
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

2-2023

Flexible job-shop scheduling via graph neural network and deep Flexible job-shop scheduling via graph neural network and deep

reinforcement learning reinforcement learning

Wen SONG

Xinyang CHEN

Qiqiang LI

Zhiguang CAO
Singapore Management University, zgcao@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
SONG, Wen; CHEN, Xinyang; LI, Qiqiang; and CAO, Zhiguang. Flexible job-shop scheduling via graph neural
network and deep reinforcement learning. (2023). IEEE Transactions on Industrial Informatics. 19, (2),
1600-1610.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8197

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8197&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8197&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 1

Flexible Job Shop Scheduling via Graph Neural
Network and Deep Reinforcement Learning

Wen Song, Xinyang Chen, Qiqiang Li, and Zhiguang Cao

Abstract—Recently, Deep Reinforcement Learning (DRL) has
been applied to learn priority dispatching rules (PDRs) for
solving complex scheduling problems. However, existing works
face challenges in dealing with flexibility, which allows an
operation to be scheduled on one out of multiple machines
and is often required in practice. Such one-to-many relationship
brings additional complexity in both decision-making and state
representation. This paper considers the well-known Flexible
Job-shop Scheduling Problem (FJSP), and addresses these issues
by proposing a novel DRL method to learn high-quality PDRs
end-to-end. The operation selection and machine assignment
are combined as a composite decision. Moreover, based on a
novel heterogeneous graph representation of scheduling states,
a Heterogeneous Graph Neural Network based architecture is
proposed to capture complex relationships among operations
and machines. Experiments show that the proposed method
outperforms traditional PDRs and is computationally efficient,
even on instances of larger scales and different properties unseen
in training.

Index Terms—Flexible Job-shop Scheduling, Graph Neural
Network, Deep Reinforcement Learning.

I. INTRODUCTION

CLOUD manufacturing, as an emerging paradigm of next
generation manufacturing systems in the age of Industry

4.0, has received much attention in the past decade [1]. It
virtualizes and integrates distributed manufacturing resources
into a common cloud platform, so as to provide flexible, high-
quality and on-demand manufacturing services, supported
by advanced technologies such as Cyber-Physical Systems
(CPS), Logistic Internet-of-Things (LIoT) [2], and Artificial
Intelligence (AI). To unleash its full potential, effective re-
source scheduling is a critical factor for cloud manufacturing
systems [3]. Its main task is to schedule the manufacturing
demands (jobs) onto the manufacturing resources (machines),
so as to achieve the optimal system performance. However,
different from traditional production, resource scheduling for
cloud manufacturing is much more complicated. Its cloud-
based open environment makes manufacturing scheduling
much more diverse, flexible and dynamic. Moreover, scale

This work is supported by the National Natural Science Foundation of
China under Grant 62102228, and the Shandong Provincial Natural Science
Foundation under Grant ZR2021QF063. (Corresponding author: Qiqiang Li.)

Wen Song and Xinyang Chen contributed equally.
Wen Song is with the Institute of Marince Science and Tech-

nology, Shandong University, Qingdao 266237, China (e-mail: wen-
song@email.sdu.edu.cn).

Xinyang Chen and Qiqiang Li are with the School of Control Sci-
ence and Engineering, Shandong University, Jinan 250061, China (e-mail:
chenxy19@mail.sdu.edu.cn, qqli@sdu.edu.cn).

Zhiguang Cao is with Singapore Institute of Manufacturing Technology
(SIMTech), Singapore 138634 (email: zhiguangcao@outlook.com).

of the scheduling problem required to be solved is often
large, due to the large volume of involved demands and
resources. Therefore, scheduling algorithms and systems for
cloud manufacturing should be fast and adaptive in responding
to the scheduling requests, and must be able to cope with
manufacturing flexibility and large-scale problems, which is
challenging to design and develop.

This paper focuses on the Flexible Job-shop Scheduling
Problem (FJSP), a well-known generalization of the Job-
shop Scheduling Problem (JSP) with wide applications in
cloud manufacturing [4], [5]. Different from JSP, FJSP al-
lows operations to be processed on any machine from a set
of alternative ones, hence is more suitable in handling the
flexibility and diversity of the task-resource relations in new
manufacturing paradigms such as cloud manufacturing [6].
Due to its important application value, FJSP receives much
attention in the literature [6], [7].

FJSP is well-known to be NP-hard since it is harder than
JSP, which is already strongly NP-hard, due to the requirement
of machine assignment decisions [6]–[8]. Therefore, exact
methods such as mathematical programming and constraint
programming often suffer from prohibitively long computa-
tional time, especially in solving large-sized problems. In prac-
tice, heuristics methods are often employed which sacrifice
optimality for efficiency. Priority dispatching rule (PDR) is
a well-known and practical heuristic scheduling method. It
solves the scheduling problem in a constructive fashion, which
iteratively dispatches jobs to machines based on some priority
rules (e.g. First In First Out, FIFO) [9]. Meta-heuristics, such
as evolutionary algorithms, form another popular paradigm
of heuristics, which have also received much attention. They
employ complicated search procedures to explore the solution
space to find high-quality solutions [6]. Compared to meta-
heuristics, PDRs are intuitive, easy to implementation and very
fast in computation, making it more preferable in dealing with
problems in cloud manufacturing, which are often large-scale
and even dynamic [10].

While PDRs have been widely applied in practice, their
scheduling quality is still quite far from optimality. This
could result from the following reasons. First, the construc-
tion process is greedy based on the priority measure, which
could be myopic. Second, the decisions are based mostly
on information from the eligible jobs and machines at each
step, while the global information is largely ignored. Finally,
current PDRs are mainly designed based on human experience,
which usually have no guarantee on the optimality and lack
the ability of adapting to specific problems and situations. In
the age of Industry 4.0, however, the development of new

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3189725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASTAR. Downloaded on July 12,2022 at 01:32:57 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2

Fig. 1: Conceptual architecture of the DRL based method

technologies provides new impetus to overcome these limi-
tations. In particular, large amounts of historical/simulation
data about the frequently solved scheduling problem is much
easier to obtain, from which advanced AI algorithms such
as Deep Reinforcement Learning (DRL) can be utilized to
discover better patterns for solving scheduling problem (con-
ceptual architecture is shown in Fig. 1). In this direction, a
number of recent works attempt to automatically generate
PDRs for scheduling problems using DRL in an end-to-end
fashion [11]–[16]. By viewing the decision making of PDRs
as an Markov Decision Process (MDP), they train scheduling
policies that take the future into account, so as to alleviate the
myopic nature of PDRs. They employ deep neural networks
to capture the global scheduling status instead of only local
information. Furthermore, the reinforcement training process
is guided by the cumulative reward towards the direction of
optimizing performance, which is fully automatic without the
need of human intervention [17].

Despite the promising results, most existing DRL methods
only focus on non-flexible problems such as JSP. The existence
of flexibility imposes two major challenges on the design of ef-
fective learning mechanism. First, decisions in FJSP are more
complicated with not only operation selection but also machine
assignment. Second, the scheduling status could be much
harder to encode using neural network, due to the complex
one-to-many relationships between operations and machines.
Consequently, more complex decision-making framework and
more informative representation techniques are necessary. The
key research questions are: 1) how to formulate the scheduling
process so as to incorporate machine assignment, and 2) how
to design the representation scheme and neural architecture to
extract useful information from raw scheduling states.

To address the above challenges, this paper proposes a
novel end-to-end DRL method to learn high-quality PDRs for
solving FJSP. For research question 1), this paper proposes an
MDP formulation for PDR based FJSP scheduling, where an
action is to select an eligible operation-machine pair, such that
both the operation selection and machine assignment decisions
can be made at the same time. For research question 2), by
extending disjunctive graph of FJSP with machine nodes, this
paper proposes a novel heterogeneous graph structure to rep-
resent the MDP states, such that the complicated relationships
among operations and machines can be captured. Moreover,
a two-stage Graph Neural Network (GNN) is proposed to
obtain feature embeddings of the nodes in the heterogeneous
graph, based on which a policy network is designed and trained

using Proximal Policy Optimization (PPO). Different from the
GNNs used in existing DRL based scheduling methods (e.g.
[13], [14], [18]), the GNN proposed in this paper works on
heterogeneous graphs specialized for FJSP, which captures the
status for not only operations, but also machines and operation-
machine relationships. Extensive experiments are conducted
on synthetic instances and public benchmarks. Results show
that while maintaining high computational efficiency, the pro-
posed method can outperform traditional hand-crafted PDRs,
and effectively generalize to larger-sized problems and public
benchmarks unseen in training.

Besides the methodological novelty, the proposed method
also has good practical value. Its neural architecture is size-
agnostic, hence the trained policy can be applied to solve
instances of varying sizes, not only the training size. More
importantly, the trained policy can rapidly solve large-scale
FJSP instances, and deliver reasonably good schedules better
than traditional PDRs, making it a good choice for the man-
agement staff to optimize the production resource usage.

To summarize, this paper makes the following contributions:
• An end-to-end DRL method to solve FJSP, which can

train size-agnostic policies that outperform traditional
hand-crafted PDRs while maintaining high efficiency.

• An MDP formulation with an integrated decision-making
approach, which combines the operation selection and
machine assignment decisions as one decision.

• A heterogeneous graph structure for state representation,
which effectively integrates operation and machine infor-
mation with relatively low graph density.

• A Heterogeneous GNN based neural architecture, which
extracts rich information from the heterogeneous state
graph for high-quality scheduling decision making.

The rest content is organized as follows. Section II reviews
recent DRL based scheduling methods. Section III describes
FJSP and its graph representation. Section IV introduces the
proposed method in detail. Section V provides experimental
results and analysis. Section VI concludes the paper.

II. RELATED WORKS

In this section, we briefly review conventional FJSP meth-
ods, and the recent DRL based scheduling methods.

A. Conventional FJSP Methods

Conventional methods for solving FJSP can be classified
into exact methods, heuristics and meta-heuristics [7]. Typical
exact methods are mixed integer linear programming [19] and
constraint programming [20]. They have theoretical guarantee
of finding the optimal schedule, but requires exponentially
long computational time. Heuristics are developed based on
expert knowledge, which do not possess optimality guarantee
but are considerably faster than exact methods. Typical FJSP
heuristics include PDR [21], A* [22], local search [23], etc.
Meta-heuristics can be further classified into single solution-
based (e.g. simulated annealing [24], tabu search [25]) and
population-based (e.g. genetic algorithm [26], [27]) methods,
which works on a single solution or a pool of solutions,
respectively. Complete reviews of FJSP methods can be found

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3189725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASTAR. Downloaded on July 12,2022 at 01:32:57 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 3

in [6], [7]. This paper focuses on PDRs, which are widely used
in practical production systems due to its easy implementation
and fast computation. The aim is to discover high-quality
PDRs using DRL, and the relevant works are discussed below.

B. DRL based Scheduling Methods

Recently, quite a few works employ DRL to solve complex
scheduling problems. A key issue in DRL based scheduling
is state representation. For JSP, some researchers use vectors
or matrices to represent states, and use Multilayer Perceptron
(MLP) [10], [12], [28], [29] or Convolutional Neural Network
(CNN) [11] to extract state features. A major limitation of
such representation is that it is hard bounded by fixed matrix
dimensions, and cannot solve problems of different sizes. A
recent work [15] partially resolves this issue for Hybrid Flow-
shop Scheduling Problem (HFSP), by viewing matrices as
relationship between two item groups (jobs and machines),
and use self-attention [30], a size-agnostic structure, to process
each item. However, this model is still limited to fixed num-
ber of HFSP stages. For Permutation Flow-Shop Scheduling
Problem (PFSP), a Recurrent Neural Network (RNN) based
architecture is designed in [31] to handle varying number of
jobs and machines. However, it is specific to PFSP and not
applicable to FJSP.

An arguably better representation technique for scheduling
problems is GNN [32] which can process graphs of varying
sizes, thus overcomes the limitation of matrix representation.
Zhang et al. [13] combine DRL and GNN to learn high-quality
PDRs for JSP. They model states as disjunctive graphs with
different connections, and use GNN to encode the state graphs.
Park et al. [14] adopt a similar scheme using richer node
(i.e. operation) features, and at the same time, considering the
different relationships between nodes in the GNN messages
passing process. Ni. et al [18] employ DRL to learn a local
search heuristic for solving HFSP. They represent the solution
at each search step as a multi-graph structure, and overcome
the scale limitation in [15] by an attention based pooling across
different stages.

Till now, most related works focus on solving JSP using
DRL, and cannot be applied to FJSP due its additional
complexity in decision-making and representation. For FJSP,
the decision framework should be able to handle two types
of decisions, i.e. operation selection and machine assignment,
and the representation scheme should be able to extract more
informative state features especially for the flexible machines.
While HFSP is flexible due to the parallel machines at each
stage, its problem structure is significantly different from FJSP.
The application of DRL in FJSP is rather sparse. Luo et al.
[33] employ deep Q-network to solve dynamic FJSP. However,
the action is to select from a pool of hand-crafted PDRs,
which heavily relies on human experience. Han and Yang
[34] propose an end-to-end DRL method for FJSP based on
a 3D disjunctive graph. However, the attention based policy
network they designed only processes raw features without
considering the graph structure, hence is limited in extracting
useful information for high-quality decision making.

(a) An instance (b) A solution

Fig. 2: Disjunctive graph of FJSP. Dotted line means process-
able, while solid line means scheduled.

III. PRELIMINARIES

An FJSP instance of size n × m includes n jobs and m
machines, forming two sets J andM. Each job Ji ∈ J has an
operation set Oi, which contains ni operations Oij that must
be processed in a specific order (i.e. precedence constraints).
Each operation Oij can be processed on any machine Mk

from its compatible set Mij ⊆ M for a processing time
pijk without preemption. Each machine can only process one
operation at a time. To solve FJSP, one needs to assign each
operation Oij to a compatible machine and determine its start
time Sij , such that the makespan Cmax = maxi,j {Cij} is
minimized where Cij is the completion time of Oij .

A disjunctive graph for FJSP [35] can be written as G =
(O, C,D). Specifically, O = {Oij |∀i, j}∪{Start, End} is the
node set, which includes all operations and two dummy ones
(with zero processing time) representing the start and end of
production. C is the set of conjunctive arcs, which are directed
arcs that form n paths from Start to End representing the
respective processing sequence of Ji. D =

⋃
k Dk is the set of

disjunctive arcs which are undirected, and Dk is a clique that
connects the operations that can be processed on machine Mk.
Note that unlike JSP, an operation in FJSP could be connected
to multiple disjunctive arcs due to the flexibility. Solving FJSP
is equivalent to selecting for each node a disjunctive arc, and
fixing its direction. An illustration of disjunctive graph for
FJSP is given in Fig. 2.

IV. METHOD

This section introduces the proposed method in detail. In
this paper, solving FJSP is considered as a sequential decision-
making process, which iteratively takes a scheduling action
to assign an operation to a compatible machine at each
state, until all operations are scheduled. The workflow of
the proposed method is shown in Fig. 3. In each iteration,
the scheduling state is first transformed into a heterogeneous
graph structure (Section IV-B). Then, a Heterogeneous Graph
Neural Network with a two-stage embedding process is ap-
plied to the heterogeneous graph to extract feature embeddings
of the operations and machines (Section IV-C), which are
consumed by the decision-making network to generate the
action probability distribution, from which a scheduling action
is sampled (Section IV-D). In the following subsection, the
MDP formulation of the above process is first presented.

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3189725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASTAR. Downloaded on July 12,2022 at 01:32:57 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 4

Fig. 3: The workflow of the proposed method.

A. MDP Formulation

The scheduling process considered here works as follows.
At each decision step t (time 0 or when an operation is
completed), the agent observes the current system state st
and makes a decision at, which is to allocate an unscheduled
operation to an idle machine and start it from the current time,
denoted as T (t). Then the environment transits to the next
decision step t+1. The process iterates until all the operations
are scheduled. The corresponding MDP is defined below.

State. The conditions of all operations and machines at step
t constitute state st. The initial state s0 is an FJSP instance
drawn from a distribution. Note that for each st, a partial
schedule S(t) is maintained, which is computed as follows.
If Oij is scheduled, its start time Sij(t) is the actual value
Sij . Otherwise, Sij(t) is an estimate computed with only
precedence constraints. If its immediate predecessor Oil is
scheduled on machine Mk, then Sij(t) = Sil+pilk; otherwise
Sij(t) = Sil(t) + p̄il, where p̄ij =

∑
Mk∈Mij

pijk/|Mij | is
an estimated processing time of Oij . Sij(t) can be computed
recursively for all the unscheduled operations in the direction
from Start to End.

Action. This paper uses an integrated approach to solve
FJSP, which combines the operation selection and machine
assignment as a composite decision. Specifically, an action
at ∈ At is defined as a feasible operation-machine pair
(Oij ,Mk) at step t, where Oij is eligible (i.e. its immediate
predecessor is completed) and Mk ∈Mij is idle. Oij starts
on Mk immediately, i.e. Sij=T (t). The action set At is step
dependent, which collects all the feasible pairs. Since each job
can have at most one operation ready at a time and |Mij |≤m,
therefore |At|≤n×m.

Transition. Based on st and at, the environment deter-
ministically transits to a new state st+1, which is the time
when an operation is completed. In this paper, two difference
states are distinguished by the topology and features of the
corresponding heterogeneous graph structure.

Reward. The reward is defined as the difference between
the makespan of the partial schedule at st and st+1, i.e.
r(st, at, st+1) = Cmax(st)− Cmax(st+1). When the discount
factor γ = 1, the cumulative reward in an solving episode is

(a) An instance (b) A solution

Fig. 4: Heterogeneous graph of FJSP. Dotted line means
processable, while solid line means scheduled.

G =
∑|O|
t=0 r(st, at, st+1) = Cmax(s0)−Cmax. For a specific

problem instance, Cmax(s0) is a constant, which means that
minimizing Cmax and maximizing G are equivalent.

Policy. A policy π(at|st) defines for each state st a proba-
bility distribution over the action set At. Later in this section,
an DRL algorithm will be designed which parameterizes π
as a neural network and optimizes it towards the direction of
maximizing the expected cumulative reward.

B. Heterogeneous Graph

Previous works have employed disjunctive graph to repre-
sent JSP scheduling states and achieved good results. However,
the disjunctive graph of FJSP is more complicated. First, the
disjunctive arc set D could be much larger since operations
can be processed by multiple machines. Such dense graph is
hard to be efficiently processed [13]. Second, the processing
times of an operation on different compatible machines are
different, making it difficult to represent. To resolve the above
issue, this paper defines a novel heterogeneous graph structure
H = (O,M, C, E) by modifying disjunctive graph. As shown
in Fig. 4, the operation node set O and conjunctive arcs set
C are kept, and a set of machine nodes M is added, each for
one machine Mk. The disjunctive arc set D is replaced with
an operation-machine (O-M) arc set E , where each element
Eijk ∈ E is an undirected arc connects an operation node Oij
with a compatible machine node Mk.

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3189725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASTAR. Downloaded on July 12,2022 at 01:32:57 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 5

Fig. 5: The two-stage embedding scheme. Update of machine
embedding ν′2 and operation embedding µ′12 are highlighted
for illustration.

The above heterogeneous graph representation has several
advantages over the original FJSP disjunctive graph. First,
the graph density is significantly reduced. Suppose for each
machine Mk there are nk processable operations, then |D| =∑
k

(
nk

2

)
, while |E| =

∑
k nk. It is easy to prove that when

nk > 3 holds for all Mk, |D| > |E|, and the difference
between |D| and |E| grows quadratically with the increase
of nk. For large-sized problems, the heterogeneous graph H
requires much less O-M arcs than the disjunctive arcs in G.
Second, the machine nodes in H provide a convenient way
to inject machine information and extract useful features to
distinguish different machines in a state. Such information
is very important to solve FJSP since operations need to be
allocated to a suitable machine, and is difficult to obtain in
G. Finally, the processing time pijk is easily represented by
simply attaching as a feature to the O-M arc Eijk.

Based on the above definition of H, this paper represents
each state st as a heterogeneous graph Ht = (O,M, C, Et),
where Et dynamically changes during a solving episode.
Specifically, after an action (Oij ,Mk) is taken at step t, Only
Eijk is kept and other O-M arcs of Oij are removed to obtain
Ht+1. Hence, the neighboring relationship among nodes also
dynamically changes. For each step t, let Nt(Oij) be the
neighboring machines of operation Oij , and Nt(Mk) be the
neighboring operations of machine Mk. For each operation,
machine and O-M arc, raw feature vector µij ∈ R6, νij ∈ R3,
λij ∈ R are defined to reflect their states at step t. Detailed
definition can be found in the appendix.

C. Heterogeneous Graph Neural Network

As typical in combinatorial problems, FJSP instances have
varying sizes. To learn practical scheduling policy using DRL,
the neural architecture must be able to operate on state graphs
of different sizes. Previous works [13], [14], [18] have shown
that GNN can achieve this size-agnostic property. However,
they all deal with homogeneous graphs and hence are not
applicable here. In the general GNN literature, research on
heterogeneous graph is rather sparse [32]. While some Het-
erogeneous Graph Neural Networks (HGNNs) are proposed
recently [36]–[38], they do not consider the unique properties
of the FJSP heterogeneous graph Ht. First, different node
types in Ht have strong connection patterns. Neighbors of
any machine can only be operations connected by undirected
arcs, while an operation could be connected to both operations
and machines by directed or undirected arcs. Second, features

on O-M arcs (i.e. processing times) are of great importance
for solving FJSP. However, existing HGNNs usually focus on
node features only and do not consider arc features.

To exploit the properties and advantages of the heteroge-
neous graph structure, this paper proposes a novel HGNN
architecture customized for FJSP to effectively encode Ht. As
shown in Fig. 5, the proposed method is featured with a two-
stage embedding process, so as to take graph topological and
numerical information (raw features) into account, and map the
nodes in Ht into d-dimensional embeddings. In the first stage,
machine embeddings ν′k ∈ Rd are updated by aggregating
relevant information, while operation embeddings µ′ij ∈ Rd
are updated in the second stage. Details are given as follows.

1) Machine node embedding: In Ht, neighbors of a ma-
chine Mk is a set of operations Nt(Mk) which may have
different meanings to Mk. For example, operations that are
expected to start sooner might be more important than those
who start later. This motivates us to consider Graph Attention
Networks (GAT) [39], which automatically learns the impor-
tance of different nodes by applying the attention mechanism
[30]. For a homogeneous graph, given a node i with feature
xi, GAT first computes the attention coefficient eij (a scalar)
between i and each j in its first-order neighborhood N (i)
(including i itself) as:

eij = LeakyReLU
(
a> [Wxi||Wxj]

)
. (1)

In other words, xi and xj are processed by a shared linear
transformation W first, and then concatenated (||) and fed into
a single-layer feedforward neural network with weights a and
LeakyReLU activation. Then the coefficients are normalized
across the neighborhood using softmax function:

αij =
exp(eij)∑

q∈N (i) exp(eiq)
,∀j ∈ N (i). (2)

Finally, GAT aggregates (linearly transformed) features over
N (i) and applys a nonlinearity σ to get the embedding of i:

x′i = σ

(∑
j∈N (i)

αijWxj

)
. (3)

However, the original GAT is for homogeneous graphs only
and does not consider arc features. Therefore, it is modified
here to satisfy the need of this paper, which is to calculate the
importance of a neighboring operation to a machine. First, it
can be observed that for each machine Mk, there is only one
O-M arc connects it with a neighboring operation. Therefore,
the raw feature vector of each Oij ∈ Nt(Mk) is extended
by concatenating its original raw features with that of the
corresponding O-M arc as µijk = [µij ||λijk] ∈ R7. Next,
instead of using a shared one, here two linear transformations
WM ∈ Rd×3 and WO ∈ Rd×7 are used for the machine
nodes and operation nodes, respectively. Then for a machine
Mk, the attention coefficients eijk, i.e. the importance of each
neighboring operation Oij ∈ Nt(Mk) can be calculated as:

eijk = LeakyReLU
(
a>
[
WMνk||WOµijk

])
, (4)

where a∈R2d. In this way, information from heterogeneous
nodes and O-M arcs can be effectively incorporated in the
attention computation.

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3189725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASTAR. Downloaded on July 12,2022 at 01:32:57 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 6

One thing not considered in Eq. (4) is the attention coeffi-
cient of machine Mk to itself, which is involved in the original
GAT (see Eq. (1)). Here ekk is computed using the machine
specific weights WM as follows:

ekk = LeakyReLU
(
a>
[
WMνk||WMνk

])
. (5)

Then all eijk, ∀Oij ∈ Nt(Mk) are normalized together with
ekk using softmax function to obtain the normalized attention
coefficients αijk and αkk.

Finally, the machine embedding ν′k is computed by fusing
features from neighboring operations and itself. Due to the
importance of processing time, the extended raw feature
vector µijk is used for each neighboring Oij . The aggregation
function for calculating ν′k is as follows:

ν′k = σ

(
αkkW

Mνk +
∑

Oij∈Nt(Mk)
αijkW

Oµijk

)
. (6)

2) Operation node embedding: Different from machines,
neighbors of an operation Oij inHt is of several types, includ-
ing an immediate predecessor Oi,j−1, an immediate successor
Oi,j+1, and the machines in Nt(Oij). Moreover, Oi,j−1 and
Oi,j+1 are connected to Oij by directed arcs from opposite
direction, while Mk ∈ Nt(Oij) are connected by undirected
arcs. Due to the heterogeneity of information sources and arc
types, it is not very helpful and convenient to apply attention
based mechanisms. Instead, this paper directly uses multiple
MLPs to process information from each source (including the
features of Oij itself), concatenates the results, and projects it
back to the d-dimensional space as the embedding of Oij .

Specifically, five MLPs (denoted as MLPθ0 , ..., MLPθ4) are
defined, each with d-dimensional output, two dh-dimensional
hidden layers, and ELU activation. They are responsible for
the final projection, and processing information from Oi,j−1,
Oi,j+1 Mk ∈ Nt(Oij), and Oij , respectively. Since Nt(Oij)
may have multiple machines, element-wise sum is applied
to obtain ν̄′ij =

∑
k∈Nt(Oij)

ν′k as the input to MLPθ3 . The
computation of embedding for Oij is as follows:

µ′ij = MLPθ0(ELU[MLPθ1(µi,j−1)||MLPθ2(µi,j+1)

||MLPθ3(ν̄′ij)||MLPθ4(µij)]).
(7)

Note that there is no need to compute embeddings of the two
dummy operations Start and End.

3) Stacking and pooling: The above embedding process
can be considered as a HGNN layer, which transforms raw
features µij and νk of each operation and machine into
embeddings µ′ij and ν′k. To enhance feature extraction ability,
here L HGNN layers with identical structure but independent
trainable parameters are stacked to obtain the final embeddings
µ
′(L)
ij and ν

′(L)
k . Raw features µij and νk of operation and

machine nodes are only used in the first layer, while raw
features λijk of O-M arcs are used in all the L layers.

After the L layers of HGNN, mean pooling is applied to the
obtained operation embedding set and machine embedding set
separately. The resulting two d-dimensional vectors are then
concatenated as the embedding ht ∈ R2d of the heterogeneous
graph state Ht as follows:

ht =

[
1

|O|
∑

Oij∈O
µ
′(L)
ij ‖ 1

|M|
∑

Mk∈M
ν
′(L)
k

]
. (8)

Fig. 6: The network architecture.

Through the above process, a varying-size heterogeneous
graph can be transformed into a fixed-dimensional embedding.
Let θ be the collection of all the HGNN parameters.

D. Decision Making

As the last part of the proposed neural architecture, below
a policy network is designed. Remind that an action is a
feasible operation-machine pair. Thanks to the above heteroge-
neous graph structure and HGNN, the policy π(at|st) is easy
and convenient to represent using the extracted embeddings.
Specifically, for each feasible action at = (Oij ,Mk) ∈ At
at step t, the corresponding operation, machine and state
embedding are concatenated, and fed into an MLP to get its
priority index of being selected at state st as follows:

P (at, st) = MLPω
[
µ
′(L)
ij ||ν

′(L)
k ||ht

]
, (9)

where MLPω has two dπ-dimensional hidden layers and
tanh activation. Then the probability of selecting each at is
calculated by applying softmax over all P (at, st):

πω(at|st) =
exp (P (at, st))∑

a′t∈At
exp (P (a′t, st))

,∀at ∈ At. (10)

During training, actions are sampled according to the policy
πω , so as to enable exploration. For testing, there could be
two strategies of utilizing a trained policy πω to solve a
given instance, including 1) greedily picking actions with the
maximum probability, and 2) sampling actions following πω
at each state, same as in training. Different from the greedy
one, the solutions delivered by the sampling strategy could
be different each run due to the stochasticity. This provides
additional possibilities of finding better solutions since in
general, current DRL algorithms can only converge to sub-
optimal policies. In particular, the sampling strategy solves
Ns copies of a given instance to obtain Ns solutions, from
which it picks the best one as in [40]. Note that for neural
policies, the additional overhead of sampling is often small
since GPU is able to sample solutions in parallel.

E. Training

This paper uses PPO [41] for training which employs an
actor-critic structure. Actor is the policy network πω and
critic vφ is another network that predicts the value v(st) of
a state st. Here the critic is designed as an MLP, which
takes input the state embedding ht computed by the HGNN
to get vφ(st). MLPφ has the same structure as MLPπ , i.e.

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3189725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASTAR. Downloaded on July 12,2022 at 01:32:57 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 7

two hidden layers with dφ dimension and tanh activation, but
with different parameters φ and different input dimension (2d
instead of 4d). The overall network architecture is shown in
Fig. 6. As shown in Algorithm 1, the training is performed
for I iterations, during which a batch of B instances (replaced
every 20 iterations) are solved by the DRL agent in parallel
(Line 3-10). During training, the policy is validated on a set
of independent validation instances every 10 iterations.

Algorithm 1: Training procedure with PPO
Input: HGNN network, policy network and critic network

with trainable parameters θ, ω and φ
1 Sample a batch of B FJSP instances;
2 for iter = 1, 2, ..., I do
3 for b = 1, 2, ...,B do // In parallel
4 Initialize st based on instance b;
5 while st is not terminal do
6 Extract embeddings using HGNN;
7 Sample at ∼ πω(·|st);
8 Receive reward rt and next state st+1;
9 st ← st+1;

10 Compute the generalised advantage estimates Ât for
each step;

11 Compute the PPO loss L, and optimize the parameters
θ, ω and φ for R epochs;

12 Update network parameters;
13 if iter mod 10 = 0 then
14 Validate the policy;

15 if iter mod 20 = 0 then
16 Sample a new batch of B FJSP instances;

17 return;

V. EXPERIMENTS

This section shows experimental results on synthetic and
public FJSP instances to validate the proposed method.

A. Experimental Settings
1) Evaluation Instances: As in most related works, this

paper generates synthetic FJSP instances for training and
testing. The generation method is similar to the well-known
procedure in [35]. As listed in Table I, six problem sizes are
considered. For each size, an instance is sampled by drawing
from the corresponding uniform distribution in Table I (pijk is
sampled from U(0.8p̄ij , 1.2p̄ij)). This paper performs training
on the four smaller sizes, and uses the largest two (30×10
and 40×10) to test the generalization capability of the trained
policies. The training instances are generated on-the-fly (with
100 validation instances), while for testing 100 instances are
sampled for each size. Besides the synthetic instances, two
well-known FJSP benchmarks are used for generalization anal-
ysis, including the 10 mk instances (mk01-mk10) in [35] and
the three groups of la instances (rdata, edata and vdata, each
with 40 instances) in [42]. These instances are of various sizes
(ranging from 10×6 to 30×10), drawing from distributions
significantly different from those in Table I. Hence, testing
on these benchmarks can further verify the proposed method
in generalizing to out-of-distribution instances. More details
about these instances can be found in [43].

TABLE I: Instance generation distributions

Size (n×m) ni
1 |Mij |2 p̄ij

3

10×5 U(4, 6) U(1, 5) U(1, 20)
20×5 U(4, 6) U(1, 5) U(1, 20)
15×10 U(8, 12) U(1, 10) U(1, 20)
20×10 U(8, 12) U(1, 10) U(1, 20)
30×10 U(8, 12) U(1, 10) U(1, 20)
40×10 U(8, 12) U(1, 10) U(1, 20)

1 Number of operations in Job Ji;
2 Number of compatible machines for operation Oij ;
3 Average processing time of operation Oij .

Fig. 7: Training curve on 10×5 instances.

TABLE II: Results on synthetic instances of training size

Size OR-Tools1 DRL-G DRL-S MOR SPT FIFO MWKR

10×5 Cmax 96.59 (15%) 111.67 105.61 116.69 129.06 119.62 115.29
Gap - 15.71% 9.38% 20.89% 33.57% 23.94% 19.44%

20×5 Cmax 188.45 (0%) 211.22 207.50 217.17 229.89 216.13 216.98
Gap - 12.10% 10.13% 15.29% 22.08% 14.73% 15.17%

15×10 Cmax 145.42 (5%) 166.92 160.36 173.40 198.20 185.08 169.18
Gap - 14.80% 10.31% 19.29% 36.30% 27.27% 16.34%

20×10 Cmax 197.24 (0%) 215.78 214.87 221.86 254.59 234.21 220.85
Gap - 9.43% 8.97% 12.53% 29.09% 18.82% 11.99%

1 (.%): percentage of instances solved optimally within 1800 seconds.

2) Configuration: This paper sets the number of HGNN
iterations as L=2, and dimensions of machine and operation
embeddings as d=8. For the MLPs, the hidden dimensions are
set as dh = 128, and dπ = dφ = 64. For training, the number
of training iterations and instance batch size is set to I=1000
and B=20. For the PPO loss function, the coefficients of the
policy loss (with 0.2 clip ratio), value loss and entropy term
are set as 1, 0.5 and 0.01, respectively. The PPO optimization
epochs is set to R = 3, and discount factor is set to γ =
1.0. The network is updated using the Adam optimizer, with
learning rate lr = 2×10−4. For testing, the trained policies are
tested using both the greedy and sampling strategy (with Ns =
100 solutions) mentioned in Section IV-D, named DRL-G and
DRL-S, respectively. These hyperparameters are empirically
tuned on the smallest problem size 10×5, and fixed on the
remaining sizes. The hardware is a machine with Intel Xeon
Gold 6152 CPU, one Nvidia Titan V GPU and Ubuntu 16.04
64-bit OS. The code in Pytorch is publicly available1.

3) Baselines: The learned FJSP scheduling policies are
compared with four well-known PDRs that work well in
practice, including FIFO (Firt In First Out), MOR (Most

1https://github.com/songwenas12/fjsp-drl

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3189725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASTAR. Downloaded on July 12,2022 at 01:32:57 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 8

Operations Remaining), SPT (Shortest Processing Time), and
MWKR (Most Work Remaining) [35], [44]. For MWKR,
average processing time p̄ij is used to compute the priority,
just as [35] did. For fair comparison, the baseline PDRs are
implemented in the same environment as the proposed method,
so as to verify that a learned policy is indeed better than a
hand-crafted one. At each decision point, after an operation
is selected by a PDR, it is assigned to the corresponding idle
machine immediately. This paper also compares with Google
OR-Tools2, a powerful constraint programming solver showing
strong performance in solving industrial scheduling problems
[45]. Since OR-Tools is an exact solver, a time limit of 1800
seconds is set, and the obtained optimal or best solutions are
used to evaluate solution quality of the learned or hand-crafted
PDRs. For the public benchmarks, this paper also compares
with results of the DRL method [34] and two recent Genetic
Algorithms (GA) in [26] and [27], as well as the best known
solutions collected in [43]. For each solution with makespan
Cmax, its relative gap to the makespan CBSmax of the best
solution (not necessarily optimal) is calculated as follows:

ε =
(
Cmax/C

BS
max − 1

)
× 100%. (11)

B. Performance on Synthetic Instances

The training process of the proposed DRL method is fairly
stable, and converged on all the four training sizes. Here for
brevity, the training curve on 10×5 is in Fig. 7, which is
plotted base on the average makespan on the 100 validation
instances. It can be observed that without human intervention,
the DRL agent can indeed learn high-quality scheduling policy
from scratch, based on its own solving experiences. Next, the
trained policies will be evaluated on the synthetic instances of
the same size as in training, and larger sizes unseen in training.
Run time analysis will also be provided.

1) Evaluation on instances of training sizes: For each of the
training size, Table II reports the average makespan and gap
to the OR-Tools solutions on the 100 testing instances drawn
from the same distribution as in training. As can be seen, even
for small-sized problems, OR-Tools can only solve a small
portion of instances optimally within the time limit, showing
the complexity of FJSP. For the PDR based methods, the
proposed method (in both strategies) consistently outperforms
all baseline PDRs in the four training sizes. The average gap
of the proposed method to the OR-Tools solutions ranges from
9% to 16% using the greedy strategy, which is similar to the
results of [13] and [14] in JSP study. Meanwhile, the sampling
strategy can further boost the performance and reduce the gap
to be within 11%. To have a more detailed comparison, the
proposed method is used as reference to compute the gap of
each baseline PDRs, and the boxplots are shown in Fig. 8.
It can be observed that the proposed method performs better
than baseline PDRs on more than 75% of the instances, except
on 15×10 where it manages to surpass MWKR on nearly
75% of the instances. Improvement of the proposed method
against baseline PDRs on 20×5 is relatively small than on

2https://developers.google.com/optimization

TABLE III: Results on the large-sized synthetic instances

Size OR-Tools1 DRL-G DRL-S MOR SPT FIFO MWKR

30×10 Cmax 294.10 (0%) 313.04 312.20 320.18 347.40 328.50 319.89
Gap - 6.46% 6.18% 8.90% 18.12% 11.74% 8.79%

40×10 Cmax 397.36 (0%) 416.18 415.14 425.19 443.30 427.22 425.70
Gap - 4.75% 4.49% 7.02% 11.57% 7.53% 7.15%

1 (.%): percentage of instances solved optimally within 1800 seconds.

TABLE IV: Run time (in seconds) comparison

Size OR-Tools DRL-G DRL-S MOR SPT FIFO MWKR

10×5 1597.88 0.32 0.82 0.15 0.15 0.15 0.16
20×5 1800.00 0.63 1.71 0.29 0.31 0.29 0.31

15×10 1724.00 0.99 2.99 0.42 0.44 0.42 0.46
20×10 1800.00 1.27 4.52 0.58 0.60 0.58 0.61
30×10 1800.00 1.90 8.60 0.87 0.90 0.87 0.93
40×10 1800.00 2.53 15.37 1.17 1.20 1.16 1.25

other sizes. This may be caused by the graph structure of the
20×5 instances. For this distribution, each job tend to have
fewer operations and fewer compatible machines, which may
affect the effectiveness of HGNN.

2) Generalization performance on large-sized instances:
This paper further examines the capability of the proposed
size-agnostic policy in generalizing to unseen large-sized in-
stances. To this end, the policy trained on 20×10 instances is
directly run on 30×10 and 40×10 instances, and the results are
summarized in Table III. It can be observed that the advantage
of the proposed method still maintains on these large instances,
showing that the patterns learned on small and medium-sized
instances are still effective in solving large-sized ones.

3) Run time analysis: Table IV lists the average run time
of the proposed method and PDR baselines. It can be seen
that that the proposed method maintains the high efficiency
of PDR based methods, and the run time increases mildly
with the increase of problem size. For a given size, the run
time of the proposed method is longer than other PDRs.
This is because neural network inference is more costly than
the simple rules employed by hand-crafted PDRs, which is
consistent with other works (e.g. [13], [14]) and is reasonable
considering the performance boost. For training, the proposed
method takes about 0.36h, 0.69h, 1.18h and 1.64h on the four
training sizes 10×5, 20×5, 15×10 and 20×10, respectively.
It can be concluded that the training time increases relatively
mildly with the increase of problem size. Considering that
training is offline, such time efficiency is acceptable.

C. Performance on Public Benchmarks

This subsection further evaluates the generalization perfor-
mance of the trained policies on the two public benchmarks
that are often used in traditional research, by directly running
the four policies trained in Section V-B (named DRL n×m)
on the benchmark instances. Results are summarized in Table
V (gaps are computed with respect to the best solutions in
[43]), which also includes results from the recent DRL [34]
and GA [26], [27] baselines. In particular, [26] proposes a
self-learning GA (SLGA) that uses reinforcement learning to
adjust the GA parameters during solving FJSP instances. [27]

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3189725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASTAR. Downloaded on July 12,2022 at 01:32:57 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 9

(a) 10×05 (b) 20×05 (c) 15×10 (d) 20×10

Fig. 8: Relative gaps of the hand-crafted PDRs to the DRL policy

TABLE V: Results on the public benchmarks

Method mk la (rdata) la (edata) la (vdata)

Cmax Gap Time Cmax Gap Time Cmax Gap Time Cmax Gap Time

OR-Tools 174.90 1.42% 905.45s 938.38 0.28% 1203.89s 1026.70 -0.19% 226.53s 924.40 0.38% 1367.77s
SLGA [26] 181.30 6.21% 283.28s - - - - - - - - -
RegGA [27] 183.00 8.39% 280.10s - - - - - - 836.131 3.20% 191.40s
2SGA [27] 175.20 3.17% 57.60s - - - - - - 812.201 0.39% 51.43s

DRL210×5 201.00 27.83% 0.91s 1030.83 11.15% 1.03s 1187.48 15.53% 1.00s 955.90 4.25% 1.00s
190.403 19.02% 3.11s 986.10 5.75% 3.56s 1116.33 8.18% 3.58s 932.00 1.44% 3.47s

DRL 20×5 215.60 39.00% 0.92s 1080.30 17.19% 0.99s 1198.55 16.62% 0.98s 967.78 6.19% 0.98s
197.40 24.68% 3.10s 1016.90 9.03% 3.54s 1135.38 9.91% 3.61s 943.53 2.79% 3.51s

DRL 15×10 197.70 25.39% 0.90s 1031.33 11.14% 0.97s 1182.08 15.00% 1.04s 954.33 4.02% 0.96s
191.30 19.32% 3.21s 987.08 5.81% 3.50s 1118.35 8.57% 3.56s 931.45 1.36% 3.54s

DRL 20×10 200.30 30.05% 0.90s 1044.03 12.85% 0.99s 1204.45 17.24% 1.00s 950.75 3.96% 0.99s
193.50 21.12% 3.13s 1004.33 7.50% 3.55s 1135.78 9.93% 3.60s 934.83 1.77% 3.46s

Han [34] 216.90 34.04% - - - - - - - - - -
MOR 202.31 29.59% 0.40s 1064.04 14.71% 0.45s 1211.23 17.91% 0.45s 969.25 6.09% 0.45s
SPT 238.80 45.73% 0.41s 1184.80 27.70% 0.46s 1305.35 26.19% 0.46s 1085.46 18.20% 0.46s
FIFO 206.09 30.72% 0.39s 1082.08 16.63% 0.44s 1255.46 22.07% 0.45s 980.69 7.50% 0.44s

MWKR 200.17 28.19% 0.45s 1046.20 12.53% 0.51s 1179.90 14.92% 0.50s 962.01 5.11% 0.50s
1 The gap of RegGA and 2SGA are computed on 30 out of 40 la vdata instances (la01-la30), on which [27] reported results.
2 For the two rows of each DRL policy, the above and below row is result of the greedy and sampling strategy, respectively.
3 Bold means the best performance among the PDR based methods.

proposes a two-stage GA (2SGA) for FJSP, which improves
the Regular GA (RegGA) by a first stage that generates high-
quality initial population. Results of both 2SGA and RegGA
in [27] are included here.

The upper part of Table V shows that OR-Tools obtains
very good solutions, though it only solves half instances
optimally. The GA methods also find high-quality solutions.
However, run time of these search-based methods is much
longer than the PDR based ones in the lower part of Table V.
It can be seen that the proposed method with greedy strategy
generally performs better than other baseline PDRs on both
benchmarks, and the sampling strategy further reduces the
gaps. This shows that the learned policies generalize well to
these out-of-distribution instances. The four learned policies
have almost the same run time, since they have the same
neural structure with only different parameters. Compared to
the recent method [34] which reported results on the mk
benchmark, the proposed method significantly outperforms
it by a large margin (except the policy trained on 20×5
instances), showing the advantage of the HGNN network in
extracting rich state information for better decision making. An
interesting observation is that among the four of our policies,
the one trained on the smallest size 10×5 performs the best in

general. With sampling, it even achieves the optimal solutions
on two mk instances (mk03 and mk08), and finds solutions
within 5% gap to the best solutions in [43] for more than 50%
(69 out of 120) of the la instances. This might be because for
the simpler learning task, the training of DRL agent could be
more sufficient so that it can discover better patterns. We will
investigate this in the future. As another interesting direction,
the fast and high-quality solving performance of the proposed
method provides additional possibilities of being integrated
with the search-based methods, for example generating initial
populations in 2SGA.

VI. CONCLUSIONS AND FUTURE WORK

Solving flexible scheduling problems efficiently is of great
importance to the next generation manufacturing paradigms
such as cloud manufacturing. This paper proposes a novel
end-to-end DRL method to learn high-quality PDRs for FJSP,
which is widely used in practise but rarely studied by existing
DRL based methods. The underlying MDP is formulated using
an integrated approach, which combines operation selection
and machine assignment as one decision. Then a heteroge-
neous graph structure is proposed to represent scheduling
states, which is processed by a novel HGNN architecture so

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3189725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASTAR. Downloaded on July 12,2022 at 01:32:57 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 10

as to convert the numerical and topological information in the
graph into feature embeddings. Based on the HGNN, an actor-
critic architecture is designed and trained with PPO. Results
show that the proposed method outperforms baseline PDRs
with reasonable efficiency, and generalizes well to unseen
instances of larger sizes and from public benchmarks. For
future work, the method will be extended to handle more
challenging factors in practical production, such as batching,
due dates, and uncertainties. In addition, the multi-optima
property [46] of FJSP (i.e., an instance could have multiple
optimal solutions) will be exploited to enhance the training
performance. The possibilities of combining with advanced
search mechanisms such as GA will also be investigated.

APPENDIX
DEFINITION OF RAW FEATURE VECTORS

For each state St, the raw features of each operation,
machine and O-M arcs are defined as follows (dependence
on t is ignored for clearance):

Raw features of operation nodes. For each Oij ∈ O \
{Start, End}, raw feature vector µij ∈ R6 has 6 elements:
• Status: a binary value indicates whether Oij has been

scheduled (1) or not (0) till step t.
• Number of neighboring machines: |Nt(Oij)|.
• Processing time: pijk if Oij is scheduled, otherwise p̄ij .
• Start time: the estimated or actual start time of Oij in the

corresponding partial schedule S(t).
• Number of unscheduled operations in the job: the number

of operations in Oi that have not been scheduled.
• Job completion time: Ci in the partial schedule S(t).

Note that for the two dummay operations Start and End,
zero vectors are used when necessary.

Raw features of machine nodes. For each Mk ∈ M, 3
features are used to form its raw feature vector νk ∈ R3:
• Available time: the time when Mk completes all its

assigned operations and can process new operations.
• Number of neighboring operations: |Nt(Mk)|.
• Utilization: ratio of the non-idle time to the total produc-

tion time of Mk till T (t), and is within the range [0,1].
Raw feature of O-M arcs. For each Eijk ∈ E , its raw

feature vector λijk ∈ R contains only one element, i.e. the
corresponding processing time pijk.

REFERENCES

[1] L. Thames and D. Schaefer, “Software-defined cloud manufacturing for
industry 4.0,” Procedia CIRP, vol. 52, pp. 12–17, 2016.

[2] H. Golpı̂ra, S. A. R. Khan, and S. Safaeipour, “A review of logistics
internet-of-things: Current trends and scope for future research,” Journal
of Industrial Information Integration, vol. 22, p. 100194, 2021.

[3] Y. Liu, L. Wang, X. V. Wang, X. Xu, and L. Zhang, “Scheduling in cloud
manufacturing: state-of-the-art and research challenges,” International
Journal of Production Research, vol. 57, no. 15-16, pp. 4854–4879,
2019.

[4] Y. Fang, C. Peng, P. Lou, Z. Zhou, J. Hu, and J. Yan, “Digital-twin-based
job shop scheduling toward smart manufacturing,” IEEE Transactions on
Industrial Informatics, vol. 15, no. 12, pp. 6425–6435, 2019.

[5] Y. Zhang, J. Wang, S. Liu, and C. Qian, “Game theory based real-time
shop floor scheduling strategy and method for cloud manufacturing,”
International Journal of Intelligent Systems, vol. 32, no. 4, pp. 437–
463, 2017.

[6] K. Gao, Z. Cao, L. Zhang, Z. Chen, Y. Han, and Q. Pan, “A review on
swarm intelligence and evolutionary algorithms for solving flexible job
shop scheduling problems,” IEEE/CAA Journal of Automatica Sinica,
vol. 6, no. 4, pp. 904–916, 2019.

[7] J. Xie, L. Gao, K. Peng, X. Li, and H. Li, “Review on flexible job shop
scheduling,” IET Collaborative Intelligent Manufacturing, vol. 1, no. 3,
pp. 67–77, 2019.

[8] J. Zhang, G. Ding, Y. Zou, S. Qin, and J. Fu, “Review of job shop
scheduling research and its new perspectives under industry 4.0,” Journal
of Intelligent Manufacturing, vol. 30, no. 4, pp. 1809–1830, 2019.

[9] B. Chen and T. I. Matis, “A flexible dispatching rule for minimizing
tardiness in job shop scheduling,” International Journal of Production
Economics, vol. 141, no. 1, pp. 360–365, 2013.

[10] C.-C. Lin, D.-J. Deng, Y.-L. Chih, and H.-T. Chiu, “Smart manufacturing
scheduling with edge computing using multiclass deep q network,” IEEE
Transactions on Industrial Informatics, vol. 15, no. 7, pp. 4276–4284,
2019.

[11] C.-L. Liu, C.-C. Chang, and C.-J. Tseng, “Actor-critic deep reinforce-
ment learning for solving job shop scheduling problems,” IEEE Access,
vol. 8, pp. 71 752–71 762, 2020.

[12] L. Wang, X. Hu, Y. Wang, S. Xu, S. Ma, K. Yang, Z. Liu, and
W. Wang, “Dynamic job-shop scheduling in smart manufacturing using
deep reinforcement learning,” Computer Networks, vol. 190, 2021.

[13] C. Zhang, W. Song, Z. Cao, J. Zhang, P. S. Tan, and X. Chi, “Learning
to dispatch for job shop scheduling via deep reinforcement learning,”
Advances in Neural Information Processing Systems, vol. 33, 2020.

[14] J. Park, J. Chun, S. Kim, Y. Kim, and J. Park, “Learning to schedule
job-shop problems: representation and policy learning using graph
neural network and reinforcement learning,” International Journal of
Production Research, vol. 59, no. 11, pp. 3360–3377, 2021.

[15] Y.-D. Kwon, J. Choo, I. Yoon, M. Park, D. Park, and Y. Gwon, “Matrix
encoding networks for neural combinatorial optimization,” in Advances
in Neural Information Processing Systems, 2021.

[16] Z. Wang, C. Liu, and M. Gombolay, “Heterogeneous graph attention
networks for scalable multi-robot scheduling with temporospatial con-
straints,” Autonomous Robots, 2021.

[17] L. Xin, W. Song, Z. Cao, and J. Zhang, “Step-wise deep learning
models for solving routing problems,” IEEE Transactions on Industrial
Informatics, vol. 17, no. 7, pp. 4861–4871, 2020.

[18] F. Ni, J. Hao, J. Lu, X. Tong, M. Yuan, J. Duan, Y. Ma, and K. He,
“A multi-graph attributed reinforcement learning based optimization
algorithm for large-scale hybrid flow shop scheduling problem,” in
Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, 2021, pp. 3441–3451.

[19] C. Özgüven, L. Özbakır, and Y. Yavuz, “Mathematical models for job-
shop scheduling problems with routing and process plan flexibility,”
Applied Mathematical Modelling, vol. 34, no. 6, pp. 1539–1548, 2010.

[20] D. Müller, M. G. Müller, D. Kress, and E. Pesch, “An algorithm selec-
tion approach for the flexible job shop scheduling problem: Choosing
constraint programming solvers through machine learning,” European
Journal of Operational Research, 2022.

[21] M. A. Ortı́z, L. E. Betancourt, K. P. Negrete, F. De Felice, and
A. Petrillo, “Dispatching algorithm for production programming of
flexible job-shop systems in the smart factory industry,” Annals of
Operations Research, vol. 264, no. 1, pp. 409–433, 2018.

[22] B. Huang, Y. Sun, and Y. Sun, “Scheduling of flexible manufacturing
systems based on petri nets and hybrid heuristic search,” International
Journal of Production Research, vol. 46, no. 16, pp. 4553–4565, 2008.

[23] O. Sobeyko and L. Mönch, “Heuristic approaches for scheduling jobs
in large-scale flexible job shops,” Computers & Operations Research,
vol. 68, pp. 97–109, 2016.

[24] V. Kaplanoğlu, “An object-oriented approach for multi-objective flex-
ible job-shop scheduling problem,” Expert Systems with Applications,
vol. 45, pp. 71–84, 2016.

[25] S. Jia and Z.-H. Hu, “Path-relinking tabu search for the multi-objective
flexible job shop scheduling problem,” Computers & Operations Re-
search, vol. 47, pp. 11–26, 2014.

[26] R. Chen, B. Yang, S. Li, and S. Wang, “A self-learning genetic algo-
rithm based on reinforcement learning for flexible job-shop scheduling
problem,” Computers & Industrial Engineering, vol. 149, p. 106778,
2020.

[27] D. Rooyani and F. M. Defersha, “An efficient two-stage genetic algo-
rithm for flexible job-shop scheduling,” IFAC-PapersOnLine, vol. 52,
no. 13, pp. 2519–2524, 2019.

[28] B. Waschneck, A. Reichstaller, L. Belzner, T. Altenmüller, T. Bauern-
hansl, A. Knapp, and A. Kyek, “Deep reinforcement learning for semi-
conductor production scheduling,” in 2018 29th Annual SEMI Advanced

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3189725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASTAR. Downloaded on July 12,2022 at 01:32:57 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 11

Semiconductor Manufacturing Conference (ASMC). IEEE, 2018, pp.
301–306.

[29] D. Shi, W. Fan, Y. Xiao, T. Lin, and C. Xing, “Intelligent scheduling
of discrete automated production line via deep reinforcement learning,”
International Journal of Production Research, vol. 58, no. 11, pp. 3362–
3380, 2020.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, 2017, pp. 5998–6008.

[31] Z. Pan, L. Wang, J. Wang, and J. Lu, “Deep reinforcement learning
based optimization algorithm for permutation flow-shop scheduling,”
IEEE Transactions on Emerging Topics in Computational Intelligence,
2021.

[32] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 32, no. 1, pp. 4–24,
2020.

[33] S. Luo, L. Zhang, and Y. Fan, “Dynamic multi-objective scheduling
for flexible job shop by deep reinforcement learning,” Computers &
Industrial Engineering, vol. 159, p. 107489, 2021.

[34] B. Han and J. Yang, “A deep reinforcement learning based solution
for flexible job shop scheduling problem,” International Journal of
Simulation Modelling, vol. 20, no. 2, pp. 375–386, 2021.

[35] P. Brandimarte, “Routing and scheduling in a flexible job shop by tabu
search,” Annals of Operations Research, vol. 41, no. 3, pp. 157–183,
1993.

[36] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim, “Graph transformer
networks,” Advances in Neural Information Processing Systems, vol. 32,
pp. 11 983–11 993, 2019.

[37] X. Fu, J. Zhang, Z. Meng, and I. King, “Magnn: Metapath aggregated
graph neural network for heterogeneous graph embedding,” in Proceed-
ings of The Web Conference 2020, 2020, pp. 2331–2341.

[38] D. Jin, C. Huo, C. Liang, and L. Yang, “Heterogeneous graph neural
network via attribute completion,” in Proceedings of the Web Conference
2021, 2021, pp. 391–400.

[39] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in International Conference on
Learning Representations (ICLR), 2018.

[40] W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve routing
problems!” in International Conference on Learning Representations
(ICLR), 2019.

[41] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” CoRR, vol. abs/1707.06347,
2017.

[42] J. Hurink, B. Jurisch, and M. Thole, “Tabu search for the job-
shop scheduling problem with multi-purpose machines,” OR Spektrum,
vol. 15, no. 4, pp. 205–215, 1994.

[43] D. Behnke and M. J. Geiger, “Test instances for the flexible job shop
scheduling problem with work centers,” Tech. Rep., 2012.

[44] M. Montazeri and L. Van Wassenhove, “Analysis of scheduling rules
for an fms,” The International Journal of Production Research, vol. 28,
no. 4, pp. 785–802, 1990.

[45] G. Da Col and E. C. Teppan, “Industrial size job shop scheduling tackled
by present day cp solvers,” in International Conference on Principles
and Practice of Constraint Programming. Springer, 2019, pp. 144–160.

[46] Y.-D. Kwon, J. Choo, B. Kim, I. Yoon, Y. Gwon, and S. Min,
“Pomo: Policy optimization with multiple optima for reinforcement
learning,” Advances in Neural Information Processing Systems, vol. 33,
pp. 21 188–21 198, 2020.

Wen Song received the B.S. degree in automation
and the M.S. degree in control science and engi-
neering from Shandong University, Jinan, China, in
2011 and 2014, respectively, and the Ph.D. degree in
computer science from the Nanyang Technological
University, Singapore, in 2018. He was a Research
Fellow with the Singtel Cognitive and Artificial
Intelligence Lab for Enterprises (SCALE@NTU).
He is currently an Associate Research Fellow with
the Institute of Marine Science and Technology,
Shandong University. His current research interests

include artificial intelligence, deep reinforcement learning, planning and
scheduling, and operations research.

Xinyang Chen received the B.S. degree in au-
tomation from Shandong University, Jinan, China,
in 2019 and the M.S. degree in control science
and engineering from the same university in 2022.
His main research interests include deep reinforce-
ment learning, cyber-physical system, and produc-
tion scheduling.

Qiqiang Li received the Ph.D. degree in industrial
automation from the Institute of Industrial Process
Control, Zhejiang University in 1998. He is a Pro-
fessor with the School of Control Science and En-
gineering and the Institute of Marine Science and
Technology, Shandong University. His research area
focuses on modeling, optimization, and simulation
of complex systems. His current research interests
are concerned with economic operation optimization
of photovoltaic systems, energy efficiency of process
industry and commercial buildings.

Zhiguang Cao received the B.Eng. degree in au-
tomation from the Guangdong University of Tech-
nology, Guangzhou, China, in 2009, the M.Sc. de-
gree in signal processing from Nanyang Techno-
logical University (NTU), Singapore, in 2012, and
the Ph.D. degree from the Interdisciplinary Graduate
School, NTU, in 2017. He was a Research Assistant
Professor with the Department of Industrial Systems
Engineering and Management, National University
of Singapore, Singapore, and a Research Fellow
with the Future Mobility Research Lab, NTU. He is

currently a Scientist with the Singapore Institute of Manufacturing Technol-
ogy (SIMTech), Agency for Science Technology and Research (A*STAR),
Singapore. His research interests currently focus on neural combinatorial
optimization.

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TII.2022.3189725

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ASTAR. Downloaded on July 12,2022 at 01:32:57 UTC from IEEE Xplore. Restrictions apply.

	Flexible job-shop scheduling via graph neural network and deep reinforcement learning
	Citation

	Flexible Job Shop Scheduling via Graph Neural Network and Deep Reinforcement Learning

