrid fuzzing
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1 INTRODUCTION

SOFTWARE vulnerability is considered one of the most seri-
ous threats to cyberspace. Thus, it is crucial to discover

vulnerabilities in a piece of software [11], [18], [24], [26],
[31]. Recently, hybrid fuzzing, a combination of fuzzing and
concolic execution, has become increasingly popular in
vulnerability discovery [5], [12], [27], [30], [38], [41], [46].
Since fuzzing and concolic execution are complementary in
nature, combining them can potentially leverage their
unique strengths as well as mitigate weaknesses. More spe-
cifically, fuzzing is proficient in exploring paths containing
general branches (branches that have large satisfying value
spaces), but is by design incapable of handling paths con-
taining specific branches (branches that have very narrow
satisfying value spaces) [26]. In contrast, concolic execution
can quickly generate concrete inputs that ensure the pro-
gram to execute along a specific execution path, but it suf-
fers from the path explosion problem [8]. In a hybrid
scheme, fuzzing normally undertakes the majority tasks of
path exploration due to the high throughput, and concolic
execution assists fuzzing in exploring paths with low

probabilities and generating inputs that satisfy specific
branches. In this way, the path explosion problem in con-
colic execution is alleviated, as concolic execution is only
responsible for exploring paths with low probabilities that
may block fuzzing.

The key research question is how to combine fuzzing and
concolic execution to achieve the best overall performance.
Driller [38] and hybrid concolic testing [27] take a “demand
launch” strategy: fuzzing starts first and concolic execution
is launched only when the fuzzer cannot make any progress
for a certain period of time, a.k.a., stuck. A recent work [41]
proposes “optimal concolic testing”. It quantifies the costs
for exploring each path by fuzzing and concolic execution
respectively and chooses the more economic method.

We have evaluated both strategies using the DARPA
CQE dataset [15] and 12 real-world programs, and find
that although these strategies sound intriguing, none of
them work adequately, due to unrealistic or oversimplified
assumptions.

For the “demand launch” strategy, first of all, the stuck
state of a fuzzer is not a good indicator for launching con-
colic execution. Fuzzing is making progress does not neces-
sarily mean concolic execution is not needed. A fuzzer can
still explore new code, even though it has already been
blocked by many specific branches while the concolic execu-
tor is forced to be idle simply because the fuzzer has not
been blocked yet. Second, this strategy does not recognize
specific paths that block fuzzing. Once the fuzzer gets stuck,
the “demand launch” strategy feeds all seeds retained by
the fuzzer to concolic execution for exploring all missed
paths. Concolic execution is so overwhelmed by this mas-
sive number of missed paths that it may not generate a help-
ing input for a specific path for a long time. By then, the
fuzzer might have already generated a good input to
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traverse that specific path, rendering the whole concolic
execution useless.

Likewise, although the “optimal concolic testing” aims to
make optimal decisions, it is nontrivial to quantify the costs
of fuzzing and concolic execution for exploring each path.
For example, the “optimal concolic testing” only estimates
the cost of constraint solving in concolic execution based on
constraints complexities, which neglects the cost of sym-
bolic emulation. A recent study [14] shows that symbolic
emulation is even more expensive than constraint solving.
Furthermore, the “optimal concolic testing” deploys Mar-
kov Decision Processes (MDPC for short) to quantify the
cost of fuzzing. This algorithm itself is expensive. As a
result, the overall throughput of MDPC is greatly reduced.
Finally, even if the costs of fuzzing and concolic execution
can be accurately estimated, it is challenging to normalize
them for a unified comparison, because these two costs are
estimated by techniques with different metrics.

Based on these observations, we argue for the following
design principles when building a hybrid fuzzing system:
1) since concolic execution is several orders of magnitude
slower than fuzzing, we should only let it solve the “hardest
problems”, and let fuzzing take the majority task of path
exploration; and 2) since high throughput is crucial for fuzz-
ing, any extra analysis must be lightweight to avoid adverse
impact on the performance of fuzzing.

In this paper, we design a “discriminative dispatch”
strategy and propose a probabilistic hybrid fuzzing system
to better combine fuzzing and concolic execution. That is,
we prioritize paths so that concolic execution only works on
selected paths that are most difficult for fuzzing to break-
through. Therefore, the capability of concolic execution is
better utilized. The key to our strategy is a lightweight
method that quantifies the difficulty level for each path.
Prior work solves this problem by performing expensive
symbolic execution [20], and thus is not suitable for us.

In particular, we propose a novel Monte Carlo based
probabilistic path prioritization (MCP 3) model to quantify
each path’s difficulty in an efficient manner. Specifically,
we quantify a path’s difficulty by its probability of how
likely a random input can traverse this path. To calculate,
we use the Monte Carlo method [34]. The core idea is to
treat fuzzing as a random sampling process, consider ran-
dom executions as samples to the whole program space,
and calculate each path’s probability based on the sam-
pling information.

We have implemented a prototype called DigFuzz. It lev-
erages a popular fuzzer, American Fuzzy Lop (AFL) [47], as
the fuzzing component, and builds the concolic executor on
top of two symbolic engines, angr [37] and QSYM [46]. In
our previous work [48], DigFuzz only works on the CQE
binaries from DARPA Cyber Grand Challenge [15] and the
performance of DigFuzz on real-world programs are not
demonstrated, because the concolic executor (angr [37])
does not have sufficient support for analyzing large real-
world programs. In this study, we extend our prototype sys-
tem by leveraging a second concolic executor (QSYM [46])
to analyze real-world programs. Then, we evaluate the
effectiveness using the CQE binaries from the DARPA
Cyber Grand Challenge [15], the LAVA dataset [17], and 12
real-world programs. The evaluation results show that the

concolic execution in DigFuzz contributes significantly
more to the increased code coverage (18.9 versus 3.8 per-
cent) and increased number of discovered vulnerabilities
(12 versus 5) than state-of-the-art hybrid systems, such as
Driller [38]. Besides, we show that DigFuzz produces more
code coverage on all real-world programs.

The contributions of the paper are as follows:

� We conduct an independent evaluation of two state-
of-the-art hybrid fuzzing strategies (“demand
launch” and “optimal concolic testing”), and dis-
cover several important limitations that have not
been reported before.

� We propose a novel “discriminative dispatch” strat-
egy as a better way to construct a hybrid fuzzing sys-
tem. It follows two design principles: 1) let fuzzing
conduct the majority task of path exploration and
only assign the most difficult paths to concolic execu-
tion; and 2) the quantification of path difficulties
must be lightweight. To achieve these two principles,
we design a Monte Carlo based probabilistic path
prioritization model.

� We implement a prototype system DigFuzz, and
evaluate its effectiveness using the DARPA CQE
dataset, LAVA dataset, and real-world programs.
Our experiments demonstrate that DigFuzz outper-
forms state-of-the-art hybrid systems with respect to
more discovered vulnerabilities and higher code
coverage.

We have made our prototype and the evaluation datasets
publicly available at https://github.com/Cc-tec/digfuzz.

2 BACKGROUND AND MOTIVATION

In this section, we present background knowledge of the
state-of-the-art hybrid fuzzing systems and then summarize
several limitations of their strategy to motivate our research.

Fuzzing [29] and concolic execution [8] are two represen-
tative techniques for software testing and vulnerability
detection. With the observation that fuzzing [29] and con-
colic execution [8] can complement each other, a series of
hybrid fuzzing techniques [5], [27], [30], [38], [41] have been
proposed. In general, these systems fall into two categories:
“optimal concolic testing” and “demand launch”.

To assess the performance of “optimal concolic testing”
and “demand launch”, we evaluate these two strategies
using a dataset of 118 binaries from the CQE dataset and 12
real-world programs. In detail, we deploy the American
Fuzzy Lop (AFL) [47] as the fuzzing component, and utilize
angr [37] as the concolic executor to evaluate CQE binaries
because of their specific and customized syscalls. Besides,
since angr does not have sufficient support for real-world
programs [31], we utilize QSYM [46], a state-of-the-art
open-source concolic executor, to evaluate 12 real-world
programs. Every binary is analyzed for 12 hours. Based on
these two evaluations, we can draw several observations.

2.1 Optimal Concolic Execution

The “optimal concolic testing” aims to make an optimal
choice to decide which technique (fuzzing or concolic exe-
cution) should be deployed to explore a given path [41]. To

https://github.com/Cc-tec/digfuzz


achieve optimal performance, it quantifies the cost of fuzz-
ing and concolic execution, and always selects the method
at a lower cost.

The key challenge is that the actual costs of fuzzing and
concolic execution are extremely difficult to estimate. The
“optimal concolic testing” proposes an approximation tech-
nique to estimate these two costs. Specifically, it estimates
the probability of program paths based on Markov Decision
Processes (MDPC for short) and estimates the cost of con-
straint solving in concolic execution based on experience.

Observations. Based on the evaluations on two datasets,
we have several observations.

� Heavyweight Estimation. Table 1 shows the execution
time comparison among fuzzing, concolic execution
(angr), concolic execution (QSYM), and MDPC from
“optimal concolic testing”. We can observe that esti-
mating probability using MDPC is very costly, thou-
sands of times slower than fuzzing.

� Inaccurate Estimation. By regarding the cost for a random
test as 1, the “optimal concolic testing” model assumes
that solving linear equality has a cost of 4, solving non-
linear equality has a cost of 10, and solving a boolean
combination of non-linear equalities has a cost of 50.
However, Table 1 indicates that the cost of concolic exe-
cution varies greatly from program to program (from
18s to 3600s). Besides, it varies greatly for different con-
colic execution engines (angr and QSYM). These results
further suggest that the estimation of MDPC is
inaccurate.

� Reduced Throughput. Making decisions before explo-
ration for each path significantly reduces the overall
analysis throughput, from 417 executions per second
in pure fuzzing to 2.6 executions per second with
MDPC. Due to the negative impact of the reduced
throughput, “optimal concolic testing” discovers
fewer vulnerabilities and code coverage. To be more
specific, Fig. 1 shows the bitmap size that is main-
tained by AFL, which is an approximation of code
coverage. We can observe that “optimal concolic
testing” discovers less code coverage than pure fuzz-
ing. Moreover, “optimal concolic testing” detects
vulnerabilities only in 29 CQE binaries, whereas the
pure fuzzing can discover vulnerabilities in 67 CQE
binaries. Similarly, among the 12 Linux binaries,
“optimal concolic testing” only detects 3 crashes,
whereas the pure fuzzing can discover 107 crashes.

We further optimize the system to have fuzzing and opti-
mal decision work in parallel instead of running sequen-
tially as in the original system and build a concurrent

MDPC. We then evaluate it using the same dataset and have
the following observation.

� Nearly all the missed paths are decided to be
explored by concolic execution in several seconds
after the fuzzing starts. By examining the coverage
statistics, we observe that the fuzzer is able to gener-
ate hundreds of test cases in seconds, which leads to
a high cost for exploring a missed path by fuzzing,
based on the algorithm in MDPC. On the contrary,
the cost of concolic execution is smaller even we
assign the highest solving cost (50 as defined [41]) to
every path constraint. This result indicates that the
cost of concolic execution is underestimated.

Limitations. The aforementioned observations uncover
the key problem of the “optimal concolic testing” strategy.
That is, accurately estimating the cost for exploring a given
path by fuzzing and concolic execution is nontrivial, which
overshadows the benefit of making optimal solutions.

First, the estimation itself is so expensive that it reduces
the throughput of the whole system. Specifically,MDPC lev-
erages a path-sensitive program analysis for estimating the
cost of fuzzing, which can be unacceptably heavyweight for
programs with large states.

Second, the estimation is inaccurate. The “optimal con-
colic testing” assumes the cost of constraint solving is the
weighted sum of the primitive operations (e.g., the Add and
Mul operation) in the constraint, they then estimate the
weight of each primitive operation type. Actually, concolic
execution contains two steps, symbolic emulation, and con-
straint solving. A recent study shows that symbolic emula-
tion is even more expensive than constraint solving [14].

Third, it is exceptionally challenging to define a unified
metric to evaluate the cost of different techniques as a result
of the huge distinctions among these techniques. Our evalu-
ation shows the cost of concolic execution varies greatly
from program to program, rendering the estimation of the
cost unreliable. Furthermore, the cost of concolic execution
also depends heavily on specific concolic executors (angr
versus QSYM). How to improve the performance of con-
colic executors is an orthogonal problem [14].

To sum up, the “optimal concolic testing” constructs a
theoretical framework for improving the performance of
hybrid fuzzing. The proposed estimation technique, how-
ever, is impractical due to the limitations described above.

2.2 Demand Launch

The state-of-the-art hybrid schemes such as Driller [38] and
hybrid concolic testing [27] deploy a “demand launch”

TABLE 1
Execution Time Comparison

Fuzzing MDPC angr* QSYM*

Minimum 0.0007s 0.16s 18s 15s
25% percentile 0.0013s 13s 767s 102s
Median 0.0019s 65s 1777s 218s
Average 0.0024s 149s 1790s 264s
75% percentile 0.0056s 213s 2769s 588s
Maximum 0.5000s 672s 3600s 3363s

*One concolic execution is limited for at most 1 hour.
Fig. 1. Code coverage comparison between fuzzing and MDPC.



strategy. In Driller [38], the concolic executor remains idle
until the fuzzer cannot make any progress for a certain
period of time. It then processes all the retained inputs from
the fuzzer sequentially, to generate inputs that might help
the fuzzer and further lead to new code coverage. Similarly,
hybrid concolic testing [27] obtains both a deep and wide
exploration of program state space via hybrid testing. It
reaches program states quickly by leveraging the ability of
random testing and then explores neighbor states exhaus-
tively with concolic execution.

In a nutshell, two assumptions must hold in order to
make the “demand launch” strategy work as expected:

1) A fuzzer in the non-stuck state means the concolic exe-
cution is not needed. The hybrid system should start
concolic execution onlywhen the fuzzer gets stuck.

2) A stuck state suggests the fuzzer cannot make any
progress in discovering new code coverage in an
acceptable time. Moreover, the concolic execution is
able to find and solve the hard-to-solve condition
checks that block the fuzzer so that the fuzzing could
continue to discover new code coverage.

Observations. Based on the evaluation of how the “demand
launch” strategy works on 118 binaries from the DARPA
Cyber Grand Challenge (CGC) and 12 real-world programs,
we find five interesting yet surprising observations.

� A Low Percentage of Invoking Concolic Execution. The
“demand launch” strategy invoked concolic execu-
tion on only 49 out of the 118 CQE binaries, and 11
out of the 12 real-world programs. It means that the
fuzzer got stuck on only these 60 binaries (49 CQE
binaries and 11 real-world programs). This observa-
tion is on par with the numbers (42) reported in the
paper of Driller [40].

� Small Stuck Time Periods. For the 60 binaries, on
which concolic execution was invoked, we statisti-
cally calculated the stuck time periods, and the dis-
tribution of stuck time periods is shown in Fig. 2. We
can observe that more than 85 percent of the stuck
time periods were under 100 seconds.

� Huge Throughput Gap. The execution time in Table 1
shows that the throughput of fuzzing was orders of
magnitude higher than the throughput of concolic
execution. Therefore, a practical design should only
pick very few inputs for concolic execution, as
opposed to the “demand launch” strategy, which
gives all the inputs retained by fuzzing to the con-
colic executor.

� Low Practicability. Due to such a huge throughput
gap, in practice, the concolic execution is of little
help to fuzzing in the “demand launch” strategy.
Fig. 3 shows the number of inputs processed by con-
colic execution (angr) and the number of inputs
retained by fuzzing (1709 out of 23915) for the CQE
binaries. And for the 12 real-world programs, Table 2
shows that 795 inputs were processed by QSYM, out
of a total of 15269 inputs retained by the fuzzer. On
average, only 6.3 percent of the inputs retained by
the fuzzer were processed by the concolic executor
within the 12 hours of testing.

� A Small Contribution to Code Coverage. By the end of
the 12 hours of testing, the “demand launch” strat-
egy invoked concolic execution on 49 CQE binaries
and finished 1709 runs. A more detailed investiga-
tion shows that, in total, only 51 inputs generated by
concolic execution were imported by fuzzing, and
the concolic execution was able to assist fuzzing on
only 13 binaries, by generating at least one input that
leads to new code coverage.

Limitations. The aforementioned results indicate two
major limitations of the “demand launch” strategy.

First, the stuck state of a fuzzer is not a good indicator to
decide whether the concolic execution is needed. According
to the low percentage of invoking concolic execution, the
fuzzer only gets stuck on 49 binaries, meaning concolic exe-
cution is never launched for the other 77 binaries. Manual
investigation on the source code of these 77 binaries shows
that they all contain specific branches that can block

Fig. 2. The cumulative distribution of the stuck state duration.

Fig. 3. The number of inputs retained by the fuzzer and the number of
inputs processed by concolic execution.

TABLE 2
Inputs Retained by Fuzzer and pzrocessed by QSYM

# of inputs by
fuzzers

# of inputs by
QSYM

libjpeg-9b+cjpeg 885 69
ncurses-6.1
+infotocap

2994 103

jhead-3.00 1109 46
nm-2.26.1 93 92
xpdf-4.00+pdfimages 1377 87
libpng-1.6.36+pngfix 938 34
readelf-2.26.1 4593 160
size-2.26.1 30 28
libtiff-4.0.10
+tiffdump

963 0

libxpat-R.2.2.5
+xmlwf

651 34

objdump-2.26.1 616 104
exiv2-0.25 1020 38



fuzzing. Further combining with the small stuck time peri-
ods, we could see that the fuzzer in a stuck state does not
necessarily mean it actually needs concolic execution since
most of the stuck states are really short (85 percent of the
stuck states are under 100 seconds). These observations
break Assumption 1 described above.

Second, the “demand launch” strategy cannot recognize
the specific paths that block fuzzing, rendering very low
effectiveness for concolic execution. On one hand, concolic
execution takes 1654 seconds on average to process one
input. On the other hand, a fuzzer often retains much more
inputs than what concolic execution could handle. As a
result, the input corresponding to the specific branch that
blocks the fuzzing (i.e., the input that could lead execution
to the target place) only has a very small chance to be picked
up and processed by concolic execution. Therefore,
Assumption 2 described above does not really hold in prac-
tice. This conclusion can be further confirmed the weak
assistance from fuzzing where the concolic execution can
help the fuzzing on merely 13 binaries despite that it is
launched on 49 binaries. Moreover, only 51 inputs from the
concolic execution are imported by the fuzzer after 1709
runs of concolic execution, indicating a very low quality of
the inputs generated by concolic execution.

3 PROBABILISTIC PATH PRIORITIZATION GUIDED

BY MONTE-CARLO

To address the aforementioned limitations of the current
hybrid fuzzing systems, we propose a novel “discriminative
dispatch” strategy to better combine fuzzing and concolic
execution.

3.1 Key Challenge

As discussed above, the key challenge of our strategy is to
quantify the difficulty of traversing a path for a fuzzer in a
lightweight fashion. There are solutions for quantifying the
difficulty of a path using expensive program analysis, such
as value analysis [44] and probabilistic symbolic execu-
tion [5]. However, these techniques do not solve our prob-
lem: if we have already performed a heavyweight analysis
to quantify the difficulty, we might as well just solve the
path constraints and generate an input to traverse the path.

3.2 Monte Carlo Based Probabilistic Path
Prioritization Model

In this study, we propose a novel Monte Carlo based
Probabilistic Path Prioritization Model (MCP 3 for short) to
deal with the challenge. In order to be lightweight, our
model applies the Monte Carlo method to calculate the
probability of a path to be explored by fuzzing. For the
Monte Carlo method to work effectively, two requirements
need to be full-filled: 1). the sampling to the search space
has to be random; 2). a large number of random sampling
is required to make the estimations statistically meaning-
ful. Since a fuzzer randomly generates inputs for testing
programs, our insight is to consider the executions on these
inputs as random samples to the whole program state
space, thus the first requirement is satisfied. Also, as fuzz-
ing has a very high throughput to generate test inputs and

perform executions, the second requirement can also be
met. Therefore, by regarding fuzzing as a sampling pro-
cess, we can statistically estimate the probability in a light-
weight fashion with coverage statistics. A concern is the
Monte Carlo method expects uniformly random samples,
whereas grey-box fuzzers are generally not truly uniformly
randomized in terms of seed mutation. Then, the probabili-
ties calculated could also be biased. We present the discus-
sion in Section 6.2.

According to the Monte Carlo method, we can simply
estimate the probability of a path by statistically calculating
the ratio of executions traversing this path to all the execu-
tions. However, this intuitive approach is not practical,
because maintaining path coverage is a challenging and
heavyweight task. With this concern, most of the current
fuzzing techniques adopt a lightweight coverage metric
such as block coverage and branch coverage. For this chal-
lenge, we treat an execution path as a Markov Chain of suc-
cessive branches, inspired by a previous technique [4].
Then, the probability of a path can be calculated based on
the probabilities of all the branches within the path.

Probability for Each Branch. The probability of a branch
quantifies the difficulty for a fuzzer to pass a condition
check and explore the branch. Equation 1 shows howMCP 3

calculates the probability of a branch.

P brið Þ ¼
cov brið Þ

cov brið Þþcov brjð Þ ; cov brið Þ 6¼ 0

3
cov brjð Þ ; cov brið Þ ¼ 0

8<
: (1)

In Equation (1), bri and brj are two branches that share
the same predecessor block, and covðbriÞ and covðbrjÞ refer
to the coverage statistics of bri and brj, representing how
many times bri and brj are covered by the samples from a
fuzzer respectively.

When bri has been explored by fuzzing (covðbriÞ is non-
zero), the probability for bri can be calculated as the cover-
age statistics of bri divided by the total coverage statistics of
bri and brj.

When bri has never been explored before (covðbriÞ is zero),
wedeploy the rule of three in statistics [42] to calculate the proba-
bility of bri. The rule of three states that if a certain event did not
occur in a samplewith n subjects, the interval from 0 to 3=n is a
95 percent confidence interval for the rate of occurrences in the
population. When n is greater than 30, this is a good approxi-
mation of results frommore sensitive tests. Following this rule,
the probability of bri becomes 3=cov brj

� �
if covðbrjÞ is larger

than 30. If covðbrjÞ is less than 30, the probability is not statisti-
cally meaningful. That is, wewill not calculate the probabilities
until the coverage statistics are larger than 30.

Probability for Each Path. To calculate the probability for a
path, we apply the Markov Chain model [21] by viewing a
path as continuous transitions among successive
branches [4]. The probability for a fuzzer to explore a path
is calculated as Equation (2).

P pathj

� � ¼
Y
fP brið Þjbri 2 pathjg: (2)

The pathj in Equation (2) represents a path, bri refers to a
branch covered by the path and P brið Þ refers the probability



of bri. The probability of pathj shown as P pathj

� �
is calcu-

lated by multiplying the probabilities of all branches along
the path together.

3.3 MCP 3MCP 3-Based Execution Tree

In our “discriminative dispatch” strategy, the key idea is to
infer and prioritize paths for concolic execution from the
runtime information of executions performed by fuzzing.
For this purpose, we construct and maintain a MCP 3 based
execution tree, which is defined as follows:

Definition 1. AnMCP 3 based execution tree is a directed
tree T = (V, E, a), where:
� Each element v in the set of vertices V corresponds to a

unique basic block in the program trace during an execution;
� Each element e in the set of edges E � V � V corre-

sponds to the a control flow dependency between two vertices
v and w, where v; w 2 V . One vertex can have two outgoing
edges if it contains a condition check;
� The labeling function a : E ! S associates edges with

the labels of probabilities, where each label indicates the
probability for a fuzzer to pass through the branch.

4 DESIGN AND IMPLEMENTATION

In this section, we present the system design and implemen-
tation details for DigFuzz.

4.1 System Overview

Fig. 4 shows an overview of DigFuzz. It consists of three
major components: 1) a fuzzer; 2) the MCP 3 model; and 3) a
concolic executor.

Our system leverages a popular off-the-shelf fuzzer,
American Fuzzy Lop (AFL) [47] as the fuzzing component,
and builds the concolic executor on top of angr [37], an
open-source symbolic execution engine, the same as
Driller [38].

The most important component in DigFuzz is the MCP 3

model. This component performs execution sampling, con-
structs the MCP 3 based execution tree, prioritizes paths
based on the probability calculation, and eventually feeds
the prioritized paths to the concolic executor.

DigFuzz starts the testing by fuzzing with initial seed
inputs. As long as inputs are generated by the fuzzer, the
MCP 3 model performs execution sampling to collect cover-
age statistics which indicate how many times each branch is
covered during the sampling. Simultaneously, it also con-
structs the MCP 3 based execution tree through trace analy-
sis and labels the tree with the probabilities for all branches
that are calculated from the coverage statistics. Once the
tree is constructed and paths are labeled with probabilities,

the MCP 3 model prioritizes all the missed paths in the tree,
and identifies the paths with the lowest probability for con-
colic execution.

As concolic execution simultaneously executes programs
on both concrete and symbolic values for simplifying path
constraints, once a missed path is prioritized, the MCP 3

model will also identify a corresponding input that can
guide the concolic execution to reach the missed path. That
is, by taking the input as a concrete value, the concolic exec-
utor can execute the program along with the prefix of the
missed path, generate and collect symbolic path constraints.
When reaching to the missed branch, it can generate the
constraints for the missed path by conjoining the constraints
for the path prefix with the condition to this missed branch.
Finally, the concolic executor generates inputs for missed
paths and feeds the generated inputs back to the fuzzer.
Meanwhile, it also updates the execution tree with the paths
that have been explored during concolic execution. By
leveraging the new inputs from the concolic execution, the
fuzzer will be able to move deeper, extent code coverage
and update the execution tree.

To sum up, DigFuzz works iteratively. In each iteration,
the MCP 3 model updates the execution tree through trace
analysis on all the inputs retained by the fuzzer. Then, this
model labels every branch with its probability that is calcu-
lated with coverage statistics on execution samples. Later,
the MCP 3 model prioritizes all missed paths, and selects
the path with the lowest probability for concolic execution.
The concolic executor will generate inputs for the missed
path, return the generated inputs to the fuzzer, and update
the execution tree with paths that have been explored dur-
ing concolic execution. After these steps, DigFuzz will enter
into another iteration.

4.2 Execution Sampling

Random sampling is required for DigFuzz to calculate prob-
abilities using the Monte Carlo method [34]. Based on the
observation that a fuzzer by nature generates inputs ran-
domly, we consider the fuzzing process as a random sam-
pling process to the whole program state space. Due to the
high throughput of fuzzing, the number of generated sam-
ples will quickly become large enough to be statistically
meaningful, which is defined by rule of three [42] where the
interval from 0 to 3/n is a 95 percent confidence interval
when the number of samples is greater than 30.

Following this observation, we present Algorithm 1 to
perform the sampling. This algorithm accepts three inputs
and produces the coverage statistics in a HashMap. The
three inputs are: 1) the target binary P ; 2) the fuzzer Fuzzer;
and 3) the initial seeds stored in Setinputs. Given the three

Fig. 4. Overview of DigFuzz.



inputs, the algorithm iteratively performs the sampling dur-
ing fuzzing. Fuzzer takes P and Setinputs to generate new
inputs as SetNewInputs (Ln. 7). Then, for each input in
NewInputs, we collect coverage statistical information for
each branch within the path determined by P and input
(Ln. 9) and further update the existing coverage statistics
stored in HashMapCovStat (Ln. 11 and 12). In the end, the
algorithm merges SetNewInputs into Setinputs (Ln. 15) and
starts a new iteration.

Algorithm 1. Execution Sampling

1: P  {Target binary}
2: Fuzzer {Fuzzer in DigFuzz }
3: Setinputs  {Initial seeds}
4: HashMapCovStat  ;;SetNewInputs  ;
5:
6: while True do
7: SetNewInputs  FuzzerfP; Setinputsg
8: for input 2 SetNewInputs do
9: Coverage GetCoverage(P; input)
10: for branch 2 Coverage do
11: Index Hash(branch)
12: HashMapCovStatfIndexg þ þ
13: end for
14: end for
15: Setinputs  Setinputs [ SetNewInputs

16: end while
output theHashMapCovStat as coverage statistics

4.3 Execution Tree Construction

As shown in Fig. 4, DigFuzz generates the MCP 3 based exe-
cution tree using the runtime information from fuzzer.

Algorithm 2 demonstrates the tree construction process.
The algorithm takes three inputs, the control-flow graph for
the target binary CFG, inputs retained by the fuzzer
Setinputs and the coverage statistics HashMapCovStat , which
is the output from Algorithm 1. The output is aMCP 3 based
execution tree ExecTree. There are mainly two steps in the
algorithm. The first step is to perform trace analysis for each
input in Setinputs to extract the corresponding trace and then
merge the trace into ExecTree (Ln. 6 to 11). The second step
is to calculate the probability for each branch in the execu-
tion tree (Ln. 12 to 16). To achieve this, for each branch bri in
ExecTree, we extract its neighbor branch brj (bri and brj
share the same predecessor block that contains a condition
check) by examining the CFG (Ln. 13). Then, the algorithm
leverages Equation 1 to calculate the probability for bri (Ln.

14). After that, the algorithm labels ExecTreewith the calcu-
lated probabilities (Ln. 15) and outputs the newly labeled
ExecTree.

Algorithm 2. Execution Tree Construction

1: CFG {Control flow graph for the target binary.}
2: Setinputs  {Inputs retained by the fuzzer}
3: HashMapCovStat  {Output from Algorithm 1}
4: ExecTree ;
5: 6: for input 2 Setinputs do
7: trace TraceAnalysis(input)
8: if trace =2 ExecTree then
9: ExecTree ExecTree [ trace
10: end if
11: end for
12: for bri 2 ExecTree do
13: brj  GetNeighbor(bri; CFG)
14: prob CalBranchProb(bri; brj;HashMapCovStat)
15: LabelProb(ExecTree; bri; prob)
16: end for

output ExecTree as theMCP 3 based execution tree

To avoid the potential problem of path explosion in the
execution tree, we only perform trace analysis for the seed
inputs retained by fuzzing. The fuzzer typically regards
those mutated inputs with new code coverage as seeds for
further mutation. Tracing on these retained seeds is a prom-
ising approach to model the explored program state. To be
more specific, we only perform trace analysis for interesting
inputs retained in AFL [47]. A mutated input is saved as an
interesting input according to the metrics of both sizes and
execution time.

For each branch along an execution trace, whenever the
opposite branch has not been covered by fuzzing, then a
missed path is identified, which refers to a prefix of the trace
conjoined with the uncovered branch. In other words, the
execution tree does not include an uncovered branch of
which the opposite one has not been covered yet.

To ease representation, we present a running example,
which is simplified from a program in the CQE dataset [15],
and the code piece is shown in Fig. 5. The vulnerability is
guarded by a specific string, which is hard for fuzzing to
detect. Fig. 6 illustrates the MCP 3 based execution tree for
the running example in Fig. 5. Each node represents a basic
block. Each edge refers to a branch labeledwith the probabil-
ity. We can observe that there are two traces (t1 ¼ hb1; b2; b6;
b12; b13; b7; b9; b11i and t2 ¼ hb1; b3; b4; b12; b14i) in the tree
marked as red and blue. Note that the probabilities are calcu-
lated by multiple execution samples. In this example, we
only present two traces for easing presentation.

4.4 Probabilistic Path Prioritization

We then prioritize paths based on probabilities. As shown
in Equation (2), a path is treated as a Markov chain and its
probability is calculated based on the probabilities of all the
branches within the path. A path can be represented as a
sequence of covered branches, and each branch is labeled
with its probability that indicates how likely a random input
can satisfy the condition. Consequently, we leverage the
Markov Chain model to regard the probability for a path as
the sequence of probabilities of the transitions.

Fig. 5. Running example.



Algorithm 3. Path Prioritization in DigFuzz

1: ExecTree {Output from Algorithm 2}
2: SetProb  ;
3: for trace 2 ExecTree do
4: for bri 2 trace do
5: brj  GetNeighbor(bri; CFG)
6: missed GetMissedPath(trace; bri; brj)
7: ifmissed =2 ExecTree then
8: prob CalPathProb(missed)
9: SetProb  ftrace;missed; probg
10: end if
11: end for
12: end for
output SetProb as missed paths with probabilities correspond-
ing to each trace

The detailed algorithm is presented in Algorithm 3. It
takes the MCP 3 based execution tree ExecTree from Algo-
rithm 2 as the input and outputs SetProb, a set of missed
paths, and their probabilities. Our approach will further pri-
oritize these missed paths based on SetProb and feed the one
with the lowest probability to concolic execution. The algo-
rithm starts with the execution tree traversal. For each
branch bri on every trace within ExecTree, it first extracts
the neighbor brj (Ln. 5) and then collects the missed paths
missed along the given trace (Ln. 6). Then, the algorithm cal-
culates the probability for missed by calling CalPathProbðÞ
which implements Equation (2) and stores the information
in SetProb. Eventually, the algorithm produces SetProb, a set
of missed paths with probabilities for every trace.

After we get SetProb, we will prioritize missed paths by a
decrease order on their probabilities, and identify the path
with the lowest probability for concolic execution. As the
concolic executor takes a concrete input as the concrete
value to perform trace-based symbolic execution, we will

identify an input on which the execution is able to guide the
concolic executor to the prioritized missed path.

Take the program in Fig. 5 as an example. In Fig. 6, the
missed branches are shown as dotted lines. After the execu-
tion tree is constructed and properly labeled, Algorithm 3 is
used to obtain missed paths and calculate probabilities for
these paths. We can observe that there are 4 missed paths in
total denoted as P1, P2, P3, and P4, respectively. By calling
CalPathProb() function, the probabilities of these missed
paths are calculated as shown in the figure, and the lowest
one is of P1. To guide the concolic executor to explore P1,
our approach will pick the input that leads to the trace
hb1; b2; b6; b12; b13; b7; b9; b11i and assign this input as the con-
crete value of concolic execution, because this trace share
the same path prefix, hb1; b2; b6; b12; b13; b7; b9i, with the
missed path P1.

5 EVALUATION

In this section, we conduct a comprehensive evaluation on
the performance of DigFuzz by comparing it with state-of-
the-art hybrid fuzzing systems, with respect to code cover-
age, the number of discovered vulnerabilities, and the con-
tribution of concolic execution.

We build DigFuzz on top of a popular fuzzer, American
Fuzzy Lop (AFL) [47], and two open-source concolic execu-
tors, angr [37] and QSYM [46]. To evaluate our system
against DARPA Cyber Grand Challenge (CGC) binaries [15],
we integrate angr [37], which is designed to support specific
syscalls in the CGC customized platform. We further inte-
grate QSYM [46] into our system, because angr [37] has
insufficient syscalls support for real-world programs.
Therefore, we employ angr [37] and QSYM [46] to analyze
CGC binaries and real-world programs respectively.

5.1 Datasets

We leverage three datasets: the CGC Qualifying Event
(CQE) dataset [15] (same as in Driller [38]), the LAVA-M

dataset and 12 real-world Linux programs.
The CQE dataset contains 131 applications that are delib-

erately designed by security experts to test automated vul-
nerability detection systems. Every binary is injected with
one or more memory corruption vulnerabilities. In addition,
many CQE binaries have complex protocols and large input
spaces, making these vulnerabilities harder to trigger. In
our evaluation, we exclude 5 applications involving com-
munication between multiple binaries as in Driller, and 8
applications on which AFL cannot work. Totally, we use
118 CQE binaries for evaluation.

For the LAVA dataset [17], we adopt LAVA-M as previous
techniques [11], [26], which consists of 4 real-world pro-
grams, uniq, base64, md5sum, and who. Each program in
LAVA-M is injected with multiple bugs, and each injected
bug has a unique ID.

We choose Linux programs based on the following fea-
tures: popularity, frequency of being tested, and diversity of
categories. These 12 Linux programs (as shown in Table 3)
include well-known tools (e.g., nm, objdump), image process-
ing libraries (e.g., libjpeg, libtiff), terminal processing librar-
ies (e.g., ncurses,), and document processing libraries (e.g.,
xpdf), etc. As shown in Table 3, the sizes of these 12 Linux

Fig. 6. The execution tree with probabilities.



programs range from 23KB to 5791KB. The initial seeds for
all these 12 Linux programs are defined as the seed exam-
ples provided by AFL. We regard the unique crashes
reported by AFL as the detected crashes for these 12 Linux
programs.

5.2 Baseline Techniques

As the main contribution of DigFuzz is to propose a more
effective strategy to combine fuzzing with concolic execu-
tion, the advance of fuzzing itself is out of our scope. There-
fore, we do not compare DigFuzz with non-hybrid fuzzing
systems such as CollAFL [18], Angora [11], AFLfast [4], and
VUzzer [33].

To quantify the contribution of concolic execution, we
leverage pure fuzzing as a baseline. We deploy the original
AFL to simulate fuzzing assisted by a dummy concolic exec-
utor that makes zero contribution. This configuration is
denoted as AFL.

To compare DigFuzz with other hybrid fuzzing systems,
we choose the state-of-the-art hybrid fuzzing system,
Driller, QSYM [46], andMDPC.

We use Driller� 1 to represent the configuration of Driller.
Moreover, to evaluate the impact of the path prioritization
component alone, we modify Driller to enable the concolic
executor to start from the beginning by randomly selecting
inputs from fuzzing. We denote this configuration as
Random. The only difference between Random and
DigFuzz is the path prioritization. This configuration elimi-
nates the first limitation described in Section 2.2.

QSYM [46] mainly improves the performance of concolic
execution by optimizing emulation speed and reducing
emulation usage. Our research focuses on the path prioriti-
zation for hybrid fuzzing, thus we only evaluate the strategy
of path prioritization in QSYM (denoted as QSYM) for a fair
comparison. That is, baseline techniques, such as Driller�
and QSYM, only differ on the strategies of path prioritiza-
tion. QSYM prioritizes paths for concolic execution based
on the sizes and times of generated inputs from fuzzing. To
be more specific, it prefers to select smaller inputs for con-
colic execution. If the sizes of two inputs are the same,
QSYM will further select the newer one according to their
generated time by the fuzzer.

In the original MDPC model [41], fuzzing and concolic
execution alternate in a sequential manner, whereas all the
other hybrid systems work in parallel to better utilize com-
puting resources. To make a fair comparison, we configure
the MDPC model to work in parallel. More specifically, if
MDPC chooses fuzzing to explore a path, then the fuzzer
generates a new test case for concrete testing. Otherwise,
MDPC will assign this path that requires to be explored by
concolic execution to a job queue, and continues to calculate
probabilities for other paths. The concolic executor will take
a path subsequently from the job queue. In this way, we can
compare MDPC with other hybrid systems with the same
computing resources.

Besides, as estimating the cost for solving a path con-
straint is a challenging problem, we simply assign every
path constraints with the solving cost of 50, which is the
highest solving cost as defined [41]. Please note that with
this configuration, the time cost by MDPC for optimal deci-
sion is lower, because it does not spend effort in collecting
and estimating path constraints.

We did not take SAVIOR [13] as a baseline technique for
several reasons. First, the two techniques follow totally dif-
ferent design principles. DigFuzz is a code coverage-driven
testing, whereas SAVIOR adopts a bug-driven approach.
Our work aims to demonstrate the effectiveness of our
path prioritization strategy in terms of code coverage.
Therefore, code coverage, which is the main metric to eval-
uate the effectiveness of DigFuzz, is completely pointless
for SAVIOR. Second, SAVIOR [13] requires source code in
order to perform static analysis to find potential bugs. In
contrast, DigFuzz works with pure binaries. Besides, SAV-
IOR designs a customized concolic execution engine, based
on KLEE [6], for addition security checking besides input
generation. As a result, the two techniques embrace differ-
ent deployment and threat models. Third, for a relatively
fair comparison, we tried our best to evaluate only the
bug-driven path prioritization in SAVIOR, by disabling the
security check in the customized KLEE. However, the cus-
tomized KLEE is currently not open-source. We contacted
with the authors of SAVIOR and confirmed that the cur-
rent version of SAVIOR can only work in their prebuilt
docker. Consequently, there is no way we can modify the
tool and disable the security check for a fair comparison
with DigFuzz.

5.3 Experiment Setup

The original Driller [38] adopts a shared pool design,
where the concolic execution pool is shared among all the
fuzzer instances. With this design, when a fuzzer gets stuck,
Driller adds all the inputs retained by the fuzzer into a
global queue of the concolic execution pool and performs
concolic execution by going through these inputs sequen-
tially. This design is not suitable for us as the fuzzer instan-
ces are not fairly aided by the concolic execution.

To better evaluate our new combination strategy in
DigFuzz, we assign computer resources evenly to ensure
that the analysis on each binary is fairly treated. As there
exist two modes in the mutation algorithm of AFL (deter-
ministic and non-deterministic modes), we allocate 2

TABLE 3
Specific Information About the 12 Linux Programs

@@ is a command in AFL, which indicates that the input is a file.

1. The configuration of Driller� in our work is different from Driller
paper as further discussed in Section 5.3.



fuzzing instances (each running in one mode) for every test-
ing binary. In detail, we allocate 2 fuzzing instances for test-
ing binaries with AFL, 2 fuzzing instances and 1 concolic
execution instance with Driller�, Random, QSYM, MDPC
and DigFuzz. Each run of concolic execution is limited to
4GB of memory and run-time up to one hour, which is the
same as in Driller.

We run the experiments on a server with three computer
nodes, and each node has 18 CPU cores and 32GB RAM.
Considering that random effects play an important role in
our experiments, we choose to run each experiment for
three times, and report the mean values for a more compre-
hensive understanding of the performance. In order to give
enough time for fuzzing as well as limit the total time of
three runs for each binary, we choose to assign 12 hours to
each binary from the CQE dataset, and stop the analysis as
long as a crash is observed. For the LAVA dataset, we ana-
lyze each binary for 5 hours as in the LAVA paper. For the
Linux programs, we analyze each binary for 12 hours.

5.4 Evaluation on the CQE Dataset

In this section, we demonstrate the effectiveness of our
approach on the CQE dataset from three aspects: code cov-
erage, the number of discovered vulnerabilities, and the
contribution of concolic execution to the hybrid fuzzing.

5.4.1 Code Coverage

Code coverage is a critical metric for evaluating the perfor-
mance of a fuzzing system. We use the bitmap maintained
by AFL to measure the code coverage. In AFL, each branch
transition is mapped into an entry of the bitmap via hash-
ing. If a branch transition is explored, the corresponding
entry in the bitmap will be filled and the size of the bitmap
will increase.

As the program structures vary from one binary to
another, the bitmap sizes of different binaries are not
directly comparable. Therefore, we introduce a metric
called normalized bitmap size to summarize how the code
coverage increases for all tested binaries. For each binary,
we treat the code coverage of the initial inputs as the base.
Then, at a certain point during the analysis, the normalized
bitmap size is calculated as the size of the current bitmap
divided by the base. This metric represents the increasing
rate of the bitmap.

Fig. 7 presents how the average of normalized bitmap size
for all binaries grows. The figure shows that DigFuzz con-
stantly outperforms the other fuzzing systems. By the end
of the 12-hours testing, the normalized bitmap sizes in
DigFuzz, Random, Driller�, QSYM, and AFL are 3.46 times,
3.25 times, 3.02 times, 3.01 times, and 2.91 times larger than
the base, respectively. Taking the normalized bitmap sizes in
AFL that is aided by dummy concolic execution as a base-
line, the concolic execution in DigFuzz, Random, Driller�,
and QSYM contribute to discovering 18.9 percent, 11.7, 3.8,
and 3.4 percent more code coverage, respectively. To
address the concern that the average coverage might be
tweaked by a few programs with high variances, we further
calculate the number of programs on which DigFuzz out-
performs other techniques in terms of code coverage.

Specifically, DigFuzz outperforms other techniques on 97
out of 118 binaries by the end of the 12-hours testing.

We can draw several conclusions from the numbers.
First, Driller� can considerably outperform AFL. This indi-
cates that concolic execution could indeed help the fuzzer.
This conclusion is aligned with the Driller paper [38].
Second, the optimization in Random does help increase the
effectiveness of the concolic execution compared to Driller�.
This observation shows that the second limitation of the
“demand launch” strategy described in Section 2 can con-
siderably affect the concolic execution. Third, by comparing
DigFuzz with QSYM and Random, we can observe that the
path prioritization implemented in DigFuzz greatly
strengthens the hybrid fuzzing system in exploring new
branches. Further investigation shows that the contribution
of concolic execution to bitmap size in DigFuzz is much
larger than those in Driller� (18.9 versus 3.8 percent), QSYM
(18.9 versus 3.4 percent), and Random (18.9 versus 11.7 per-
cent). This fact demonstrates the effectiveness of our strat-
egy in terms of code exploration.

We can also see that MDPC is even worse than AFL. By
carefully examining the working progress of MDPC, we
find that the main reason is the reduced throughput of fuzz-
ing. In contrast to the average throughput in AFL that is 417
executions per second, the throughput reduces to 2.6 execu-
tions per second. It indicates that decision making for each
path as MDPC is too expensive, completely taking away the
power of fuzzing.

As an optimization, one would move the optimal deci-
sion module out and make it work in parallel with fuzzing.
In this manner, the concurrent MDPC would be able to take
advantage of the high throughput of fuzzing. However,
using the defined solving cost [41], the concurrent MDPC
assigns all the missed paths to concolic execution only in
several seconds after the fuzzing starts. Then, the concur-
rent MDPC will degrade to Random. The reason is that the
cost of concolic execution (50 as defined in the original
paper) might be too small. Actually, how to normalize the
cost of fuzzing and concolic for a unified comparison is dif-
ficult, because these two costs are estimated by using differ-
ent metrics, which are concerned with the run-time
throughput of fuzzing, the performance of the constraint
solver, and the symbolic execution engine. It is difficult (if
not impossible) to define a unified metric to evaluate the
costs of different techniques.

Fig. 7. Normalized bitmap size on CQE dataset.



Unlike MDPC that estimates the costs for exploring each
path by fuzzing and concolic execution respectively,
DigFuzz prioritizes paths by quantifying the difficulties for
fuzzing to explore a path based on coverage statistics.
Granted, the sampling may be biased as generated test cases
by fuzzing are not uniform distributed rendering even
lower possibility to explore the difficult paths than theory,
such bias in fact works for our favor. Our goal is to find the
most difficult branches for fuzzing by quantifying the prob-
abilities. With the bias, it lowers the probability calculated
and increases the chance for DigFuzz to pick the least visited
branches by fuzzing.

5.4.2 Number of Discovered Vulnerabilities

Table 4 presents the numbers of vulnerabilities discovered
by all four configurations. Column 2 displays the numbers
of vulnerabilities discovered in all three runs. Similarly, col-
umns 3 and 4 show the numbers of vulnerabilities that are
discovered at least twice and once out of three runs,
respectively.

We can observe that in all three metrics,DigFuzz discovers
considerably more vulnerabilities than the other configura-
tions. In contrast, Driller� only has a marginal improvement
over AFL. Random discovers more vulnerabilities than
Driller� yet still falls behind DigFuzz due to the lack of path
prioritization. Another interesting observation is that QSYM
discovers less vulnerabilities than other configurations, and
even less than AFL. It indicates that the fuzzing in QSYM is
not well aided by concolic execution. This result further sug-
gests that the size and temporal order are not good indicators
for path prioritization.

This table could further exhibit the effectiveness of
DigFuzz by comparing it with the numbers reported in the
Driller paper. In the paper, Driller assigns 4 fuzzing instan-
ces for each binary, and triggers crashes in 77 applications
in 24 hours [38]. Among these 77 binaries, 68 of them are
crashed purely by AFL, and only 9 binaries are crashed
with the help of concolic execution. This result is on par
with the numbers in column 3 for DigFuzz. This means
DigFuzz is able to perform similarly with only half of the
running time (12 hours versus 24 hours) and much fewer
hardware resources (2 fuzzing instances per binary versus 4
fuzzing instances per binary).

5.4.3 Contribution of Concolic Execution

Here, we dive deeper into the contribution of concolic exe-
cution by presenting some detailed numbers for imported
inputs and crashes derived from the concolic execution.

An important metric for evaluating the contribution of
concolic execution is how many inputs generated by con-
colic execution are then imported by the fuzzer. In the
implementation, AFL marks down the inheritance relations
between inputs through the unique ID and source ID of
inputs. With this inheritance information, we can analyze
how many inputs are imported by AFL. Furthermore, some
of these imported inputs lead to crashes.

Table 5 presents these details for DigFuzz, Random, and
Driller�, each for three runs. The second column (Ink.) lists
the number of binaries for which the concolic execution is
invoked during testing. For this number, we exclude bina-
ries on which the concolic execution is invalid. Such invalid
concolic execution is either caused by path divergence that
the symbolic execution path disagrees with the realistic exe-
cution trace, or caused by the resource limitation (we kill
the concolic execution running for more than 1 hour or
exhausting more than 4GB memory).

The third column (CE) shows the total number of con-
colic executions launched on all the binaries. We can see
that Random invokes slightly more concolic execution jobs
than DigFuzz, indicating that a concolic execution job in
DigFuzz takes a bit longer to finish. As the fuzzing keeps
running, the specific branches that block fuzzing become
deeper. This result implies that DigFuzz is able to select
high quality inputs and dig deeper into the paths.

The forth column (Aid.) refers to the number of binaries
on which the fuzzer imports at least one generated input
from the concolic execution. We can observe that the num-
ber for Random is larger than that in Driller�. This indicates
that the concolic execution can better help the fuzzer if it is
invoked from the beginning. This result also confirms that a
non-stuck state of the fuzzer does not necessarily mean the
concolic execution is not needed. Further, since the number
for DigFuzz is larger than Random, it shows that the con-
colic execution can indeed contribute more with path
prioritization.

The fifth column (Imp.) refers to the number of inputs
that are imported by the fuzzer from concolic execution
while the sixth column (Der.) shows the number of inputs
derived from those imported inputs by the fuzzer. We can
see significant improvements on imported inputs and
derived inputs for DigFuzz than Random and Driller�. These
improvements show that the inputs generated by DigFuzz
are of much better quality in general. We can see

TABLE 4
Number of Discovered Vulnerabilities

= 3 � 2 � 1

DigFuzz 73 77 81
Random 68 73 77
Driller� 67 71 75
QSYM 65 70 73
MDPC 29 29 31
AFL 68 70 73

TABLE 5
Performance of Concolic Execution on CQE



significantly more imported inputs and derived inputs con-
tributed by the concolic execution component in DigFuzz
than in Random and in Driller�, even though fewer concolic
execution jobs are invoked in DigFuzz.

The last column (Vul.) shows the number of binaries for
which the crashes are derived from concolic execution. For
each crashed binary, we identify the input that triggers the
crash, and then examine whether the input is derived from
an imported input generated by the concolic execution. The
number shows that concolic execution in DigFuzz contrib-
utes to discovering more crashes (12 versus 5) than that in
Driller�.

To sum up, from the numbers reported, we clearly see
that by mitigating the two limitations of the “demand
launch” strategy, our new strategy outperforms the state-of-
the-art hybrid system, Driller, in every important aspect.

5.5 Evaluation on the LAVA Dataset

In this section, we demonstrate the effectiveness of our
approach on the LAVA-M dataset, which is widely adopted
in recent studies [11], [26], [31].

5.5.1 Discovered Vulnerabilities

A recent report [16] shows that the fuzzing on binaries in
LAVA-M can be assisted by extracting constants from these
binaries and constructing dictionaries for AFL. We analyze
every binary for 5 hours with and without dictionaries
respectively.

The discovered vulnerabilities are shown in Table 6. It
shows that with dictionaries, the five techniques, DigFuzz,
Random, Driller�, QSYM, and AFL can detect nearly all
injected bugs in base64, md5sum and uniq. With the impact
of reduced of throughput, MDPC discovers less vulnerabil-
ities than other techniques. By contrast, without dictionar-
ies, these techniques can detect significantly fewer bugs
(and in many cases, no bug). As demonstrated in
LAVA [17], the reasons why concolic execution cannot
make any contribution for md5sum and uniq are hash func-
tions and unconstrained control dependency. These results
indicate that it is the dictionaries contributing to detect most
bugs in base64,md5sum, and uniq.

An exception is who, for which, DigFuzz outperforms
Random, Driller�, and AFL with a large margin. Looking
closer, Driller� can only detect 26 bugs in who, while
DigFuzz could detect 111 bugs. To better understand the
result, we carefully examine the whole testing process, and
find that the concolic executor in Driller� is less invoked
than that in DigFuzz and Random. This shows even the fuz-
zer in Driller� could not make much progress in finding

bugs, it rarely gets stuck when testing who. This result con-
firms our claim that the stuck state is not a good indicator
for launching concolic execution and a non-stuck state does
not necessarily mean concolic execution is not needed.

An exception is who, for which, DigFuzz outperforms
Random, Driller�, QSYM, MDPC, and AFL with a large mar-
gin. Looking closer, Driller� can only detect 26 bugs in who,
MDPC can detect 34 bugs, while DigFuzz could detect 111
bugs. To better understand the result, we carefully examine
the whole testing process, and find that the concolic execu-
tor in Driller� is less invoked than that in DigFuzz and
Random. This shows even the fuzzer in Driller� could not
make much progress in finding bugs, it rarely gets stuck
when testing who. This result confirms our claim that the
stuck state is not a good indicator for launching concolic
execution and a non-stuck state does not necessarily mean
concolic execution is not needed. Likewise, with the impact
of reduced throughput, the fuzzer inMDPC generates fewer
seeds than DigFuzz and Random. Then the number of exe-
cution paths on these seeds will be smaller as well. That is,
the task of path exploration for the concolic executor in
MDPC is lighter than concolic executors in DigFuzz and
Random. As a consequence, MDPC explores smaller pro-
gram states and discovers fewer bugs than DigFuzz and
Random.

5.5.2 Code Coverage

As the trigger mechanism used by LAVA-M is quite simple
(a comparison against a 4-byte magic number), extracting
constants from binaries and constructing dictionaries for
AFL will be very helpful [16], especially for base64,
md5sum, and uniq. Consequently, the code coverage gener-
ated by these fuzzing systems will be about the same if dic-
tionaries are used. As a result, we present the code coverage
without dictionaries.

From Fig. 8, we can observe that DigFuzz can cover more
code than the other three configurations. Both of the
DigFuzz and Random outperform Driller�, and all the hybrid
systems is stably better than AFL.

The code coverage in Fig. 8 shows that our system is
more effective than Random with only a very small margin.
This is due to the fact that all the four programs are very
small, and the injected bugs are close to each other. For
example, in who, all the bugs are injected into only two func-
tions. With these two factors, the execution trees generated
from the programs in LAVA-M are small and contain only a
few execution paths. Thus, path prioritization (the core part
in DigFuzz) cannot contribute much since there exists no
path explosion problem.

TABLE 6
Number of Discovered Vulnerabilities

Binaries With dictionaries Without dictionary

DigFuzz Random Driller� QSYM MDPC AFL DigFuzz Random Driller� QSYM MDPC AFL

base64 48 48 48 47 48 32 3 3 3 3 3 2
md5sum 59 59 59 59 13 58 0 0 0 0 0 0
uniq 28 28 25 28 2 29 0 0 0 0 0 0
who 167 153 142 138 39 125 111 92 26 103 34 0



5.6 Evaluation on Real-World Programs

In this section, we demonstrate the effectiveness of our
approach on real-world programs. In general, real-world
programs are more complicated than CQE and LAVA-M
binaries. According to the design principles, our
“discriminative dispatch” strategy should enable more con-
tributions from concolic executors.

5.6.1 Code Coverage

In this section, we use the normalized bitmap size as defined
in Section 5.4.1 to summarize how the code coverage
increases for all the 12 Linux binaries. Fig. 9 presents how
the average of normalized bitmap size for all the 12 Linux
binaries grows. By the end of 12 hours, the normalized bit-
map sizes in DigFuzz, Random, Driller�, QSYM and AFL are
4.95 times, 4.73 times, 4.47 times, 4.53 times, and 4.16 times
larger than the base, respectively. Taking the normalized
bitmap sizes in AFL that is aided by dummy concolic execu-
tion as a baseline, the concolic execution in DigFuzz,
Random, Driller�, and QSYM contribute to discovering 19.0,
13.7, 7.4, and 8.9 percent more code coverage, respectively.

These results confirms the following conclusions drawn
from the results on CQE binaries: 1) concolic execution can
indeed help the fuzzer; 2) the path prioritization imple-
mented in DigFuzz strengthens the hybrid fuzzing system
in exploring new branches. The contribution of concolic exe-
cution to bitmap size in DigFuzz is much larger than those
in Driller� (19.0 versus 7.4 percent), QSYM (19.0 versus
8.9 percent), and Random (19.0 versus 13.7 percent). These
results demonstrate the effectiveness of our strategy in
terms of code exploration.

As an in-depth analysis, we present the increasing bit-
map size for every program in Fig. 10. We can observe that
DigFuzz explores more or at least the same code than
Random, Driller�, QSYM, MDPC, and AFL for all the 12
Linux programs.

5.6.2 Crashes

Table 7 present the average number of discovered crashes
by different techniques.

We can clearly observe that DigFuzz discovers more
crashes than other techniques, achieving a total of 178
unique crashes. In contrast, Driller� only has a marginal
improvement over AFL (129 unique crashes versus 109
unique crashes). Random discovers more crashes than

Driller� yet still falls behind DigFuzz due to the lack of path
prioritization. QSYM discovers more crashes than Random.
However, recall that QSYM discovers even less vulnerabil-
ities than other techniques on the CQE binaries. We can
infer that this strategy may vary from target programs.

By count the number of crashed binaries, DigFuzz dis-
covers crashes in 7 out of the 12 binaries. In contrast,
Random, Driller�, QSYM, MDPC, and AFL discover crashes
in 5, 3, 5, 1, and 3 binaries, respectively. We can further
observe that all techniques (except MDPC) can discovery
crashes in libjpeg-9b+cjpeg, ncurses-6.1+infotocap, and
objdump-2.26.1. In addition, only DigFuzz discovers crashes
in readelf-2.26.1. These comparisons can also demonstrate
the effectiveness of DigFuzz.

5.6.3 Contribution of Concolic Execution

Besides the number of crashes, we present the contribution
of concolic execution in Table 8. The first 4-columns (2-5) in
Table 8 shows the number of concolic executions. The sec-
ond 4-columns (6-9) shows the number of inputs that are
imported by fuzzing from concolic execution. The last 4-col-
umns (10-13) shows the number of inputs derived from
those imported inputs by fuzzing.

From Table 8 we can observe that the concolic execution
in Driller� is never invoked in libtiff-4.0.10+tiffdump. From
the numbers of imported inputs and derived inputs for
DigFuzz, Random, and QSYM, we can see that the concolic
execution, in fact, can be very effective in helping fuzzing
explore program space, since fuzzing actually imports hun-
dreds of new inputs from concolic execution. This result fur-
ther demonstrates that a non-stuck state in fuzzing does not
necessarily mean concolic execution is not needed, which
clearly breaks the first assumption in the ’demand launch’
strategy. By comparing the total number of imported inputs
in DigFuzz with those in other techniques, we can observe
that concolic execution contributes more inputs.

In particular, for ncurses-6.1+infotoca and libpng-1.6.36
+pngfix, both the numbers of imported and derived inputs in
QSYM are much larger than those in other techniques. These
results indicate the concolic execution in QSYM makes more
contribution in terms of imported and derived inputs.

To reason this result,we further performmanual analysis on
ncurses-6.1+infotoca and libpng-1.6.36+pngfix, and find that a
possible reason is that concolic executor fails to solve out path

Fig. 8. Normalized incremental bitmap size on LAVA dataset.

Fig. 9. Normalized bitmap size on the 12 Linux programs.



constraints. Take the hybrid fuzzing results on libpng-1.6.36
+pngfix for illustration. The concolic executor in DigFuzz per-
forms 394 times of concolic execution, generates 797 inputs,
and 204 of the 797 inputs are imported by the fuzzer. In con-
trast, the concolic executor inQSYM performs 386 times of con-
colic execution, which is less than that in DigFuzz. However,
the concolic executor inQSYM generates 827 inputs and 227 of
them are imported. These results indicate that the concolic
executor in DigFuzz performs more executions but generates
less inputs. Then, we can infer that the concolic executor in
DigFuzz fails to solve some path constraints, which is possibly
caused by the problemof constraint complexity.

5.7 Case Study

In this section, we demonstrate the effectiveness of our sys-
tem by presenting an in-depth analysis via a case study. The
binary used (NRFIN 00017) comes from the CQE dataset,
which is also taken as a case study in the Driller paper [38].

Fig. 11 shows the core part of the source code for the
binary. As depicted, the execution has to pass three nested

checks (located in Ln. 4, 7, and 15) so as to trigger the vul-
nerability. We denote the three condition checks as check 1,
check 2, and check 3.

5.7.1 Performance Comparison

Due to the three condition checks, AFL failed to crash the
binary after running for 12 hours. In contrast, all of the
hybrid fuzzing systems, DigFuzz, Random, QSYM, and
Driller�were able to trigger the vulnerability.

Through examining the execution traces, we observed
that the fuzzer in Driller� got stuck at the 57th second, the
95th second, and the 903rd second caused by check 1,
check 2, and check 3, respectively. Per design, only at these
moment will the concolic executor in Driller� be launched to
help the fuzzer. Eventually, it took 2590 seconds for Driller�
to generate a satisfying input for check 3, and guide the fuz-
zer to reach the vulnerable code.

Random, QSYM, and DigFuzz run the fuzzer and the con-
colic executor in parallel from the beginning. In each iteration,
Random randomly selects an input for concolic execution,
whereas QSYM selects inputs with the smallest size and
DigFuzz selects the paths with the highest priority. Our exami-
nation shows that DigFuzz performed 7 concolic executions in
691 seconds,Random performed 26 executions in 1438 seconds,
and QSYM performed 73 executions in 2859 seconds before
they could generate an input satisfying check 3. Figs. 13 and 14
show the time stamps when concolic executions were invoked
and how they helped the fuzzers inDigFuzz and Random. We
did present the time stamps in QSYM because of the large
number of performed concolic executions.

We can also observe that QSYM spent more time than
Driller� in generating a satisfying input. Our manual analy-
sis shows that the NRFIN 00017 program subsequently
receives inputs from stdin during the execution. Then, the

Fig. 10. Bitmap size on real-world programs.

TABLE 7
Discovered Crashes on Real-World Binaries



size of input will increase along with the execution to
bypass check 1, check 2, and check 3. As QSYM selects inputs
with the decreasing order of input sizes, it cannot select a
suitable input to reach check 3 until it finished executing all
smaller inputs. That is why QSYM performed the largest
number of concolic executions and spent longest time
before triggering the vulnerability.

In terms of the input generation, DigFuzz managed to
generate 96 inputs within which 37 were imported by fuzz-
ing. Random generated 373 inputs and 44 of them were
imported. QSYM generated 2750 inputs and 31 of them
were imported. Moreover, by the time of the 691st second,
DigFuzz generated 37 imported inputs while both Random
and QSYM can only generate 4 inputs. These numbers
show that DigFuzz could generate inputs with much higher
quality than Random and QSYM.

5.7.2 In-Depth Analysis

We further present the details on how concolic execution
helped the fuzzer to bypass these three checks in DigFuzz.

Fig. 12 briefly shows the execution tree for NRFIN 00017, in
which the path that leads to the vulnerability is marked as
red. To trigger the vulnerability, the execution has to go
through three checks (check 1, check 2 and check 3) and dives
into three functions (do_build(), add_breaker_to_load_center()
and get_new_breaker_by_model_id()).

The fuzzer was blocked at check 1 and got stuck quickly
after start. For this specific branch, all DigFuzz, Random,
QSYM, and Driller� quickly generated a satisfying input to
bypass check 1. After this, the fuzzers went into do_build(),
quickly generated 23 interesting inputs in less than 1 minute
and then reached check 2. From Fig. 13, we can observe from
that the concolic executor in DigFuzz accurately selected the
one that corresponded to check 2 from the 23 inputs, and
solved the condition in just one run at the 636th second. Fur-
ther, the fuzzer went into the third function get_new_brea-
ker_by_model_id() and reached check 3. Note that even
though the fuzzer was blocked by check 3, it did not get
stuck, because there are a number of paths that the fuzzer
can go through as shown in Fig. 12. At this moment, the
concolic executor was handed with 97 inputs from the fuz-
zer and had to pick the right one to reach check 3. Fig. 13
shows that DigFuzz took only 2 concolic executions to
bypass check 3. Eventually, DigFuzz generated an input sat-
isfying check 3 at the 691st second.

As a comparison, we examined how the concolic execu-
tors work in Random, QSYM, and Driller�. When the fuzzer
had bypassed check 1, it quickly discovered more blocks
thus retained amount of inputs. As shown in Fig. 12, there
are a number of paths that the fuzzer can go through. There-
fore, the fuzzer took a long time to get stuck again. How-
ever, along with the red path in Fig. 12, the fuzzer quickly
got blocked at check 3. Driller� will not identify this specific
branch until the the fuzzer gets stuck again. QSYM requires
to go through all the smaller inputs. Random selects inputs
without recognizing their corresponding execution paths.
With path prioritization, DigFuzz is able to identify specific
paths that block the fuzzer in time.

By monitoring the status of the fuzzer, we also observe
that the fuzzer got stuck for 8 times in Driller�, 4 times in
QSYM, 3 times in Random, and only 1 time in DigFuzz. This
result indicates that the path prioritization in DigFuzz was

TABLE 8
Performance of Concolic Execution on Real-World Binaries

Concolic executions Imported inputs Derived inputs

DigFuzz Random Driller� QSYM DigFuzz Random Driller� QSYM DigFuzz Random Driller� QSYM

libjpeg-9b+cjpeg 27 24 19 29 19 22 11 19 517 358 21 602
ncurses-6.1+infotocap 387 365 103 119 15 15 4 87 522 372 93 977
jhead-3.00 322 319 46 311 130 57 5 77 2197 1567 886 1206
nm-2.26.1 89 101 92 107 330 220 72 234 1026 963 365 1502
xpdf-4.00+pdfimages 173 177 87 186 45 53 6 64 1351 1190 147 520
libpng-1.6.36+pngfix 234 198 34 219 204 222 86 227 597 568 353 636
readelf-2.26.1 425 427 160 430 156 153 48 194 4900 4690 645 4772
size-2.26.1 29 29 28 29 258 180 128 204 2037 1673 784 1766
libtiff-4.0.10+tiffdump 333 339 0 365 6 2 0 4 952 939 0 906
libxpat-R.2.2.5+xmlwf 126 127 79 129 45 21 19 64 1233 1082 706 1168
objdump-2.26.1 194 106 104 135 9 6 3 12 238 148 111 124
exiv2-0.25 185 187 121 190 19 14 8 12 1625 692 67 2758
Total 2524 2399 873 2249 1236 965 390 1198 17195 14242 4178 16937

Fig. 11. The vulnerability in NRFIN 00017.



able to generate satisfying inputs for specific paths that
block the fuzzer in time. As a result, the fuzzer avoided
being stuck for majority of checks.

6 DISCUSSION

6.1 Threats to Validity

We adopt two concolic executors, angr [37] and QSYM [46],
to build our prototype. Specifically, we utilize QSYM [46] to
evaluate real-world programs, because angr does not have
sufficient support for real-world programs [31]. However,
we still encountered the incompatibility problem that
QSYM [46] cannot work on some real-world programs, and
then we excluded real-world programs on which
QSYM [46] cannot work. With this impact, the results may
not be fully representative of real-world programs.

6.2 Limitations

Our approach regards the test cases generated by a fuzzer
as samples for estimating probabilities with the Monte
Carlo method, which expects uniformly random samples
for the most accurate estimation. However, grey-box fuz-
zers (such AFL adopted in DigFuzz) are not truly uniformly
randomized, in terms of seed mutation and program space
exploration. Hence, calculated probabilities could be biased,
and we may miss certain paths that are difficult for AFL to

explore if the paths are under-sampled. Nonetheless, we
argue that this bias does not hinder our ultimate goal for
directing symbolic execution to aid AFL by identifying diffi-
cult paths. To achieve this goal, the probability estimation is
meant to be designed in such a way that it reflects the diffi-
culty for the fuzzer (AFL in our case) to explore certain
paths during testing. The estimated difficulty of one path is
calculated from the runtime working states of AFL, which is
specific for each fuzz testing, rather than an universal diffi-
culty. Besides, the probability estimation iteratively evolves
with the increased number of samples. Therefore, our
approach can identify difficult paths that block AFL at the
current state of fuzz testing.

Second, although the “discriminative dispatch” in
DigFuzz is designed to be a lightweight approach, it still
imposes some runtime and memory consumption overhead
including collecting runtime information of fuzzing and
constructing the execution tree. The runtime overhead is 4
percent on average (596 executions per second in the pure
fuzzing versus 582 executions per second in DigFuzz). The
total memory consumption of the execution tree varies from
programs, which ranges from 10M to 100M.

Third, since DigFuzz only estimates the difficulty of
exploring paths for a fuzzer but does not consider the com-
plexity of concolic execution, it is possible that the con-
straints for the picked path are unsolvable, which may
result in a waste of concolic execution cycle. We consider
solving them as future work.

7 RELATED WORK

Fuzzing and symbolic execution are the two mainstream
techniques for program testing. Many prior efforts have
been made to improve them [2], [3], [11], [14], [18], [19], [22],
[26], [28], [32], [33], [35], [39], [45]. CollAFL [18] is a coverage
sensitive fuzzing solution, which mitigates path collisions
by providing more accurate coverage information. It also
utilizes the coverage information to apply three new fuzz-
ing strategies. Intriguer [14] optimizes symbolic execution
with field-level knowledge. It performs instruction-level

Fig. 12. The execution tree for NRFIN 00017.

Fig. 13. Concolic executions by DigFuzz on NRFIN 00017.



taint analysis and then reduces the execution traces for
tainted instructions that accessed a wide range of input
bytes, and infers input fields to build field transition trees.
With these optimizations, Intriguer can efficiently perform
symbolic emulation for more relevant instructions and
invoke a solver for complicated constraints only. The main
contribution of DigFuzz is to propose a more effective strat-
egy to combine fuzzing with concolic execution. The advan-
ces of fuzzing and concolic execution are out of our scope.

Hybrid Fuzzing System.Most hybrid fuzzing systems fol-
low the observation to augment fuzzing with selective sym-
bolic execution [9], [27], [38], [40]. TaintScope [40] deploys
dynamic taint analysis to identify the checksum checkpoints
and then applies symbolic execution to generate inputs sat-
isfying checksum. T-Fuzz [31] first allows a fuzzer to work
on the transformed program by removing sanity checks,
and then leverages a symbolic execution-based approach to
filter out false positives. SAVIOR [13] proposes a bug-
driven hybrid fuzzing system. It prioritizes the seeds that
have higher potential leading to the discovery of more bugs
for concolic execution. Besides, it enables security checks
during concolic execution. HFL [25] combines fuzzing with
symbolic execution for addressing kernel-specific fuzzing
challenges. PANGOLIN [23] designs incremental hybrid
fuzzing with polyhedral path abstraction, which preserves
the exploration state in the concolic execution stage and
allows more effective mutation and constraint solving over
existing techniques. Compared with these techniques,
DigFuzz prioritizes paths by quantifying the difficulties for
fuzzing to explore a path based on coverage statistics.

Another type of hybrid fuzzing system is to regard the sym-
bolic execution as a guider for input generation or path selec-
tion. Pak [30] proposes a hybrid fuzzing system to apply
symbolic execution to collects path constraints, then the system
generates inputs that respect the path predicates and transits to
the fuzzer. DeepFuzz [5] applies probabilistic symbolic execu-
tion to assign probabilities to program paths, and then takes
these probabilities to guide the path exploration in fuzzing.

Symbolic Execution.Path prioritization is promising for
mitigating the path explosion problem in dynamic symbolic
execution [6], [7], [8]. These heuristics include using the con-
trol-flow graph to guide the exploration, frequency-based
and random-based techniques [6], [7]. Path prioritization is
adopted to combine with evolutionary search, in which a fit-
ness function is defined to guide the symbolic execution [1].
Compared with these path exploration techniques, the path
prioritization in DigFuzz is to prioritize paths with probabil-
ities how difficult for fuzzing to pass through.

Directed symbolic execution also employs path prioriti-
zation to reach a target. These techniques aim to search for a
feasible path for a target statement or branch [36], [44].
Compared with directed symbolic execution techniques, the
path prioritization in DigFuzz is to identify the targeted
paths for concolic execution, instead of searching for a feasi-
ble path for a given target.

Seed Scheduling in Fuzzing.Seed selection plays an impor-
tant role in fuzzing, and several studies have been proposed
to improve the seed scheduler [4], [10], [43] by prioritizing
seed inputs. The basic insight behind these seed scheduling
technique is to search for a seed on which the mutated exe-
cution is more likely to discover new program states. In our
future work, we plan to design scheduling techniques to off-
load the fuzzer with paths that are difficult to explore.

8 CONCLUSION

We perform a thorough investigation on some state-of-the-art
hybrid fuzzing systems andpoint out several fundamental lim-
itations in the “optimal concolic testing” and “demand launch”
strategies deployed in these systems. We further design a
“discriminative dispatch” strategy and propose a probabilistic
hybrid fuzzing system to better utilize the capability of concolic
execution. We implement a prototype system DigFuzz based
on the design and conduct a comprehensive evaluation using
two popular datasets and real-world programs. The evaluation
results show that the concolic execution inDigFuzz contributes
muchmore to the increased code coverage and increased num-
ber of discovered vulnerabilities compared with state-of-the-
art hybrid fuzzing systems.
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