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Abstract

Relevance-based ranking is a popular ingredient in recommenders, but it fre-

quently struggles to meet fairness criteria because social and cultural norms

may favor some item groups over others. For instance, some items might re-

ceive lower ratings due to some sort of bias (e.g. gender bias). A fair rank-

ing should balance the exposure of items from advantaged and disadvantaged

groups. To this end, we propose a novel post-processing framework to produce

fair, exposure-aware recommendations. Our approach is based on an integer

linear programming model maximizing the expected utility while satisfying a

minimum exposure constraint. The model has fewer variables than previous

work and thus can be deployed to larger datasets and allows the organization

to define a minimum level of exposure for groups of items. We conduct an ex-

tensive empirical evaluation indicating that our new framework can increase the

exposure of items from disadvantaged groups at a small cost of recommendation

accuracy.

Keywords: recommender systems, fairness, exposure, integer linear

programming
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1. Introduction

The main objective of Recommender Systems (RS) is to guide users in a

personalized way to items maximizing user satisfaction while providing business

value (e.g. increased revenue, engagement) for the recommendation provider.

To this end, a popular strategy is to predict the top-K most relevant items (Yang

et al., 2012; Zehlike et al., 2017). For instance, by using prior user interactions,

the RS (1) estimates the relevance of non-interacted items, (2) constructs a list

by allocating items according to their predicted relevance and then (3) picks

the top K items from this list. The top K items are then presented to the user

ordered according to expected relevance. The user may then consume one of the

items and rate it with a probability decreasing with the suggestion rank. In

fact, the user behavior is affected by the position bias (Craswell et al., 2008)

where the probability of an item being clicked depends not only on its relevance,

but also on its position in the recommendation list. Finally, after observing user

feedback, the algorithm updates its mechanisms to improve the recommendation

in subsequent requests.

Although such relevance-based ranking has been used in a wide variety of

RS domains (Aggarwal et al., 2016), it frequently fails to meet fairness crite-

ria. A well-known issue is that an advantaged group can be heavily prioritized

in the top ranking positions despite having no (or very slight) superiority in

terms of utility, leaving only a few slots for the disadvantaged group (Abdollah-

pouri et al., 2019b). Such a problem can happen due to a variety of reasons,

including the presence of filter bubbles (Nguyen et al., 2014), the polarity of

thoughts (Ziani et al., 2017; Liu et al., 2022), or the discrepancy in consumption

popularity between items (Park & Tuzhilin, 2008; Zhu et al., 2021; Abdollah-

pouri et al., 2019a). For instance, by analyzing public recommendation datasets

enriched with gender information, Ferraro et al. (2021) expose the gender im-

balance in music recommendation: only 25.6% of the recommended music are

from female artists. As a result, they posit that female artists may not receive
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an adequate level of exposure. Thus, measures must be taken to produce fair

recommendations.

To provide a more equitable ranking, several methods have been proposed by

the recommender systems community (Pitoura et al., 2021; Zehlike et al., 2021;

Wang et al., 2022). Compared to purely accuracy-oriented algorithms, these

strategies significantly improve the proportion of non-privileged items added

to the list of recommendations presented to the users, resulting in a fairer out-

come. There are various ways to improve fairness in ranking-based recommender

systems, ranging from preprocessing approaches, which modify the data to cor-

recting inherent biases and prejudice (Martínez et al., 2016), to post-processing

approaches (Zehlike et al., 2017; Biega et al., 2018; Singh & Joachims, 2018),

which rerank the recommendation list produced by a ranker to equalize the

representation of all groups. One of the main advantages of post-processing

approaches is that they are model-agnostic (i.e. they treat the ranking model

as a black box) and can thus be used in conjunction with any ranking model;

this might be a desirable property for organizations that already have a baseline

ranking model in production.

Unfortunately, a serious shortcoming of most existing approaches is that

they merely focus on increasing the total number of recommendations for items

belonging to the disadvantaged group, without concern for their specific rec-

ommendation rank in the display list. It is well known, however, that users

tend to observe and interact with top-ranked items much more often, and an

item’s expected exposure decreases when moving down from the top recommen-

dation (Craswell et al., 2008; Abdollahpouri et al., 2019b; Singh & Joachims,

2018). Adding items from the disadvantaged group at the end of the display

list may thus have no practical influence on exposure fairness because the user

will most likely not interact with them. Thus, a fair ranking should not only

provide an equitable number of recommendations, but balance the expected

realized exposure among items from the advantaged group and disadvantaged

groups. Doing so is a delicate task that requires an explicit model of the ex-

pected exposure (the probability of an item being consumed, as a function of

3
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the position in the list of suggestions). Last but not least important, to the

best of our knowledge, there is no approach in the literature that guarantees

a minimum level of exposure for groups of items in the final recommendation

list; for example, this might occur in platforms that must to provide a minimum

level of exposure to item providers as a service level agreement.

To fill this gap, we propose a post-processing framework to produce rec-

ommendations which are fair at the exposure level whilst also having reason-

able time complexity. Inspired by recent attempts (Biega et al., 2018; Singh &

Joachims, 2018) to produce fair rankings based on optimization approaches, we

propose an Integer Linear Programming (ILP) model that maximizes the ex-

pected utility while satisfying exposure constraints chosen by the organization.

The list of recommendations output by our model takes fairness considerations

not only in terms of which items to include, but also in terms of the order in

which they are presented. This fact is illustrated in Figure 1 (cf. also the com-

prehensive description on the caption), which for illustration purposes (as in

Ferraro et al. (2021)) takes women and men as the protected and non-protected

groups, respectively.

In order to cover different scenarios that might arise in real world scenarios,

we propose two set of constraints so that the organization can define minimum

levels of exposure for groups of items. The Minimum Exposure (ME) constraint

guarantees that each group must have a minimum level of exposure in the final

recommendation ranking. Thus, under this constraint, the recommendation list

is fair in the sense that each group of items receives a minimum level of exposure.

In turn, the Relative Minimum Exposure (RE) constraint ensures that the expo-

sure each protected group receives is at least a factor of the exposure received by

a non-protected group. Hence, under the RE constraint, the model guarantees

a relative minimum level of exposure among groups. In this way, organizations

might produce recommendations that meet some service level agreement w.r.t

exposure, for example, in the context of multiple item providers.

There are very few other post-processing methods that address this task.

Singh & Joachims (2018) propose a framework for stochastic rankings that

4
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.

Figure 1: In this example, the protected and non-protected groups consist of female and male

artists respectively, as described in Ferraro et al. (2021). The numbers written below each

individual correspond to the expected utility (rating). For simplicity of illustration, we used

(1, 1, 0.5, 0.5, 0.25, 0.25) as a list of discount factors (represented at the top of the ranking

positions). One can see that the "purely ranking based" method fills the recommendation

list almost exclusively with male artists, despite the fact that the men have only very slightly

higher predicted utility (this phenomenon being caused by other sources of gender bias). In

the second line, we can see a classic approach, which adds members of the protected group to

the list of recommendations, without regard to their precise ranking. This results in increased

fairness but female artists still lack exposure. At the last line, we can see an illustration of

the results of our method, where female artists are well-represented throughout all ranking

positions. Note that the rankings are predicted and the difference between both groups can

be partially explained by a form of popularity bias, and would become even more attenuated

after the accumulation of more feedback when using our method

5
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can be instantiated to guarantee certain exposure constraints. However, that

method requires solving an ILP problem involving |I|2 binary variables, as well

as solving a decomposition problem with O(|I|2) time-complexity, where |I| is

the number of items in the catalog. Likewise, Biega et al. (2018) propose an

ILP model with |I|2 binary variables where fairness is achieved across a series of

rankings. Thus, the applicability of these methods might be reduced in larger

datasets.

Our model presents several advantages. First, it involves no more than K ·|I|

binary variables where K is the number of items in the recommendation list,

which makes it less computationally expensive compared to other ILP-based

approaches in the literature. Second, the proposed exposure constraints are

flexible in the sense that organizations are able to define a minimum level of

exposure that must be met w.r.t. groups. As a result, our model tackles the

important trade-off between fairness and accuracy in RSs.

In summary, the main contributions of this paper are as follows:

• We propose a novel ILP model to produce fair recommendation lists. Un-

like most existing work, our model not only balances the representation

of various groups within the list of recommendations, but carefully adapts

the order of the recommendations to equalize the exposure and relevance

of group of items in the recommendation.

• We introduce and analyze two fairness raking-based constraints. These

fairness constraints model some sort of service level agreement constraints

found in practice by organizations.

• By considering well-established real-world datasets, we present a compre-

hensive empirical evaluation of our framework w.r.t. the proposed con-

straints in different scenarios.

The remainder of this paper is organized as follows. In Section 2, we review the

related literature. In Section 3, we introduce our framework. We discuss the

setup and the results of our empirical evaluation in Sections 4 and 5, respectively.

6
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Finally, in Section 6, we present concluding remarks.

2. Related Work

In the past few years, fairness requirements in ranking and recommendation

have been the subject of intense research (Zehlike et al., 2021; Pitoura et al.,

2021). Next, we briefly present the most prominent approaches found in the

literature. Xiao et al. (2017) provide a multi-objective optimization framework

for fairness-aware group recommendation on the basis of Pareto efficiency. Sürer

et al. (2018) propose an ILP-based post-processing method to balance the dis-

tribution of recommendations across retailers in the context of multi-sided plat-

forms, but they do not consider the impact of position bias in the final ranking.

Celis et al. (2018) propose a method that produces rankings that meet lower

and upper bound constraints w.r.t. the number of items with each attribute

that are allowed to appear in the top-K positions of the ranking. Mehrotra

et al. (2018) propose recommendation policies that balance the objectives of

consumer relevance and supplier fairness in the context of two-sided platforms.

Singh & Joachims (2019) propose a framework to learn fair policies in the con-

text of LTR. Zehlike & Castillo (2020) propose an in-processing method in the

context of Learning-To-Rank (LTR) that introduces a regularization term that

encourages rankings where the exposure of the protected group is not less than

the exposure of the non-protected group, but the model does provide any guar-

antees. Li et al. (2021) study the problem of fairness in recommendation from

the user perspective in the sense that a fair RS should provide the same rec-

ommendation quality for different groups of users. Ge et al. (2021) explore the

problem of long-term fairness in recommendation so that the model can dy-

namically adjust its recommendation policy to meet fairness constraints when

the environment changes. Mansoury et al. (2021) propose a method based on

network flow optimization to improve exposure fairness for suppliers. Marras

et al. (2022) study the problem of fairness in the context of item providers where

they propose an in-processing method based on the Hellinger distance. Next,

7
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we discuss the approaches most related to ours.

Abdollahpouri et al. (2017) propose an in-processing Matrix Factorization

(MF) based method for controlling popularity bias in RS. In particular, they

introduce a regularization term in the loss function based on the Laplacian

matrix of a co-membership matrix whose dimension is |I| × |I|, which might be

impractical as the number of items in the catalog increases. Experiments on two

real-world datasets show that method is able to improve long-tail coverage at

the cost of a reduction of recommendation quality. Since the proposed method

is an in-processing approach, its applicability is limited as organizations have

to make modifications into their ranking systems.

Singh & Joachims (2018) propose a post-processing ILP-based framework

to guarantee exposure fairness constraints in the context of stochastic rankings.

However, there are two issues that might limit its applicability in real world

scenarios. First, the proposed ILP model has |I|2 binary variables. Second,

after solving the optimization model, its solution has to be decomposed using

the Birkhoff-von Neumann decomposition (Birkhoff, 1940), which additionally

incurs in O(|I|2) time-complexity. The authors propose three exposure alloca-

tion constraints: i) the average exposure of the documents in both groups is

equal, ii) the exposure of the two groups is proportional to their average utility,

iii) the expected click-through rate of each group is proportional to its average

utility. Experiments on synthetic and small real-world datasets containing up

to 25 documents demonstrate that the method is highly effective whilst only

reducing recommendation quality by a small amount.

Biega et al. (2018) propose a post-processing framework to mitigate un-

fairness w.r.t. position bias so that the attention ranked documents receive is

proportional do their relevance. In that context, fairness is achieved via a se-

ries of rankings instead of a single ranking. To this end, they propose an ILP

model that has |I|2 binary variables, which might be impractical in larger scale

scenarios. The model is based on the concept of equity of amortized attention,

where each item receives attention proportional to its cumulative relevance, and

has a constraint that imposes a lower bound in the ranking quality w.r.t. the

8
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ideal ranking. Experiments on synthetic and real-world datasets attest the ef-

fectiveness of the proposed method at the cost of lower quality rankings.

The works presented in this section differ from ours in several aspects. First,

we aim at producing deterministic rankings instead of stochastic rankings. Sec-

ond, we want to guarantee exposure fairness constraints in every single ranking

produced instead of achieving fairness on the average of rankings produced.

Third, we address group fairness instead of individual fairness; a careful reader

should notice that individual fairness is a particular case of group fairness.

Fourth, we propose a post-processing approach, which turns out to be agnostic

to ranking model in production. Last but not least, we want models with a

lower number of variables which can thus be deployed in real world scenarios.

To the best of our knowledge, there is no approach in the literature that allows

the organization to explicitly define constraints w.r.t the minimum exposure

levels for groups of items and have guarantees that these requirements are met

in every single ranking produced.

3. Modeling exposure constraints

In this section, we present our post-processing approach to produce rec-

ommendations with exposure guarantees. Our idea amounts to introducing

constraints in an ILP to enforce that each group receives a minimum level of

exposure in the final ranking. To this end, we model the exposure with a classic

logarithmic discount factor model (Wang et al., 2013; Järvelin & Kekäläinen,

2002; Abdollahpouri et al., 2019a; Singh & Joachims, 2018). Based on this

principle, we propose two set of constraints: i) Minimum Exposure (ME) con-

straints guarantee that each group receives a minimum level of exposure and

ii) Relative Minimum Exposure (RE) constraints enforce that exposure of the

protected group is at least a factor of that received by the non-protected group.

In this way, our approach guarantees a minimum exposure in every recommen-

dation. Last but not least, our model allows the organization to balance the

level of exposure by means of a parameter in the model and thus calibrate the

9
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trade-off between exposure and recommendation quality. Next, we introduce

the mathematical notation required to describe our two exposure constraints.

Main notation: Let U be the set of users; I be the set of items; G =

{g : g ⊆ I} be a set of groups of items; K be the number of items in the

recommendation ranking. We will write ŷui for the relevance estimated by a

baseline recommender model for the combination of user u and item i. This

will be one of the main inputs to our post-processing model, which aims to

rerank the ranking provided by ŷui to increase its fairness. xik ∈ {0, 1} will be a

variable that assumes the value 1 if item i occupies the k-th position in the final

recommendation ranking provided by our model and 0 otherwise; thus, xik is

the main variable to learn. To describe group memberships, Ii(g) will denote an

indicator variable that assumes the value 1 if item i is a member of group g ∈ G

and 0 otherwise. We will write p(k) for the position bias at position k (Craswell

et al., 2008), i.e. the estimated probability of a user observing position k in

a recommendation ranking; and α ∈ [0, 1] to denote the level of exposure. In

fact, p(k) is a quantity that must be modeled its estimate must be fed to our

method. In experiments, we will focus on an inverse logarithmic which was

originally suggested in (Järvelin & Kekäläinen, 2002) but has been extensively

used and studied since then (Abdollahpouri et al., 2019a; Singh & Joachims,

2018; Wang et al., 2013). The idea is that the exposure probability p(k) scales

like 1/ log(1 + k). For the sake of readability, we summarize our notation in

Table 1.

We present an ILP model for the problem of computing an optimal K-

10
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Notation Explanation

α level of exposure

G, g set of groups of items, a group of items

Gp, Gn set of protected groups, set of non protected groups

I, i set of items, an item

Ii(g) indicator variable if item i is a member of group g

K number of items in the recommendation list

p(k) bias at position k

ρ% percentage of most popular items according to the number of interactions in training

U, u set of users, a user

xik binary variable indicating if item i occupies k-the position

ŷui estimated relevance for user u and item i

Table 1: Main Notation.

ranking for a user u given estimated relevances ŷui:

max

K∑
k=1

∑
i∈I

p(k) · ŷui · xik (1)

∑
i∈I

xik = 1, k = 1 . . .K (2)

K∑
k=1

xik ≤ 1, ∀i ∈ I (3)

xui ∈ {0, 1}, ∀u ∈ U, i ∈ I (4)

Eq (1) maximizes the utility considering the position bias. In fact, the utility

of having item i in position k takes into account the interaction between the

position bias p(k) and the estimated relevance ŷui. As a result, the higher the

predicted relevance of an item the better its position in the final ranking. Eq (2)

ensures that each position in the final ranking is be occupied by one and only one

item. Eq (3) is a knapsack constraint that ensures that an item can occupy at

most one position in the final ranking. Finally, Eq (4) ensures the variables are

binary. One can clearly see that the optimal solution to this problem amounts

to ranking the items in decreasing order of estimated relevance, which complies

11
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with the Probability Ranking Principle (Robertson, 1997).

3.1. Minimum Exposure (ME) Model

This model is suitable for scenarios where an organization is required to

guarantee a minimum level of exposure for certain groups of items in the final

recommendation ranking. For instance, a business rule might require that each

one out of ten genres of books should receive at least 10% of the total exposure

in every recommendation list in order to attain minimum exposure levels. To

this end, we propose the ME model that is initially defined by Eq (1)–(4) and

the following set of constraint:

K∑
k=1

∑
i∈I

p(k) · Ii(g) · xik ≥ α ·
K∑

k=1

p(k), ∀g ∈ G (5)

Eq (5) ensures that each group g ∈ G receives at least a fraction α ∈ [0, 1] of the

total exposure in the final ranking. One should note that a necessary condition

for the set of feasible solutions to be nonempty is that α · |G| ≤ 1.

3.2. Relative Minimum Exposure (RE) Model

In turn, this model is applicable in scenarios where an organization should

guarantee a minimum level of exposure for protected items relative to that

of non-protected items. For instance, a company might require that female

director’s movies should receive at least 90% of the exposure received by those

of male directors. In this context, we propose the RE model whose motivation

is that each protected group receives a minimum level of exposure compared to

that received by a non-protected group. RE is defined by Eq (1)–(4) and the

following set of constraints:

K∑
k=1

∑
i∈gp

p(k) · xik ≥ α ·
K∑

k=1

∑
i∈gn

p(k) · xik, (gp, gn) ∈ Gr (6)

Eq (6) ensures that the exposure received by the protected group gp is at least

α ∈ [0, 1] times the exposure received by the non-protected group gn, where

12
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Gr = {(gp, gn)|gp ∈ Gp, gn ∈ Gn} is the set of pairs of protected and non-

protected groups for which we should impose relative exposure constraints (here

Gp (resp. Gn) denotes the set of protected (resp. non protected) groups).

4. Experimental Setup

To gain a better understanding of the merits of the proposed framework, we

design experiments to answer the following research questions:

RQ1 How effective are our post-processing models at increasing the exposure

of protected items?

RQ2 How do our post-processing models affect recommendation quality?

RQ3 How effective are our post-processing models compared to current fairness-

aware state-of-the-art?

To answer these questions we make use of several public datasets in our exper-

iments. In the following, we describe the setup of our empirical investigations.

Datasets: the MovieLens datasets (Harper & Konstan, 2015) are widely used

in the RS literature and include several datasets of various sizes. Each dataset

consists of users’ preferences for movies expressed on a five-star rating scale.

In this work, we consider the MovieLens 1M (ML1M for short) dataset that

comprises 1 million ratings from 6,000 users on 4,000 movies. The Amazon

dataset (McAuley et al., 2015) contains 142.8 million product reviews spanning

May 1996 - July 2014 and product metadata from Amazon. Ratings are given

by users on a five-star rating scale. In this work, we select two representative

product categories from that dataset, namely, Electronics and Kindle. Since we

do not focus on cold start issues, we keep only users and items with at least 5

ratings, i.e., we perform a k-core preprocessing to make sure each user/item has

sufficient feedback. Meng et al. (2020) show the splitting strategy employed is

an important factor when evaluating RS. In our experiments, we employ the

temporal global splitting (Meng et al., 2020), where any interactions after a
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fixed time point are used for testing; this strategy arguably represents a more

realistic scenario. Thus, we split the datasets into training (80%), validation

(10%) and testing (10%) subsets in this chronological way.

Baselines: we consider two strong baselines in our experiments that are most

related to our approach. Abdollahpouri et al. (2017) propose an in-processing

fairness-aware framework based on MF. In turn, Biega et al. (2018) propose

a post-processing optimization model to produce fair rankings that takes into

account equity-of-attention fairness.

Recommender Models and Parameter Tuning: we evaluate our post-

processing models over a biased matrix factorization recommender (Koren et al.,

2009), which was implemented in PyTorch, and an item-item recommender (Desh-

pande & Karypis, 2004), whose implementation is provided by Lenskit (Ek-

strand, 2020). The choice of these recommendation models is motivated by

findings of recent works (Ferrari Dacrema et al., 2019, 2021; Ludewig et al.,

2019; Latifi et al., 2022) that show that well-tuned MF and item-based mod-

els provide competitive results compared to neural-based recommenders. We

performed hyperparameter tuning so that the models provide the best possible

results for the sake of a fair comparison. For the biased matrix factorization, we

kept the number of latent factors fixed at 30 while experimenting with values of

the learning rate in the range {10−3, 10−2, 10−1} and values of the regularization

parameter in the range {10−6, 10−5, 10−4, 10−3}. We used the popular Adam

optimizer (Kingma & Ba, 2014). In turn, for the item-item recommender, we

experimented with values of neighbors in {5, 10, 50} and a minimum number of

neighbors for scoring an item in the range {1, 5, 10}. Thus, we report the results

for these methods on the basis of the best parameter configuration found on the

validation set. Finally, optimization problems are solved to optimality using

Gurobi 9.51. 1 By the time of publication of this article, we will made our code

available in public repository.

Evaluation Methodology: we employ a binary scale of relevance where items

1https://www.gurobi.com/
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are relevant if their rating is above the user average rating are not relevant

otherwise. Based on the properties of the logarithmic discount factor (Wang

et al., 2013; Järvelin & Kekäläinen, 2002), we assume the position bias for

position k is given by p(k) = 1/ log2(k + 1). Thus, we define the total ex-

posure received by a group of items in a recommendation list as the sum of

their corresponding p(k). We report our results using Normalized Discounted

Cumulative Gain (nDCG) (Järvelin & Kekäläinen, 2002), Mean Reciprocal

Rank (MRR) (Shi et al., 2012), total exposure of the protected group and num-

ber of items from the protected group in the final ranking.

Groups: our models can be adapted to a wide variety of possible protected

and non protected group. Following (Abdollahpouri et al., 2019a; Liu & Zheng,

2020), we focus on the simple and informative case where the non-protected

group is defined to be the subset of items that are among the ρ% of most popular

items according to the number of interactions they received in the training set,

i.e., so called “short-head items”. In turn, the protected group is composed of

those items that are not in the non-protected group, i.e., so called “long-tail

items”. For instance, if we set ρ to 30%, the non-protected group is composed of

the 30% of most popular items in the training dataset. In our experiments, we

evaluate two different scenarios w.r.t to the choice of ρ: i) ρ = 30% represents

the usual scenario where a reduced percentage of items accounts for the most

interactions in the dataset and so most items are under exposed (Abdollahpouri

et al., 2019a) and ii) ρ = 90% represents an extreme scenario where only items

in the very end of the long tail should have their exposure improved. Our

motivation for this setting lies in the well known fact that items with fewer

known interactions tend to be ranked lower, even when they do not actually

have lower utility (Zhu et al., 2021). Thus, we can evaluate the effectiveness of

our post-processing models by contrasting short-head and long-tail items in two

different scenarios.

In the next section, we report our results as an average of metric figures

across all users in the test. Statistically significant differences are verified using

a two-tailed paired t-test. In particular, we use the symbols • and ◦ to denote

15

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4274780

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



respectively significant difference at the p < 0.01 and p < 0.05 levels from a

given baseline; ↑ and ↓ indicate whether larger or smaller values are better,

respectively.

5. Results

In the following, we address each of the research questions posed in Section 4

in turn. We adopt a specific nomenclature to make clear which method is

under consideration. Namely, MF stands for the biased matrix factorization

recommender and IB for the item-based recommender, ME-α and RE-α for our

post-processing strategies with fairness ratio value α, MF-T for the baseline

proposed in (Abdollahpouri et al., 2017) and EA for that proposed in (Biega

et al., 2018). Results are displayed in Tables 2–4 for the MF recommender and

Tables 5–7 for the IB counterpart. A careful reader should keep in mind that

the optimization models are solved to optimality and so they ensure that every

ranking produced attains the fairness requirements imposed.

5.1. Results for RQ1

To address RQ1, first we assess the performance of our post-processing mod-

els over the MF and IB recommenders. Overall, Tables 2–7 show that the larger

the value of α, the larger the exposure and the number of protected items recom-

mended for different configurations of ρ (recalling that ρ denotes the percentage

threshold to define “most popular” items by number of interactions in training,

whilst α – from Equations (5) and (6) – denotes the threshold in the fairness

constraint). However, from Tables 5 and 6, one can see that for our model ME,

the larger the value of α, the lesser the exposure and the number of protected

items recommended for ρ = 30%. In these settings, there is an over exposure

of protected items compared to level α defined in the experiments. Thus, this

finding suggests that our model ME is able to increase the exposure of protected

group in cases of under exposure as well as to reduce its exposure in case of over

exposure. Finally, one should note that IB produces recommendations where
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the number of protected items in the final recommendation is higher compared

to those provided by MF. For example, in the extreme scenario where ρ = 90%,

the MF method can barely recommend items from the protected group. This

result suggests that MF-based recommenders might benefit from our methods

to give exposure to long-tail items.

5.2. Results for RQ2

To address RQ2, we compare the recommendation quality provided by our

models over the MF and IB recommenders to those provided by the original

recommenders, i.e., no post-processing is applied. Overall, Tables 2–4 show that

the original MF recommender systematically produces better recommendations

compared to our post-processing models except in the Kindle dataset where the

differences displayed have no statistical significance.

Next, we compare our models against the IB recommender. Table 7 shows

that our models do not affect recommendation quality in the Kindle dataset;

in the Electronics dataset (Table 6), recommendation quality is significantly

reduced in two configurations (ME-0.4 and RE-0.9). Finally, in the ML1M

dataset (Table 5), ME produces better recommendations when ρ = 0.3; on

the other hand, our models presents a reduced recommendation quality when

ρ = 0.9. To better understand the impact on recommendation quality, we next

assess the robustness of our methods when recommending for users with various

levels of sparsity.

Figure 2 provides performance breakdowns (with respect to nDCG) for our

methods in the ML1M dataset. Each subfigure shows four bins representing user

groups that interacted with an increasing amount of items organized according

to the first (Q1), second (Q2) and third (Q3) quartiles of the corresponding

training dataset. The first and second subgraphs from the first row represent

respectively the results over MF for ME and RE, and one can conclude that the

larger the user’s history the lesser the degradation of recommendation quality.

In turn, the first and second graphs from the second row show respectively the

results over IB for ME and RE; if on the one hand ME improves recommendation
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quality over all levels of user history, on the other hand RE produces worse

recommendations but one can note the larger the user’s history the lesser the

reduction in recommendation quality.

In order to better understand these findings, we present box plots for item

popularity according to the users history size in Figure 3. One can conclude

that the larger the user history size the lower the median popularity of inter-

acted items, which suggests that low profile users tend to interact with popular

items while very active users not only explore the catalog but also interact

with long-tail items. This might explain why the larger the user’s history the

lesser the reduction of recommendation quality in our experiments. In fact, our

models tend to promote long-tail items since we defined groups with respect

to item popularity. Thus, since low profile users tend to interact with popular

items, recommending long-tail items might decrease recommendation quality.

In contrast, active users benefit from recommendations that promote long-tail

items.

Recalling research question RQ2, we can conclude that there is a trade-off

between recommendation quality and the exposure of protected items in the

recommendation list; this trade-off has been pointed out in several works in

the literature (Zehlike & Castillo, 2020; Biega et al., 2018; Singh & Joachims,

2018). As a matter of fact, in most scenarios, the recommendation quality de-

creases significantly, especially over the MF recommender in the ML1M dataset.

However, one should note that the larger the exposure ratio α the greater the

reduction in recommendation quality. Thus, our models are flexible in the sense

that the exposure ratio α should be fine-tuned to balance the desired minimum

exposure and recommendation quality.

5.3. Results for RQ3

To address RQ3, we compare our models against MF-T and AE. From Ta-

bles 2–4, one can see that overall our models outperform MF-T w.r.t both rec-

ommendation quality and protected group exposure, specially in extreme cases

(e.g. ρ = 90%). This finding suggests the importance of taking into account the
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position bias to produce fair recommendations.

Next, we compare our models against AE: i) ML1M dataset (Tables 2 and

5): our models systematically show lower exposure when ρ = 30% but they pro-

vide better recommendation quality, ME-0.4 and RE-0.9 outperform EA w.r.t

protected group exposure when ρ = 90%, ii) Electronics dataset (Tables 3 and

6): overall, our models show improved protected group exposure, and iii) Kindle

dataset (Tables 4 and 7): our models show lower exposure of protected group

when ρ = 30%, but they improve protected group exposure when ρ = 90%.

These findings suggest that our methods are able to provide improved pro-

tected group exposure, specially for items in the very long tail (i.e. scenario

where ρ = 90%).

Thus, we conclude that our models provide higher quality recommendations

and increase the exposure of items from the protected group in all scenarios but

one when compared to the MF-T baseline. When compared to the AE baseline,

our models are able to provide better recommendations w.r.t protected exposure

or recommendation quality in four out of six configurations evaluated, which

attest the benefits of our method. Recalling, our model has a parameter α that

should be carefully tuned to balance the trade-off between increasing exposure

and degrading recommendation quality.

6. Conclusion

In this work, we studied the problem of fairness of exposure in recommen-

dations. In practice, items placed near the top of the recommendation list tend

to have a higher probability of being consumed or rated by the user; thus, one

should take this fact into account when defining and enforcing fairness con-

ditions. To this end, we proposed a framework based on an ILP model that

provides recommendations with minimum exposure guarantees: each group of

items receives a minimum level of total expected exposure. Namely, the ME

constraint guarantees that each group receives a minimum proportion of the

total (expected) exposure while the RE constraint ensures that each item in the
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Figure 2: nDCG breakdown according to the users’ history size in ML1M when ρ = 0.3.
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MF MF-T EA ME-0.2 ME-0.4 RE-0.3 RE-0.9

ρ = 30%

nDCG↑ 0.1528 •0.0832 •0.0317 •0.1442 •0.1221 •0.1416 •0.1135

MRR↑ 0.3060 •0.1360 •0.1843 •0.2854 •0.2326 •0.2789 •0.2174

Exposure↑ 1.1554 •1.7499 •5.8071 •1.6803 •2.8748 •1.8443 •3.3758

Count↑ 3.4560 •5.2141 •18.2937 •4.8956 •8.0114 •5.3216 •9.2751

ρ = 90%

nDCG↑ 0.1528 •0.0875 •0.0317 •0.1290 •0.0989 •0.1243 •0.0886

MRR↑ 0.3060 •0.1566 •0.1843 •0.2872 •0.2133 •0.2743 •0.1866

Exposure↑ 0.0003 0.0001 •1.8952 •1.4114 •2.8178 •1.6264 •3.3365

Count↑ 0.0010 0.0001 •6.5832 •4.4126 •7.6546 •4.8356 •8.7487

Table 2: Results for MF recommendation model: ML1M dataset

MF MF-T EA ME-0.2 ME-0.4 RE-0.3 RE-0.9

ρ = 30%

nDCG↑ 0.0042 •0.0018 •0.0077 ◦0.0042 0.0037 0.0041 •0.0031

MRR↑ 0.0024 0.0012 •0.0058 •0.0024 •0.0019 ◦0.0023 •0.0016

Exposure↑ 2.2275 •3.5924 •0.0001 •2.3384 •3.0202 •2.4004 •3.4570

Count↑ 6.6893 •10.0576 •0.0001 •7.0497 •8.9882 •7.2442 •10.1615

ρ = 90%

nDCG↑ 0.0042 •0.0010 •0.0077 •0.0032 •0.0025 •0.0032 •0.0023

MRR↑ 0.0024 ◦0.0009 •0.0058 •0.0019 •0.0015 •0.0018 •0.0013

Exposure↑ 0.1584 •1.2476 •0.0001 •1.4171 •2.8195 •1.6292 •3.3379

Count↑ 0.4732 •3.5121 •0.0001 •4.2260 •7.8129 •4.7302 •9.1645

Table 3: Results for MF recommendation model: Electronics dataset.

non-protected group receives a minimum proportion of the exposure relative

to that received by a non-protected group. Compared to previous works, our
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MF MF-T EA ME-0.2 ME-0.4 RE-0.3 RE-0.9

ρ = 30%

nDCG↑ 0.0066 0.0047 •0.0010 0.0064 0.0061 0.0064 0.0060

MRR↑ 0.0046 0.0043 •0.0014 0.0045 0.0040 0.0043 0.0039

Exposure↑ 0.6495 •1.3791 •5.5459 •1.4691 •2.8249 •1.6665 •3.3410

Count↑ 2.1167 •4.9126 •17.1753 •4.7983 •8.7187 •5.3944 •10.1155

ρ = 90%

nDCG↑ 0.0066 0.0048 •0.0010 0.0065 0.0058 0.0068 0.0056

MRR↑ 0.0046 0.0045 •0.0014 0.0041 0.0042 0.0044 0.0041

Exposure↑ 0.0567 •0.0262 •0.5553 •1.4142 •2.8183 •1.6270 •3.3369

Count↑ 0.1436 ◦0.0993 •1.4919 •4.3082 •8.0987 •4.8677 •9.4919

Table 4: Results for MF recommendation model: Kindle dataset.

IB EA ME-0.2 ME-0.4 RE-0.3 RE-0.9

ρ = 30%

nDCG↑ 0.0656 •0.0063 •0.0668 •0.0720 0.0655 •0.0626

MRR↑ 0.1099 •0.0393 •0.1118 •0.1209 0.1099 •0.1036

Exposure↑ 4.3110 •6.4217 •4.2312 •3.8461 •4.3197 •4.4707

Count↑ 11.4281 •18.9483 •11.1603 •9.9607 •11.4519 •11.8304

ρ = 90%

nDCG↑ 0.0656 •0.0063 •0.0636 •0.0539 •0.0628 •0.0483

MRR↑ 0.1099 •0.0393 •0.1053 •0.0800 •0.1017 •0.0675

Exposure↑ 2.0752 2.1156 •2.2073 •2.9247 •2.2636 •3.3799

Count↑ 4.3495 •5.9938 •4.6525 •6.3671 •4.7549 •7.6319

Table 5: Results for IB recommendation model: ML1M dataset.

model shows two striking advantages: i) it has a smaller number of variables,

which makes it much more computationally tractable and ii) it allows an organi-
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IB EA ME-0.2 ME-0.4 RE-0.3 RE-0.9

ρ = 30%

nDCG↑ 0.0011 0.0008 0.0012 0.0015 0.0011 0.0011

MRR↑ 0.0007 0.0006 0.0008 0.0012 0.0007 0.0007

Exposure↑ 5.3814 5.3685 •5.1240 •4.1500 •5.3843 •5.3951

Count↑ 15.0970 •15.5032 •14.3599 •12.0364 15.0975 •15.1231

ρ = 90%

nDCG↑ 0.0011 0.0008 ◦0.0011 ◦0.0007 ◦0.0011 •0.0005

MRR↑ 0.0007 0.0006 0.0007 •0.0005 0.0006 •0.0003

Exposure↑ 0.7497 •0.6724 •1.4833 •2.8247 •1.6722 •3.3412

Count↑ 2.1645 •1.8764 •3.9414 •6.8498 •4.2930 •8.1581

Table 6: Results for IB recommendation model: Electronics dataset.

IB EA ME-0.2 ME-0.4 RE-0.3 RE-0.9

ρ = 30%

nDCG↑ 0.0014 0.0006 0.0014 0.0019 0.0015 0.0016

MRR↑ 0.0012 0.0010 0.0011 0.0022 0.0012 0.0015

Exposure↑ 4.9404 •5.4900 •4.7727 •4.0344 •4.9431 •4.9989

Count↑ 13.9120 •15.8270 •13.4381 •11.6768 13.9114 •14.0347

ρ = 90%

nDCG↑ 0.0014 0.0006 0.0013 0.0014 0.0013 0.0015

MRR↑ 0.0012 0.0010 0.0010 0.0012 0.0009 0.0011

Exposure↑ 0.6162 •0.8658 •1.4608 •2.8231 •1.6557 •3.3400

Count↑ 1.7834 •2.4853 •3.7834 •6.7271 •4.1293 •8.0557

Table 7: Results for IB recommendation model: Kindle dataset.

zation to explicitly define minimum exposure levels for groups of items and have

guarantees that these requirements are met in every single ranking produced.
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Experiments in several public datasets attest the effectiveness of our methods

in giving exposure to items in protected groups. In some scenarios, there is

a clear reduction in recommendation quality. However, a breakdown analysis

shows that the larger the user history in training, the smaller the degradation

in recommendation quality. In conclusion, our post-processing approach is able

to produce rankings with minimum exposure guarantees and so might be used

by organizations that have to meet some service level agreement w.r.t exposure

of group of items.
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