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Finding the Shortest Path in Stochastic Vehicle
Routing: A Cardinality Minimization Approach

Zhiguang Cao, Hongliang Guo, Jie Zhang, Dusit Niyato, and Ulrich Fastenrath

Abstract—This paper aims at solving the stochastic shortest
path problem in vehicle routing, the objective of which is to deter-
mine an optimal path that maximizes the probability of arriving at
the destination before a given deadline. To solve this problem, we
propose a data-driven approach, which directly explores the big
data generated in traffic. Specifically, we first reformulate the orig-
inal shortest path problem as a cardinality minimization problem
directly based on samples of travel time on each road link, which
can be obtained from the GPS trajectory of vehicles. Then, we
apply an £; -norm minimization technique and its variants to solve
the cardinality problem. Finally, we transform this problem into a
mixed-integer linear programming problem, which can be solved
using standard solvers. The proposed approach has three advan-
tages over traditional methods. First, it can handle various or even
unknown travel time probability distributions, while traditional
stochastic routing methods can only work on specified probability
distributions. Second, it does not rely on the assumption that travel
time on different road segments is independent of each other,
which is usually the case in traditional stochastic routing methods.
Third, unlike other existing methods which require that deadlines
must be larger than certain values, the proposed approach sup-
ports more flexible deadlines. We further analyze the influence of
important parameters to the performances, i.e., accuracy and time
complexity. Finally, we implement the proposed approach and
evaluate its performance based on a real road network of Munich
city. With real traffic data, the results show that it outperforms
traditional methods.

Index Terms—Stochastic shortest path, cardinality minimiza-
tion, £, -norm minimization, mixed integer linear programming.

I. INTRODUCTION

ITH recent increases in vehicles and human populations
as well as economic activities, roads in large cities, such
as Munich and Singapore, are likely to become ever busier.
Intelligent Transportation System (ITS) has therefore been
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developed to facilitate the traffic. Among all functions of ITS,
routing service attracts much broader attention, the objective of
which is to determine an optimal path regarding certain cost
(i.e., travel time). In reality, a traffic condition is often ran-
dom because of various uncertainties, such as road work, bad
weather, traffic accident and unexpected traffic congestion.
The uncertain factors can delay the vehicle from arriving at
destination with desirable travel time [1]. Consequently, sto-
chastic shortest path problem is posed to find an optimal route
considering the uncertainties.

A. Related Work

In stochastic shortest path problem, least expected travel
time (LET) is often used as a routing criterion. A path is
optimal if it guarantees least expected travel time. To achieve it,
many researchers study this optimization problem. Hooks and
Mahmassani [2] provide a thorough review and discussion on
a time dependent LET path problem without waiting policy.
In [3], Dean solves time-dependent LET path problem with
waiting policy. Waller and Ziliaskopoulos [4] address the LET
path problem considering correlation between random link
travel times. The attractive finding from LET is that the problem
can be transformed into a deterministic routing problem and
solved efficiently. However, a path with minimum expected
travel time may still have a high variance (i.e., risk), which is
undesirable for some applications.

To address the risk issue in LET criterion, Nikolova et al. [5],
[6] propose a mean-risk model. In this model, they seek the
path which minimizes the weighted combination of expected
travel time and travel time standard deviation. The mean-risk
model can also be solved efficiently by converting it into
a deterministic shortest-path problem with respect to certain
weight on each road link, which is a linear combination of
corresponding mean and variance. This model alleviates the
risk issue, but still has some limitations. In particular, there
is no direct physical meaning of the weighted combination of
expectation and standard deviation. Therefore, drivers may not
be able to understand and gain actual expectation from solution
of the optimization.

The stochastic shortest path problem can also be formulated
based on probabilistic comparison as described in [7] and [8],
where optimal path has highest probability of being faster than
all alternatives. The studies conclude that it is more desirable
for drivers to achieve probabilistic fastest path instead of LET
path. To determine the optimal path, Sigal et al. [7] propose to
compute for each path the probability of being faster than all

1524-9050 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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alternatives. On the other hand, Fastenrath and Becker [8] itera-
tively perform pair comparisons until the best path is obtained.
This probabilistic criterion is much more robust and reliable,
but its computation complexity may become prohibitively time-
consuming as the road network scales up, because those solu-
tions are derived based on enumeration.

To overcome all above disadvantages, a probability tail
model, which incorporates both expected travel time and reli-
ability, is proposed as an optimal criterion in [9]. It defines the
optimal path as the one that maximizes the probability of arriv-
ing at destination before deadline. This criterion is reasonable
in that it is consistent with people’s travel planning behavior.
One common query could be that “I want to reach hospital in
40 minutes. Please find a path with maximum chance.” The key
objective of routing in such a circumstance is to reduce the risk
of arriving late rather than to minimize the expected travel time.
Unfortunately, the solution to get such an path has not been laid
out in [9]. Consequently, many subsequent studies investigate
this problem and various solutions have been proposed in [5],
[10]-[12].

Among those solutions to the probability tail model, three
seminal works are [5], [10], and [12]. An adaptive method is
developed in [10] to achieve the maximal probability of arriving
on time, which provides an optimal policy to select next road
junction rather than a prior path. In that solution, a further road
junction will be determined only when vehicle arrives at the
preceding one, which is inconvenient and not applicable, espe-
cially for a pre-planning scenario. By contrast, the works in [5]
and [12] aim to search a complete path. In [5], Nikolova et al.
show that for a large range of deadlines, solving the problem
requires maximization of a quasi-convex function over the path
polytope. Due to a specific form of its quasi-convex objective,
the optimal path can be obtained at an extreme point of the
dominant, which is the projection of path polytope onto a
two-dimensional plane. Lim et al. [12] propose to efficiently
search the optimal path by examining probe points, which can
eliminate futile searching space. This method improves the
performance in terms of computation complexity compared
with that of [5].

B. Limitations of Existing Work

The methods in [5] and [12] are desirable in that they output
complete path instead of road link to next enter. Moreover, the
two methods are significantly faster than enumeration method
in terms of computation efficiency. However, they both rely on
three common assumptions: 1) travel time for each road link
should follow a normal distribution; 2) travel time distributions
on different road links are independent; 3) deadline should be
longer than the least expected travel time.

The first two assumptions are made to simplify computation.
However, in reality, travel time on road link does not always
follow an independent normal distribution. And there are liter-
atures challenging these assumptions: 1) in [13], travel time is
shown to follow a skewed distribution; 2) in [14], travel time is
best fitted with a gamma distribution; 3) the works in [15]-[18]
derive a log-normal fit to travel times; 4) in [8], a bi-normal
distribution is claimed, where the first normal distribution is
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for congested traffic and the other is for non-congestion; 5) the
works in [16] and [17] show the correlation for travel time on
adjacent road links. The third assumption is made to guarantee
the quasi-convexity of the problem so as to facilitate the compu-
tation. However, in real travel planning, people may not know
whether their preferred deadlines are large enough, especially
when they are traveling on an unfamiliar routes.

C. Our Contributions

To address aforementioned problems and limitations, we
propose a data-driven approach. This approach does not need
to assume a fixed distribution of travel time on road link. It can
also work well when travel times on different road links are
correlated with each other. Moreover, it can handle different
deadlines. Although the proposed approach only provides an
approximated solution, it is shown by simulation to be satisfac-
torily close to an optimal one.

More specifically, to obtain the optimal path, we formulate
the problem of guaranteeing maximum probability of arriving
on time as a cardinality minimization problem. The general
model-driven optimization methods [19] cannot solve this prob-
lem efficiently since this optimization is neither convex nor
quasi-convex if we do not make necessary assumptions on the
travel time distribution, correlation and deadlines. However, the
cardinality minimization, which is data-driven in this context,
can avoid these assumptions, because it is directly applied
on the sampled travel time data set to approximate the real
probability by frequency. To solve this cardinality minimization
problem, we relax it as ¢1-norm minimization and its variants,
which in turn can be efficiently solved as a mixed integer lin-
ear programming problem. Furthermore, we analyze important
parameters that may affect the performance.

The data-driven approach has been widely used in many
applications, e.g., [20] and [21]. Especially in machine learning,
a classifier is always built based on a known data set and
prediction is conducted upon coming unknown data. The goal
of data-driven approach in machine learning is to minimize
the chance of mis-classification [20]. In a similar nature, the
data-driven approach in this paper is to minimize the chance
of being later than deadline on a known data set, which is
expressed as cardinality minimization. To our best knowledge,
it is the first time that cardinality minimization is used to solve
stochastic shortest path problem whose objective is to find the
path that maximizes the probability of arriving at destination
before deadline. In addition, we point out that our data-driven
approach largely relies on the travel time samples of all road
links. Generally, we cannot directly obtain travel time samples,
but they can be easily achieved by using big data technique to
analyze the GPS trajectories of vehicles, which have traversed
those road links [22].

The remainder of this paper is organized as follows. In
Section II, we formulate the stochastic shortest path problem
to find the path that maximizes the probability of arriving on
time. Then we transform it into a cardinality minimization
problem. In Section III, we use ¢;-norm minimization to relax
and solve the cardinality problem, whose two variants are also
proposed. Then they all are further formulated as a mixed
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integer linear programming problem. In Section IV, we perform
extensive experiments on a simple network to justify three
important advantages of our approach. In Section V, we provide
analysis on important parameters that affect the performance.
In Section VI, we further test our approach in an actual road
network with real traffic data. Section VII states the conclusion
and our future work.

II. PROBLEM FORMULATION AND REFORMULATION
FOR STOCHASTIC SHORTEST PATH

In this section, we first define a road network as a graph,
based on which, we formulate the stochastic shortest path
problem. We would like to note that, to find the optimal path,
our approach mainly adopts travel time samples of road links,
e.g., a vehicle took 100 seconds to traverse a road link, and
another vehicle took 120 seconds to traverse the same road
link. Generally, it is not easy to directly obtain those travel
time samples. Nonetheless, they can be achieved by analyzing
the GPS trajectory data when vehicles travel on those road
links [22].

A. Original Problem Formulation

We model a road network as a graph. Let G = (V, A,) be a
directed graph, where V' = {1,2,...,n} represents the set of
nodes and A, C {(v,w) : v,w € V,v # w} represents the set
of arcs, which also refer to the road links. More specifically,
(v, w) means an arc from node v to node w. Then the stochastic
shortest path problem to maximize the probability of arriving at
the destination d from the origin o not later than deadline 7" can
be formulated as follows:

max Prob(w'x < T)

st. YoeV: Z z(v,w) — Z x(w, v)
weV,(v,w)eA, weV,(w,v)eA,
1, ifv=o0
=<¢—1, ifv=d (D
0, otherwise

where w denotes travel time samples for each arc, which can be
obtained from GPS trajectories of vehicles [22]; X € {0, 1}|AT‘,
and its each component refers to an arc, e.g., (w,v) € A, is on
the concerned path if z(v, w) = 1, and not on it if (v, w) = 0.
Then this problem can be compactly written as follows [23]:

max Prob(w' X < T) |M% = b;%X € {0, I}IAM 2)

where M € R™*4+| is node-arc incidence matrix; b € R",
whose elements are zeros except the sth and ¢th element, which
are 1 and —1 (i.e., for o and d, respectively).

In general, the optimization problem in Eq. (2) is not convex
or quasi-convex if we do not make further assumptions on travel
time distribution, correlation and deadlines. This means that
there is no efficient method to solve this problem optimally.
Alternatively, we seek to approximate the probability by using
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frequency based on the cardinality minimization problem. We
first rewrite the “maximizing” problem in Eq. (2) as “minimiz-
ing,” which is expressed as follows:

min Prob(w % > T) [M% = b; % € {0, 1}/41 . (3)

B. Problem Reformulation as Cardinality Minimization

Definition 1: Cardinality is the number of non-zero elements
in a vector or matrix [24], e.g., if X = [x1,x2, 23] = [0,0,4],
then the cardinality of X is 1.

In our routing problem, the objective is to minimize proba-
bility of arriving at destination later than deadline (i.e., as in
Eq. (3)). Therefore, it is equivalent to minimizing number of
times of arriving at destination later than deadline if size of
travel time samples for each path is sufficiently large. For
instance, if we travel 1000 times on two paths (e.g., path 1 and
path 2) from o to d, and the frequency of arriving at d after
deadline is 20 on path 1 and 10 on path 2, then path 2 is
considered to be optimal. Thus, we formulate original problem
as a cardinality minimization problem, which aims to minimize
the cardinality of vector i.e., C(-), defined as follows:

C(X) =(c1,c2,...,C5)

(wix-1)" W% -1]" ..., [wix-T]")
“)

where [-|T = max{0, -}; each component in W; denotes the ith
travel time sample on corresponding arc; S is size of travel time
samples on each arc. Note that the cardinality minimization
approach does not require any specific travel time distribution,
correlation or deadline. Consequently, our objective to mini-
mize probability of arriving at destination later than deadline
can be reformulated as follows:

min Card (C(X)) |MX = b;% € {0, 1}/4-! (5)

where X is decision variable, denoting the optimal path. Thus,
original problem to find an optimal path that maximizes proba-
bility of arriving at destination not later than deadline becomes
a cardinality minimization problem. It is important to highlight
that in this problem, we adopt travel time samples on arcs
instead of probability distribution. When sampling size S is
large enough, the frequency of not being late can be used
to accurately approximate the probability of arriving on time.
Therefore, solution to this cardinality optimization can be con-
sidered as optimal path in Eq. (1).

III. SOLUTION METHOD

In this section, we present ¢;-norm minimization (and its
variants) and mixed integer linear programming. The former is
used to transform the cardinality minimization problem while
the latter is used to solve the transformed problem.
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A. {1-Norm Minimization to Solve Cardinality Minimization

Generally, cardinality minimization is neither classified as
convex nor quasi-convex optimization, and a typical approach
to solve it is to relax the problem by ¢;-norm. The relaxed
problem can be solved efficiently, where ¢;-norm is usually
known as convex envelop of the function Card(X) [25].

¢1-norm of a vector is denoted by || - ||1, which is absolute
sum of all its elements. For instance, ¢;-norm of the vector X
can be expressed as follows:

1Z]11 = lev| + -+ + |l ©)
where n is size of X. Accordingly, minimization of ¢; -norm for
X can be expressed as follows:
XeF @)

min X[}y |
X

where F is a feasible set.

B. Iterated Weighted {1-Norm Algorithm

Inspired by the typical ¢;-norm minimization, another ap-
proximation of Card(X) can be expressed as follows [26]:

n_log (l—i—@)

Card(X) = lim » ———~
— log (1+1)

€—0 4
3

)
with e > 0 and X = [z -+ x,]". Without loss of gener-
ality, we decompose X and write it as follows:

X=Xy —X_, whereX;, X_>0. C))

Thus we have Card(X) = Card(X) + Card(X_). Then, we
reformulate the cardinality minimization as follows:

> 0.

mleog(l—l— )|x€]~' X >

(10)

This approximation is closer to the real cardinality. Although
Eq. (10) is still not a convex problem, it can be solved by
‘difference of convex’ programming [27]. Therefore, we further

linearize the objective function at current a:( ).

n N 2\ — 2
;bg (1 +?’) Zlog( ) +27;+ 0
(11)

This objective function can be solved in an iterative manner,
and can be further expressed as follows [26]:

min » wiz; |[REF, >0 (12)

where w; = 1/(e + z;), which will be used as weight in next
iteration until it converges to a local solution.
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C. Reweighted ¢1-Norm Algorithm

In Eq. (12), weight is updated in each iteration. Alternatively,
to obtain a better weight for ¢;-norm, we can use the merit
function [28].

Definition 2: For any e >0, a merit function F(X):
R, — R is separable and coercive of the form F,(X)=
>t i(|zs] + €) for approximating the cardinality, where the
functions ); are strictly concave, i.e., strictly increasing and
twice differentiable.

Accordingly, the cardinality minimization problem can be
more closely approximated as follows:

min F,(X) | X € F. (13)
X
The merit functions are not unique. A typical merit function to
approximate the cardinality is defined as follows [28]:

Fe(i):Zlog(|x¢|+e)+21og(|xi|+e)p (14)
i=1 i=1

where 0 < p < 1. Similarly, to solve this merit function, we
can still use the linearization technique. Then, we can reach the
same formulation as in Eq. (12). The only difference is the way
to compute the weight, which is described as follows [28]:

1 (al+p

=1,...,n.
|CL‘,L|+€ ? ? Y )n

5)

D. Mixed Integer Linear Programming

The three algorithms in Section III-A—C can be further refor-
mulated as typical mathematical programming. We only take
{1-norm minimization as an example. For iterated weighted
{1-norm algorithm and reweighted ¢;-norm algorithm, the only
difference is that they are computed in an iterative manner with
different weights as stated in Eq. (12) and Eq. (15), respectively.

We aim to solve the optimization problem in Eq. (5), whose
cardinality is defined in Eq. (4). Since ¢;-norm can be used to
minimize the cardinality, it means that we can minimize the sum
of ((W{X—T|",[WaX—T]T,...,[WwiX —T|") instead. To
make this objective function more compact, we introduce a
non-negative intermediate variable &; and some inequality con-
straints. Incorporating all above considerations, Eq. (5) can be
reformulated as follows:

mm Z &

(16)

where &; is the intermediate variable associated with [W, X —

T)* in Eq. (4), and X is decision variable which refers to
optimal path. By analyzing the optimization in Eq. (16), we
find that the ¢;-norm minimization can be easily transformed
to a mixed integer linear programming (MILP) problem, which
is expressed as follows:
Lt |AY < B; Ae}"' B;
“Vi<y<i

<
min S
y y
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where

y=[= - ma & fS]T (18)
e=[01 - Oay N 1s]" (19)

Win Wig --- Wyus, -1 0 --- 0

War Wag -+ Wou, 0 —1--- 0
=| . . X S (20

Wg1 Wsa "'W5|A,,,| O 0 --- -1
B=[ - 1] 1)
Ac=[M O]’ (22)
B.=b 23)
[=0(4, 1451 (24)
i=[l14a,) 001es] (25)

Note that W;; in Eq. (20) is the ith travel time sample on arc j
and B in Eq. (21) has the size of S x 1.

In this MILP problem, ¥y is decision variable, and X in
Eq. (18) is optimal path. To solve this MILP problem efficiently,
we use the intlinprog function in Matlab (version: R2014a),
which is based on the branch and bound algorithm. The steps
are stated as follows [29]:

1) Initially reduce the problem size: Linear program pre-
processing is performed on dual problem, the purpose of
which is to eliminate redundant variables or constraints.

2) Solve the relaxed linear programming: Interior point
method [30] is employed to determine an optimal solution
to the relaxed problem, which guarantees polynomial
complexity.

3) Tighten the LP relaxation of the mixed-integer problem:
Mixed-integer program pre-processing is conducted to
analyze linear inequalities and determine whether some
bounds can be tightened.

4) Further tighten the LP relaxation: Cut generation is
implemented to restrict feasible region of the linear pro-
gramming relaxations, to ensure that solutions are closer
to integers.

5) Compute the integer-feasible solutions: Heuristics are
used to find feasible points for the branch and bound step
below so that an upper bound on the objective functions
can be determined [31].

6) Systematically search for the optimal solution: Branch
and bound method [32] is constructed as a sequence of
sub-problems that attempt to converge to a solution of the
MILP, where sub-problems give a sequence of upper and
lower bounds on the solution.

The intlinprog function can solve the MILP problem in any
of the steps. In that case, intlinprog does not execute the latter
steps once it finds optimal solution. More details about these
steps can be found in [29].

E. Analysis of Accuracy and Computation Complexity

Before analyzing performance of our approach, we sum-
marize its flow as follows: We originally aim to determine
the path that maximizes probability of arriving at destination

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 17, NO. 6, JUNE 2016

before deadline, but that optimization problem is neither convex
nor quasi-convex without strong assumption, i.e., independent
normal distribution for the travel time, which is usually contrary
to the conclusions by many researchers. To solve this problem
without such strong assumption, we use frequency of arriving
at destination before deadline to approximate corresponding
probability. However, the frequency can be exactly represented
by cardinality. Further, the typical way to solve cardinality
minimization is /1 -norm minimization or its variants. We point
out that, they only provide approximated solutions, because
they are trying to approximate cardinality by ¢;-norm, and
different variants may have different degrees of approximation.
Despite these differences, each of the /1-norm based algorithms
can be further exactly reformulated as a MILP problem, which
can be solved by standard solvers.

Based on this summary, there are two critical issues that
we should discuss with emphasis because they impact the
performance of our approach, i.e., accuracy and computation
complexity. We use ¢;-norm based algorithms to approximately
solve cardinality minimization problem, which results in the
accuracy issue. Take iterated weighted /1 -norm algorithm as an
example. When ¢ is infinitely close to 0, Eq. (8) can provide
100%-accuracy solution to cardinality minimization. However,
Eq. (8) cannot be solved directly. Thus, we linearize it in
Eq. (11), which can be solved iteratively. Moreover, it may
converge to a sub-optimal solution as iteration number becomes
large [33], which also depends on the input data. However,
higher accuracy usually comes at the cost of more iterations.
Thus, in an actual application, we can seek the satisfactory
trade-off between them.

The other important issue comes from MILP problem, which
mainly affects time complexity. As stated in Section III-D,
we employ branch-and-bound framework to solve the MILP
problem. In this framework, it iteratively branches at a new
point, and the worst complexity to finish the branching is
©(214+1) [34], where |A,| is number of arcs. In each branch,
there is a bounding problem, which involves a relaxed lin-
ear programming, and its averaged computation complexity is
O((|Ar| + S)3) [35], where S is number of inequality con-
straints in Eq. (17). Therefore, the worst complexity for the
whole algorithm will be ©(2/47/(|A,.| + S)3). However, the
real time complexity also depends on input data because it may
affect the number of branching in MILP problem.

Since both accuracy and time complexity depend on input
data (e.g., travel time samples on each road link) and those data
are always random in traffic, in the following sections, we first
test our approach on an artificial road network with artificial
data. Then, we analyze various parameters that may influence
the accuracy and time complexity. Finally, we further test our
approach in the real road network of Munich city with real
traffic data and compare it with the state of the art approach.

IV. SIMULATION RESULTS

In this section, we evaluate performance of the proposed
approach through simulation. Particularly, we first divide travel
time samples on all road links into training data set and testing
data. Then we use our approach to compute an optimal path
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TABLE I

CASE 1: ACCURACY FOR INDEPENDENT SINGLE DISTRIBUTION (%)

«

S=100, S1=40

S=500, S1=200

S=1000, S1=400

0.2
0.4
0.6
0.8
1.0
1.2

95.8,95.5, 96.3, 97.2
97.6, 97.3, 97.9, 98.1
97.0, 96.9, 97.2, 97.9
96.7, 96.3, 96.9, 98.4
95.9,95.6, 97.7, 98.2
100, 100 , 100, 100

96.8, 96.6, 96.9, 97.7
99.5, 99.3, 99.5, 99.8
98.1, 97.8, 97.9, 98.5
97.7, 97.6, 98.2, 98.9
96.3, 95.7, 97.9, 98.4
100, 100 , 100, 100

98.6, 98.3, 98.7, 99.1
98.8, 98.6, 98.9, 99.3
98.9, 98.7, 99.4, 99.2
99.0, 98.5, 98.9, 99.3
95.9,95.7, 96.9, 98.4
100, 100, 100, 100

Bi

92.9, 92.7, 93,8, 96.1
95.5,95.1, 95.8, 96.3
96.0, 95.4, 96.2, 97.3
93.9, 93.0, 94.5, 96.2
93.2,92.7,93.8,95.3
100, 100, 100, 100

96.0, 95.7, 96.3, 97.5
98.9, 98.3, 98.6, 99.2
98.6, 98.1, 98.7, 99.1
97.6, 97.0, 98.1, 98.6
94.1, 93.3, 95.1, 95.8
100, 100 , 100, 100

97.5,97.1,97.4,97.9
98.9, 98.5, 98.6, 98.9
98.8, 98.3, 98.8, 99.1
97.3, 96.8, 97.1, 97.5
96.2, 95.0, 95.8, 98.3
100, 100, 100, 100

96.0, 95.7, 96.2, 97.1
97.8,97.4,97.6, 98.2
97.8,97.2, 97.5, 98.2
95.1, 94.8, 95.3, 96.2
96.0, 95.8, 96.4 96.9
100, 100 , 100, 100

978,974,979, 98.2
99.3, 9.5, 99.2, 99.1
98.5, 98.2, 98.7, 99.1
97.9, 97.3, 97.9, 98.2
96.2, 95.9, 96.5, 97.3

100, 100 , 100, 100

99.1, 98.7, 98.9, 99.4
99.5, 99.4, 99.2, 99.7
99.1, 9.3, 99.5, 99.7
98.1, 97.9, 98.4, 98.9
96.4, 96.0, 96.7, 97.3
100, 100, 100, 100

95.9, 95.6, 96.3, 98.1
95.4,95.0, 95.8,97.2
97.2,96.8,97.2,97.8
94.5, 94.0, 95.5, 96.2
94.2,93.9, 94.6, 96.7
100, 100, 100, 100

97.8, 97.1, 97.9, 98.4
98.3, 98.1, 98.3, 98.9
98.5, 98.3, 98.7, 99.0
97.2 96.9, 97.1, 97.8
94.8, 94.1, 94.9, 97.1
100, 100 , 100, 100

98.1, 97.5, 97.9, 98.4
99.3, 99.1, 99.3, 99.6
98.9, 98.6, 98.8, 99.3
98.6, 98.0, 98.4, 99.0
95.3, 94.6, 95.4, 96.7
100, 100, 100, 100

based on training data, and compare it with exact solution. The
exact solution is obtained by enumerating all possible paths
and computing corresponding probabilities on testing data. The
accuracy is then measured by comparing the exact solution with
solutions derived from our approach.

We should remark that, by “training data,” we refer to the
historic travel time samples on road links, e.g., collected from
5 days backwards till the current moment, and by “testing data,”
we refer to the future traffic data, e.g., 24 hours from the current
moment onwards. For a typical prediction problem in machine
learning, it always uses training data to build a classifier and
measures the accuracy based on the ground truth label of testing
data. Similarly, in our stochastic shortest path problem, we plan
to predict an optimal path for the upcoming driving. However,
the metric of this optimal solution is the probability rather than
a class label. In real applications, it is more reasonable to find
the ground truth optimal path out of both the training data and
testing data, instead of only testing data, and then compare it
with the path obtained out of training data by our approach.
Moreover, we should also note that the accuracy obtained based
only on testing data is usually not higher than that of on whole
data set. This is the case in this paper, i.e., results in Tables I-III.
However, in order to show the lower bound accuracy of our
approach, we only use testing data to find the ground truth
optimal path and compare it with the solution computed by our
approach.

Moreover, we evaluate the impacts of probability distrib-
utions, correlation and different deadlines, which constitute
three major advantages of the proposed approach over existing
algorithms. In particular, we classify the experiment into three
cases with respect to travel time on arc. In Case 1, we consider
independent probability distributions. In Case 2, we consider
combination of independent probability distributions. Then, in
Case 3, we consider correlated probability distributions. While
Case 1 and Case 2 help to show that our approach is able to

TABLE 11
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CASE 2: ACCURACY FOR COMBINED INDEPENDENT
PROBABILITY DISTRIBUTION (%)

S=100, S1=40

S5=500, S1=200

S=1000, S1=400

94.1, 93.6, 94.4, 95.2
95.6, 95.0, 95.4, 95.9
96.4, 95.9, 96.8, 97.2
96.1, 95.4, 96.3, 97.0
96.2, 95.5, 96.2, 96.9
100, 100 , 100, 100

97.3, 97.0, 97.6, 98.1
99.1, 98.8, 99.1, 99.4
98.9, 98.8, 98.9, 99.2
97.2, 96.4, 96.9, 98.0
95.2,94.7,95.2, 96.7
100, 100 , 100, 100

96.5, 96.2, 97.1, 97.8
98.6, 98.2, 98.3, 99.1
98.9 98.9, 99.2, 98.9
97.6, 97.1, 97.4, 98.9
96.3 95.5, 96.3, 97.1
100, 100, 100, 100

Q+ Z

93.1, 91.1, 92.6, 94.7
93.4,92.8, 93.8, 94.9
95.1, 94.0, 95.5, 96.3
91.2, 89.4, 92.4, 94.7
92.1, 89.5, 92.9, 92.4

100, 100 , 100, 100

95.1, 94.6, 95.4, 96.2
98.3, 97.6, 98.1, 98.5
96.9, 96.5, 97.2, 97.9
95.2, 94.8, 95.4, 96.1
91.3, 90.4, 91.9, 93.4

100, 100 , 100, 100

96.0, 95.5, 96.3, 97.8
982, 98.4, 98.9, 99.3
979, 97.5, 97.8, 98.5
96.3, 95.8, 96.2, 97.3
91.5, 90.6, 91.3, 92.7
100, 100, 100, 100

-+

94.7, 94.2, 95.1, 96.0
96.1, 95.7, 96.6, 97.2
96.0, 95.6, 96.3, 97.1
93.1, 92.5, 93.2, 94.7
92.0, 91.4, 92.7, 93.3

100, 100 , 100, 100

97.2, 96.6, 97.1, 98.0
98.3, 97.8, 98.3, 98.4
98.0, 97.5, 97.8, 98.9
96.3, 95.7, 96.0, 96.7
93.9, 93.2, 94.3, 95.0
100, 100 , 100, 100

98.0, 97.3, 97.8, 98.1
98.1, 97.7, 98.2, 99.0
98.5, 98.0, 98.6, 98.9
95.5, 95.4, 96.1, 96.8
91.4, 90.9, 92.1, 94.2
100, 100, 100, 100

TABLE III

CASE 3: ACCURACY FOR CORRELATED PROBABILITY DISTRIBUTION (%)

S=100, S1=40

S5=500, S1=200

S=1000, S1=400

98.0, 97.6, 98.2, 98.7
98.6, 98.1, 98.4, 99.2
98.3, 98.0, 98.2, 99.0
97.6, 97.1, 97.5, 98.2
97.2, 96.6, 96.8, 97.4
100, 100 , 100, 100

97.9, 97.9, 98.3, 98.9
99.3, 99.0, 99.2, 99.6
99.5, 99.3, 99.6, 99.8
98.6, 98.1, 98.4, 99.0
97.2,96.9, 97.2, 98.1
100, 100 , 100, 100

99.3, 98.8, 99.2, 99.5
99.2, 99.0, 99.2, 99.7
99.0, 98.8, 99.0, 99.4
99.3, 99.0, 99.2, 99.5
96.9, 96.5, 97.1, 98.2
100, 100, 100, 100

96.8, 96.2, 96.8, 97.5
97.6, 97.4, 97.8, 98.7
96.5, 96.2, 96.9, 97.5
97.2, 96.9, 97.4, 98.3
96.2, 95.9, 96.1, 97.4
100, 100 , 100, 100

97.3, 96.8, 97.3, 98.5
99.4, 99.2, 99.3, 99.6
98.4, 98.1, 98.5, 99.1
98.9, 98.3, 98.9, 99.2
96.4, 96.1, 96.7, 97.9
100, 100 , 100, 100

981, 97.7, 98.0, 98.6
99.5, 99.3, 99.0, 99.1
99.3, 99.5, 99.7, 99.7
99.4, 99.3, 99.5, 99.5
98.0, 96.9, 97.2, 98.1
100, 100, 100, 100

98.2, 97.6, 98.2, 98.7
98.6,98.4, 98.1, 98.3
98.7, 98.5, 98.7, 99.2
97.5,97.2, 97.8, 98.3
96.5, 95.9, 96.2, 97.3
100, 100 , 100, 100

98.5, 98.2, 98.4, 98.9
99.5, 99.3, 99.4, 99.8
99.3,99.2, 994, 99.5
98.6, 98.2, 98.7, 99.3
98.1, 97.4, 98.1, 98.7
100, 100 , 100, 100

98.9, 98.5, 98.8, 99.5
99.7, 99.7, 99.3, 99.4
99.5, 99.5, 99.7, 99.6
98.9, 98.5, 98.9, 99.3
97.8, 97.4, 98.2, 99.0
100, 100, 100, 100

97.0, 96.6, 96.7, 97.2
97.6, 97.4, 97.7, 98.1
97.9, 97.3, 97.5, 97.9
96.2, 95.8, 96.4, 97.5
95.3, 94.6, 95.3, 95.9
100, 100, 100, 100

98.4, 98.1, 98.3, 98.8
98.9, 98.6, 99.1, 99.3
99.3, 99.1, 99.3, 99.4
96.5, 95.9, 96.2, 97.3
96.1, 95.3, 95.7, 96.5
100, 100, 100, 100

98.7, 98.1, 98.5, 98.9
99.3, 99.2, 99.3, 99.7
98.9, 98.8, 98.9, 99.3
98.2, 97.8, 98.2, 98.8
96.3, 95.7, 96.1, 96.8
100, 100, 100, 100

handle diverse or even unknown distributions, Case 3 can show
that our approach is able to address the correlation issue with
respect to travel time. In all cases, we perform the tests with
various of deadlines to show that our approach works well for
different deadlines.

We also would like to highlight that, for the sake of
convenience of justifying our approach, all experiments in
Sections IV-VI are performed on a general PC with Intel Core
17-3540M processor and 8.00 GB RAM. However, in real use
cases, computation of the optimal path would be done by a
powerful central routing engine server, which means that the
computation speed in real use cases can be faster than that of
the experiments in Sections IV-VI. Additionally, all the optimal
paths would be computed in an online manner because the
traffic data on each arc may change dynamically.
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Fig. 1. A 65-node, 123-arc road network.

A. Test Scenario: A Simple Network

We first test our approach on a simple road network to
validate accuracy of the solution and to gain useful insights of
the solution. Consider the 65-node, 123-arc network in Fig. 1,
which is a directed graph. This is a fairly representative spatial
network with the following features. Firstly, the graph contains
cycles, and some arcs between two nodes are bi-directional.
Secondly, there are some clusters in this graph which are
connected with each other. These two features make the graph
closely imitating actual traffic networks.

Our approach is data-driven, which needs travel time samples
on each arc as input (i.e., W;; in Eq. (20)), and we adopt some
random distribution functions to generate them. In the follow-
ing experiments, we consider Normal, Bi-Normal, Gamma and
Log-normal distribution and their combinations. We randomly
select an origin-destination pair out of ten: {(3, 7), (7, 3), (1, 8),
(8, 1), (10,2), (2, 10), (1, 10), (10, 1), (3, 10), (10, 3)}.

B. Description of Symbols and Settings

» S—size of training data for travel time samples on each
arc. We take values of 100, 500, and 1000.

» S1—size of testing data for travel time samples on each
arc. We take values of 40, 200, and 400.

* a—deadline coefficient with respect to T: T' = T} + « x
(T, — T1), where T is deadline, T5 is the minimum
longest travel time for all paths connecting origin and des-
tination, and 7 is the shortest travel time with respect to
the same path. We take o« = 0.2,0.4,0.6, 0.8, 1.0, and 1.2.

e Ng—number of times to run our approach to reach target
accuracy, which is 1000 in this experiment.

e N—denotes Normal distribution.
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e Bi—denotes Bi-normal distribution.

e (G—denotes Gamma distribution.

* L—denotes Log-normal distribution.

e N + Bi—denotes Normal distribution combined with Bi-
normal distribution.

e N + G—denotes Normal distribution combined with
Gamma distribution.

e N 4+ L—denotes Normal distribution combined with
Log-normal distribution.

* O-D pair—denotes origin and destination pair.

* rtsots—denotes ratio of training size over testing size.

* {1-norm—denotes ¢1-norm minimization algorithm.

* iterated {1-norm—denotes iterated weighted ¢;-norm
minimization algorithm.

* reweighted (1-norm—denotes reweighted ¢;-norm mini-
mization algorithm.

* Both iterated (1-norm and reweighted (1-norm algo-
rithms apply 10 iterations.

C. Case Study 1: Single Independent Distribution

For each arc, we generate S training data and S; testing
data according to the four probability distributions. For each
distribution, the data are generated with different parameters,
and independent from each other. Then the S training data
for each arc will be incorporated into Eq. (20) to compute
the optimal path using three ¢;-norm based algorithms. Then,
this path will be compared with the real optimal path which is
obtained based on the S; testing data for each arc. To show
that this result is only the lower bound accuracy, we also
compute the accuracy measured on both training and testing
data together for the ¢1-norm algorithm, as stated previously
at the beginning of Section IV. Moreover, this process will
repeat Ng times and the four corresponding accuracy results
are shown in Table I, structure of which is stated as follows:

1) 1st column stands for types of distributions;

2) 2nd column stands for values of deadline coefficient «;

3) In each of the 3rd-5th columns, there are four sub-
columns. The first sub-column is accuracy for the
{1-norm based on both training and testing data, the
second to the fourth sub-column are respectively accuracy
for ¢1-norm, iterated {1-norm and reweighted {1-norm
based on only testing data.

From Table I, we observe that the minimum accuracy for
three £1-norm based algorithms is above 92%, and most of them
are higher than 95%. The overall accuracy is sufficiently high
considering the following facts. Firstly, optimal path is com-
puted from the training data, while we evaluate the optimal path
by testing data, and higher accuracy means better prediction.
Secondly, ¢;-norm based algorithms are only approximations
of cardinality minimization problem.

Comparing three /1-norm based algorithms with each other,
we observe that reweighted {1-norm always has higher accuracy
than that of iterated ¢1-norm. Furthermore, iterated ¢1-norm
has higher accuracy than that of ¢1-norm. Although there
are some exceptions, which are highlighted with bold font
in Table I, they are already sufficiently high. Therefore, we
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can conclude that reweighted ¢1-norm is better than iterated
{1-norm, and iterated ¢1-norm is better than ¢1-norm in terms
of accuracy. It is straightforward to understand this because of
their different degrees of cardinality approximation.

We observe that when deadline coefficient « is larger than 1,
i.e., 1.2, which corresponds to the situation that there exists
at least one path guaranteeing arriving on time with 100%
probability, our approach can always correctly find the actual
optimal path. It is expected since ¢;-norm minimization in our
approach is to minimize total delay with respect to deadline 7T'.
If T is large enough, there always exists at least one path with
zero probability of being late. When « is not larger than 1, i.e.,
0.2, 0.4, 0.6, 0.8, 1.0, which corresponds to the situation that
there is no path that can guarantee arriving on time with 100%
probability, the accuracy always falls between 92%—100%.

Regarding data size, we observe that accuracy increases
when data size S increases from 100 to 500. This is because
that more data we sampled, the closer frequency is to real
probability. However, we observe limited similar increase when
S increases from 500 to 1000. One possible reason is that data
size of 500 is already large enough and further more data does
not enhance the accuracy.

Another notable result is that four different probability distri-
butions share a similar pattern for the accuracy under different
deadlines and data sizes. The main reason is that the proposed
approach is directly based on data, and Eq. (17) only takes
the sampled data into account, and it is not affected by the
probability distribution used.

Last but not least, comparing the first sub-column with the
second sub-column of the 3rd—5th columns, we see that, most
of the accuracy results measured on both training data and
testing data together are higher than that of only on testing
data. This is because in-sample test usually achieves higher
accuracy than the out-of-sample test [36]. Although there are
some exceptions, which are highlighted with underlines, they
are still acceptable since accuracy in first sub-column and
second sub-column are both high and close to each other.

Based on above analysis, we can basically conclude that our
approach is able to handle different independent distributions
with different deadlines. Especially, when data size is large
(i.e., S = 500), our approach can achieve high accuracy.

D. Case Study 2: Blended Distributions

For each arc, we adopt combinations of probability distri-
butions to generate S training data and S; testing data. We
first use the sequence in incidence matrix M to order the arcs.
Then, at each time, odd arcs use a probability distribution, and
even arcs will use a different distribution. The combinations of
probability distributions are set as follows: N + Bi, N + G,
and N + L. We also assume that data on different arcs is
independent from each other. Similar with Case Study 1, four
different accuracy results are shown in Table II.

From Table II, we observe that the minimum accuracy for
three /1-norm based algorithms is above 89%, and most of them
are higher than 93%. It is sufficiently high considering that
the traffic data are mixture of different distributions. Besides,
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TABLE IV
TIME COMPLEXITY FOR THE ENUMERATION METHOD
AND £1-NORM BASED ALGORITHMS

S=100, S1=40 | S=500, S1=200 |S=1000, S;=400
enumeration method 0.6419 0.6389 0.6124
£1-norm 0.0546 0.2042 0.4052
iterated £1-norm 0.3412 0.7308 1.7123
reweighted £1-norm 0.4020 0.8736 1.9052

we observe that reweighted ¢1-norm always has higher accu-
racy than that of iterated ¢1-norm, and iterated (-norm has
higher accuracy than that of ¢1-norm. There are also very few
exceptions highlighted with bold font, which are acceptable.
Similarly, the accuracy results for ¢1-norm measured on both
training and testing data together are higher than that of only
on testing data. Although there is exception highlighted with
underline, it is also acceptable.

Comparing the results with Case 1, accuracy for Case 2
shares similar pattern under different deadlines and data size.
From Table II, our approach can accommodate blended distri-
butions with different deadlines because our approach is data
driven, which is not affected by distribution types.

E. Case Study 3: Correlated Distributions

For each arc, we first generate S training data and S testing
data according to the four probability distributions. Then, we
randomly choose some adjacent arc pairs, the travel time on
which are correlated with each other, i.e., the data on an arc is
proportional to the other. Similar with the first two cases, the
four different accuracy results are shown in Table III.

From Table III, we observe that the minimum accuracy for
three /1-norm based algorithms is above 94%, and most of
them are higher than 96%. The overall accuracy is sufficiently
high considering that existing methods cannot address the cor-
relation in probability distribution. Comparing the results with
Case 1 and Case 2, Case 3 share similar pattern with them.
However, accuracy for Case 3 is slightly higher than that of
Case 2 on average. This is because, in general, compared
with correlated distribution, the blended distributions always
generate larger variance for travel time samples on a path.
Since accuracy results in Case 2 and Case 3 are obtained
based on a learning scheme, training data and testing data
might not be similar with each other if the variance is too
large, which generally is not desirable to achieve high accuracy.
Thus, we observe higher accuracy for Case 3 compared with
Case 2. Similar explanation can also be applied in analysis
of distribution parameters in Section V-A. From Table III, our
approach can address correlation issue well.

F. Time Complexity

In all previous cases, to determine whether our approach
can achieve an optimal path, we use enumeration method
to compute the actual optimal path. To evaluate the overall
computation complexity, we record all the running time for the
above experiments. Additionally, the average running times for
different sizes of travel time data and different algorithms are
shown in Table IV.
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Fig. 2. Accuracy with respect to different standard deviations. (a) Data size: 100. (b) Data size: 500. (c) Data size: 1000.

From Table IV, we observe that the average running time
for ¢1-norm is always shorter than that of enumeration method
under different sizes of travel time data. The important reason
is that MILP can be solved more efficiently than enumeration
method. In this table, time complexity for enumeration method
is relatively constant because it depends mainly on the network
size. Although running time always increases with size of travel
time data for /1-norm algorithm, we do not need a very large
size of travel time data to obtain satisfactory solutions based on
conclusions for the 3 cases that we studied. This means that we
can obtain an optimal path faster than enumeration method.

Comparing iterated ¢1-norm and reweighted {1-norm algo-
rithms with enumeration method, we observe that when size
of training data is 100, the running times for iterated ¢1-norm
and reweighted ¢1-norm algorithms are shorter than that of enu-
meration method. When data size increases to 500 and 1000, it
has a reverse effect. However, one fact is that when network
size increases, the running time and storage space will become
prohibitively large for enumeration method (see Section V-D).
By contrast, the time complexity for iterated {1-norm and
reweighted ¢1-norm algorithms will also increase as network
scales up. Nevertheless, they are still acceptable since the
two algorithms are still more efficient with respect to time
complexity in that case (see Section V-D).

Comparing three ¢1-norm based algorithms with each other,
we observe that iterated £1-norm and reweighted (1-norm
algorithms have higher time complexity. This is because the
two algorithms involve 10 iterations for each optimal path. For
£1-norm, it inherently solves only one MILP problem. For iter-
ated {1-norm and reweighted {1-norm, they compute 9 relaxed
MILP (linear programming in nature) problems before the last
real MILP. Since the time complexity for linear programming
is much less than that of MILP, it is much less than 10 times of
time complexity of ¢1-norm algorithm.

The accuracy of £1-norm algorithm in all 3 cases is sufficiently
high (although not the highest) and iterated {¢i-norm and
reweighted {1-norm algorithms have much higher time complex-
ity, although they have comparatively higher accuracy. There-
fore, we conclude that ¢1-norm has better overall performance.

V. PARAMETER ANALYSIS

In Section IV, we perform simulations to evaluate accuracy
and time complexity of the proposed approach, which involve

TABLE V
AVERAGED RUNNING TIME FOR DIFFERENT STANDARD DEVIATIONS

S5=100, S1=40 | S=500, S1=200 | S=1000, S1=400
10 0.0403 0.1993 0.4018
30 0.0546 0.2042 0.4052
50 0.0599 0.2436 0.4872
70 0.0571 0.2630 0.4659

various parameters. In this section, we individually investigate
their influences on the performance of our approach, i.e., accu-
racy and time complexity. The iterated ¢1-norm and reweighted
{1-norm algorithms are comparatively complicated, but they
are both developed based on ¢1-norm. Therefore, we only take
the latter as an example. For all experiments in this section, at
each time, we randomly generate travel time samples for each
arc. To obtain accuracy and averaged running time, we repeat
the experiment for 1000 times. Moreover, we remark that in
this section, the accuracy are measured only based on testing
data, which usually results in the lower bound, as justified
in Section IV.

A. Distribution Parameters

Generally, probability distributions have two parameters, i.e.,
mean and standard deviation. To investigate their influence
on the performance, we only take normal distribution as an
example. We vary standard deviation, i.e., 10, 30, 50, and 70,
while keeping other parameters fixed (e.g., O-D pair and ratio
between the sizes of training and testing data). The accuracy
results are shown in Fig. 2.

From Fig. 2, we observe that most of accuracy is still above
90% (except one instance at 89%) for standard deviation of 70.
We also observe that as standard deviation increases, accuracy
decreases under same deadline coefficient and data size. It is
not difficult to understand that if standard deviation is O, the
accuracy by ¢1-norm will be 100% because it becomes a deter-
ministic problem. If standard deviation is large, the similarity
between training data and testing data greatly decreases, and
accordingly, the accuracy will be detrimental. Additionally,
the averaged running time is shown in Table V for different
standard deviations and data sizes.

From Table V, we observe that time complexity increases as
standard deviation increases from 10 to 50. This is due to the
fact that when standard deviation is 0, there is only one effective
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Fig. 3. Accuracy under different values of Rtsots. (a) Data size: 100. (b) Data size: 500. (c) Data size: 1000.

TABLE VI

AVERAGED RUNNING TIME FOR DIFFERENT RTSOTS

S=100, S1=40 | S=500, S1=200 | S=1000, S1=400
5:2 0.0395 0.1836 0.3769
5:3 0.0382 0.1963 0.3721
5:4 0.0419 0.1880 0.3694

inequality constraint in the MILP problem. Thus, computation
complexity is small. However, computation complexity may
not always increase as standard deviation continues to increase,
which can be observed when standard deviation changes from
50 to 70. This is because that the input data also affects time
complexity, but there is an upper bound for the complexity to
solve MILP problem, which was analyzed in Section III-E.

B. Ratio of Training Size Over Testing Size

In our approach, accuracy is computed based on prediction,
which is similar to the prediction problem in machine learning.
In machine learning, ratio of training size over testing size
(rtsots) is an important parameter to evaluate the accuracy.
Accordingly, we investigate its influence on our approach. We
vary the value of rtsots from 5:2 to 5:4 while keeping other
parameters fixed. The results are shown in Fig. 3.

From Fig. 3, we observe that there is no clear trend that
accuracy will be affected by rzsots. We explain this by combin-
ing two points. Firstly, our problem is similar to the prediction
in machine learning, and according to the machine learning
theory, more training data and less testing data usually lead to
higher accuracy. This means that, in our problem, higher rtsots
may achieve better accuracy. Secondly, on the other hand, our
question is not exactly same as the machine learning problem,
because metric of this stochastic optimal solution is probability.
When testing data size is comparatively large, it approximates
the probability better and share a similar pattern with training
data (i.e., similar probability of not being later than deadline).
It means that lower rtsots may achieve comparatively higher
accuracy, especially when traffic data size is large enough.
When these two points compromise with each other, we may
not observe a clear pattern regarding accuracy and rtsots. Mean-
while, we also record the averaged running time with respect to
different rtsots in Table VI.

As expected, we do not observe obvious pattern between
rtsots and time complexity in Table VI, because optimal path
is obtained from training data while we validate it on testing
data. Thus, the running time will not be influenced by rzsots.

C. O-D Pair

The locations of O-D pair are also important parameters that
may impact accuracy. We investigate the influence by chang-
ing O-D pair while keeping other parameters unchanged. We
choose following O-D pairs: 1-8, 1-10, 1-3, and 1-48, and there
are respectively 8, 1168, 2384, and 2784 different connected
paths between them. The results are shown in Fig. 4.

From Fig. 4, we observe that for most cases, as number
of connected paths increases, the accuracy decreases except
deadline coefficient of 0.8 in Fig. 4(b) and 0.6 in Fig. 4(c).
It is reasonable considering that if there is only one possible
path between O-D pair, the accuracy will always be 100%.
Since our approach is an approximation and traffic data is all
random, if there are a large number of candidate paths, the
chance that our solution is the actual optimal path will decrease.
However, in real world road networks, there may not be too
many connected paths between the concerned O-D pair for
driver to choose. Therefore, accuracy will not be degraded
significantly. Moreover, we record the averaged running time
for different O-D pairs in Table VII.

From the first three O-D pairs in Table VII, we observe that
when number of connected paths between O-D pair becomes
large, averaged running time accordingly increases. It is rea-
sonable because if there is only one path between the pair,
running time should be very short. If the number is large, it
will take longer time to search the best path. However, time
complexity may not constantly increase, because MILP solver
adopts efficient algorithms to find optimal solution although the
worst case (exponential computation complexity) is possible
to happen.

D. Graph Scale and Data Size

To analyze the influence brought by graph scale and data
size, we implement our approach on another comparatively
large artificial network with 100 nodes and 220 arcs. For this
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Fig. 4. Accuracy with respect to different O-D pairs. (a) Data size: 100. (b) Data size: 500. (c) Data size: 1000.

TABLE VII
AVERAGED RUNNING TIME FOR DIFFERENT O-D PAIRS
S5=100, S1=40|5=500, S1=200| S=1000, S1=400
1-8 (8) 0.0280 0.1352 0.3102
1-10 (1168) 0.0390 0.1958 0.3798
1-3 (2384) 0.0452 0.2210 0.3941
1-48 (2784) 0.0443 0.2324 0.3886

large network, as shown in Fig. 5, we randomly select O-D
pairs out of (40, 43) and (40, 51), whose numbers of connected
paths are respectively 2 403 060 and 4 529 052. Regarding other
settings, they are the same as previous simulations for the small
road network in Fig. 1. Accordingly, the accuracy for these two
graphs are plotted in Fig. 6.

From Fig. 6, we can see that graph scale affects accuracy
and small graph can achieve comparatively higher accuracy.
We note that the average number of connected paths for small
graph is around 2000 while large graph is around 3 000 000.
Moreover, the reason for different accuracy can be explained
by the same analysis for O-D pair. As for the influence caused
by data size alone, it has been analyzed previously, and the
accuracy could improve as data size becomes large, i.e., from
100 to 500. However, it becomes saturated, i.e. from 500
to 1000. Additionally, more obvious impact on our approach
caused by graph scale and data size is time complexity, which
is recorded in Table VIII.

From Table VIII we can see that enumeration method be-
comes prohibitively time consuming as graph scales up, which
uses more than 4,000 seconds to compute optimal path. The
obvious reason is that the number of connected paths between
O-D pair is huge on this large graph and enumeration does
not work efficiently. By contrast, time complexity of ¢1-norm
on large graph is only around 1 second, which is considerably
efficient because it uses smart optimization techniques to search
the desired path. However, considering ¢1-norm alone, time
complexity also increases as graph and data size scale up.
This is reasonable as we have analyzed in Section III-E, our
approach is based on MILP, which is solved by branch-and-
bound method. Additionally, the worst complexity for branch-
and-bound method is ©(2/4+/(|A,| + S)3), which increases as
network and data size scale up. However, as we observe from
all previous experiments, the worst case seldom happens.

Fig. 5. A 100-node, 220-arc road network.

E. Deadline Coefficients

Deadline coefficient impacts accuracy, which can be justified
from Figs. 2—4, and 6. Especially, for coefficient larger than 1,
i.e., 1.2, accuracy always reaches 100%. The detailed reason
can be found in the case studies presented in Section IV. As to
coefficients between 0 and 1, there is no regular pattern for the
accuracy. Moreover, to show the impact on time complexity,
we also record the averaged running time in Table IX for
different deadline coefficients while keeping other parameters
unchanged. From Table IX we observe that, time complexity
does not change with deadline coefficients regularly. This is
reasonable because in the MILP problem, deadline coefficient
impacts only inequality constraints, but does not change the
number of these constraints. By contrast, it may impact the
branching operation in MILP, which can be evaluated only by
the worst case scenario.
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TABLE VIII

AVERAGED RUNNING TIME FOR DIFFERENT
GRAPH SCALE AND DATA SI1ZE

S=100, | =500, | S=1000,
S1=40 | S1=200| S1=400
enumeration for large graph | 4670.5 | 4830.1 | 4781.5
{1-norm for large graph 0.7207 | 0.9816 | 1.3198
enumeration for small graph| 0.6980 | 0.6932 | 0.6970
£1-norm for small graph | 0.0539 | 0.2267 | 0.3996
TABLE IX
AVERAGED RUNNING TIME FOR DIFFERENT DEADLINE COEFFICIENTS
100, 40 | 500, 200 | 1000, 400

0.2 | 0.0240 | 0.1561 | 0.2983

0.4 | 0.0367 | 0.1683 | 0.2836

0.6 | 0.0344 | 0.1625 | 0.3041

0.8 | 0.0436 | 0.1438 | 0.3249

1.0 | 0.0359 | 0.1583 | 0.3039

1.2 | 0.0408 | 0.1469 | 0.3329

VI. TESTING ON REAL WORLD ROAD NETWORK

In this section, we evaluate our approach using an area of
Munich city, which is shown in Fig. 7. The underlying graph
includes 170 nodes and 277 arcs. The travel time samples on
each road link are extracted from real GPS trajectories of BMW
vehicles. The numbers of those samples on each road link are
not same, the minimum of which is 880 and the maximum is
41,256. Other settings are similar to that in Section IV. Since
the input data is from real GPS trajectories, there are no as-
sumptions of probability distribution or correlation. Moreover,
we synthesize the input data as follows:

1) Sort the data for each arc according to the time when they
were generated;

2) Divide the data for each arc into two parts: the first 80%
forms training data set, and the remaining forms testing
data set;

3) For each arc, randomly sample S data from first part as
training data and .S; data from second part as testing data,
and set S : .S; =5:3;

4) Repeat 1000 times to obtain accuracy measure.

Note that we measure accuracy based only on testing data

instead of training data and testing data together, which usually
results in lower bound accuracy, as justified in Section IV.

Fig. 7. An area of the Munich city, Germany.

Additionally, we implement the state-of-the-art algorithm in the
same network. The algorithm assumes that travel time for each
road link follows an independent normal distribution. If there
exists at least one path whose expected travel time is no longer
than deadline, this problem can be solved by quasi-convex
optimization technique efficiently. Otherwise, it can only find
an optimal solution by an inefficient enumeration method. Its
details are described in [12]. For better comparison, we adopt
this method according to the following settings:

1) Fit the best normal distribution for each arc based on the
S training data;

2) Use state-of-the-art algorithm to find the optimal path;

3) Validate this optimal path using the testing data, and
repeat 1000 times to obtain the accuracy measure.

Based on above settings, we obtain the accuracy results,
which are shown in Fig. 8. Comparing the three sub-figures,
we observe that, as expected, reweighted ¢1-norm algorithm
always achieves higher accuracy than that of iterated ¢1-norm
algorithm, and iterated ¢1-norm obtains higher accuracy than
that of ¢1-norm algorithm. The reason has been previous ana-
lyzed. Considering the accuracy for data size of 100, ¢1-norm
always has better accuracy than that of the state-of-the-art
algorithm. As data size increases to 500 and 1000, accuracy
of the state-of-the-art algorithm for some coefficients exceeds
that of /1-norm algorithm. This is because the state-of-the-art
algorithm can work well only for normal distribution. When
size of the data is small, such as 100, the fitting between normal
distribution and real data is usually poor. As data size becomes
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Fig. 8. Accuracy for the £1-norm based algorithm and the state-of-the-art algorithm. (a) Data size: 100. (b) Data size: 500. (c) Data size: 1000.

TABLE X
TIME COMPLEXITY FOR THE £1-NORM BASED ALGORITHMS
AND THE STATE-OF-THE-ART ALGORITHM

a 02 ] 04 1] 06 | 08 1.0 1.2
{1-norm 0.45410.435]/0.465| 0.476| 0.472| 0.464
iterated ¢1-norm | 1.541|1.730|1.712| 1.860| 1.687 | 1.702
reweighted ¢1-norm| 1.602|1.873|1.914| 1.937| 1.837| 1.821
state-of-the-art 0.808|0.721(0.554 | 0.443|0.453 | 0.450

exists the path whose expected travel time is not longer than
deadline, the state-of-the-art algorithm can work efficiently.
Otherwise, it will employ an enumeration method to determine
the optimal path, which is inefficient. Since at each time, the
travel time is randomly sampled from the real data, if deadline
coefficient is small, the chance that the smallest expected

large, the sampled data will become close to the distribution.
However, its accuracy is significantly affected by probability
distribution and data size. By contrast, our ¢;-norm based
algorithms are not strictly impacted by them, which has been
previously analyzed. However, regarding the accuracy for large
deadline coefficients, i.e., 1.2 or larger, our approach always
achieves 100% accuracy, which clearly outperforms the state-
of-the-art algorithm. Moreover, it is also important to note that,
the accuracy measured for ¢;-norm algorithm in Fig. 8 is only
the lower bound.

One important observation is that, the overall accuracy for
three ¢1-norm based algorithms is not as high as those in
Sections IV and V. This is because we made some assumptions
there to analyze the factors that may impact the performance
of our approach (e.g., keeping the same distribution, standard
deviation or O-D pairs). By contrast, the traffic data in this
section is collected from real vehicle trajectories, and there are
consequently no such assumptions. However, considering that
the real traffic data is always random and most of accuracy is
above 85%, the {1-norm based algorithms achieve good perfor-
mance for the real world road network and traffic. Additionally,
the deadline is an important parameter for the state-of-the-art
algorithm. To show the impact on time complexity caused by
deadline coefficients, we record the averaged running time in
Table X.

From Table X, we observe that ¢1-norm algorithm is more
efficient than iterated {1-norm algorithm, and iterated ¢1-norm
algorithm is more efficient than reweighted ¢1-norm algorithm
in terms of time complexity. This efficiency is obtained at
price of accuracy. Comparing ¢1-norm and the state-of-the-art
algorithm, we observe that, when deadline coefficient is small,
averaged running time for the state-of-the-art algorithm is com-
paratively longer. The underlying reason is that only if there

travel time is larger than deadline increases. Consequently, we
observe higher running time for small coefficient. As coefficient
becomes larger, that chance will decrease. Consequently, the
corresponding running time will also become short. However,
it is not always becoming shorter for the state-of-the-art algo-
rithm, because once there exists the path whose expected travel
time is not longer than deadline, the time complexity will not
change any more. And this result can be observed from Table X.

Combining both accuracy and time complexity together, we
found that /1 -norm algorithm and the state-of-the-art algorithm
have their own advantages. When data size is comparatively
small, i.e., 100 and 500, the accuracy of ¢1-norm algorithm is
always higher (at least not lower) than that of the state-of-the-
art algorithm. When data size is large, i.e., 1000, and deadline
coefficient is small, i.e., 0.2 and 0.4, accuracy for the state-of-
the-art algorithm is higher. However, for all different data sizes,
as long as deadline coefficient is large, i.e., not less than 1.2,
accuracy for the ¢1-norm algorithm is always 100%, which is
much higher than that of the state-of-the-art algorithm. We also
highlight that, the deadline coefficient is determined by driver,
and it can be any positive values. We only consider the range of
0.2—-1.2 for the sake of conveniently analyzing the factors that
may affect accuracy. More importantly, as stated in Sections IV
and V, accuracy obtained for ¢;-norm algorithm in Fig. 8 is
only the lower bound. By contrast, time complexity of the state-
of-the-art algorithm is obviously affected by deadline coeffi-
cient. When deadline coefficient is small, its time complexity
is much higher than that of ¢;-norm algorithm. Furthermore,
as deadline coefficient increases, its time complexity approxi-
mately converges, which is slightly lower than that of ¢;-norm
algorithm. Taking all these into account, we can conclude
that ¢1-norm algorithm is better than the state-of-the-art algo-
rithm. Additionally, comparing ¢ -norm algorithm with iterated
£1-norm and reweighted {1-norm algorithms, we conclude that
£1-norm algorithm is better considering both accuracy and time
complexity.
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We would like to highlight that our approach is data-driven.
It largely relies on travel time samples of each road link, which
can be obtained by processing the GPS trajectories of vehicles.
In a metropolitan city, daily traffic may involve millions of
vehicles, almost all of which are equipped with GPS devices.
Therefore, it is easy and feasible to deploy our approach
into realistic vehicle routing by exploring the big traffic data.
Generally, as analyzed previously, if our approach adopts huge
amount of the traffic data, accuracy is expected to be higher,
but running time is also accordingly longer. On the other hand,
if the size of traffic data is small in our approach, accuracy may
decrease although running time is shorter. Therefore, we need
to seek an optimal balance between them.

VII. CONCLUSION AND DISCUSSION

This paper aims at solving a stochastic shortest path problem
in vehicle routing. The objective is to determine an optimal path
that maximizes probability of a vehicle arriving at destination
not later than deadline. This problem is usually difficult to solve
unless we apply some assumptions on travel time probability
distribution, correlation or deadline. To address these issues, we
have transformed the problem into a cardinality minimization
problem, and further used an ¢;-norm technique and its variants
to solve the problem. The simulation results on a road network
have shown that the algorithm works well under a variety
of probability distributions. The performance is not affected
even when we consider travel time dependencies. Moreover,
it can solve the problem with various deadlines. By analyzing
important parameters, we have found that to some extent, the
accuracy and time complexity of the approach are subject
to standard deviation of travel time, ratio between the sizes
of training and testing data sets, origin and destination pair,
deadline coefficient, graph scale and data size. When tested
on real world road network with real traffic data, the results
show that ¢1-norm algorithm outperforms the state-of-the-art
algorithm. Comparing ¢1-norm algorithm with its two variants,
we have concluded that ¢;-norm algorithm is a better choice in
terms of both accuracy and time complexity.

We also would like to note that, with ¢1-norm algorithm,
searching the stochastic shortest path in this paper finally
becomes a MILP problem. In this MILP problem, decision vari-
able size is the sum of arc amount in the graph and traffic data
size for each arc. Moreover, the traffic data size is also the num-
ber of inequality constraints, and node amount in the graph is the
number of equality constraints. To our best knowledge, the worst
computation complexity of this MILP problem will exponen-
tially increase as graph or traffic data size scale up, and currently
there is no efficient (i.e., polynomial computation complexity)
method to solve it. Although the central routing engine server is
powerful, the computation may still become prohibitively time-
consuming because usually real world map scale or traffic data
size is very large. Accordingly, in the future, we try to improve
the computation complexity of this MILP problem:

1) We will use the approximate/heuristic algorithms, be-
cause ¢1-norm algorithm only approximately solves the
cardinality minimization problem, and in this sense solu-
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tion to the MILP problem does not need to be accurate as
long as it is acceptable;

2) Different from general MILP problem, the equality con-
straint in our problem satisfies total unimodularity, and
we will utilize this characteristic to solve the problem
efficiently. In addition to the computation complexity, we
will also study cooperative stochastic shortest path among
multiple vehicles.
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