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ABSTRACT 
On graph data, the multitude of node or edge types gives rise to 
heterogeneous information networks (HINs). To preserve the het-

erogeneous semantics on HINs, the rich node/edge types become a 
cornerstone of HIN representation learning. However, in real-world 
scenarios, type information is often noisy, missing or inaccessible. 
Assuming no type information is given, we defne a so-called latent 
heterogeneous graph (LHG), which carries latent heterogeneous se-
mantics as the node/edge types cannot be observed. In this paper, 
we study the challenging and unexplored problem of link prediction 
on an LHG. As existing approaches depend heavily on type-based 
information, they are suboptimal or even inapplicable on LHGs. 
To address the absence of type information, we propose a model 
named LHGNN, based on the novel idea of semantic embedding at 
node and path levels, to capture latent semantics on and between 
nodes. We further design a personalization function to modulate 
the heterogeneous contexts conditioned on their latent semantics 
w.r.t. the target node, to enable fner-grained aggregation. Finally, 
we conduct extensive experiments on four benchmark datasets, and 
demonstrate the superior performance of LHGNN. 

CCS CONCEPTS 
• Computing methodologies → Learning latent representa-
tions; • Information systems → Data mining. 
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Latent heterogeneous graph, link prediction, graph neural networks 
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1 INTRODUCTION 
Objects often interact with each other to form graphs, such as 
the Web and social networks. The prevalence of graph data has 
catalyzed graph analysis in various disciplines. In particular, link 
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prediction [43] is a fundamental graph analysis task, enabling wide-

spread applications such as friend suggestion in social networks, 
recommendation in e-commerce graphs, and citation prediction in 
academic networks. In these real-world applications, the graphs are 
typically heterogeneous as opposed to homogeneous, also known as 
Heterogeneous Information Networks (HINs) [39], in which mul-

tiple types of nodes and edges exist. For instance, the academic 
HIN shown in the top half of Fig. 1(a) interconnects nodes of three 
types, namely, Author (A), Paper (P) and Conference (C), through 
diferent types of edges such as “writes/written by” between author 
and paper nodes and “publishes/published in” between conference 
and paper nodes, etc. The multitude of node and edge types in HINs 
implies rich and diverse semantics on and between nodes, which 
opens up great opportunities for link prediction. 

A crucial step for link prediction is to derive features from an 
input graph. Recent literature focuses on graph representation 
learning [4, 37], which aims to map the nodes on the graph into a 
low-dimensional space that preserves the graph structures. Vari-

ous approaches exist, ranging from the earlier shallow embedding 
models [10, 27, 32] to more recent message-passing graph neural 
networks (GNNs) [11, 18, 34, 38]. Representation learning on HINs 
generally follows the same paradigm, but aims to preserve the het-

erogeneous semantics in addition to the graph structures in the 
low-dimensional space. To express heterogeneous semantics, ex-
isting work resorts to type-based information, including simple 
node/edge types (e.g., an author node carries diferent semantics 
from a paper node), and type structures like metapath [30] (e.g., 
the metapath A-P-A implies two authors are collaborators, whereas 
A-P-C-P-A implies two authors in the same feld; see Sect. 3 for the 
metapath defnition). Among the state-of-the-art heterogeneous 
GNNs, while hinging on the common operation of message passing, 
some exploit node/edge types [12, 16, 22, 41] and others employ 
type structures [9, 28, 35]. 

Our problem. The multitude of node or edge types gives rise to 
rich heterogeneous semantics on HINs, and forms the key thesis of 
HIN representation learning [39]. However, in many real-world sce-
narios, type information is often noisy, missing or inaccessible. One 
reason is type information does not exist explicitly and has to be 
deduced. For instance, when extracting entities and their relations 
from texts to construct a knowledge graph, NLP techniques are 
widely used to classify the extractions into diferent types, which 
can be noisy. Another reason is privacy and security, such that the 
nodes in a network may partially or fully hide their identities and 
types. Lastly, even on an apparently homogeneous graph, such as 
a social network which only consists of users and their mutual 
friendships, could have fne-grained latent types, such as diferent 
types of users (e.g., students and professionals) and diferent types 
of friendships (e.g., friends, family and colleagues), but we cannot 
observe such latent types. 
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Figure 1: Illustration of our problem and approach. (a) Com-

parison of HIN and LHG. (b) Key insights of our approach. 

Formally, we call those HINs without explicit type information 
as Latent Heterogeneous Graphs (LHGs), as shown in the bottom half 
of Fig. 1(a). The key diference on an LHG is that, while diferent 
types still exist, the type information is completely inaccessible 
and cannot be observed by data consumers. It implies that LHGs 
still carry rich heterogeneous semantics that are crucial to efective 
representation learning, but the heterogeneity becomes latent and 
presents a much more challenging scenario given that types or 
type structures can no longer be used. In this paper, we investigate 
this unexplored problem of link prediction on LHGs, which calls for 
modeling the latent semantics on LHGs as links are formed out of 
relational semantics between nodes. 

Challenges and insights. We propose a novel model for link 
prediction on LHGs, named Latent Heterogeneous Graph Neural 
Network (LHGNN). Our general idea is to develop a latent het-

erogeneous message-passing mechanism on an LHG, in order to 
exploit the latent semantics between nodes for link prediction. More 
specifcally, we must address two major challenges. 

First, how to capture the latent semantics on and between nodes 
without any type information? In the absence of explicit type in-

formation, we resort to semantic embedding at both node and path 
levels to depict the latent semantics. At the node level, we comple-

ment the traditional representation of each node (e.g., h4 in Fig. 1(b), 
which we call the primary embedding) with an additional semantic 
embedding (e.g., s4). While the primary embedding can be regarded 
as a blend of content and structure information, the semantic em-

bedding aims to distill the more subtle semantic information (i.e., 
latent node type and relation types a node tends to associate with), 
which could have been directly expressed if explicit types were 
available. Subsequently, at the path level, we can learn a semantic 
path embedding based on the node-level semantic embeddings in a 
path on an LHG, e.g., s4, s1 and s0 in the path �4–�1–�0 in Fig. 1(b). 
The path-level semantic embeddings aim to capture the latent high-

order relational semantics between nodes, such as the collaborator 
relation between authors �4 and �0 in Fig. 1(a), to mimic the role 
played by metapaths such as A-P-A. 

Second, as context nodes of a target node often carry latent het-

erogeneous semantics, how to diferentiate them for fner-grained 

context aggregation? We propose a learnable personalization func-

tion to modulate the original message from each context node. The 
personalization hinges on the semantic path embedding between 
each context node and the target node as the key diferentiator of 
heterogeneous semantics carried by diferent context nodes. For 
illustration, refer to the top half of Fig. 1(b), where the green nodes 
(e.g., �1, �4 and �6) are the context nodes of the doubly-circled tar-
get node (e.g., �0). These context nodes carry latent heterogeneous 
semantics (e.g., �1 is a paper written by �0, �4 is a collaborator of 
�0, and �6 is a related paper �0 might be interested in), and thus 
can be personalized by the semantic path embedding between each 
context and the target node before aggregating them. 

Contributions. In summary, our contributions are three-fold. (1) 
We investigate a novel problem of link prediction on latent het-

erogeneous graphs, which difers from traditional HINs due to the 
absence of type information. (2) We propose a novel model LHGNN 
based on the key idea of semantic embedding to bridge the gap for 
representation learning on LHGs. LHGNN is capable of inferring 
both node- and path-level semantics, in order to personalize the 
latent heterogeneous contexts for fner-grained message passing 
within a GNN architecture. (3) Extensive experiments on four real-
world datasets demonstrate the superior performance of LHGNN 
in comparison to the state-of-the-art baselines. 

2 RELATED WORK 

Graph neural networks. GNNs have recently become the main-

stream for graph representation learning. Modern GNNs typically 
follow a message-passing scheme, which derives low-dimensional 
embedding of a target node by aggregating messages from con-

text nodes. Diferent schemes of context aggregation have been 
proposed, ranging from simple mean pooling [11, 18] to neural 
attention [34] and other neural networks [38]. 

For representation learning on HINs, a plethora of heterogeneous 
GNNs have been proposed. They depend on type-based informa-

tion to capture the heterogeneity, just as earlier HIN embedding 
approaches [5, 8, 14]. On one hand, many of them leverage sim-

ple node/edge types. HetGNN [41] groups random walks by node 
types, and then applies bi-LSTM to aggregate node- and type-level 
messages. HGT [16] employs node- and edge-type dependent pa-
rameters to compute the heterogeneous attention over each edge. 
Simple-HGN [22] extends the edge attention with a learnable edge 
type embedding, whereas HetSANN [12] employs a type-aware 
attention layer. On the other hand, high-order type structures such 
as meta-path [30] or meta-graph [6] have also been used. HAN 
[35] uses meta-paths to build homogeneous neighbor graphs to 
facilitate node- and semantic-level attentions in message aggrega-
tion, whereas MAGNN [9] proposes several meta-path instance 
encoders to account for intermediate nodes in a meta-path instance. 
Meta-GNN [28] diferentiates context nodes based on meta-graphs. 
Another work Space4HGNN [45] proposes a unifed design space 
to build heterogeneous GNNs in a modularized manner, which can 
potentially utilize various type-based information. Despite their 
efectiveness on HINs, they cannot be applied to LHGs due to the 
need of explicit type information. 

Knowledge graph embedding. A knowledge graph consists of a 
large number of relations between head and tail entities. Translation 
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models [3, 19, 36] are popular approaches that treat each relation as 
a translation in some vector space. For example, TransE [3] models 
a relation as a translation between head and tail entities in the 
same embedding space, while TransR [19] further maps entities 
into multiple relation spaces to enhance semantic expressiveness. 
Separately, RotatE [31] models each relation as a rotation from head 
to tail entities in complex space, and is able to capture diferent 
relation patterns such as symmetry and inversion. These models 
require the edge type (i.e., relation) as input, which is not available 
on an LHG. Compared to heterogeneous GNNs, they do not utilize 
entity features or model multi-hop interactions between entities, 
which can lead to inferior performance on HINs. 

Predicting missing types. A few studies [13, 25] aim to predict 
missing entity types on knowledge graphs. However, a recent work 
[42] shows that these approaches tend to propagate type prediction 
errors on the graph, which harms the performance of other tasks 
like link prediction. Therefore, RPGNN [42] proposes a relation 
encoder, which is adaptive for each node pair to handle the missing 
types. However, all of them still require partial type information 
from a subset of nodes and edges for supervised training, which 
makes them infeasible in the LHG setting. 

3 PRELIMINARIES 
We frst review or defne the core concepts in this work. 

Heterogeneous Information Networks (HIN). An HIN [29] is 
defned as a graph � = (� , �,� , �,�, �), where � denotes the set 
of nodes and � denotes the set of node types, � denotes the set of 
edges and � denotes the set of edge types. Moreover, � : � → � 
and � : � → � are functions that map each node and edge to their 
types in � and �, respectively. � is an HIN if |� | + |� | > 2. 

Latent Heterogeneous Graph (LHG). An LHG is an HIN � = 
(� , �,� , �,�, �) such that the types�, � and mapping functions �, � 
are not accessible. That is, we only observe a homogeneous graph 
′ � = (� , �) without knowing �, �,�, � . 

Metapath and latent metapath. On an HIN, a metapath � is a 
�1 �2 �� 

sequence of node and edge types [30]: � = �1 −→ �2 −→ ... −→ 
��+1, such that �� ∈ � and �� ∈ �. As an edge type �� ∈ � represents 
a relation, a metapath represents a composition of relations �1 ◦ 
�2 ◦ . . . ◦ �� . Hence, metapaths can capture complex, high-order 
semantics between nodes. A path � = (�1, �2, . . . , ��+1) on the HIN 
is an instance of metapath � if � (�� ) = �� and � (⟨�� , ��+1⟩) = �� . As 
shown in the top half of Fig. 1(a), an example metapath is Author-

Paper-Author (A-P-A), implying the collaborator relation between 
authors. Instances of this metapath include �0-�1-�4 and �0-�3-�4, 
signifying that �0 and �4 are collaborators. 

On an LHG the metapaths become latent too, as the types �� 
and �� are not observable. Generally, any path � = (�1, �2, . . . , �� +1)
on an LHG is an instance of some latent metapath, which carries 
latent semantics representing an unknown composition of relations 
between the starting node �1 and end node ��+1. 

Link prediction on LHG. Given a query node, we rank other 
nodes by their probability of forming a link with the query. The 
diference lies in the input graph, where we are given an LHG. 

4 PROPOSED METHOD: LHGNN 
In this section, we introduce the proposed method LHGNN for link 
prediction on latent heterogeneous graphs. 

4.1 Overall Framework 
We start with the overall framework of LHGNN, as presented in 
Fig. 2. An LHG is given as input as illustrated in Fig. 2(a), which is fed 
into an LHGNN layer in Fig. 2(b). Multiple layers can be stacked, and 
the last layer would output the node representations, to be further 
fed into a link encoder for the task of link prediction as shown in 
Fig. 2(c). More specifcally, the LHGNN layer is our core component, 
which consists of two sub-modules: a semantic embedding sub-

module to learn node-level and path-level latent semantics, and a 
latent heterogeneous context aggregation sub-module to aggregate 
messages for the target node. We describe each sub-module and 
the link prediction task in the following. 

4.2 Semantic Embedding 
Semantic embedding aims to model both node- and path-level latent 
semantics, as illustrated in Fig. 2(b1). 

Node-level semantic embedding. For each node � , alongside 
its primary embedding h� , we propose an additional semantic em-

bedding s� . Similar to node embeddings on homogeneous graphs, 
the primary embeddings intend to capture the overall content and 
structure information of nodes. However, on an LHG, the content 
of a node contains not only concrete topics and preferences, but 
also subtle semantic information inherent to nodes of each latent 
type (e.g., node type, and potential single or multi-hop relations a 
node tends to be part of). Hence, we propose a semantic encoder 
to locate and distill the subtle semantic information from the pri-
mary embeddings to generate semantic embeddings, which will be 
later employed for link prediction. Note that this is diferent from 
disentangled representation learning [1], which can be regarded as 
disentangling a mixture of latent topics. 

Specifcally, in the �-th layer, given primary embeddings from the 
previous layer1 

(h� −1 , h�� 
− 
2

1 , . . .), a semantic encoder generates the�1 
� � 

corresponding semantic embeddings (s�1 
, s�2 

, . . .). For each node � , 
� 

the semantic encoder �� extracts the semantic embedding s� from 

its primary embedding h� −1
: s� = �� (h� −1

; ��
� ) ∈ R��

� 
. While the� � � 

function �� (·; ��� ) can take many forms, we simply materialize it as 
a fully connected layer: 

� + b� s� = LeakyReLU(W�
� h

�
� 
−1 

� ), (1) 

∈ R��
� ×�� −1 

∈ R�
� 

where W�
� ℎ and b�� � are the parameters of the 

encoder, i.e., �� = {W�
� , b�� }. Since the semantic embedding only� 

distill the subtle semantic information from the primary embedding, 
it needs much fewer dimensions, i.e., ��

� ≪ �� .
ℎ 

Path-level semantic embedding. A target node is often con-

nected with many context nodes through paths. On an LHG, these 
paths may carry diferent latent semantics by virtue of the hetero-

geneous multi-hop relations between nodes. In an HIN, to capture 
the heterogeneous semantics from diferent context nodes, meta-

paths have been a popular tool. For example, in the top half of 

1
When � = 0, the primary embedding h0 

�� 
is set to the input node features of �� . 
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(b2) Latent Heterogeneous Context Aggregation

Context
Personalization

(b) LHGNN Layer

Link 
 Encoder
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Figure 2: Overall framework of LHGNN. 

Fig. 1(a), the HIN consists of three types of nodes. There exist dif-
ferent metapaths that capture diferent semantics between authors: 
A-P-A for authors who have directly collaborated, or A-P-C-P-A

for authors who are likely in the same feld, etc. However, on an
LHG, we do not have access to the node types, and thus are unable

to defne or use any metapath. Thus, we employ a path encoder to
fuse the node-level semantic embeddings associated with a path
into a path-level embedding. The path-level semantic embeddings

attempt to mimic the role of metapaths on an HIN, to capture the

latent heterogeneous semantics between nodes.

Concretely, we frst perform random walks to sample a set of 
paths. Starting from each target node, we sample � random walks 
of length �max, e.g., {�1, . . . , �4} for �1 as shown in Fig. 2(b). Then,

for each sampled walk, we truncate it into a shorter path with 
length � ≤ �max. These paths of varying lengths can capture latent

semantics of diferent ranges, and serve as the instances of diferent 
latent metagraphs. 

Next, for each path �� , a path encoder encodes it to generate

� 
a semantic path embedding s�� . Let �� denote the set of sampled

paths starting from a target node � . If there exists a path �� ∈ ��
such that �� ends at node �, we call � a context node of � or simply

context of � . For instance, given the set of paths ��1 = {�1, . . . , �4}
for the target node �1 in Fig. 2(b1), the contexts are �4, �8, �7, which

carry diferent semantics for �1. In the �-th layer, we employ a path
encoder �� to embed each path �� into a semantic path embedding

� ∈ R�
� 

s�� � based on the node-level semantic embeddings of each 
node � � in the path.

� � s = �� ({s | � � in the path �� }), (2)�� �� 

where �� can take many forms, ranging from simple pooling to
recurrent neural networks [24] and transformers [33]. As the design 
of path encoder is not the focus of this paper, we simply implement 
it as a mean pooling, which computes the mean of the node-level 
semantic embeddings as the path-level embedding. 

Remark. It is possible or even likely to have multiple paths

between the target and context nodes. Intrinsically, these paths 
are instances of one or more latent metapaths, which bear a two-

fold advantage. First, as each latent metapath depicts a particular 
semantic relationship between two nodes, having plural latent 
metapaths could capture diferent semantics between the two nodes. 
This is more general than many heterogeneous GNNs [9, 35] on 
a HIN, which rely on a few handcrafted metapaths. Second, it is 
much more efcient to sample and process paths than subgraphs 
[17]. Although a metagraph can express more complex semantics 
than a metapath [44], the combination of multiple metapaths is a 
good approximation especially given the efciency trade-of. 

4.3 Latent Heterogeneous Context Aggregation 
To derive the primary embedding of the target node, the next step is 
to perform latent heterogeneous context aggregation for the target 
node. The aggregation generally follows a message-passing GNN 
architecture, where messages from context nodes are passed to 
the target node. For example, consider the target node �1 shown

in Fig. 2(b2). The contexts of �1 include {�4, �8, �7} based on the

paths �1, . . . , �4, and their messages (i.e., embeddings) would be
aggregated to generate the primary embedding of �1.

However, on an LHG, the contexts of a target node carry la-
tent heterogeneous semantics. Thus, these heterogeneous contexts 
shall be diferentiated before aggregating them, in order to pre-
serve the latent semantics in fne granules. Note that on an HIN, 
the given node/edge types or type structures can be employed as 
explicit diferentiators for the contexts. In contrast, the lack of type 
information on an LHG prevents the adoption of the explicit dif-
ferentors, and we resort to path semantic embeddings as the basis 
to diferentiate the messages from heterogeneous contexts. That is, 
in each layer, we personalize the message from each context node

conditioned on the semantic path embeddings between the target 
and context node. The personalized context messages are fnally 
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aggregated to generate the primary embedding of the target node, 
i.e., the output of the current layer. 

Context personalization. Consider a target node � , a context node 
�, and their connecting path � . In particular, � can be diferentiated 
from other contexts of � given their connecting path � , which is 
associated with a unique semantic path embedding. Note that there 
may be more than one paths connecting � and �. In that case, we 
treat � as multiple contexts, one instance for each path, as each path 
carries diferent latent semantics and the corresponding context 
instance needs to be diferentiated. 

Specifcally, in the �-th layer, we personalize the message from � 
to � with a learnable transformation function � , which modulates 
�’s original message h� −1 

(i.e., its primary embedding from the� 
h� previous layer) into a personalized message ˜ conditioned on 
� |� 

the path � between � and � . That is, 

h˜ 
�
� 
|� = � (h�� −1 , s�� ; ��

� ), (3) 

where the transformation function � (·; ��� ) is learnable with pa-
rameters ��

� 
. We implement � using a layer of feature-wise linear 

modulation (FiLM) [20, 26], which enables the personalization of a 
� 

message (e.g., h� −1
) conditioned on arbitrary input (e.g., s� ). The � 

FiLM layer learns to perform scaling and shifting operations to 
modulate the original message: 

h˜ 
�
� 
|� = (��� + 1) ⊙ h�

� −1 + ��
� , (4) 

∈ R�
� −1 

∈ R�
� −1

where �� ℎ is a scaling vector and �� ℎ is a shifting � � 
vector, both of which are learnable and specifc to the path � . Note 
that 1 is a vector of ones to center the scaling around one, and ⊙ 
denotes the element-wise multiplication. To make ��

� 
and ��

� 
learn-

able, we materialize them using a fully connected layer, which takes 
� 

in the semantic path embedding s� as input to become conditioned 
on the path � , as follows. 

�� � 
� = LeakyReLU(W�

� s� + b�
� ), (5) 

�� � = LeakyReLU(W� s� + b� ), (6)� � � 

∈ R�
� −1 ×�� ∈ R�

� −1 
� 

where W� ℎ and b� ℎ are learnable parameters, and ∗ ∗ 
LeakyReLU(·) is the activation function. Note that the parameters 
of the transformation function � in layer � boil down to parameters 
of the fully connected layers, i.e., �� = {W�

� , W� , b�� , b� }.� � � 

Context aggregation. Next, we aggregate the personalized mes-

∈ R�
� −1

� 
sages from latent heterogeneous contexts into c ℎ , the� 
aggregated context embedding for the target node � : 

� h� c = Mean({�−�� (� ) ˜ 
� |� | � ∈ �� }), (7)� 

where �(�) gives the length of the path � so that �−�� (� ) 
acts as 

a weighting scheme to bias toward shorter paths, and � > 0 is a 
hyperparameter controlling the decay rate. We use mean-pooling 
as the aggregation function, although other choices such as sum-

or max-pooling could also be used. 
Note that the self-information of the target node is also aggre-

gated, by defning a self-loop on the target node as a special path. 
More specifcally, given a target node � and its self-loop � , we defne 

h� = h� �(�) = 0 and ˜ 
� |� � , which means the original message of the 

� 
target node will be included into c� with a weight of 1. 

Finally, based on the aggregated context embedding, we obtain 
the primary embedding of node � in the �-th layer: 

h� � = LeakyReLU(W� c� + b� ), (8)� ℎ ℎ 

∈ R�
� ×�� −1 

∈ R�
� 

where W� ℎ ℎ and b� ℎ are learnable parameters. 
ℎ ℎ 

4.4 Link Prediction 
In the following, we discuss the treatment of the link prediction 
task on an LHG, as illustrated in Fig. 2(c). In particular, we will 
present a link encoder and the loss function. 

Link encoder. For link prediction between two nodes, we design 
a link encoder to capture the potential latent relationships between 
the two candidates. Given two candidate nodes � and � and their re-
spective semantic embeddings s�, s� obtained from the last LHGNN 
layer, the link encoder is materialized in the form of a recurrent 
unit to generate a pairwise semantic embedding: 

= tanh (Ws� + Us� + b), (9)s�,� 

where s�,� ∈ R�ℎ 
can be interpreted as an embedding of the latent 

R�� ×�ℎ 
,relationships between the two nodes � and �, W, U ∈ 

b ∈ R�ℎ 
are learnable parameters. Here �ℎ and �� are the number 

of dimensions of the primary and semantic embeddings from the 
last layer, respectively. Note that s�,� has the same dimension as the 
node representations, which can be used as a translation to relate 
nodes � and � in the loss function in the next part. 

Loss function. We adopt a triplet loss for link prediction. For an 
edge (�, �) ∈ �, we construct a triplet (�, �, �), where � is a negative 
node randomly sampled from the graph. Inspired by translation 
models in knowledge graph [3, 19], � can be obtained by a transla-

tion on � and the translation approximates the latent relationships 
between � and �, i.e., h� ≈ h� + s�,� . Note that h� denotes the 
primary node embedding from the fnal LHGNN layer. In contrast, 
since � is a random node unrelated to �, h� cannot be approxi-
mated by the translation. Thus, given a set of training triplets � , 
we formulate the following triplet margin loss for the task: ∑ � �

1 L
task = max � (�, �) − � (�, �) + �, 0 , (10)|� | (�,�,� ) ∈� 

where � (�,�) = ∥h� + s�,� − h� ∥2 is the Euclidean norm of the 
translational errors, and � > 0 is the margin hyperparameter. 

Besides the task loss, we also add constraints to scaling and 
shifting in the FiLM layer. During training, the scaling and shifting 
may become arbitrarily large to overft the data. To prevent this 
issue, we restrict the search space by the following loss term on the 
scaling and shifting vectors. ∑ℓ ∑ 

LFiLM = (∥��� ∥2 + ∥��� ∥2), (11) 
� =1 � ∈� 

where ℓ is the total number of layers and � is the set of all sampled 
paths. The overall loss is then 

L = L
task + �LFiLM, (12) 

where � > 0 is a hyperparameter to balance the loss terms. 
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Table 1: Summary of Datasets. 

Attributes FB15k-237 WN18RR DBLP OGB-MAG 

# Nodes 14,541 40,943 18,405 100,002 
# Edges 310,116 93,003 67,946 1,862,256 

# Features - - 334 128 
# Node types - - 3 4 
# Edge types 237 11 4 4 
Avg(degree) 29.09 3.50 3.55 17.88 

# Training 272,115 86,835 54,356 1,489,804 
# Validation 17,535 3,034 6,794 186,225 
# Testing 20,466 3,134 6796 186,227 

We further present the training algorithm for LHGNN in Appen-

dix A, and give a complexity analysis therein. 

5 EXPERIMENTS 
In this section, we conduct extensive experiments to evaluate the 
efectiveness of LHGNNon four benchmark datasets. 

5.1 Experimental Setup 

Datasets. We employ four graph datasets summarized in Table 1. 
Note that, while all these graphs include node or edge types, we 
hide such type information to transform them into LHGs. 

• FB15k-237 [31] is a refned subset of Freebase [2], a knowledge 
graph about general facts. It is curated with the most frequently 
used relations, in which each node is an entity, and each edge 
represents a relation. 

• WN18RR [31] is a refned subset of WordNet [23], a knowledge 
graph demonstrating lexical relations of vocabulary. 

• DBLP [40] is an academic bibliographic network, which includes 
three types of nodes, i.e., paper (P), author (A) and conference 
(C), as well as four types of edges, i.e., P-A, A-P, P-C, C-P. The 
node features are 334-dimensional vectors which represent the 
bag-of-word vectors for the keywords. 

• OGB-MAG [15] is a large-scale academic graph. It contains four 
types of nodes, i.e., paper (P), author (A), institution (I) and feld 
(F), as well as four types of edges, i.e., A-I, A-P, P-P, P-F. Features 
of each paper is a 128-dimensional vector generated by word2vec, 
while the node feature of the other types is generated by metap-

ath2vec [5] with the same dimension following previous work 
[7]. In our experiments, we randomly sample a subgraph with 
around 100K entities from the original graph using breadth frst 
search. 

Baselines. For a comprehensive comparison, we employ baselines 
from three major categories. 

• Classic GNNs: GCN [18], GAT [34] and GraphSAGE [11], which 
are classic GNN models for homogeneous graphs. 

• Heterogeneous GNNs: HAN [35], HGT [16] and Simple-HGN 
(HGN for short) [22], which are state-of-the-art heterogeneous 
graph neural networks (HGNNs) taking in an HIN as input. 

• Translation models: TransE [3] and TransR [19], which are well-

known methods for knowledge graph embedding. 

Note that the heterogeneous GNNs and translation models re-
quire node/edge types as input, to apply them to an LHG, we adopt 
two strategies: either treating all nodes or edges as one type, or gen-

erating pseudo types, which we will elaborate later. See Appendix B 
for more detailed descriptions of the baselines. 

Model settings. See Appendix D for the hyperparameters and 
other settings of the baselines and our method. 

5.2 Evaluation of Link Prediction 
In this part, we evaluate the performance of LHGNN on the main 
task of link prediction on LHGs. 

Settings. For knowledge graph datasets (FB15k-237 and WN18RR), 
we use the same training/validation/testing proportion in previous 
work [31], as given in Table 1. For the other datasets, we adopt a 
80%/10%/10% random splitting of the links. Note that the training 
graphs are reconstructed from only the training links. 

We adopt ranking-based evaluation metrics for link prediction, 
namely, NDCG and MAP [21]. In the validation and testing set, 
given a ground-truth link (�, �), we randomly sample another 9 
nodes which are not linked to � as negative nodes, and form a 
candidate list together with node �. For evaluation, we rank the 
10 nodes based on their scores w.r.t. node �. For our LHGNN, the 
score for a candidate link (�,�) is computed as −∥h� + s�,� − h� ∥2. 
For classic and heterogeneous GNN models, we implement the 
same triplet margin loss for them, as given by Eq. (10). The only 
diference is that � (�,�) is defned by ∥h� − h� ∥2 in the absence 
of semantic embeddings. Similarly, their link scoring function is 
defned as −∥h� − h� ∥2 for a candidate link (�,�). Translation 
models also use the same loss and scoring function as ours, except 
for replacing our link encoding s�,� with their type-based relation 
embedding. 

Scenarios of comparison. Since the type information is inaccessi-

ble on LHGs, for heterogeneous GNNs and the translation methods, 
we consider the following scenarios. 

The frst scenario is to treat all nodes/edges as only one type in 
the absence of type information. 

In the second scenario, we generate pseudo types. For nodes, we 
resort to the �-means algorithm to cluster nodes into � clusters 
based on their features, and treat the cluster ID of each node as 
its type. Since the number of clusters or types � is unknown, we 
experiment with diferent values. For each heterogeneous GNN or 
translation model, we use “X-�” to denote a variant of model X 
with � pseudo node types, where X is the model name. For instance, 
HAN-3 means HAN with three pseudo node types. Note that there is 
no node feature in FB15k-237 and WN18RR. To perform clustering, 
we use node embeddings by running X-1 frst. On the other hand, 
edge types are derived using the Cartesian product of the node 
types, resulting in � ×� pseudo edge types. Finally, for HAN which 
requires metapath, we further construct pseudo metapaths based 
on the pseudo node types. For each pseudo node type, we employ 
all metapaths with length two starting and ending at that type. We 
also note that some previous works [13, 25] can predict missing 
type information. However, they cannot be used to generate the 
pseudo types, as they still need partial type information from some 
nodes and edges as supervision. 
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Table 2: Evaluation of link prediction on LHGs. Best is bolded and runner-up underlined; OOM means out-of-memory error. 

Methods 
FB15k-237 

MAP NDCG 
WN18RR 

MAP NDCG MAP 
DBLP 

NDCG 
OGB-MAG 

MAP NDCG 

GCN 0.790 ± 0.001 0.842 ± 0.001 0.729 ± 0.002 0.794 ± 0.001 0.879 ± 0.001 0.910 ± 0.001 0.848 ± 0.001 0.886 ± 0.001 
GAT 0.786 ± 0.002 0.839 ± 0.001 0.761 ± 0.001 0.818 ± 0.001 0.913 ± 0.001 0.936 ± 0.001 0.830 ± 0.004 0.872 ± 0.003 
GraphSAGE 0.800 ± 0.001 0.850 ± 0.001 0.728 ± 0.003 0.793 ± 0.002 0.891 ± 0.001 0.918 ± 0.001 0.849 ± 0.001 0.887 ± 0.001 

TransE 0.675 ± 0.001 0.752 ± 0.001 0.511 ± 0.002 0.624 ± 0.001 0.488 ± 0.001 0.605 ± 0.001 0.552 ± 0.001 0.656 ± 0.001 
TransR 0.734 ± 0.004 0.798 ± 0.003 0.510 ± 0.002 0.623 ± 0.001 0.565 ± 0.007 0.668 ± 0.005 0.546 ± 0.001 0.652 ± 0.001 

HAN 0.725 ± 0.002 0.793 ± 0.002 0.749 ± 0.003 0.810 ± 0.003 0.763 ± 0.005 0.801 ± 0.004 OOM OOM 
HGT 0.782 ± 0.001 0.837 ± 0.001 0.724 ± 0.003 0.791 ± 0.002 0.897 ± 0.001 0.923 ± 0.001 0.835 ± 0.003 0.876 ± 0.002 
HGN 0.742 ± 0.002 0.806 ± 0.001 0.802 ± 0.002 0.849 ± 0.002 0.907 ± 0.003 0.930 ± 0.002 0.818 ± 0.001 0.863 ± 0.001 

LHGNN 0.858 ± 0.001 0.893 ± 0.001 0.838 ± 0.003 0.877 ± 0.002 0.932 ± 0.003 0.949 ± 0.002 0.879 ± 0.001 0.909 ± 0.001 

Table 3: Evaluation of link prediction on LHGs with pseudo 
types for heterogeneous GNNs and translation models. 

FB15k-237 WN18RR DBLP OGB-MAG 
Methods 

MAP NDCG MAP NDCG MAP NDCG MAP NDCG 

TransE-3 0.693 0.767 0.510 0.623 0.599 0.693 0.568 0.670 
TransE-10 0.701 0.773 0.519 0.630 0.677 0.754 0.599 0.694 
TransR-3 0.749 0.810 0.485 0.604 0.585 0.683 0.599 0.695 
TransR-10 0.727 0.794 0.497 0.614 0.631 0.719 OOM OOM 

HAN-3 0.594 0.685 0.673 0.616 0.603 0.687 OOM OOM 
HAN-10 0.648 0.734 0.384 0.529 0.618 0.708 OOM OOM 
HGT-3 0.799 0.850 0.733 0.797 0.888 0.916 0.837 0.878 
HGT-10 0.750 0.812 0.607 0.701 0.857 0.893 0.837 0.878 
HGN-3 0.746 0.809 0.814 0.859 0.903 0.927 0.815 0.861 
HGN-10 0.735 0.800 0.822 0.864 0.898 0.923 0.813 0.859 

Besides, in the third scenario, we also evaluate the heterogeneous 
GNNs on a complete HIN with all node/edge types given. This 
assesses if explicit type information is useful, and how the baselines 
with full type information compare to our model. 

Performance on LHGs. In the frst scenario, all methods do not 
have access to the node/edge types. We report the results in Table 2, 
and make the following observations. 

First, our proposed LHGNN consistently outperforms all the 
baselines across diferent metrics and datasets. The results imply 
that LHGNN can adeptly capture latent semantics between nodes 
to assist link prediction, even without any type information. 

Second, the performance of classic GNN baselines is consistently 
competitive or even slightly better than heterogeneous GNNs. This 
fnding is not surprising—while heterogeneous GNNs can be efec-

tive on HINs, their performance heavily depends on high-quality 
type information which is absent from LHGs. 

Third, translation models are usually worse than GNNs, possibly 
because they do not take advantage of node features, and lack a 
message-passing mechanism to fully exploit graph structures. 

Performance with pseudo types. In the second scenario, we 
generate pseudo types for heterogeneous GNNs and translation 
models, and report their results in Table 3. We observe diferent 
outcomes on diferent kinds of baselines. 

On one hand, translation models generally beneft from the use 
of pseudo types. Compared to Table 2 without using pseudo types, 
TransE-� can achieve an improvement of 13.2% and 8.5% in MAP 
and NDCG, respectively, while TransR-� can improve the two 
metrics by 5.2% and 3.6%, respectively (numbers are averaged over 
the four datasets). This demonstrates that even very crude type 
estimation (e.g., �-means clustering) is useful in capturing latent 
semantics between nodes. Nevertheless, our model LHGNN still 
outperforms translation models using pseudo types. 

On the other hand, heterogeneous GNNs can only achieve mar-

ginal improvements with pseudo types, if not worse performance. 
A potential reason is that pseudo types are noisy, and the message-

passing mechanism of GNNs can propagate local errors caused by 
the noises and further amplify them across the graph. In contrast, 
the lack of message passing in translation models make them less 
susceptible to noises, and the beneft of pseudo types outweighs 
the efect of noises. 

Overall, while pseudo types can be useful to some extent, they 
cannot fully reveal the latent semantics between nodes due to po-

tential noises. Moreover, we need to set a predetermined number 
of pseudo types, which is not required by our model LHGNN. 

Performance on complete HINs. The third scenario is designed 
to further evaluate the importance of type information, and how 
LHGNN fares against baselines equipped with full type information 
on HINs. Specifcally, we compare the performance of the heteroge-

neous GNNs on the two datasets DBLP and OGB-MAG, where type 
information is fully provided. To enhance the link prediction of the 
heterogeneous GNN models, we adopt a relation-aware decoder 
[22] to compute the score for a candidate link (�,�) as h�� W� h� , 
where W� ∈ R�ℎ ×�ℎ 

is a learnable matrix for each edge type � ∈ �. 
We report the results in Table 4. 

We observe that heterogeneous GNNs with full type information 
consistently perform better than themselves without any type infor-

mation (cf. Table 2). This is not surprising given the rich semantics 
expressed by explicit types. Moreover, LHGNN achieves compara-

ble results to the heterogeneous GNNs or sometimes better results 
(cf. Table 2), despite LHGNN not requiring any explicit type. A po-

tential reason is the node- and path-level semantic embeddings in 
LHGNN can capture latent semantics in a fner granularity, whereas 
the explicit types on a HIN may be coarse-grained. For example, 
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Table 4: Evaluation of link prediction on HINs with full access 
to node/edge types for heterogeneous GNNs. Percentages in 
parenthesis indicate the improvement to their performance 
on LHGs (cf. Table 2). 

Methods 
MAP 

DBLP 
NDCG 

OGB-MAG 
MAP NDCG 

HAN 0.789 (+3.4%) 0.821 (+2.5%) OOM OOM 
HGT 0.902 (+0.6%) 0.927 (+0.4%) 0.872 (+4.4%) 0.904 (+3.2%) 
HGN 0.909 (+0.2%) 0.932 (+0.2%) 0.855 (+4.5%) 0.892 (+3.4%) 

Table 5: Evaluation of node type classifcation on LHGs. 

DBLP OGB-MAG 
Methods 

MacroF Accuracy MacroF Accuracy 

GCN 0.376 ± 0.009 0.785 ± 0.002 0.599 ± 0.011 0.890 ± 0.003 
GAT 0.310 ± 0.003 0.782 ± 0.001 0.624 ± 0.035 0.894 ± 0.007 
GraphSAGE 0.477 ± 0.021 0.842 ± 0.012 0.550 ± 0.014 0.902 ± 0.004 

HGT 0.464 ± 0.009 0.837 ± 0.005 0.823 ± 0.018 0.973 ± 0.003 
HGN 0.292 ± 0.001 0.778 ± 0.001 0.531 ± 0.003 0.847 ± 0.003 

LHGNN 0.662 ± 0.001 0.995 ± 0.001 0.884 ± 0.002 0.953 ± 0.001 

on a typical academic graph, there are node types of Author or 
Paper, but no fner-grained types like Student/Faculty Author or 
Research/Application Paper is available. 

5.3 Evaluation of Node Type Classifcation 
To evaluate the expressiveness of semantic embeddings in captur-

ing type information, we further use them to conduct node type 
classifcation on DBLP and OGB-MAG thanks to their accessible 
ground truth types. We perform stratifed train/test splitting, i.e., for 
each node type, we use 60% nodes for training and 40% for testing. 
For each node, we concatenate its primary node embedding and 
semantic embedding, and feed it into a logistic regression classifer 
to predict its node type. We choose fve competitive baselines, and 
use their output node embeddings to also train a logistic regression 
classifer on the same split. 

We employ macro-F score and accuracy as the evaluation met-

rics, and report the results in Table 5. We observe that LHGNN 
can signifcantly outperform the other baselines, with only one 
exception in accuracy on OGB-MAG. Since the node types are im-

balanced (e.g., authors account for 77.8% of all nodes on DBLP, and 
64.4% on OGB-MAG), accuracy may be skewed by the majority 
class and is often not a useful indicator of predictive power. The 
results demonstrate the usefulness of semantic embedding in our 
model to efectively express type information. 

5.4 Model Analyses 

Ablation study. To evaluate the contribution of each module in 
LHGNN, we conduct an ablation study by comparing with several 
degenerate variants: (1) no link encoder : we remove the link encoder, 
by setting all pairwise semantic embeddings s�,� to zero in both 
training and testing; (2) no personalization: we remove the person-

alization conditioned on semantic path embeddings, by using a 

Trung-Kien Nguyen, Zemin Liu, and Yuan Fang 

Table 6: Training time. 

Nodes Edges Time Epochs 

20k 370k 1084s 24 
40k 810k 1517s 11 
60k 1.2M 2166s 8 
80k 1.6M 2428s 6 

100k 1.8M 2251s 5 

Figure 3: Ablation study. 

simple mean pooling for context aggregation; (3) no link encoder & 
personalization: we remove both modules as described earlier, which 
is equivalent to removing the semantic embeddings altogether. 

We present the results in Fig. 3 and make the following observa-
tions. First, the performance of LHGNN drops signifcantly when 
removing the link encoder, showing their importance on LHGs. 
In other words, the learned latent semantics between nodes are 
efective for link prediction. Second, without the personalization for 
context aggregation, the performance also declines. This shows that 
the context nodes have heterogeneous relationships to the target 
node, and the semantic path embeddings can work as intended to 
personalize the contexts. Third, without both of them, the model 
usually achieves the worst performance. 

Scalability. We sample fve subgraphs from the largest dataset 
OGB-MAG, with sizes ranging from 20k to 100k nodes. We present 
the total training time and number of epochs of LHGNN on these 
subgraphs in Table 6. As the graph grows by 5 times, total training 
time to converge only increases by 2 times, since generally fewer 
epochs are needed for convergence on larger graphs. 

Additional studies. We present results on additional model studies 
in Appendices E, F and G, respectively. 

6 CONCLUSION 
In this paper, we investigated a challenging and unexplored setting 
of latent heterogeneous graphs (LHG) for the task of link prediction. 
Existing approaches on heterogeneous graphs depend on explicit 
type-based information, and thus they do not work well on LHGs. 
To deal with the absence of types, we proposed a novel model named 
LHGNN for link prediction on an LHG, based on the novel idea of 
semantic embedding at both node and path levels, and a personal-

ized aggregation of latent heterogeneous contexts for target nodes 
in a fne-grained manner. Finally, extensive experiments on four 
benchmark datasets show the superior performance of LHGNN. 
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APPENDICES 

A Algorithm and Complexity 
We outline the model training for LHGNN in Algorithm 1. 

Algorithm 1 Model Training for LHGNN 

Input: latent heterogeneous graph � = (� , � ) , training triplets � , a set of 
random walk paths �� for each node � 

Output: Model parameters Θ. 
1: initialize parameters Θ; 
2: while not converged do 
3: sample a batch of triplets �

bat ⊂ � ; 
4: for each target node � in the batch �

bat do 
5: for each layer � ∈ {1, 2, . . . , ℓ } do 

� 
6: s� ← �� (h�� 

−1
; ��

� ) ; 
7: for each path � ∈ �� that ends at context node � do 

� � 
8: s� ← �� ({s |�� in the path � }) ;�� 

9: h˜ 
�
� 
|� ← � (h�� −1 , s�� ; ��

� ) ; 

h� h� 10: � ← Aggregate({ ˜ 
� |� |� ∈ �� }; 

11: Calculate the loss L by Eqs. (10),(11) and (12); 
12: update Θ by minimizing L; 

13: return Θ. 

In line 1, we initialize the model parameters. In line 3, we sample 
a batch of triplets from training data. In lines 4–10, we calculate 
layer-wise node representations on the training set. Specifcally, for 
each node � in layer � , we calculate the semantic embeddings at the 
node level in line 6 and path level in line 8. Next, we personalize 
the contexts in line 9 and aggregate them in line 10. In lines 11-12, 
We compute the loss and update the parameters. 

We compare the complexity of one layer and one target node in 
LHGNN against a standard message-passing GNN. In a standard 
GNN, the aggregation for one node in the �-th layer has complexity 
� (�� ¯ � �� −1), where �� is the output dimension of the �-th layer 

ℎ ℎ ℎ 
and � ¯ is the node degree. In our model, we frst need to compute 
the node- and path-level semantic embeddings. At the node level, 
the cost is � (��� �� −1) based on Eq. (1); at the path level, given a

ℎ 
node with � paths of maximum length �max, the cost is � (��max��

� )
based on Eq. (2). The computation of scaling and shifting vectors 
takes � (��� −1 

� ) based on Eqs. (5) and (6), and the personaliza-�� 
ℎ 

tion of context embeddings takes � (��� −1) based on Eq. (4). Thus,
ℎ 

the aggregation and representation update step takes � (��� �� −1)
ℎ ℎ

based on Eqs. (7) and (8). Furthermore, the cost to sample a path 
of length �max is � (�max). To sample � paths for a target node in 
one LHGNN layer, the overhead is � (��max), which is negligible 
compared to the aggregation cost, as �max is small (less than 5 in 
our experiments). Therefore, the total complexity for one node in 
one layer is � (��max��

� + ��� �� −1 + ��� �� −1). As �max is a small � 

constant and �� −1 ≪ �� −1
, the complexity reduces to � (��� �� −1). 

ℎ ℎ ℎ 

� ℎ ℎ ℎ
Furthermore, we can limit � , the number of sampled paths from 
each node, by some constant value, in which case our model has 
the same complexity class as a standard GNN. 

B Details of Baselines 
We provide detailed descriptions for the baselines. 

• Classic GNNs: GCN [18] aggregates information for the target 
node by applying mean-pooling over its neighbors. GAT [34]: 
utilizes self-attention to assign diferent weights to neighbors of 
the target node during aggregation. Meanwhile, GraphSAGE [11]: 
concatenates the target node with the aggregated information 
from its neighbors to produce the node embedding. These models 
treat all nodes or edges as a uniform type and do not attempt to 
distinguish them. 

• Heterogeneous GNNs: HAN [35] makes use of handcrafted metap-

aths to decompose HIN into multiple homogeneous graphs, one 
for each metapath, then employs hierarchical attention to learn 
both node-level and semantic-level importance for aggregation. 
HGT [16] applies the transformer model, using node and edge 
type parameters to capture the heterogeneity. HGN [22] extends 
GAT by employing node type information in the calculation of 
attention scores. These three models require type-based infor-

mation in their architectures. Given an LHG, we either assume a 
single node/edge type or employ pseudo types for these methods, 
as described in the main paper. 

• Translation models: TransE [3] models the relation between enti-

ties as a translation in the same embedding space. TransR [19] 
maps entity embeddings into a relation-wise space before the 
translation. These models require the relation type (i.e., edge 
type) to be known. Similarly, we assume a single edge type or 
employ pseudo types for them. 

C Environment 
All experiments are conducted on a workstation with a 12-core 
CPU, 128GB RAM, and 2 RTX-A5000 GPUs. We implemented the 
proposed LHGNN using Pytorch 1.10 and Python 3.8 in Ubuntu-

20.04. 

D Model Settings 
For all the approaches, we use the same output dimension as 32 
for fair comparison to conduct link prediction. For the two knowl-

edge graph datasets (i.e., FB15k-237 and WN18RR), we randomly 
initialize a learnable parameter vector for each entity with embed-

ding dimension 200. We tune the margin hyperparameter � for 
each model in order to achieve its optimal performance. All experi-

ments are repeated 5 times, and we report the average results with 
standard deviations. 

For all GNN baselines, we employ two layers with L2 Normal-

ization on each layer. We use a margin 0.2 and dropout ratio 0.5 for 
all of them. For GCN, we set the hidden dimension as 32. For GAT, 
we use four attention heads with hidden dimension of each head as 
16. For GraphSAGE, we use the mean aggregator and set its hidden 
dimension as 32. For all HGNN baselines, we mainly follow the 
default setting in [22]. In particular, we also employ 2-layer archi-

tectures for all of them. For HAN, for the node-level aggregation, 
we use GAT with eight attention heads with hidden dimension 8 
for each head, and its dropout ratio is 0.6; and we set the dimension 
for semantic-level attention as 128 and set � = 1. For HGT, we use 
eight attention heads, with dropout ratio as 0.2 and margin as 1. 
For HGN, we use eight attention heads with dropout ratio as 0.5. 
We set the dimension of edge embeddings as 64, and the margin as 
0.5. For translation models including TransE and TransR, we set the 
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Table VII: Impact of diferent number of layers. In each column, the best is bolded and the runner-up is underlined. 

Methods 
FB15k-237 

MAP NDCG 
WN18RR 

MAP NDCG MAP 
DBLP 

NDCG 
OGB-MAG 

MAP NDCG 

GCN-2 0.790 ± 0.001 0.842 ± 0.001 0.729 ± 0.002 0.794 ± 0.001 0.879 ± 0.001 0.910 ± 0.001 0.848 ± 0.001 0.886 ± 0.001 
GCN-3 0.782 ± 0.001 0.837 ± 0.001 0.726 ± 0.005 0.792 ± 0.003 0.861 ± 0.001 0.896 ± 0.001 0.799 ± 0.003 0.849 ± 0.002 
GCN-4 0.778 ± 0.001 0.833 ± 0.001 0.711 ± 0.005 0.781 ± 0.004 0.851 ± 0.003 0.888 ± 0.003 0.802 ± 0.002 0.851 ± 0.002 

HGT-2 0.782 ± 0.001 0.837 ± 0.001 0.724 ± 0.003 0.791 ± 0.002 0.897 ± 0.001 0.923 ± 0.001 0.835 ± 0.003 0.876 ± 0.002 
HGT-3 0.788 ± 0.001 0.841 ± 0.001 0.727 ± 0.012 0.792 ± 0.009 0.890 ± 0.001 0.917 ± 0.001 0.826 ± 0.002 0.870 ± 0.002 
HGT-4 0.784 ± 0.005 0.838 ± 0.003 0.751 ± 0.007 0.811 ± 0.006 0.881 ± 0.011 0.911 ± 0.009 0.822 ± 0.003 0.867 ± 0.003 

LHGNN 0.858 ± 0.001 0.893 ± 0.001 0.838 ± 0.003 0.877 ± 0.002 0.932 ± 0.003 0.949 ± 0.002 0.879 ± 0.001 0.909 ± 0.001 

Table VIII: Impact of model size. |Θ| denotes the number of 
learnable parameters in a model. 

DBLP OGB-MAG 
Methods |Θ | MAP NDCG |Θ | MAP NDCG 

GCN-32 12K 0.879 ± 0.001 0.910 ± 0.001 5K 0.848 ± 0.001 0.886 ± 0.001 
GCN-64 25K 0.890 ± 0.001 0.918 ± 0.001 12K 0.849 ± 0.001 0.887 ± 0.001 
GCN-96 41K 0.890 ± 0.001 0.918 ± 0.001 21K 0.847 ± 0.001 0.886 ± 0.001 

GAT-16 26K 0.913 ± 0.001 0.936 ± 0.001 13K 0.830 ± 0.004 0.872 ± 0.003 
GAT-32 60K 0.910 ± 0.001 0.932 ± 0.001 33K 0.828 ± 0.001 0.871 ± 0.001 
GAT-48 102K 0.910 ± 0.002 0.933 ± 0.002 62K 0.815 ± 0.005 0.861 ± 0.004 

HGT-32 21K 0.897 ± 0.001 0.923 ± 0.001 14K 0.835 ± 0.003 0.876 ± 0.002 
HGT-64 61K 0.907 ± 0.001 0.930 ± 0.001 48K 0.836 ± 0.003 0.877 ± 0.002 

HGN-32 239K 0.907 ± 0.003 0.930 ± 0.002 231K 0.818 ± 0.001 0.863 ± 0.001 
HGN-64 717K 0.905 ± 0.001 0.929 ± 0.001 703K 0.826 ± 0.001 0.869 ± 0.001 

LHGNN 25K 0.932 ± 0.003 0.949 ± 0.002 12K 0.879 ± 0.001 0.909 ± 0.001 

Figure IV: Impact of parameters. 

learning rate as 0.005, embedding dimension as 200 and the margin 
as 0.2. 

For our model, we also employ a two-layer architecture with 
L2-Normalization. We randomly sample 50 paths starting from each 
target node. We set the dimension of semantic embeddings as 10, 
decay ratio � as 0.1, the weight of scaling and shifting constraints 
� as 0.0001, and margin as 0.2. 

E Number of Layers 
We investigate the impact of number of layers in representative 
baseline models. Results from Table VII show that adding more 

layers might not give better results. Overall, they are still much 
worse than our proposed LHGNN. 

F Impact of Model Size 
We investigate the impact of model size (i.e., the number of learnable 
parameters in a model) on empirical performance. Specifcally, we 
select several representative GNNs from the baselines, and vary the 
size of each GNN by increasing its hidden dimension. For instance, 
GCN-32 indicates that its hidden layer has 32 neurons. Table VIII 
shows the link prediction performance of the GNNs with vary-
ing model sizes. Overall, larger models employing the same GNN 
architecture can only achieve slight improvements, and LHGNN 
continues to outperform them despite having a relatively small 
model. The results imply that the efectiveness of LHGNN comes 
from the architectural design rather than stacking with more pa-
rameters. 

G Parameter Sensitivity 
To study the impact of model parameters, we showcase two of 
the important parameters, including the maximum length for path 
sampling �max, and the weight of scaling and shifting constraint 
�. We present the results in Fig. IV. For sparse datasets with low 
average degree such as WN18RR and DBLP, using a large maximum 
length for paths can generally improve the performance, as it can 
exploit more contextual structures around the target node. For the 
other two datasets, their performance is generally less afected as 
the maximum length of paths increases. For the hyper-parameter 
�, LHGNN generally achieves the best performance in the interval 
[0.0001, 0.001] across the four datasets, demonstrating the necessity 
of this constraint. 

H Data Ethics Statement 
To evaluate the efcacy of this work, we conducted experiments 
which only use publicly available datasets234

, in accordance to 
their usage terms and conditions if any. We further declare that 
no personally identifable information was used, and no human or 
animal subject was involved in this research. 
2
https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding.git 

3
https://github.com/seongjunyun/Graph_Transformer_Networks.git 

4
https://github.com/snap-stanford/ogb.git 
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