
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2023

Link prediction on latent heterogeneous graphs Link prediction on latent heterogeneous graphs

Trung Kien NGUYEN
Singapore Management University, tknguyen@smu.edu.sg

Zemin LIU
Singapore Management University, zmliu@smu.edu.sg

Yuan FANG
Singapore Management University, yfang@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the OS and Networks Commons

Citation Citation
NGUYEN, Trung Kien; LIU, Zemin; and FANG, Yuan. Link prediction on latent heterogeneous graphs.
(2023). Proceedings of the World Wide Web Conference, WWW 2023, Austin TX, USA, April 30 - May 4.
263-273.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8190

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8190&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Link Prediction on Latent Heterogeneous Graphs
Trung-Kien Nguyen

∗
Zemin Liu

∗†
Yuan Fang

Singapore Management University National University of Singapore Singapore Management University
Singapore Singapore Singapore

tknguyen@smu.edu.sg zeminliu@nus.edu.sg yfang@smu.edu.sg

ABSTRACT
On graph data, the multitude of node or edge types gives rise to
heterogeneous information networks (HINs). To preserve the het-

erogeneous semantics on HINs, the rich node/edge types become a
cornerstone of HIN representation learning. However, in real-world
scenarios, type information is often noisy, missing or inaccessible.
Assuming no type information is given, we defne a so-called latent
heterogeneous graph (LHG), which carries latent heterogeneous se-
mantics as the node/edge types cannot be observed. In this paper,
we study the challenging and unexplored problem of link prediction
on an LHG. As existing approaches depend heavily on type-based
information, they are suboptimal or even inapplicable on LHGs.
To address the absence of type information, we propose a model
named LHGNN, based on the novel idea of semantic embedding at
node and path levels, to capture latent semantics on and between
nodes. We further design a personalization function to modulate
the heterogeneous contexts conditioned on their latent semantics
w.r.t. the target node, to enable fner-grained aggregation. Finally,
we conduct extensive experiments on four benchmark datasets, and
demonstrate the superior performance of LHGNN.

CCS CONCEPTS
• Computing methodologies → Learning latent representa-
tions; • Information systems → Data mining.

KEYWORDS
Latent heterogeneous graph, link prediction, graph neural networks

ACM Reference Format:
Trung-Kien Nguyen

∗
, Zemin Liu

∗†
, and Yuan Fang. 2023. Link Prediction

on Latent Heterogeneous Graphs. In Proceedings of the ACM Web Conference
2023 (WWW ’23), April 30–May 04, 2023, Austin, TX, USA. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3543507.3583284

1 INTRODUCTION
Objects often interact with each other to form graphs, such as
the Web and social networks. The prevalence of graph data has
catalyzed graph analysis in various disciplines. In particular, link

∗
Co-frst authors with equal contribution.
†
Corresponding author. Work partly done at Singapore Management University.

This work is licensed under a Creative Commons Attribution International
4.0 License.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9416-1/23/04.
https://doi.org/10.1145/3543507.3583284

prediction [43] is a fundamental graph analysis task, enabling wide-

spread applications such as friend suggestion in social networks,
recommendation in e-commerce graphs, and citation prediction in
academic networks. In these real-world applications, the graphs are
typically heterogeneous as opposed to homogeneous, also known as
Heterogeneous Information Networks (HINs) [39], in which mul-

tiple types of nodes and edges exist. For instance, the academic
HIN shown in the top half of Fig. 1(a) interconnects nodes of three
types, namely, Author (A), Paper (P) and Conference (C), through
diferent types of edges such as “writes/written by” between author
and paper nodes and “publishes/published in” between conference
and paper nodes, etc. The multitude of node and edge types in HINs
implies rich and diverse semantics on and between nodes, which
opens up great opportunities for link prediction.

A crucial step for link prediction is to derive features from an
input graph. Recent literature focuses on graph representation
learning [4, 37], which aims to map the nodes on the graph into a
low-dimensional space that preserves the graph structures. Vari-

ous approaches exist, ranging from the earlier shallow embedding
models [10, 27, 32] to more recent message-passing graph neural
networks (GNNs) [11, 18, 34, 38]. Representation learning on HINs
generally follows the same paradigm, but aims to preserve the het-

erogeneous semantics in addition to the graph structures in the
low-dimensional space. To express heterogeneous semantics, ex-
isting work resorts to type-based information, including simple
node/edge types (e.g., an author node carries diferent semantics
from a paper node), and type structures like metapath [30] (e.g.,
the metapath A-P-A implies two authors are collaborators, whereas
A-P-C-P-A implies two authors in the same feld; see Sect. 3 for the
metapath defnition). Among the state-of-the-art heterogeneous
GNNs, while hinging on the common operation of message passing,
some exploit node/edge types [12, 16, 22, 41] and others employ
type structures [9, 28, 35].

Our problem. The multitude of node or edge types gives rise to
rich heterogeneous semantics on HINs, and forms the key thesis of
HIN representation learning [39]. However, in many real-world sce-
narios, type information is often noisy, missing or inaccessible. One
reason is type information does not exist explicitly and has to be
deduced. For instance, when extracting entities and their relations
from texts to construct a knowledge graph, NLP techniques are
widely used to classify the extractions into diferent types, which
can be noisy. Another reason is privacy and security, such that the
nodes in a network may partially or fully hide their identities and
types. Lastly, even on an apparently homogeneous graph, such as
a social network which only consists of users and their mutual
friendships, could have fne-grained latent types, such as diferent
types of users (e.g., students and professionals) and diferent types
of friendships (e.g., friends, family and colleagues), but we cannot
observe such latent types.

263

https://doi.org/10.1145/3543507.3583284
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3543507.3583284
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583284&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Trung-Kien Nguyen, Zemin Liu, and Yuan Fang

Figure 1: Illustration of our problem and approach. (a) Com-

parison of HIN and LHG. (b) Key insights of our approach.

Formally, we call those HINs without explicit type information
as Latent Heterogeneous Graphs (LHGs), as shown in the bottom half
of Fig. 1(a). The key diference on an LHG is that, while diferent
types still exist, the type information is completely inaccessible
and cannot be observed by data consumers. It implies that LHGs
still carry rich heterogeneous semantics that are crucial to efective
representation learning, but the heterogeneity becomes latent and
presents a much more challenging scenario given that types or
type structures can no longer be used. In this paper, we investigate
this unexplored problem of link prediction on LHGs, which calls for
modeling the latent semantics on LHGs as links are formed out of
relational semantics between nodes.

Challenges and insights. We propose a novel model for link
prediction on LHGs, named Latent Heterogeneous Graph Neural
Network (LHGNN). Our general idea is to develop a latent het-

erogeneous message-passing mechanism on an LHG, in order to
exploit the latent semantics between nodes for link prediction. More
specifcally, we must address two major challenges.

First, how to capture the latent semantics on and between nodes
without any type information? In the absence of explicit type in-

formation, we resort to semantic embedding at both node and path
levels to depict the latent semantics. At the node level, we comple-

ment the traditional representation of each node (e.g., h4 in Fig. 1(b),
which we call the primary embedding) with an additional semantic
embedding (e.g., s4). While the primary embedding can be regarded
as a blend of content and structure information, the semantic em-

bedding aims to distill the more subtle semantic information (i.e.,
latent node type and relation types a node tends to associate with),
which could have been directly expressed if explicit types were
available. Subsequently, at the path level, we can learn a semantic
path embedding based on the node-level semantic embeddings in a
path on an LHG, e.g., s4, s1 and s0 in the path �4–�1–�0 in Fig. 1(b).
The path-level semantic embeddings aim to capture the latent high-

order relational semantics between nodes, such as the collaborator
relation between authors �4 and �0 in Fig. 1(a), to mimic the role
played by metapaths such as A-P-A.

Second, as context nodes of a target node often carry latent het-

erogeneous semantics, how to diferentiate them for fner-grained

context aggregation? We propose a learnable personalization func-

tion to modulate the original message from each context node. The
personalization hinges on the semantic path embedding between
each context node and the target node as the key diferentiator of
heterogeneous semantics carried by diferent context nodes. For
illustration, refer to the top half of Fig. 1(b), where the green nodes
(e.g., �1, �4 and �6) are the context nodes of the doubly-circled tar-
get node (e.g., �0). These context nodes carry latent heterogeneous
semantics (e.g., �1 is a paper written by �0, �4 is a collaborator of
�0, and �6 is a related paper �0 might be interested in), and thus
can be personalized by the semantic path embedding between each
context and the target node before aggregating them.

Contributions. In summary, our contributions are three-fold. (1)
We investigate a novel problem of link prediction on latent het-

erogeneous graphs, which difers from traditional HINs due to the
absence of type information. (2) We propose a novel model LHGNN
based on the key idea of semantic embedding to bridge the gap for
representation learning on LHGs. LHGNN is capable of inferring
both node- and path-level semantics, in order to personalize the
latent heterogeneous contexts for fner-grained message passing
within a GNN architecture. (3) Extensive experiments on four real-
world datasets demonstrate the superior performance of LHGNN
in comparison to the state-of-the-art baselines.

2 RELATED WORK

Graph neural networks. GNNs have recently become the main-

stream for graph representation learning. Modern GNNs typically
follow a message-passing scheme, which derives low-dimensional
embedding of a target node by aggregating messages from con-

text nodes. Diferent schemes of context aggregation have been
proposed, ranging from simple mean pooling [11, 18] to neural
attention [34] and other neural networks [38].

For representation learning on HINs, a plethora of heterogeneous
GNNs have been proposed. They depend on type-based informa-

tion to capture the heterogeneity, just as earlier HIN embedding
approaches [5, 8, 14]. On one hand, many of them leverage sim-

ple node/edge types. HetGNN [41] groups random walks by node
types, and then applies bi-LSTM to aggregate node- and type-level
messages. HGT [16] employs node- and edge-type dependent pa-
rameters to compute the heterogeneous attention over each edge.
Simple-HGN [22] extends the edge attention with a learnable edge
type embedding, whereas HetSANN [12] employs a type-aware
attention layer. On the other hand, high-order type structures such
as meta-path [30] or meta-graph [6] have also been used. HAN
[35] uses meta-paths to build homogeneous neighbor graphs to
facilitate node- and semantic-level attentions in message aggrega-
tion, whereas MAGNN [9] proposes several meta-path instance
encoders to account for intermediate nodes in a meta-path instance.
Meta-GNN [28] diferentiates context nodes based on meta-graphs.
Another work Space4HGNN [45] proposes a unifed design space
to build heterogeneous GNNs in a modularized manner, which can
potentially utilize various type-based information. Despite their
efectiveness on HINs, they cannot be applied to LHGs due to the
need of explicit type information.

Knowledge graph embedding. A knowledge graph consists of a
large number of relations between head and tail entities. Translation

264

− − −

Link Prediction on Latent Heterogeneous Graphs WWW ’23, April 30–May 04, 2023, Austin, TX, USA

models [3, 19, 36] are popular approaches that treat each relation as
a translation in some vector space. For example, TransE [3] models
a relation as a translation between head and tail entities in the
same embedding space, while TransR [19] further maps entities
into multiple relation spaces to enhance semantic expressiveness.
Separately, RotatE [31] models each relation as a rotation from head
to tail entities in complex space, and is able to capture diferent
relation patterns such as symmetry and inversion. These models
require the edge type (i.e., relation) as input, which is not available
on an LHG. Compared to heterogeneous GNNs, they do not utilize
entity features or model multi-hop interactions between entities,
which can lead to inferior performance on HINs.

Predicting missing types. A few studies [13, 25] aim to predict
missing entity types on knowledge graphs. However, a recent work
[42] shows that these approaches tend to propagate type prediction
errors on the graph, which harms the performance of other tasks
like link prediction. Therefore, RPGNN [42] proposes a relation
encoder, which is adaptive for each node pair to handle the missing
types. However, all of them still require partial type information
from a subset of nodes and edges for supervised training, which
makes them infeasible in the LHG setting.

3 PRELIMINARIES
We frst review or defne the core concepts in this work.

Heterogeneous Information Networks (HIN). An HIN [29] is
defned as a graph � = (� , �,� , �,�, �), where � denotes the set
of nodes and � denotes the set of node types, � denotes the set of
edges and � denotes the set of edge types. Moreover, � : � → �
and � : � → � are functions that map each node and edge to their
types in � and �, respectively. � is an HIN if |� | + |� | > 2.

Latent Heterogeneous Graph (LHG). An LHG is an HIN � =
(� , �,� , �,�, �) such that the types�, � and mapping functions �, �
are not accessible. That is, we only observe a homogeneous graph
′ � = (� , �) without knowing �, �,�, � .

Metapath and latent metapath. On an HIN, a metapath � is a
�1 �2 ��

sequence of node and edge types [30]: � = �1 −→ �2 −→ ... −→
��+1, such that �� ∈ � and �� ∈ �. As an edge type �� ∈ � represents
a relation, a metapath represents a composition of relations �1 ◦
�2 ◦ . . . ◦ �� . Hence, metapaths can capture complex, high-order
semantics between nodes. A path � = (�1, �2, . . . , ��+1) on the HIN
is an instance of metapath � if � (��) = �� and � (⟨�� , ��+1⟩) = �� . As
shown in the top half of Fig. 1(a), an example metapath is Author-

Paper-Author (A-P-A), implying the collaborator relation between
authors. Instances of this metapath include �0-�1-�4 and �0-�3-�4,
signifying that �0 and �4 are collaborators.

On an LHG the metapaths become latent too, as the types ��
and �� are not observable. Generally, any path � = (�1, �2, . . . , �� +1)
on an LHG is an instance of some latent metapath, which carries
latent semantics representing an unknown composition of relations
between the starting node �1 and end node ��+1.

Link prediction on LHG. Given a query node, we rank other
nodes by their probability of forming a link with the query. The
diference lies in the input graph, where we are given an LHG.

4 PROPOSED METHOD: LHGNN
In this section, we introduce the proposed method LHGNN for link
prediction on latent heterogeneous graphs.

4.1 Overall Framework
We start with the overall framework of LHGNN, as presented in
Fig. 2. An LHG is given as input as illustrated in Fig. 2(a), which is fed
into an LHGNN layer in Fig. 2(b). Multiple layers can be stacked, and
the last layer would output the node representations, to be further
fed into a link encoder for the task of link prediction as shown in
Fig. 2(c). More specifcally, the LHGNN layer is our core component,
which consists of two sub-modules: a semantic embedding sub-

module to learn node-level and path-level latent semantics, and a
latent heterogeneous context aggregation sub-module to aggregate
messages for the target node. We describe each sub-module and
the link prediction task in the following.

4.2 Semantic Embedding
Semantic embedding aims to model both node- and path-level latent
semantics, as illustrated in Fig. 2(b1).

Node-level semantic embedding. For each node � , alongside
its primary embedding h� , we propose an additional semantic em-

bedding s� . Similar to node embeddings on homogeneous graphs,
the primary embeddings intend to capture the overall content and
structure information of nodes. However, on an LHG, the content
of a node contains not only concrete topics and preferences, but
also subtle semantic information inherent to nodes of each latent
type (e.g., node type, and potential single or multi-hop relations a
node tends to be part of). Hence, we propose a semantic encoder
to locate and distill the subtle semantic information from the pri-
mary embeddings to generate semantic embeddings, which will be
later employed for link prediction. Note that this is diferent from
disentangled representation learning [1], which can be regarded as
disentangling a mixture of latent topics.

Specifcally, in the �-th layer, given primary embeddings from the
previous layer1

(h� −1 , h��
−
2

1 , . . .), a semantic encoder generates the�1
� �

corresponding semantic embeddings (s�1
, s�2

, . . .). For each node � ,
�

the semantic encoder �� extracts the semantic embedding s� from

its primary embedding h� −1
: s� = �� (h� −1

; ��
�) ∈ R��

�
. While the� � �

function �� (·; ���) can take many forms, we simply materialize it as
a fully connected layer:

� + b� s� = LeakyReLU(W�
� h

�
�
−1

�), (1)

∈ R��
� ×�� −1

∈ R�
�

where W�
� ℎ and b�� � are the parameters of the

encoder, i.e., �� = {W�
� , b�� }. Since the semantic embedding only�

distill the subtle semantic information from the primary embedding,
it needs much fewer dimensions, i.e., ��

� ≪ �� .
ℎ

Path-level semantic embedding. A target node is often con-

nected with many context nodes through paths. On an LHG, these
paths may carry diferent latent semantics by virtue of the hetero-

geneous multi-hop relations between nodes. In an HIN, to capture
the heterogeneous semantics from diferent context nodes, meta-

paths have been a popular tool. For example, in the top half of

1
When � = 0, the primary embedding h0

��
is set to the input node features of �� .

265

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Trung-Kien Nguyen, Zemin Liu, and Yuan Fang

(b2) Latent Heterogeneous Context Aggregation

Context
Personalization

(b) LHGNN Layer

Link
 Encoder

Task loss

(c) Prediction

Context
Aggregation

(b1) Semantic Embedding

v1

v2

v3

v8

v4

v6v5

v7

Semantic
Encoder

Path
Encoder

(a) Input LHG

p2

p4

v1 v2 v8

v1 v6 v5 v7

Example target node v1

p1 v1 v4

p3 v1 v2 v3 v8

Figure 2: Overall framework of LHGNN.

Fig. 1(a), the HIN consists of three types of nodes. There exist dif-
ferent metapaths that capture diferent semantics between authors:
A-P-A for authors who have directly collaborated, or A-P-C-P-A

for authors who are likely in the same feld, etc. However, on an
LHG, we do not have access to the node types, and thus are unable

to defne or use any metapath. Thus, we employ a path encoder to
fuse the node-level semantic embeddings associated with a path
into a path-level embedding. The path-level semantic embeddings

attempt to mimic the role of metapaths on an HIN, to capture the

latent heterogeneous semantics between nodes.

Concretely, we frst perform random walks to sample a set of
paths. Starting from each target node, we sample � random walks
of length �max, e.g., {�1, . . . , �4} for �1 as shown in Fig. 2(b). Then,

for each sampled walk, we truncate it into a shorter path with
length � ≤ �max. These paths of varying lengths can capture latent

semantics of diferent ranges, and serve as the instances of diferent
latent metagraphs.

Next, for each path �� , a path encoder encodes it to generate

�
a semantic path embedding s�� . Let �� denote the set of sampled

paths starting from a target node � . If there exists a path �� ∈ ��
such that �� ends at node �, we call � a context node of � or simply

context of � . For instance, given the set of paths ��1 = {�1, . . . , �4}
for the target node �1 in Fig. 2(b1), the contexts are �4, �8, �7, which

carry diferent semantics for �1. In the �-th layer, we employ a path
encoder �� to embed each path �� into a semantic path embedding

� ∈ R�
�

s�� � based on the node-level semantic embeddings of each
node � � in the path.

� � s = �� ({s | � � in the path �� }), (2)�� ��

where �� can take many forms, ranging from simple pooling to
recurrent neural networks [24] and transformers [33]. As the design
of path encoder is not the focus of this paper, we simply implement
it as a mean pooling, which computes the mean of the node-level
semantic embeddings as the path-level embedding.

Remark. It is possible or even likely to have multiple paths

between the target and context nodes. Intrinsically, these paths
are instances of one or more latent metapaths, which bear a two-

fold advantage. First, as each latent metapath depicts a particular
semantic relationship between two nodes, having plural latent
metapaths could capture diferent semantics between the two nodes.
This is more general than many heterogeneous GNNs [9, 35] on
a HIN, which rely on a few handcrafted metapaths. Second, it is
much more efcient to sample and process paths than subgraphs
[17]. Although a metagraph can express more complex semantics
than a metapath [44], the combination of multiple metapaths is a
good approximation especially given the efciency trade-of.

4.3 Latent Heterogeneous Context Aggregation
To derive the primary embedding of the target node, the next step is
to perform latent heterogeneous context aggregation for the target
node. The aggregation generally follows a message-passing GNN
architecture, where messages from context nodes are passed to
the target node. For example, consider the target node �1 shown

in Fig. 2(b2). The contexts of �1 include {�4, �8, �7} based on the

paths �1, . . . , �4, and their messages (i.e., embeddings) would be
aggregated to generate the primary embedding of �1.

However, on an LHG, the contexts of a target node carry la-
tent heterogeneous semantics. Thus, these heterogeneous contexts
shall be diferentiated before aggregating them, in order to pre-
serve the latent semantics in fne granules. Note that on an HIN,
the given node/edge types or type structures can be employed as
explicit diferentiators for the contexts. In contrast, the lack of type
information on an LHG prevents the adoption of the explicit dif-
ferentors, and we resort to path semantic embeddings as the basis
to diferentiate the messages from heterogeneous contexts. That is,
in each layer, we personalize the message from each context node

conditioned on the semantic path embeddings between the target
and context node. The personalized context messages are fnally

266

Link Prediction on Latent Heterogeneous Graphs WWW ’23, April 30–May 04, 2023, Austin, TX, USA

aggregated to generate the primary embedding of the target node,
i.e., the output of the current layer.

Context personalization. Consider a target node � , a context node
�, and their connecting path � . In particular, � can be diferentiated
from other contexts of � given their connecting path � , which is
associated with a unique semantic path embedding. Note that there
may be more than one paths connecting � and �. In that case, we
treat � as multiple contexts, one instance for each path, as each path
carries diferent latent semantics and the corresponding context
instance needs to be diferentiated.

Specifcally, in the �-th layer, we personalize the message from �
to � with a learnable transformation function � , which modulates
�’s original message h� −1

(i.e., its primary embedding from the�
h� previous layer) into a personalized message ˜ conditioned on
� |�

the path � between � and � . That is,

h˜
�
�
|� = � (h�� −1 , s�� ; ��

�), (3)

where the transformation function � (·; ���) is learnable with pa-
rameters ��

�
. We implement � using a layer of feature-wise linear

modulation (FiLM) [20, 26], which enables the personalization of a
�

message (e.g., h� −1
) conditioned on arbitrary input (e.g., s�). The �

FiLM layer learns to perform scaling and shifting operations to
modulate the original message:

h˜
�
�
|� = (��� + 1) ⊙ h�

� −1 + ��
� , (4)

∈ R�
� −1

∈ R�
� −1

where �� ℎ is a scaling vector and �� ℎ is a shifting � �
vector, both of which are learnable and specifc to the path � . Note
that 1 is a vector of ones to center the scaling around one, and ⊙
denotes the element-wise multiplication. To make ��

�
and ��

�
learn-

able, we materialize them using a fully connected layer, which takes
�

in the semantic path embedding s� as input to become conditioned
on the path � , as follows.

�� �
� = LeakyReLU(W�

� s� + b�
�), (5)

�� � = LeakyReLU(W� s� + b�), (6)� � �

∈ R�
� −1 ×�� ∈ R�

� −1
�

where W� ℎ and b� ℎ are learnable parameters, and ∗ ∗
LeakyReLU(·) is the activation function. Note that the parameters
of the transformation function � in layer � boil down to parameters
of the fully connected layers, i.e., �� = {W�

� , W� , b�� , b� }.� � �

Context aggregation. Next, we aggregate the personalized mes-

∈ R�
� −1

�
sages from latent heterogeneous contexts into c ℎ , the�
aggregated context embedding for the target node � :

� h� c = Mean({�−�� (�) ˜
� |� | � ∈ �� }), (7)�

where �(�) gives the length of the path � so that �−�� (�)
acts as

a weighting scheme to bias toward shorter paths, and � > 0 is a
hyperparameter controlling the decay rate. We use mean-pooling
as the aggregation function, although other choices such as sum-

or max-pooling could also be used.
Note that the self-information of the target node is also aggre-

gated, by defning a self-loop on the target node as a special path.
More specifcally, given a target node � and its self-loop � , we defne

h� = h� �(�) = 0 and ˜
� |� � , which means the original message of the

�
target node will be included into c� with a weight of 1.

Finally, based on the aggregated context embedding, we obtain
the primary embedding of node � in the �-th layer:

h� � = LeakyReLU(W� c� + b�), (8)� ℎ ℎ

∈ R�
� ×�� −1

∈ R�
�

where W� ℎ ℎ and b� ℎ are learnable parameters.
ℎ ℎ

4.4 Link Prediction
In the following, we discuss the treatment of the link prediction
task on an LHG, as illustrated in Fig. 2(c). In particular, we will
present a link encoder and the loss function.

Link encoder. For link prediction between two nodes, we design
a link encoder to capture the potential latent relationships between
the two candidates. Given two candidate nodes � and � and their re-
spective semantic embeddings s�, s� obtained from the last LHGNN
layer, the link encoder is materialized in the form of a recurrent
unit to generate a pairwise semantic embedding:

= tanh (Ws� + Us� + b), (9)s�,�

where s�,� ∈ R�ℎ
can be interpreted as an embedding of the latent

R�� ×�ℎ
,relationships between the two nodes � and �, W, U ∈

b ∈ R�ℎ
are learnable parameters. Here �ℎ and �� are the number

of dimensions of the primary and semantic embeddings from the
last layer, respectively. Note that s�,� has the same dimension as the
node representations, which can be used as a translation to relate
nodes � and � in the loss function in the next part.

Loss function. We adopt a triplet loss for link prediction. For an
edge (�, �) ∈ �, we construct a triplet (�, �, �), where � is a negative
node randomly sampled from the graph. Inspired by translation
models in knowledge graph [3, 19], � can be obtained by a transla-

tion on � and the translation approximates the latent relationships
between � and �, i.e., h� ≈ h� + s�,� . Note that h� denotes the
primary node embedding from the fnal LHGNN layer. In contrast,
since � is a random node unrelated to �, h� cannot be approxi-
mated by the translation. Thus, given a set of training triplets � ,
we formulate the following triplet margin loss for the task: ∑ � �

1 L
task = max � (�, �) − � (�, �) + �, 0 , (10)|� | (�,�,�) ∈�

where � (�,�) = ∥h� + s�,� − h� ∥2 is the Euclidean norm of the
translational errors, and � > 0 is the margin hyperparameter.

Besides the task loss, we also add constraints to scaling and
shifting in the FiLM layer. During training, the scaling and shifting
may become arbitrarily large to overft the data. To prevent this
issue, we restrict the search space by the following loss term on the
scaling and shifting vectors. ∑ℓ ∑

LFiLM = (∥��� ∥2 + ∥��� ∥2), (11)
� =1 � ∈�

where ℓ is the total number of layers and � is the set of all sampled
paths. The overall loss is then

L = L
task + �LFiLM, (12)

where � > 0 is a hyperparameter to balance the loss terms.

267

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Trung-Kien Nguyen, Zemin Liu, and Yuan Fang

Table 1: Summary of Datasets.

Attributes FB15k-237 WN18RR DBLP OGB-MAG

Nodes 14,541 40,943 18,405 100,002
Edges 310,116 93,003 67,946 1,862,256

Features - - 334 128
Node types - - 3 4
Edge types 237 11 4 4
Avg(degree) 29.09 3.50 3.55 17.88

Training 272,115 86,835 54,356 1,489,804
Validation 17,535 3,034 6,794 186,225
Testing 20,466 3,134 6796 186,227

We further present the training algorithm for LHGNN in Appen-

dix A, and give a complexity analysis therein.

5 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the
efectiveness of LHGNNon four benchmark datasets.

5.1 Experimental Setup

Datasets. We employ four graph datasets summarized in Table 1.
Note that, while all these graphs include node or edge types, we
hide such type information to transform them into LHGs.

• FB15k-237 [31] is a refned subset of Freebase [2], a knowledge
graph about general facts. It is curated with the most frequently
used relations, in which each node is an entity, and each edge
represents a relation.

• WN18RR [31] is a refned subset of WordNet [23], a knowledge
graph demonstrating lexical relations of vocabulary.

• DBLP [40] is an academic bibliographic network, which includes
three types of nodes, i.e., paper (P), author (A) and conference
(C), as well as four types of edges, i.e., P-A, A-P, P-C, C-P. The
node features are 334-dimensional vectors which represent the
bag-of-word vectors for the keywords.

• OGB-MAG [15] is a large-scale academic graph. It contains four
types of nodes, i.e., paper (P), author (A), institution (I) and feld
(F), as well as four types of edges, i.e., A-I, A-P, P-P, P-F. Features
of each paper is a 128-dimensional vector generated by word2vec,
while the node feature of the other types is generated by metap-

ath2vec [5] with the same dimension following previous work
[7]. In our experiments, we randomly sample a subgraph with
around 100K entities from the original graph using breadth frst
search.

Baselines. For a comprehensive comparison, we employ baselines
from three major categories.

• Classic GNNs: GCN [18], GAT [34] and GraphSAGE [11], which
are classic GNN models for homogeneous graphs.

• Heterogeneous GNNs: HAN [35], HGT [16] and Simple-HGN
(HGN for short) [22], which are state-of-the-art heterogeneous
graph neural networks (HGNNs) taking in an HIN as input.

• Translation models: TransE [3] and TransR [19], which are well-

known methods for knowledge graph embedding.

Note that the heterogeneous GNNs and translation models re-
quire node/edge types as input, to apply them to an LHG, we adopt
two strategies: either treating all nodes or edges as one type, or gen-

erating pseudo types, which we will elaborate later. See Appendix B
for more detailed descriptions of the baselines.

Model settings. See Appendix D for the hyperparameters and
other settings of the baselines and our method.

5.2 Evaluation of Link Prediction
In this part, we evaluate the performance of LHGNN on the main
task of link prediction on LHGs.

Settings. For knowledge graph datasets (FB15k-237 and WN18RR),
we use the same training/validation/testing proportion in previous
work [31], as given in Table 1. For the other datasets, we adopt a
80%/10%/10% random splitting of the links. Note that the training
graphs are reconstructed from only the training links.

We adopt ranking-based evaluation metrics for link prediction,
namely, NDCG and MAP [21]. In the validation and testing set,
given a ground-truth link (�, �), we randomly sample another 9
nodes which are not linked to � as negative nodes, and form a
candidate list together with node �. For evaluation, we rank the
10 nodes based on their scores w.r.t. node �. For our LHGNN, the
score for a candidate link (�,�) is computed as −∥h� + s�,� − h� ∥2.
For classic and heterogeneous GNN models, we implement the
same triplet margin loss for them, as given by Eq. (10). The only
diference is that � (�,�) is defned by ∥h� − h� ∥2 in the absence
of semantic embeddings. Similarly, their link scoring function is
defned as −∥h� − h� ∥2 for a candidate link (�,�). Translation
models also use the same loss and scoring function as ours, except
for replacing our link encoding s�,� with their type-based relation
embedding.

Scenarios of comparison. Since the type information is inaccessi-

ble on LHGs, for heterogeneous GNNs and the translation methods,
we consider the following scenarios.

The frst scenario is to treat all nodes/edges as only one type in
the absence of type information.

In the second scenario, we generate pseudo types. For nodes, we
resort to the �-means algorithm to cluster nodes into � clusters
based on their features, and treat the cluster ID of each node as
its type. Since the number of clusters or types � is unknown, we
experiment with diferent values. For each heterogeneous GNN or
translation model, we use “X-�” to denote a variant of model X
with � pseudo node types, where X is the model name. For instance,
HAN-3 means HAN with three pseudo node types. Note that there is
no node feature in FB15k-237 and WN18RR. To perform clustering,
we use node embeddings by running X-1 frst. On the other hand,
edge types are derived using the Cartesian product of the node
types, resulting in � ×� pseudo edge types. Finally, for HAN which
requires metapath, we further construct pseudo metapaths based
on the pseudo node types. For each pseudo node type, we employ
all metapaths with length two starting and ending at that type. We
also note that some previous works [13, 25] can predict missing
type information. However, they cannot be used to generate the
pseudo types, as they still need partial type information from some
nodes and edges as supervision.

268

Link Prediction on Latent Heterogeneous Graphs WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 2: Evaluation of link prediction on LHGs. Best is bolded and runner-up underlined; OOM means out-of-memory error.

Methods
FB15k-237

MAP NDCG
WN18RR

MAP NDCG MAP
DBLP

NDCG
OGB-MAG

MAP NDCG

GCN 0.790 ± 0.001 0.842 ± 0.001 0.729 ± 0.002 0.794 ± 0.001 0.879 ± 0.001 0.910 ± 0.001 0.848 ± 0.001 0.886 ± 0.001
GAT 0.786 ± 0.002 0.839 ± 0.001 0.761 ± 0.001 0.818 ± 0.001 0.913 ± 0.001 0.936 ± 0.001 0.830 ± 0.004 0.872 ± 0.003
GraphSAGE 0.800 ± 0.001 0.850 ± 0.001 0.728 ± 0.003 0.793 ± 0.002 0.891 ± 0.001 0.918 ± 0.001 0.849 ± 0.001 0.887 ± 0.001

TransE 0.675 ± 0.001 0.752 ± 0.001 0.511 ± 0.002 0.624 ± 0.001 0.488 ± 0.001 0.605 ± 0.001 0.552 ± 0.001 0.656 ± 0.001
TransR 0.734 ± 0.004 0.798 ± 0.003 0.510 ± 0.002 0.623 ± 0.001 0.565 ± 0.007 0.668 ± 0.005 0.546 ± 0.001 0.652 ± 0.001

HAN 0.725 ± 0.002 0.793 ± 0.002 0.749 ± 0.003 0.810 ± 0.003 0.763 ± 0.005 0.801 ± 0.004 OOM OOM
HGT 0.782 ± 0.001 0.837 ± 0.001 0.724 ± 0.003 0.791 ± 0.002 0.897 ± 0.001 0.923 ± 0.001 0.835 ± 0.003 0.876 ± 0.002
HGN 0.742 ± 0.002 0.806 ± 0.001 0.802 ± 0.002 0.849 ± 0.002 0.907 ± 0.003 0.930 ± 0.002 0.818 ± 0.001 0.863 ± 0.001

LHGNN 0.858 ± 0.001 0.893 ± 0.001 0.838 ± 0.003 0.877 ± 0.002 0.932 ± 0.003 0.949 ± 0.002 0.879 ± 0.001 0.909 ± 0.001

Table 3: Evaluation of link prediction on LHGs with pseudo
types for heterogeneous GNNs and translation models.

FB15k-237 WN18RR DBLP OGB-MAG
Methods

MAP NDCG MAP NDCG MAP NDCG MAP NDCG

TransE-3 0.693 0.767 0.510 0.623 0.599 0.693 0.568 0.670
TransE-10 0.701 0.773 0.519 0.630 0.677 0.754 0.599 0.694
TransR-3 0.749 0.810 0.485 0.604 0.585 0.683 0.599 0.695
TransR-10 0.727 0.794 0.497 0.614 0.631 0.719 OOM OOM

HAN-3 0.594 0.685 0.673 0.616 0.603 0.687 OOM OOM
HAN-10 0.648 0.734 0.384 0.529 0.618 0.708 OOM OOM
HGT-3 0.799 0.850 0.733 0.797 0.888 0.916 0.837 0.878
HGT-10 0.750 0.812 0.607 0.701 0.857 0.893 0.837 0.878
HGN-3 0.746 0.809 0.814 0.859 0.903 0.927 0.815 0.861
HGN-10 0.735 0.800 0.822 0.864 0.898 0.923 0.813 0.859

Besides, in the third scenario, we also evaluate the heterogeneous
GNNs on a complete HIN with all node/edge types given. This
assesses if explicit type information is useful, and how the baselines
with full type information compare to our model.

Performance on LHGs. In the frst scenario, all methods do not
have access to the node/edge types. We report the results in Table 2,
and make the following observations.

First, our proposed LHGNN consistently outperforms all the
baselines across diferent metrics and datasets. The results imply
that LHGNN can adeptly capture latent semantics between nodes
to assist link prediction, even without any type information.

Second, the performance of classic GNN baselines is consistently
competitive or even slightly better than heterogeneous GNNs. This
fnding is not surprising—while heterogeneous GNNs can be efec-

tive on HINs, their performance heavily depends on high-quality
type information which is absent from LHGs.

Third, translation models are usually worse than GNNs, possibly
because they do not take advantage of node features, and lack a
message-passing mechanism to fully exploit graph structures.

Performance with pseudo types. In the second scenario, we
generate pseudo types for heterogeneous GNNs and translation
models, and report their results in Table 3. We observe diferent
outcomes on diferent kinds of baselines.

On one hand, translation models generally beneft from the use
of pseudo types. Compared to Table 2 without using pseudo types,
TransE-� can achieve an improvement of 13.2% and 8.5% in MAP
and NDCG, respectively, while TransR-� can improve the two
metrics by 5.2% and 3.6%, respectively (numbers are averaged over
the four datasets). This demonstrates that even very crude type
estimation (e.g., �-means clustering) is useful in capturing latent
semantics between nodes. Nevertheless, our model LHGNN still
outperforms translation models using pseudo types.

On the other hand, heterogeneous GNNs can only achieve mar-

ginal improvements with pseudo types, if not worse performance.
A potential reason is that pseudo types are noisy, and the message-

passing mechanism of GNNs can propagate local errors caused by
the noises and further amplify them across the graph. In contrast,
the lack of message passing in translation models make them less
susceptible to noises, and the beneft of pseudo types outweighs
the efect of noises.

Overall, while pseudo types can be useful to some extent, they
cannot fully reveal the latent semantics between nodes due to po-

tential noises. Moreover, we need to set a predetermined number
of pseudo types, which is not required by our model LHGNN.

Performance on complete HINs. The third scenario is designed
to further evaluate the importance of type information, and how
LHGNN fares against baselines equipped with full type information
on HINs. Specifcally, we compare the performance of the heteroge-

neous GNNs on the two datasets DBLP and OGB-MAG, where type
information is fully provided. To enhance the link prediction of the
heterogeneous GNN models, we adopt a relation-aware decoder
[22] to compute the score for a candidate link (�,�) as h�� W� h� ,
where W� ∈ R�ℎ ×�ℎ

is a learnable matrix for each edge type � ∈ �.
We report the results in Table 4.

We observe that heterogeneous GNNs with full type information
consistently perform better than themselves without any type infor-

mation (cf. Table 2). This is not surprising given the rich semantics
expressed by explicit types. Moreover, LHGNN achieves compara-

ble results to the heterogeneous GNNs or sometimes better results
(cf. Table 2), despite LHGNN not requiring any explicit type. A po-

tential reason is the node- and path-level semantic embeddings in
LHGNN can capture latent semantics in a fner granularity, whereas
the explicit types on a HIN may be coarse-grained. For example,

269

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 4: Evaluation of link prediction on HINs with full access
to node/edge types for heterogeneous GNNs. Percentages in
parenthesis indicate the improvement to their performance
on LHGs (cf. Table 2).

Methods
MAP

DBLP
NDCG

OGB-MAG
MAP NDCG

HAN 0.789 (+3.4%) 0.821 (+2.5%) OOM OOM
HGT 0.902 (+0.6%) 0.927 (+0.4%) 0.872 (+4.4%) 0.904 (+3.2%)
HGN 0.909 (+0.2%) 0.932 (+0.2%) 0.855 (+4.5%) 0.892 (+3.4%)

Table 5: Evaluation of node type classifcation on LHGs.

DBLP OGB-MAG
Methods

MacroF Accuracy MacroF Accuracy

GCN 0.376 ± 0.009 0.785 ± 0.002 0.599 ± 0.011 0.890 ± 0.003
GAT 0.310 ± 0.003 0.782 ± 0.001 0.624 ± 0.035 0.894 ± 0.007
GraphSAGE 0.477 ± 0.021 0.842 ± 0.012 0.550 ± 0.014 0.902 ± 0.004

HGT 0.464 ± 0.009 0.837 ± 0.005 0.823 ± 0.018 0.973 ± 0.003
HGN 0.292 ± 0.001 0.778 ± 0.001 0.531 ± 0.003 0.847 ± 0.003

LHGNN 0.662 ± 0.001 0.995 ± 0.001 0.884 ± 0.002 0.953 ± 0.001

on a typical academic graph, there are node types of Author or
Paper, but no fner-grained types like Student/Faculty Author or
Research/Application Paper is available.

5.3 Evaluation of Node Type Classifcation
To evaluate the expressiveness of semantic embeddings in captur-

ing type information, we further use them to conduct node type
classifcation on DBLP and OGB-MAG thanks to their accessible
ground truth types. We perform stratifed train/test splitting, i.e., for
each node type, we use 60% nodes for training and 40% for testing.
For each node, we concatenate its primary node embedding and
semantic embedding, and feed it into a logistic regression classifer
to predict its node type. We choose fve competitive baselines, and
use their output node embeddings to also train a logistic regression
classifer on the same split.

We employ macro-F score and accuracy as the evaluation met-

rics, and report the results in Table 5. We observe that LHGNN
can signifcantly outperform the other baselines, with only one
exception in accuracy on OGB-MAG. Since the node types are im-

balanced (e.g., authors account for 77.8% of all nodes on DBLP, and
64.4% on OGB-MAG), accuracy may be skewed by the majority
class and is often not a useful indicator of predictive power. The
results demonstrate the usefulness of semantic embedding in our
model to efectively express type information.

5.4 Model Analyses

Ablation study. To evaluate the contribution of each module in
LHGNN, we conduct an ablation study by comparing with several
degenerate variants: (1) no link encoder : we remove the link encoder,
by setting all pairwise semantic embeddings s�,� to zero in both
training and testing; (2) no personalization: we remove the person-

alization conditioned on semantic path embeddings, by using a

Trung-Kien Nguyen, Zemin Liu, and Yuan Fang

Table 6: Training time.

Nodes Edges Time Epochs

20k 370k 1084s 24
40k 810k 1517s 11
60k 1.2M 2166s 8
80k 1.6M 2428s 6

100k 1.8M 2251s 5

Figure 3: Ablation study.

simple mean pooling for context aggregation; (3) no link encoder &
personalization: we remove both modules as described earlier, which
is equivalent to removing the semantic embeddings altogether.

We present the results in Fig. 3 and make the following observa-
tions. First, the performance of LHGNN drops signifcantly when
removing the link encoder, showing their importance on LHGs.
In other words, the learned latent semantics between nodes are
efective for link prediction. Second, without the personalization for
context aggregation, the performance also declines. This shows that
the context nodes have heterogeneous relationships to the target
node, and the semantic path embeddings can work as intended to
personalize the contexts. Third, without both of them, the model
usually achieves the worst performance.

Scalability. We sample fve subgraphs from the largest dataset
OGB-MAG, with sizes ranging from 20k to 100k nodes. We present
the total training time and number of epochs of LHGNN on these
subgraphs in Table 6. As the graph grows by 5 times, total training
time to converge only increases by 2 times, since generally fewer
epochs are needed for convergence on larger graphs.

Additional studies. We present results on additional model studies
in Appendices E, F and G, respectively.

6 CONCLUSION
In this paper, we investigated a challenging and unexplored setting
of latent heterogeneous graphs (LHG) for the task of link prediction.
Existing approaches on heterogeneous graphs depend on explicit
type-based information, and thus they do not work well on LHGs.
To deal with the absence of types, we proposed a novel model named
LHGNN for link prediction on an LHG, based on the novel idea of
semantic embedding at both node and path levels, and a personal-

ized aggregation of latent heterogeneous contexts for target nodes
in a fne-grained manner. Finally, extensive experiments on four
benchmark datasets show the superior performance of LHGNN.

ACKNOWLEDGMENTS
This research is supported by the Agency for Science, Technology
and Research (A*STAR) under its AME Programmatic Funds (Grant
No. A20H6b0151).

REFERENCES
[1] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation

learning: A review and new perspectives. TPAMI 35, 8 (2013), 1798–1828.
[2] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.

2008. Freebase: a collaboratively created graph database for structuring human
knowledge. In SIGMOD. 1247–1250.

270

Link Prediction on Latent Heterogeneous Graphs WWW ’23, April 30–May 04, 2023, Austin, TX, USA

[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-

sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. In NeurIPS.

[4] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2018. A com-

prehensive survey of graph embedding: Problems, techniques, and applications.
TKDE 30, 9 (2018), 1616–1637.

[5] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable representation learning for heterogeneous networks. In KDD. 135–144.

[6] Yuan Fang, Wenqing Lin, Vincent W Zheng, Min Wu, Kevin Chen-Chuan Chang,
and Xiao-Li Li. 2016. Semantic proximity search on graphs with metagraph-based
learning. In ICDE. 277–288.

[7] Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning with
PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).

[8] Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. 2017. Hin2vec: Explore meta-paths
in heterogeneous information networks for representation learning. In CIKM.
1797–1806.

[9] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. 2020. MAGNN: Metapath
aggregated graph neural network for heterogeneous graph embedding. In WWW.
2331–2341.

[10] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In KDD. 855–864.

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS. 1024–1034.

[12] Huiting Hong, Hantao Guo, Yucheng Lin, Xiaoqing Yang, Zang Li, and Jieping
Ye. 2020. An attention-based graph neural network for heterogeneous structural
learning. In AAAI. 4132–4139.

[13] Jon Arne Bø Hovda, Darío Garigliotti, and Krisztian Balog. 2019. NeuType: A
Simple and Efective Neural Network Approach for Predicting Missing Entity
Type Information in Knowledge Bases. arXiv preprint arXiv:1907.03007 (2019).

[14] Binbin Hu, Yuan Fang, and Chuan Shi. 2019. Adversarial learning on heteroge-

neous information networks. In KDD. 120–129.
[15] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen

Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. In NeurIPS. 22118–22133.

[16] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
graph transformer. In WWW. 2704–2710.

[17] Xunqiang Jiang, Tianrui Jia, Yuan Fang, Chuan Shi, Zhe Lin, and Hui Wang. 2021.
Pre-training on large-scale heterogeneous graph. In KDD. 756–766.

[18] Thomas N Kipf and Max Welling. 2017. Semi-supervised classifcation with graph
convolutional networks. In ICLR.

[19] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning
entity and relation embeddings for knowledge graph completion. In AAAI. 2181–
2187.

[20] Zemin Liu, Yuan Fang, Chenghao Liu, and Steven C.H. Hoi. 2021. Node-wise Lo-

calization of Graph Neural Networks. In Proceedings of the Thirtieth International
Joint Conference on Artifcial Intelligence. 1520–1526.

[21] Zemin Liu, Trung-Kien Nguyen, and Yuan Fang. 2021. Tail-GNN: Tail-Node
Graph Neural Networks. In KDD. 1109–1119.

[22] Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming
He, Chang Zhou, Jianguo Jiang, Yuxiao Dong, and Jie Tang. 2021. Are we really
making much progress? Revisiting, benchmarking and refning heterogeneous
graph neural networks. In KDD. 1150–1160.

[23] George A Miller. 1995. WordNet: a lexical database for English. CACM 38, 11
(1995), 39–41.

[24] Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017. SummaRuNNer: A re-
current neural network based sequence model for extractive summarization of

documents. In AAAI. 3075–3081.
[25] Arvind Neelakantan and Ming-Wei Chang. 2015. Inferring missing entity type

instances for knowledge base completion: New dataset and methods. In NAACL.
515–525.

[26] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron
Courville. 2018. FiLM: Visual reasoning with a general conditioning layer. In
AAAI. 3942–3951.

[27] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online learning
of social representations. In KDD. 701–710.

[28] Aravind Sankar, Xinyang Zhang, and Kevin Chen-Chuan Chang. 2019. Meta-

GNN: Metagraph neural network for semi-supervised learning in attributed
heterogeneous information networks. In ASONAM. 137–144.

[29] Yizhou Sun and Jiawei Han. 2012. Mining heterogeneous information networks:
principles and methodologies. Synthesis Lectures on Data Mining and Knowledge
Discovery 3, 2 (2012), 1–159.

[30] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. 2011. Pathsim:
Meta path-based top-k similarity search in heterogeneous information networks.
PVLDB 4, 11 (2011), 992–1003.

[31] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2018. RotatE: Knowl-

edge Graph Embedding by Relational Rotation in Complex Space. In ICLR.
[32] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. LINE: Large-scale information network embedding. In WWW. 1067–1077.
[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS. 5998–6008.

[34] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. In ICLR.

[35] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S
Yu. 2019. Heterogeneous graph attention network. In WWW. 2022–2032.

[36] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
graph embedding by translating on hyperplanes. In AAAI. 1112–1119.

[37] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. TNNLS
32, 1 (2020), 4–24.

[38] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How powerful
are graph neural networks?. In ICLR.

[39] Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. 2020. Heteroge-

neous network representation learning: A unifed framework with survey and
benchmark. TKDE 34, 10 (2020), 4854–4873.

[40] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim.
2019. Graph transformer networks. In NeurIPS. 11983–11993.

[41] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V
Chawla. 2019. Heterogeneous graph neural network. In KDD. 793–803.

[42] Han Zhang, Yu Hao, Xin Cao, Yixiang Fang, Won-Yong Shin, and Wei Wang.
2021. Relation prediction via graph neural network in heterogeneous information
networks with missing type information. In CIKM. 2517–2526.

[43] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural
networks. In NeurIPS. 5171–5181.

[44] Wentao Zhang, Yuan Fang, Zemin Liu, Min Wu, and Xinming Zhang. 2022.
mg2vec: Learning Relationship-Preserving Heterogeneous Graph Representa-

tions via Metagraph Embedding. TKDE 34, 3 (2022), 1317–1329.
[45] Tianyu Zhao, Cheng Yang, Yibo Li, Quan Gan, Zhenyi Wang, Fengqi Liang,

Huan Zhao, Yingxia Shao, Xiao Wang, and Chuan Shi. 2022. Space4HGNN: A
Novel, Modularized and Reproducible Platform to Evaluate Heterogeneous Graph
Neural Network. In SIGIR. 2776–2789.

271

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Trung-Kien Nguyen, Zemin Liu, and Yuan Fang

APPENDICES

A Algorithm and Complexity
We outline the model training for LHGNN in Algorithm 1.

Algorithm 1 Model Training for LHGNN

Input: latent heterogeneous graph � = (� , �) , training triplets � , a set of
random walk paths �� for each node �

Output: Model parameters Θ.
1: initialize parameters Θ;
2: while not converged do
3: sample a batch of triplets �

bat ⊂ � ;
4: for each target node � in the batch �

bat do
5: for each layer � ∈ {1, 2, . . . , ℓ } do

�
6: s� ← �� (h��

−1
; ��

�) ;
7: for each path � ∈ �� that ends at context node � do

� �
8: s� ← �� ({s |�� in the path � }) ;��

9: h˜
�
�
|� ← � (h�� −1 , s�� ; ��

�) ;

h� h� 10: � ← Aggregate({ ˜
� |� |� ∈ �� };

11: Calculate the loss L by Eqs. (10),(11) and (12);
12: update Θ by minimizing L;

13: return Θ.

In line 1, we initialize the model parameters. In line 3, we sample
a batch of triplets from training data. In lines 4–10, we calculate
layer-wise node representations on the training set. Specifcally, for
each node � in layer � , we calculate the semantic embeddings at the
node level in line 6 and path level in line 8. Next, we personalize
the contexts in line 9 and aggregate them in line 10. In lines 11-12,
We compute the loss and update the parameters.

We compare the complexity of one layer and one target node in
LHGNN against a standard message-passing GNN. In a standard
GNN, the aggregation for one node in the �-th layer has complexity
� (�� ¯ � �� −1), where �� is the output dimension of the �-th layer

ℎ ℎ ℎ
and � ¯ is the node degree. In our model, we frst need to compute
the node- and path-level semantic embeddings. At the node level,
the cost is � (��� �� −1) based on Eq. (1); at the path level, given a

ℎ
node with � paths of maximum length �max, the cost is � (��max��

�)
based on Eq. (2). The computation of scaling and shifting vectors
takes � (��� −1

�) based on Eqs. (5) and (6), and the personaliza-��
ℎ

tion of context embeddings takes � (��� −1) based on Eq. (4). Thus,
ℎ

the aggregation and representation update step takes � (��� �� −1)
ℎ ℎ

based on Eqs. (7) and (8). Furthermore, the cost to sample a path
of length �max is � (�max). To sample � paths for a target node in
one LHGNN layer, the overhead is � (��max), which is negligible
compared to the aggregation cost, as �max is small (less than 5 in
our experiments). Therefore, the total complexity for one node in
one layer is � (��max��

� + ��� �� −1 + ��� �� −1). As �max is a small �

constant and �� −1 ≪ �� −1
, the complexity reduces to � (��� �� −1).

ℎ ℎ ℎ

� ℎ ℎ ℎ
Furthermore, we can limit � , the number of sampled paths from
each node, by some constant value, in which case our model has
the same complexity class as a standard GNN.

B Details of Baselines
We provide detailed descriptions for the baselines.

• Classic GNNs: GCN [18] aggregates information for the target
node by applying mean-pooling over its neighbors. GAT [34]:
utilizes self-attention to assign diferent weights to neighbors of
the target node during aggregation. Meanwhile, GraphSAGE [11]:
concatenates the target node with the aggregated information
from its neighbors to produce the node embedding. These models
treat all nodes or edges as a uniform type and do not attempt to
distinguish them.

• Heterogeneous GNNs: HAN [35] makes use of handcrafted metap-

aths to decompose HIN into multiple homogeneous graphs, one
for each metapath, then employs hierarchical attention to learn
both node-level and semantic-level importance for aggregation.
HGT [16] applies the transformer model, using node and edge
type parameters to capture the heterogeneity. HGN [22] extends
GAT by employing node type information in the calculation of
attention scores. These three models require type-based infor-

mation in their architectures. Given an LHG, we either assume a
single node/edge type or employ pseudo types for these methods,
as described in the main paper.

• Translation models: TransE [3] models the relation between enti-

ties as a translation in the same embedding space. TransR [19]
maps entity embeddings into a relation-wise space before the
translation. These models require the relation type (i.e., edge
type) to be known. Similarly, we assume a single edge type or
employ pseudo types for them.

C Environment
All experiments are conducted on a workstation with a 12-core
CPU, 128GB RAM, and 2 RTX-A5000 GPUs. We implemented the
proposed LHGNN using Pytorch 1.10 and Python 3.8 in Ubuntu-

20.04.

D Model Settings
For all the approaches, we use the same output dimension as 32
for fair comparison to conduct link prediction. For the two knowl-

edge graph datasets (i.e., FB15k-237 and WN18RR), we randomly
initialize a learnable parameter vector for each entity with embed-

ding dimension 200. We tune the margin hyperparameter � for
each model in order to achieve its optimal performance. All experi-

ments are repeated 5 times, and we report the average results with
standard deviations.

For all GNN baselines, we employ two layers with L2 Normal-

ization on each layer. We use a margin 0.2 and dropout ratio 0.5 for
all of them. For GCN, we set the hidden dimension as 32. For GAT,
we use four attention heads with hidden dimension of each head as
16. For GraphSAGE, we use the mean aggregator and set its hidden
dimension as 32. For all HGNN baselines, we mainly follow the
default setting in [22]. In particular, we also employ 2-layer archi-

tectures for all of them. For HAN, for the node-level aggregation,
we use GAT with eight attention heads with hidden dimension 8
for each head, and its dropout ratio is 0.6; and we set the dimension
for semantic-level attention as 128 and set � = 1. For HGT, we use
eight attention heads, with dropout ratio as 0.2 and margin as 1.
For HGN, we use eight attention heads with dropout ratio as 0.5.
We set the dimension of edge embeddings as 64, and the margin as
0.5. For translation models including TransE and TransR, we set the

272

Link Prediction on Latent Heterogeneous Graphs WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table VII: Impact of diferent number of layers. In each column, the best is bolded and the runner-up is underlined.

Methods
FB15k-237

MAP NDCG
WN18RR

MAP NDCG MAP
DBLP

NDCG
OGB-MAG

MAP NDCG

GCN-2 0.790 ± 0.001 0.842 ± 0.001 0.729 ± 0.002 0.794 ± 0.001 0.879 ± 0.001 0.910 ± 0.001 0.848 ± 0.001 0.886 ± 0.001
GCN-3 0.782 ± 0.001 0.837 ± 0.001 0.726 ± 0.005 0.792 ± 0.003 0.861 ± 0.001 0.896 ± 0.001 0.799 ± 0.003 0.849 ± 0.002
GCN-4 0.778 ± 0.001 0.833 ± 0.001 0.711 ± 0.005 0.781 ± 0.004 0.851 ± 0.003 0.888 ± 0.003 0.802 ± 0.002 0.851 ± 0.002

HGT-2 0.782 ± 0.001 0.837 ± 0.001 0.724 ± 0.003 0.791 ± 0.002 0.897 ± 0.001 0.923 ± 0.001 0.835 ± 0.003 0.876 ± 0.002
HGT-3 0.788 ± 0.001 0.841 ± 0.001 0.727 ± 0.012 0.792 ± 0.009 0.890 ± 0.001 0.917 ± 0.001 0.826 ± 0.002 0.870 ± 0.002
HGT-4 0.784 ± 0.005 0.838 ± 0.003 0.751 ± 0.007 0.811 ± 0.006 0.881 ± 0.011 0.911 ± 0.009 0.822 ± 0.003 0.867 ± 0.003

LHGNN 0.858 ± 0.001 0.893 ± 0.001 0.838 ± 0.003 0.877 ± 0.002 0.932 ± 0.003 0.949 ± 0.002 0.879 ± 0.001 0.909 ± 0.001

Table VIII: Impact of model size. |Θ| denotes the number of
learnable parameters in a model.

DBLP OGB-MAG
Methods |Θ | MAP NDCG |Θ | MAP NDCG

GCN-32 12K 0.879 ± 0.001 0.910 ± 0.001 5K 0.848 ± 0.001 0.886 ± 0.001
GCN-64 25K 0.890 ± 0.001 0.918 ± 0.001 12K 0.849 ± 0.001 0.887 ± 0.001
GCN-96 41K 0.890 ± 0.001 0.918 ± 0.001 21K 0.847 ± 0.001 0.886 ± 0.001

GAT-16 26K 0.913 ± 0.001 0.936 ± 0.001 13K 0.830 ± 0.004 0.872 ± 0.003
GAT-32 60K 0.910 ± 0.001 0.932 ± 0.001 33K 0.828 ± 0.001 0.871 ± 0.001
GAT-48 102K 0.910 ± 0.002 0.933 ± 0.002 62K 0.815 ± 0.005 0.861 ± 0.004

HGT-32 21K 0.897 ± 0.001 0.923 ± 0.001 14K 0.835 ± 0.003 0.876 ± 0.002
HGT-64 61K 0.907 ± 0.001 0.930 ± 0.001 48K 0.836 ± 0.003 0.877 ± 0.002

HGN-32 239K 0.907 ± 0.003 0.930 ± 0.002 231K 0.818 ± 0.001 0.863 ± 0.001
HGN-64 717K 0.905 ± 0.001 0.929 ± 0.001 703K 0.826 ± 0.001 0.869 ± 0.001

LHGNN 25K 0.932 ± 0.003 0.949 ± 0.002 12K 0.879 ± 0.001 0.909 ± 0.001

Figure IV: Impact of parameters.

learning rate as 0.005, embedding dimension as 200 and the margin
as 0.2.

For our model, we also employ a two-layer architecture with
L2-Normalization. We randomly sample 50 paths starting from each
target node. We set the dimension of semantic embeddings as 10,
decay ratio � as 0.1, the weight of scaling and shifting constraints
� as 0.0001, and margin as 0.2.

E Number of Layers
We investigate the impact of number of layers in representative
baseline models. Results from Table VII show that adding more

layers might not give better results. Overall, they are still much
worse than our proposed LHGNN.

F Impact of Model Size
We investigate the impact of model size (i.e., the number of learnable
parameters in a model) on empirical performance. Specifcally, we
select several representative GNNs from the baselines, and vary the
size of each GNN by increasing its hidden dimension. For instance,
GCN-32 indicates that its hidden layer has 32 neurons. Table VIII
shows the link prediction performance of the GNNs with vary-
ing model sizes. Overall, larger models employing the same GNN
architecture can only achieve slight improvements, and LHGNN
continues to outperform them despite having a relatively small
model. The results imply that the efectiveness of LHGNN comes
from the architectural design rather than stacking with more pa-
rameters.

G Parameter Sensitivity
To study the impact of model parameters, we showcase two of
the important parameters, including the maximum length for path
sampling �max, and the weight of scaling and shifting constraint
�. We present the results in Fig. IV. For sparse datasets with low
average degree such as WN18RR and DBLP, using a large maximum
length for paths can generally improve the performance, as it can
exploit more contextual structures around the target node. For the
other two datasets, their performance is generally less afected as
the maximum length of paths increases. For the hyper-parameter
�, LHGNN generally achieves the best performance in the interval
[0.0001, 0.001] across the four datasets, demonstrating the necessity
of this constraint.

H Data Ethics Statement
To evaluate the efcacy of this work, we conducted experiments
which only use publicly available datasets234

, in accordance to
their usage terms and conditions if any. We further declare that
no personally identifable information was used, and no human or
animal subject was involved in this research.
2
https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding.git

3
https://github.com/seongjunyun/Graph_Transformer_Networks.git

4
https://github.com/snap-stanford/ogb.git

273

https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding.git
https://github.com/seongjunyun/Graph_Transformer_Networks.git
https://github.com/snap-stanford/ogb.git

	Link prediction on latent heterogeneous graphs
	Citation

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Proposed Method: LHGNN
	4.1 Overall Framework
	4.2 Semantic Embedding
	4.3 Latent Heterogeneous Context Aggregation
	4.4 Link Prediction

	5 Experiments
	5.1 Experimental Setup
	5.2 Evaluation of Link Prediction
	5.3 Evaluation of Node Type Classification
	5.4 Model Analyses

	6 Conclusion
	Acknowledgments
	References
	A Algorithm and Complexity
	B Details of Baselines
	C Environment
	D Model Settings
	E Number of Layers
	F Impact of Model Size
	G Parameter Sensitivity
	H Data Ethics Statement

