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Abstract— Mobile crowdsensing (MCS) has been applied in
various fields to realize data sharing, where multiple platforms
and multiple Mobile Users (MUs) have appeared recently. How-
ever, aiming at mutual selection, the existing works ignore making
MUs’ utilities with the limited resources and platforms’ utilities
while achieving the desired sensing data quality maximum as far
as possible. Thus, they cannot motivate both MUs and platforms
to participate. To address this problem, standing on both sides
of MUs and platforms with conflicting interests, we propose
a Progressive two-stage Auction-based Multi-platform Multi-
user Mutual Selection scheme (PAM3S). Specifically, in PAM3S,
we treat mutual selection as a two-stage auction and devise
the auction models for MU and platform using forward and
reverse auction ideas, presenting and maximizing the utilities
from their respective perspectives. Then, based on the proposed
progressive two-stage auction structure, we adopt 0-1 knapsack
and Myerson’s price theory to construct the first stage MU-
oriented auction and the second stage platform-oriented auction,
achieving devised models. Theoretical analysis shows that PAM3S
is economically robust. Extensive experiments on the real dataset
demonstrate that PAM3S respectively promotes platforms’ and
MUs’ utilities by 76.23% and 10.74 times, compared with the
existing works.

Index Terms— Mobile crowdsensing, mutual selection, multi-
platform multi-user, utility, auction.

I. INTRODUCTION

WITH the popularity of smart mobile devices equipped
with various sensors such as GPS, camera, and

accelerometer, Mobile CrowdSensing (MCS) has become a
new pattern of data collection and sharing. It promotes a
sensing platform to recruit Mobile Users (MUs) to perform
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tasks for providing services, which can fully use a wide range
of sensor resources without deploying specific infrastructures.
Recently, more and more applications managed by differ-
ent platforms have appeared. The heterogeneous MUs can
join various platforms and submit their sensing data, such
as real-time traffic monitoring data (Waze) [1], air quality
monitoring data (U-Air) [2], and health management data
(Runkeeper) [3]. It spawns the MCS market of multiple
platforms and multiple MUs [4], [5], [6], as shown in Fig. 1.
Different from the MCS scenario with a single platform, in this
new scenario, each MU can choose several platforms to join to
maximize his utility prospectively. Meanwhile, each platform
tries to attract and recruit MUs to acquire sensing data to
maximize its utility under a specific budget.

The smooth acquisition of sensing data for a platform
relies on a certain number of MUs’ participations. Mean-
while, MUs sacrifice their resources while performing tasks
that are not beneficial to them [7], [8]. Thus, it is desired
for the platform to provide compensation for MUs’ loss,
encouraging them to participate and complete sensing tasks.
Currently, focusing on the multi-platform multi-user scenario,
several works have been proposed to attract MUs to partic-
ipate [5], [6], [9], [10], [11], [12], [13]. Nevertheless, the
existing works still have the following problems.

Specifically, for MUs, the existing works make a MU select
platforms with high declared payments [13] or considerable
profits [5], [6], note that each MU may ignore his limited
resources. These schemes cannot appropriately allocate MUs’
resources for participating in tasks from multiple platforms.
In particular, when a MU chooses several platforms with the
highest declared payments, these platforms may consume up
MU’s limited resources, so the MU has no resources to join
other platforms’ tasks. Whereas, if the MU chooses platforms
with relatively low declared payments while consuming the
MU’s fewer resources, he can select more platforms to join to
get a higher utility because the MU can get profit from more
platforms with the same resources. Therefore, these policies
may make a MU get a low utility instead.

Moreover, for platforms, the existing works mainly focus
on the competition among multiple platforms for attracting as
many MUs as possible [5], [9], [10], [11] or reducing costs
of recruiting MUs [13], while ignoring the quality of data
MUs provide. These schemes cannot guarantee that platforms
collect desired quality sensing data. Data gathered with low
quality directly impacts the data value and further influences
the sensing service quality. Therefore, the platforms may get
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Fig. 1. A simple example of multiple platforms and multiple MUs. Each
sensing platform is responsible for broadcasting tasks and recruiting MUs.
Then, the recruited MUs submit the collected sensing data to the platform.
After processing the received data, the platform obtains the sensing results to
provide further services.

low utilities and even negative ones. Overall, the existing
works cannot maximize MUs’ and platforms’ utilities as much
as possible, failing to promote both to participate in the multi-
platform multi-user scenario.

To address the aforementioned issues, we propose a
Progressive two-stage Auction-based Multi-platform Multi-
user Mutual Selection scheme (PAM3S) in MCS. Unlike
traditional mechanisms used in the existing works, we inno-
vatively devise the two-stage auction for this selection. The
contributions of this paper are summarized as follows:
• We regard mutual selection in the multi-platform multi-

user scenario as a two-stage auction and establish the
auction models respectively for MU and platform. The
selection of inclined platforms by MU and recruitment
of MUs by the platform are progressively modeled as
the forward MU auction and reverse platform auction.
Meanwhile, we consider the limited resources of MUs
and the quality of sensing data gathered by platforms
and redesign the utility of MU and the platform. The
established models guide MU and the platform to obtain
satisfactory utilities.

• We implement the proposed two-stage model. We design
the first stage MU-oriented auction by adopting the ideas
of 0-1 knapsack and Myerson’s price theory, where each
resource-constrained MU selects the inclined platforms
and computes the asking prices for these platforms. Based
on this auction, we progressively give the second stage
platform-oriented auction. Each platform determines the
final recruited MUs and the payments employing Myer-
son’s price theory.

• Theoretical analysis shows that PAM3S achieves design
goals, including individually rational, truthful, and budget
balanced. Extensive experiments on the real dataset indi-
cate that the utilities of platforms and MUs respectively
increase 76.23% and 10.74 times on average compared
with the existing works. Moreover, the platform’s sens-
ing data quality and the MU’s resource utilization are
improved by 35.00% and 2.20 times, respectively.

The rest of this paper is organized as follows. In section II,
we review the existing works. Section III gives the system
model, assumptions, design goals, and preliminaries. The
detailed scheme, including our auction models and correspond-
ing constructions, is demonstrated in section IV. Section V and
section VI present the theoretical analysis and performance
evaluation, respectively. Finally, we give the conclusion and
future work in section VII.

II. RELATED WORK

This section reviews the existing works for the multi-
platform multi-user scenario. We give the comparison of the
existing works and PAM3S in TABLE I.

TABLE I

COMPARISON OF THE EXISTING WORKS AND PAM3S

Unlike the MU recruitment works in the single platform
scenario [14], [15], [16], [17], Peng et al. [9] first paid atten-
tion to the multi-platform multi-user scenario. They pointed
out that MUs could migrate among multiple platforms to
seek more utilities. The proposed scheme makes each plat-
form decide its bid independently by regarding the bidding
competition among multiple platforms as a non-cooperative
game. Later, Peng et al. [10] further treated the migration of
MUs as an evolutionary game. They demonstrated that both
platforms and MUs could reach game equilibrium. Because the
works above only take platforms’ current profits into account,
Peng et al. [11] extended the devised non-cooperative game
to a repeated game, enabling each platform to optimize the
long-term profits. Following the idea of regarding the bidding
competition among multiple platforms as a non-cooperative
game, Chakeri and Jaimes [12] discussed two cases where each
platform fixed the bid in advance and set the bid dynamically.
However, most of the works above just explore the competition
among multiple platforms. Aiming this problem, Li et al. [5]
regarded the sensing data sharing between multiple platforms
as many-to-many bargaining in addition to formalizing the
platforms’ competition as a two-stage Stackelberg game.
Nie et al. [6] enabled the approving profits for platforms and
MUs by formulating the interactions between them as a multi-
leader multi-follower Stackelberg game with social influence
of MUs. The collusive reward strategies are also discussed
under the cooperation of platforms. Focusing on a set of task
owners and MUs, Cai et al. [13] proposed several distributed
auctions for selection, including the Cost-Preferred Auction
Scheme (CPAS), the Valuation-Preferred Auction Scheme
(VPAS), and so on. Their proposed auctions fit the sensing task
diversity. Unlike the works above, Ni et al. [4] concerned the
privacy issues under MU recruitment, where the decentralized
trust management proposed allows MUs to join different
platforms.

However, the existing works supporting multi-platform
multi-user scenarios focus on attracting MUs mainly. They do
not appropriately allocate the resources of MUs to maximize
their utilities as far as possible under resource constraints.
Meanwhile, they also fail to maximize platforms’ utilities
as much as possible with high-quality sensing data. Thus,
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TABLE II
MAINLY USED NOTATIONS

the existing works cannot obtain appropriate results, reducing
MCS practicability.

III. PROBLEM FORMULATIONS AND PRELIMINARIES

This section first presents the system model and assump-
tions. Then, it gives detailed design goals and preliminaries.
Prior to further description, it demonstrates the mainly used
notations in TABLE II.

A. System Model and Assumptions
We are concerned about the multi-platform multi-user

scenario, where several platforms and large amounts of
MUs exist. The system model is shown in Fig. 2. Let
P = {P1, P2, · · · , Pn} be the platform set and M =
{M1, M2, · · · , Mm} be the MU set, where n, m ≥ 2. The
functions of entities are shown below.

Platforms: When recruiting MUs, each platform Pi pub-
lishes its recruitment information, where 1 ≤ i ≤ n (step 1).
Receiving multiple participation intentions from MUs, Pi

determines the final recruited MUs (step 4), informs them
of the results, and allocates the sensing tasks (step 5). Fur-
thermore, Pi pays the payments to the recruited MUs after
receiving the sensing data (step 7). Since the accurate eval-
uation of a MU relies on long-term tracking, Pi evaluates
the sensing situation of each recruited MU according to the
received sensing data [18].

MUs: Certain MU Mj first decides the inclined platforms
and computes the asking prices after receiving the recruitment
information, where 1 ≤ j ≤ m (step 2). Then, Mj sends the
relevant asking prices to each inclined platform (step 3). If Mj

is selected by platform Pi, he joins Pi, performs the sensing
task, and submits the sensing data (step 6). The payment
compensates the cost of Mj for performing the task.

In our system, PAM3S makes some assumptions for plat-
forms and MUs as follows:
• Assumption 1: Each platform Pi declares the bid rep-

resenting the upper bound of payment to be paid for
the recruited MU. Pi can claim a higher bid than the
real one to attract more MUs and a lower bid for fewer
payments. However, Pi will not lie about the other items
in the recruitment information since Pi cannot improve
its utility by declaring fake ones.

Fig. 2. System model.

• Assumption 2: For MU Mj , the existing works
have pointed out that the platform can evaluate and
select appropriate MUs for high-quality sensing results
[18], [19], [20], where the evaluations are usually based
on the long-term observation of MUs’ submitted data.
Multiple platforms can also maintain the MUs’ evalua-
tions cooperatively [4]. We assume the MU’s evaluation
can be stored and shared among multiple platforms,
which is similar to that banks share consumers’ credit
information to filter undependable ones and can be real-
ized by technology such as blockchain. Thus, Mj cannot
forge his sensing evaluations. Once Mj joins a platform
that requires more resource consumption than he owned,
he will submit insufficient sensing data. This behavior
reduces his evaluation and influences his subsequent
participation in turn. Thus, Mj will not allocate the
resources to the platforms beyond his reach. Nevertheless,
Mj may declare a fake asking price representing his lower
bound of the acceptable payment for realizing the higher
utility.

• Assumption 3: Similar to the general assumption in the
existing works [21], [22], we assume that the platforms’
bidding strategies are only constrained by the budgets,
but not other factors such as the strategies of MUs. Under
this assumption, both platforms and MUs independently
respond best from their respective perspectives to maxi-
mize the utilities in the auctions.

B. Design Goals
This subsection gives the design goals. Unlike traditional

mechanisms such as Vickrey-Clarke-Groves (VCG), which is
efficient and aims to realize the socially optimal solution, the
original goal of PAM3S is to maximize the utilities of both
MUs and platforms as far as possible. PAM3S regards mutual
selection as an auction. It also desires economic robustness
(i.e., individual rationality, truthfulness, and budget balance).
The design goals are established as follows.
• Conditional utility maximization: It is natural for each

platform to reduce its payments for a high utility, and
for each MU, less payment means a lower utility, which
has conflict. Based on this fact, when Mj determines
the inclined platforms, he requires the maximum utility
UMj

∈ R under the limited resources as far as possible.
Furthermore, on the premise that MUs are willing to join,
Pi also expects a high utility UPi

∈ R, which should be
as maximum as possible.

• Individual rationality: The utilities of each platform and
each MU should be no less than zero in PAM3S, implying
UPi ≥ 0 and UMj ≥ 0, for ∀Pi ∈ P, Mj ∈M.
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• Truthfulness: Each platform and each MU should
declare the bid and asking prices truthfully. Specifically,
for Pi, it requires UPi

≥ U ′Pi
, where UPi

is the utility
brought by Pi’s real bid, and U ′Pi

∈ R is not. Meanwhile,
for Mj , we have U ′Mj

≤ UMj
, where UMj

is the utility
under the real asking price and U ′Mj

∈ R is the utility
under the forged price.

• Budget balance: Each platform must have enough pay-
ments to pay the final recruited MUs, avoiding financial
deficits.

C. Preliminaries
This subsection introduces some related background knowl-

edge, including 0-1 knapsack and Myerson’s price theory.
1) 0-1 Knapsack: Suppose there are t different items

γ1, γ2, · · · , γt and a knapsack with volume K ∈ Z. Each item
γs has a volume µs and a price es, where 1 ≤ s ≤ t, µs ∈ Z,
es ∈ R. Then 0-1 knapsack aims to select several items
forming the set B to be put in the knapsack for maximizing
the knapsack’s total prices. Under the volume restraint K, the
selection of B is shown by Eq. 1:

max
t∑

s=1

esgs, s.t.
t∑

s=1

µsgs ≤ K,

gs =
{

1, if γs ∈ B,

0, if γs /∈ B.
(1)

Note that it is necessary to explore the various states before
and after putting γs in B. How to select B is an NP-hard
problem.

2) Myerson’s Price Theory: Myerson’s price theory [23]
has proved that an auction satisfies truthfulness if it satisfies
the following properties:
• Monotonicity. It means once a buyer (seller) wins the

auction by bidding (asking) a value, then he can still win
the auction by bidding (asking) the higher (lower) value.

• Critical payment. For a buyer (seller), the critical pay-
ment is the lower (upper) bound of bidding (asking). Once
a winning buyer (seller) bids (asks) less (higher) than this
value, he fails the auction. Each winner is desired to be
paid with the critical payment.

The theory is adopted as an effective way to realize the
truthfulness of the auction.

IV. SCHEME DESIGN: PAM3S
In the multi-platform multi-user scenario, since the lack of

care for MUs’ resource constraints and platforms’ acquired
sensing data quality, the existing works cannot maximize
utilities of MUs and platforms as far as possible. As two sides
of the auctions, there is a contradiction between platforms
and MUs, making maximizing their utilities simultaneously
impossible. Both platforms and MUs make their own decisions
of collaborators according to facing contexts, which differs
from the double auction, where buyers and sellers seek a
specific price to reach a deal. Note that the key for platforms
to earn profits is that MUs are willing to join and perform
tasks. Meanwhile, MUs may also refuse to join once they are
selected by unintended platforms, causing the recruitment’s
failure. Thus, we regard mutual selection as a two-stage
auction. We first establish the forward and reverse auction
models for MU and platform, respectively. Then, we present
corresponding implementations on the models.

A. Our Auction Models for MU and Platform

In this subsection, we first establish the forward MU model,
which gives the specific utilities of MU and further consid-
ers the necessary processes to maximize the utilities. Then,
we present the reverse platform model for the platform simi-
larly. Both models are the guidelines for the implementation
later.

1) Forward MU model. Take certain MU Mj ∈ M into
account first. Mj is expected to maximize his utility with the
same resources, which requires high payments and acceptable
costs to allocate the resources appropriately. We have the
following analysis.
• Sensing cost: Under the limited resources, PAM3S enables

each MU to decide whether to join a platform or not according
to the cost. The cost of joining a platform derives from collect-
ing sensing data mainly. Meanwhile, Guo et al. [24] pointed
out that MUs’ sensing data usually contains their sensitive
information, such as locations and ambient sounds. The poten-
tial privacy risk also impacts the cost. Restuccia et al. [25]
further pointed out that MUs had significant control over the
sensing process. The lack of expertise when joining a new
platform may bring more costs than joining the platforms that
MUs are familiar with. For joining the platform Pi, let the cost
per unit resource of Mj be cj,i ∈ R+, and zi ∈ Z be the units
of consumed resources that Pi requires, which measures how
much work of the objective data amount Mj needs to sense.
Then, Mj’s total cost of joining Pi is cj,izi. Certain MU has
distinct costs for the different platforms with various demands.
And different MUs have different sensing costs for a platform,
even under the same resource requirement and sensing quality.
The cost is the private information that only Mj can learn.
• Asking price: Certain MU realizes the higher utility

if he receives more payments. Let an asking price be the
lower bound of the payment that MU aims to get from a
platform. Instead of taking sensing costs as asking prices in the
existing works, a MU has precisely calculated asking prices
for different inclined platforms in our scenario to guarantee
his high utility. The asking price that Mj declares for Pi is
aj,i ∈ R+. Then, MU can be motivated to join the platform
by only receiving enough payment to compensate for his cost.
Thus, the asking price should be no less than the cost as Eq. 2,

aj,i ≥ cj,izi. (2)

The MUs’ asking prices to the several platforms impact the
received payments, further influencing the utility.

Through joining platforms, Mj obtains the payments relat-
ing to his asking prices to compensate for the costs. Con-
cretely, if Mj joins Pi and allocates the resources, we can
mark that yj,i = 1. Otherwise, we have yj,i = 0. Mj receives
payment pi,j ∈ R+ from Pi once joining, which is shown
later. Then, Mj’s utility UMj

can be defined as the result that
his total received payments minus the whole costs, meaning∑

Pi∈P (pi,j − cj,iziyj,i). Moreover, the forward auction of
Mj is:

max UMj
=

∑
Pi∈P

(pi,j − cj,iziyj,i)

s.t. yj,i ∈ {0, 1}, i = 1, 2, · · · , n,∑
Pi∈P

zi ≤ Zj , (3)



5

where Zj ∈ Z denotes Mj’s total units of resources, and∑
Pi∈P zi ≤ Zj implies that the sum of allocated resources

should not exceed Mj owns.
To achieve Eq. 3, Mj determines which platforms to

join and what asking prices to declare. This procedure
mainly consists of three processes, namely preliminary
screening, winning platform determination, and asking
price determination. Specifically, Mj first conducts the
preliminary screening to filter out the inappropriate plat-
forms, such as those with high costs or low bids that are
given later. Mj obtains Pj after receiving the recruitment
information published by P , Pj ⊆ P . Then, by the idea
of the forward auction, Mj chooses the platforms to join
through winning platform determination, which analyzes his
expected realized utilities. Mj can learn which platforms make
him maximize the utility with the same resources. Overall,
Mj has y⃗j = (yj,1, yj,2, · · · , yj,n) to denote whether to join
P = {P1, P2, · · · , Pn}. If yj,i = 1, we mark Pi as a winner
for Mj . Let Wj,P be the winner set of Mj , then we have{

yj,i = 1, if Pi ∈ Wj,P ,

yj,i = 0, if Pi /∈ Wj,P .
(4)

We mark the platforms in Wj,P as Wj,P =
{P ′1, P ′2, · · · , P ′|Wj,P |}. After obtaining Wj,P , Mj calculates
the corresponding asking prices for the inclined platforms
via asking price determination, which is denoted as
a⃗j = (aj,1′ , aj,2′ , · · · , aj,|Wj,P |′). Mj receives the final
payments after joining the platforms and submitting the
collected sensing data.

2) Reverse platform model. We then consider the certain
platform Pi ∈ P . Pi expects to recruit several satisfactory
MUs with affordable payments to maximize its utility. The
following requirements are demanded.
• Sensing data quality: High-quality sensing data guar-

antees excellent sensing services. Ni et al. [4] and
Bhattacharjee et al. [26] pointed out that the quality of sens-
ing data depends on the recruited MUs, which is relatively
subjective. A MU may deliberately submit incorrect or forged
data to break the MCS system while consuming the plat-
form’s required resources. The platform can evaluate the MU’s
reliability in various ways, such as calculating the similarity
between the MU’s submitted sensing data and the final sensing
result. We assume that multiple platforms share evaluations
of MUs, which is out of our scope. To ensure the sensing
data quality, each platform in PAM3S sets different thresholds
under kinds of sensing tasks. The threshold restricts the lower
bound of the evaluations that the recruited MUs should meet,
guaranteeing the platform recruiting satisfactory MUs. In a real
case, the platform that targets traffic monitoring generally has
a higher threshold than the platform that targets noisy man-
agement. Moreover, the different platforms may have different
thresholds even undertaking the same task. The platforms
determine the specific thresholds depending on their demands.
PAM3S lets MUs’ evaluations within the interval [0, 100],
where 0 represents no sensing quality guaranteed, 100 means
the highest quality, and 50 is neutral. Let εi ∈ R be the
threshold of Pi set for the current sensing task, εi ∈ [0, 100].
• Published bid: Under the budget limitation, each platform

aims to recruit several MUs to achieve the sensing service,
in which the budget is the highest profit the platform can make.
Obviously, a platform is unwilling to provide the services
once it cannot earn any profits. Thus, each platform has the

bid as the upper bound of the payment it is willing to pay
for a recruited MU. Suppose Pi aims to recruit li MUs.
As mentioned above, Pi sets εi to guarantee the sensing data
quality, implying all recruited MUs should realize the quality
higher than the platform set. Then, Pi declares the bid bi for
attracting desired MUs, where bi ∈ R+ and bili should be
equal to the budget.

For certain MU Mj , if Pi recruits Mj , we have
xi,j = 1. Otherwise, we have xi,j = 0. Pi pays the payment
pi,j to Mj . The utility UPi of Pi can be defined as the profits
brought by all recruited MUs minus the paid payments, that
is

∑
Mj∈M(bixi,j − pi,j). Furthermore, Pi’s reverse auction

can be obtained as:

max UPi
=

∑
Mj∈M

(bixi,j − pi,j)

s.t. xi,j ∈ {0, 1}, j = 1, 2, · · · , m,∑
Mj∈M

xi,j = li,

∀xi,j = 1, ẽj ≥ εi, (5)

where ẽj ∈ R is the sensing evaluation of Mj for collecting
data, ẽj ∈ [0, 100]. In this Eq,

∑
Mj∈M xi,j = li requires

Pi to recruit li MUs, and ∀xi,j = 1, ẽj ≥ εi denotes that
each recruited MU should have the evaluation, which is no
less what Pi desires.

Pi aims to achieve Eq 5. It first publishes the recruitment
information to attract MUs and then performs the processes
of winning MU determination and payment determination
according to the reverse auction concept. Specifically, Pi’s
recruitment information is (bi, εi, zi), where zi ∈ Z means
the required resources of Pi to indicate the objective amount
of data a recruited MU needs to sense. Let Mi be the
set of the MUs intending to join Pi, Mi ⊆ M. After
obtaining Mi, Pi decides which MUs to recruit to maximize
its utility through winning MU determination. Pi has x⃗i =
(xi,1, xi,2, · · · , xi,m) on M = {M1, M2, · · · , Mm}, where
xi,j is default to be 0 once Mj /∈ Mi. If xi,j = 1, we mark
Mj as the winner of Pi. Otherwise, Mj is not the winner of
Pi. Let Pi’s winner set be Wi,M, then we have{

xi,j = 1, if Mj ∈ Wi,M,

xi,j = 0, if Mj /∈ Wi,M,
(6)

and
∑m

j=1 xi,j = |Wi,M| = li. Later, Pi calculates the
final payments for the MUs in Wi,M through payment
determination, which further ensures the maximum utility.
Thus, Pi also outputs the corresponding payments p⃗i =
(pi,1′ , pi,2′ , · · · , pi,|Wi,M|′) for the setWi,M. Note that pi,j =
0 if xi,j = 0. Otherwise, pi,j > 0.

B. Concrete Implementations of Auction Models

The detailed implementations of PAM3S are shown in
Fig. 3. To prevent the case that MU rejects to join after the
platform selects him, PAM3S first implements the first stage
MU-oriented auction, where MU acts as the auctioneer. Then,
the second stage platform-oriented auction is carried by the
platform as the auctioneer progressively.

Specifically, in the first stage MU-oriented auction, certain
MU chooses the platforms to join. The MU’s asking prices for
inclined platforms are further calculated. Since the resources
of the MU are limited, how to allocate resources appropriately
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Fig. 3. Concrete implementation of auction models.

to multiple platforms to realize maximum utility is NP-
hard, where the 0-1 knapsack problem is adopted. Moreover,
while calculating an asking price by adopting Myerson’s price
theory, the process of determining the critical payment of
the target platform through critical neighbors is complex,
and specific recruitment results of inclined platforms cannot
be learned before the platforms perform auctions. Thus, the
relevant asking price is devised especially from the view of
resources, which can be further simplified in the implementa-
tion. Based on the above, the second stage platform-oriented
auction enables the platform to select the final recruited
MUs on MUs’ willingness to participate by taking sensing
quality into account, in which Myerson’s price theory is also
employed.

1) First Stage MU-Oriented Auction: Under the guidance
of the forward MU model, the first stage MU-oriented auction
is shown as follows.

Step1: Publish information by platforms. Each Pi ∈ P
publishes its recruitment information (bi, εi, zi) to all MUs
M = {M1, M2, · · · , Mm} at the beginning of the auction.

Step2: Filter platforms and auction. Each Mj ∈ M
selects the platforms to form the initial platform set Pj by
taking the platforms’ required sensing quality, resources, and
bids into account. Later, Mj performs the auction based on
Pj to obtain the winner set Wj,P ⊆ Pj through winning
platform determination. Meanwhile, Mj also calculates the
asking prices to the platforms in Wj,P via asking price
determination.

Step3: Announce auction results by MUs. The MU like
Mj sends the calculated asking prices to all platforms inWj,P
after completing the auction of the first stage.

Next, we present the main operations involved in Step2,
which are mentioned in the forward MU model. As shown in
Fig. 4, the MU receives the published recruitment information
from five platforms. By screening platforms preliminarily
to filter out the unsuitable ones (platform 5), the winning
platforms are determined based on the remaining platforms,
as shown in the red dotted box. After obtaining the winning
platform set, the MU computes the asking price for each
platform by removing the target one from the initial platform
set in turn.

Preliminary screening. Certain MU Mj selects which
platforms are intended to join initially. For Pi, Mj does not
join Pi, meaning yj,i = 0 under the following cases:

• The sensing evaluation of Mj does not reach the quality
threshold of Pi, indicating ẽj < εi;

• The resources owned by Mj do not meet Pi’s require-
ments, meaning Zj < zi;

• The joining cost of Mj cannot be made up by Pi’s
declared compensation, implying bi ≤ cj,izi.

Fig. 4. Main operations of the first stage MU-oriented auction.

Otherwise, Mj regards Pi as the inclined platform temporarily
and sets yj,i = 1. Mj obtains Pj = {Pi ∈ P|yj,i = 1} =
{P̃1, P̃2, · · · } at this time.

Winning platform determination. Based on Pj , Mj further
determines which of them to join can maximize UMj . The util-
ity Mj gets after joining Pi is expected to be (bi−cj,izi). Mj

has total resources Zj . Suppose Zj is the knapsack volume.
We can treat the resources required by each platform in Pj as
the item’s volume and treat the utility that the platform brings
to Mj as the item price. Then, the problem of maximizing
UMj

within Zj is equivalent to selecting items under a certain
knapsack volume to make the prices of the loaded items
reach the highest. Therefore, the problem of Mj to determine
the winning platform set Wj,P ⊆ Pj can be viewed as the
0-1 knapsack problem. Since the 0-1 knapsack problem has
been well-known as an NP-hard problem, winning platform
determination is also NP-hard.

PAM3S adopts dynamic programming to determine the win-
ning platform set. Whenever MU decides to join a platform,
this decision affects the overall outputs. Algorithm 1 gives
the specific process. In the inputs, b⃗ = (b1̃, b2̃, · · · , b ˜|Pj |)
and z⃗ = (z1̃, z2̃, · · · , z ˜|Pj |) denote the bids and the required
resources of the platforms in Pj , respectively. Meanwhile, the
sensing costs per unit resource for Mj to join Pj’s involved
platforms are c⃗j = (cj,1̃, cj,2̃, · · · , cj, ˜|Pj |). Based on these,
the expected utilities that each platform in Pj brings to Mj

form the utility set {(b1̃ − cj,1̃z1̃), (b2̃ − cj,2̃z2̃), · · · , (b ˜|Pj | −
c
j, ˜|Pj |z ˜|Pj |)}. Denote U [p, q] as the utility that Mj gets after

consideration p platforms and q units resources, where 0 ≤
p ≤ |Pj | and 0 ≤ q ≤ Zj . While executing the algorithm,
the winning platform set Wj,P is initially (line 1). Through
lines 3-10, Algorithm 1 calculates the maximum utility
of Mj as expected. In particular, Mj decides whether to
join P̃p ∈ Pj if his current resources meet P̃p’s demands
(line 9) and rejects joining P̃p directly if his resources are
less than zp̃ (lines 5-7). After obtaining the maximum utility,
lines 12-16 trace back to which platforms Mj intends to
join. If Mj’s utility remains unchanged regardless of taking
a certain platform into account or not, Mj does not join
this platform. Otherwise, this platform is added in Wj,P .
Algorithm 1 returns Wj,P = {P ′1, P ′2, · · · , P ′|Wj,P |}, and
{P ′1, P ′2, · · · , P ′|Wj,P |} ⊆ {P̃1, P̃2, · · · }.

Asking price determination. Mj calculates the asking
prices preparing to declare for each platform in Wj,P . At this
time, PAM3S utilizes the critical payment proposed by Myer-
son’s price theory. Algorithm 2 gives the specific process.

Take the calculation of aj,k′ for P ′k ⊆ Wj,P as an example,
1 ≤ k ≤ |Wj,P |. Mj first removes P ′k from Pj , and
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Algorithm 1 Winning platform selection

Input: Pj , sequences b⃗ = (b1̃, b2̃, · · · , b ˜|Pj |),
z⃗ = (z1̃, z2̃, · · · , z ˜|Pj |),
c⃗j = (cj,1̃, cj,2̃, · · · , cj, ˜|Pj |), and Zj

Output: Wj,P
1 Set Wj,P ← ∅, U [0, q]← 0, U [p, 0]← 0, p, q ∈ Z,

0 ≤ p ≤ |Pj |, 0 ≤ q ≤ Zj ;
2 // Calculating Mj’s maximum utility
3 for p← 1 to |Pj | do
4 for q ← 1 to Zj do
5 if q < zp̃ then
6 // zp̃ is the resources required by the p-th

platform P̃p in Pj

7 U [p, q]← U [p− 1, q];

8 else
9 U [p, q]← max(U [p− 1, q],U [p−

1, q−zp̃] + (bp̃ − cj,p̃zp̃));
10 // Mj is going to join P̃p if the utility

increases

11 // Searching the platforms achieving the maximum
utility

12 for p← |Pj | to 1 do
13 if q − zp̃ ≥ 0 &

U [p, q] == U [p− 1, q − zp̃] + (bp̃ − cj,p̃zp̃) then
14 // The utility that P̃p brings to Mj is involved

in the maximum utility
15 Wj,P ←Wj,P ∪ P̃p;
16 q ← q − zp̃;

17 return Wj,P ;

re-performs Algorithm 1 to get the new winner set W ′
j,P .

Then, the platforms that replace P ′k appearing in W ′
j,P can be

regarded as the critical neighbors of P ′k intuitively. However,
since the different platforms have different requirements, under
the resource constraints of Mj , W ′

j,P may be totally different
with Wj,P . The number of platforms replacing P ′k may be
one or more, and the other inclined platforms of Mj may
differ. We therewith regard the platforms newly appearing in
W ′

j,P as P ′k’s critical neighbors. The critical neighbors not
only bring utility change related to P ′k but also bring change
related to other platforms. Instead of focusing on which critical
neighbor replace which platforms in Wj,P and computing
the relevant changed utilities, we calculate the asking price
from the view of the resources. The critical neighbors cause
changes in resource allocation. Let dj,k′ ∈ R be the absolute
value of the result that utilities realized under the resources
whose allocation is changed minus utilities realized under
the same resources in Wj,P before. Mj obtains dj,k′ , and
calculates the asking price as aj,k′ = bk′ − dj,k′ , where
bk′ is P ′k’s bid. The specific recruitment results of inclined
platforms can only be learned after the platforms perform
auctions. aj,k′ gives how much utility P ′k should bring to
Mj at least for its required resources while the resources
allocated to other platforms in Wj,P bring expected utilities,
which is the critical payment of P ′k. With respect to resource

utilization, dj,k′ is coincidentally equal to utilities realized by
Wj,P minus utilities realized byW ′

j,P , which can simplify the
above process. Thus, Algorithm 2 utilizes this property to
calculate dj,k′ . Moreover, if there is no critical neighbor for
P ′k, PAM3S has aj,k′ = cj,k′zk′ , which equals Mj’s costs for
joining P ′k.

Algorithm 2 Asking price decision
Input: Pj , Wj,P
Output: a⃗j = (aj,1′ , aj,2′ , · · · , aj,|Wj,P |′)

1 for k ← 1 to |Wj,P | do
2 Executing Algorithm 1 for Pj \ P ′k and get W ′

j,P ;
3 if W ′

j,P ⊆ Wj,P then
4 // No critical neighbor exists for P ′k
5 aj,k′ = cj,k′zk′ ;

6 else
7 // Critical neighbor exists for P ′k
8 Set Uk ← 0, U−k ← 0;
9 for v ← 1 to |Wj,P | do

10 Uk = Uk + (bv′ − cj,v′zv′);

11 for v ← 1 to |W ′
j,P | do

12 U−k = U−k + (bv′ − cj,v′zv′);

13 dj,k′ = Uk − U−k; // Calculating the utility
difference based on critical neighbors

14 aj,k′ = bk′ − dj,k′ ;

15 Adding aj,k′ to a⃗j ;

16 return a⃗j = (aj,1′ , aj,2′ , · · · , aj,|Wj,P |′);

Up to now, Mj obtains Wj,P and calculates the asking
prices for each involved platform. The prices are sent to the
corresponding inclined platforms for the second stage auction.

2) Second Stage Platform-Oriented Auction: According to
the reverse platform model, the progressive second stage
platform-oriented auction is based on the first stage auction
as follows.

Step4: Check MUs and auction. Pi checks if the MUs
in Mi have sensing evaluations higher than the sensing
quality threshold after receiving the relevant asking prices.
For example, Pi desires ẽj ≥ εi for Mj . Then, as shown
in the reverse platform model, Pi performs winning MU
determination to obtain the final recruited MU set Wi,M.
Furthermore, it performs payment determination to compute
the paid payment for each recruited MU.

Step5: Announce auction results by platforms. Pi

announces the auction results to the corresponding MUs.
Next, PAM3S presents winning MU determination and

payment determination in Step4, which are similar to Fig. 4.
Winning MU determination. Let Mi be {M̃1, M̃2, · · · },

and the corresponding asking prices be (a1̃,i, a2̃,i, · · · ). Pi

sorts the MUs in Mi with sensing evaluations higher than
the threshold by non-decreasing order based on the received
asking prices. Suppose all MUs in Mi have the evaluations
higher than εi and they have been sorted well, implying
a1̃,i ≤ a2̃,i ≤ · · · . Pi always expects to minimize the
total paid payments. Thus, the first li MUs form the win-
ning MU set Wi,M naturally, which is marked as Wi,M =
{M ′

1, M
′
2, · · · , M ′

|Wi,M|}. The detailed operations are shown
in lines 2-5 of Algorithm 3.
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Algorithm 3 Winning MU selection and Payment
decision
Input: Mi = {M̃1, M̃2, · · · }, (a1̃,i, a2̃,i, · · · )
Output: Wi,M, p⃗i = (pi,1′ , pi,2′ , · · · , pi,|Wi,M|′)

1 // Obtaining the winning MU set Wi,M
2 Set Wi,M ← ∅;
3 Sorting MUs in Mi with non-decreasing order

according to asking prices; // Assuming
a1̃,i ≤ a2̃,i ≤ · · ·

4 for v ← 1 to li do
5 Wi,M ←Wi,M ∪ M̃v;

6 // Calculating payments for MUs in Wi,M
7 for o← 1 to |Wi,M| do
8 Executing lines 2-5 for Mi \M ′

o and get W ′
i,M;

9 pi,o′ = al′i,i
; // al′i,i

is the li-th MU’s asking price
in W ′

i,M
10 Adding pi,o′ to p⃗i;

11 return Wi,M, p⃗i = (pi,1′ , pi,2′ , · · · , pi,|Wi,M|′);

Payment determination. Pi calculates the payment for
each MU in Wi,M. It also adopts the critical payment in
Myerson’s price theory. Lines 7-10 of Algorithm 3 present
the process. When Pi calculates the payment pi,o′ for M ′

o ∈
Wi,M, it first removes M ′

o from Mi, and re-performs lines
2-5 of Algorithm 3, 1 ≤ o ≤ |Wi,M|. The MU who
replaces M ′

o in the new winning MU set W ′
i,M is M ′

o’s
critical neighbor. The corresponding asking price is the critical
payment. Then Pi pays M ′

o with the critical payment pi,o′ .
It has been pointed out that the global smartphone market is
growing rapidly [27], and large amounts of smartphone users
can naturally become potential MUs [14]. The existing works
have supposed there are sufficient MUs in MCS [28], [29].
We also suppose |Mi| ≥ (li + 1) to guarantee that PAM3S
is truthful, indicating that Pi can always recruit the desired
number of MUs and collect satisfactory sensing data. It implies
that each recruited MU has a critical neighbor that will replace
him to win in the platform’s performed auction once the MU
does not participate while determining the critical payment.

So far, PAM3S completes mutual selection in the multi-
platform multi-user scenario.

C. Discussion
The proposed progressive two-stage auction enables each

MU and each platform to make the best determination accord-
ing to their present objective conditions. During this process,
unlike the traditional auction where the participant’s utility is
straightforward, the MU’s utility after the first stage auction
is uncertain until platforms complete auctions. Thus, based
on the platforms’ bids, the MU seeks his maximum utility
as expected. The untruthful bids of platforms damage the
utilities of MUs. Meanwhile, the untruthful asking prices
of MUs are a disadvantage to platforms’ utilities. We make
platforms, and MUs keep truthful. They will not change bids
and asking prices once determined. The bid of a platform will
not be affected by MUs strategies. Nevertheless, the following
limitations occur.

Limitations. Except for the bids, PAM3S does not address
the problem that platforms misreport the other items in

recruitment information as described in Assumption 1, which
is on the basis that PAM3S focuses on utility. The misreporting
of the other items can mislead MUs into participating and
further break the system. The existing works [30] indicated
that a subset of misreport patterns is usually considered for
practical auction designs. We will think about this limitation
in the future. Moreover, PAM3S supposes there are always
sufficient MUs for the platforms to select from. Once the MUs
are insufficient, an available way for the platform to make
the recruitment successful is reducing the number of recruited
MUs to raise the bid more competitively. The insufficient MUs
make it difficult for the platform to obtain satisfactory sensing
data and provide corresponding services, while MUs may ask
maliciously due to lack of competition, damaging the platform.
Other more effective methods to solve the case of insufficient
MUs will be considered in the future, which are out of our
scope.

Owning the characteristic design intention and specific oper-
ations, PAM3S differs from traditional mechanisms. Specifi-
cally, unlike VCG, which concerns socially optimal and match
MUs to the platform with the highest bid, PAM3S provides
specific winner selection and asking price/payment decision to
maximize both MUs’ and platforms’ utilities as far as possible.
PAM3S also realizes budget balance, as proved later, which is
not generally established in VCG. Moreover, PAM3S’s mutual
selection is different from the classical double auction. It does
not require MUs to submit their prices while platforms submit
their bids simultaneously. PAM3S makes a MU determine
which platforms to join and calculates asking prices for the
inclined platforms. Unlike the double auction that aims to
choose a price to clear the market, PAM3S allows MUs and
platforms to make deals based on specific calculated prices.
Thus, PAM3S, rather than a double auction, is suitable for the
multi-platform multi-user scenario.

V. THEORETICAL ANALYSIS

This section mainly analyzes PAM3S from the property,
performance bound, computational complexity, and commu-
nication overhead.

A. Property
PAM3S’s property is indicated from the perspective of

design goals.
Theorem 1: PAM3S enables conditional utility maximiza-

tion.
Proof: PAM3S performs the first-stage MU auction

and the second-stage platform auction. We prove that this
two-stage auction can furthest maximize MUs’ and platforms’
utilities.

We first show that PAM3S can make a platform maximize
its utility.

After receiving Mi, Pi determines the winning MU set
Wi,M. Utilizing proof by contradiction, it is supposed that
there exists the MU setW ′

i,M, which can maximize Pi’s utility
rather than Wi,M. We can learn that there has a MU M ′′

o ,
M ′′

o ∈ W ′
i,M, and M ′′

o /∈ Wi,M. At this time, the utility Pi

gets from M ′′
o is:

bi − pi,o′′ , (7)

where pi,o′′ is the payment Pi pays for M ′′
o . pi,o′′ is M ′′

o ’s
critical payment, which equals the asking price of M ′′

o ’s
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critical neighbor. Since Pi prioritizes MUs with low asking
prices after checking, we have ao′′,i ≤ pi,o′′ , ao′′,i is M ′′

o ’s
asking price for Pi. However, since M ′′

o /∈ Wi,M, we can learn
that the critical payment of any MU in Wi,M is no more than
ao′′,i, meaning that Pi gets less utility from M ′′

o than any MU
in Wi,M. Thus, PAM3S can maximize the platform’s utility.

We then show that PAM3S can also maximize a MU’s
utility. Since the MU’s utility after the first stage auction
is uncertain, we separately prove that PAM3S makes a MU
determine the winning platform set and calculate relevant
asking prices appropriately to maximize the utility as expected.

1) After receiving recruitment information and performing
preliminary screening, Algorithm 1 enables MU Mj to
determine the winning platform set Wj,P that realizes the
maximum expected utility.

For P̃p, which is the p-th considered platform in Pj , when
Mj determines whether select P̃p or not to get more utility
under q units resources, we have U [p, q] ← max(U [p −
1, q],U [p−1, q−zp̃]+(bp̃−cj,p̃zp̃)) by dynamic programming.
It means that U [p, q] depends on U [p−1, q] or U [p−1, q−zp̃]+
(bp̃ − cj,p̃zp̃) merely. We have regarded the winning platform
selection as the 0-1 knapsack problem with optimal substruc-
tures. Both U [p − 1, q] and U [p − 1, q−zp̃] + (bp̃ − cj,p̃zp̃)
have been obtained with the optimal solution. Thus, U [p, q]
is also optimal. After considering all platforms in Pj under
total resources iteratively, the corresponding platforms that Mj

intending to join can realize the maximum expected utility.
2) The asking prices calculated in Algorithm 2 enable

the MU to seek utilities from the platforms in Wj,P as
expected.

For P ′k ∈ Wj,P , Mj calculates the asking price aj,k′ .
We have aj,k′ = cj,k′zk′ or aj,k′ = bk′ − dj,k′ . Since dj,k′

is calculated by the idea of critical payment from the view
of resources, we can see that dj,k′ is equal to the utility
that P ′k brings to Mj at most and no less than 0. Then,
cj,k′zk′ ≤ aj,k′ ≤ bk′ , meaning that aj,k′ is available for
Mj to seek expected utility from P ′k though P ′k will perform
the auction later. Moreover, the asking prices can constrain
platforms to bid truthfully, as given in proving the truthfulness
of PAM3S. Thus, the asking prices can further guaranteeWj,P
is exactly the winning platform set for Mj . Overall, PAM3S
enables a MU to maximize his utility though the recruitment
result is uncertain. Theorem 1 is proved. □

Theorem 2: PAM3S is individually rational for platforms
and MUs.

Proof: For certain platform Pi, if it does not recruit MU
Mj , then xi,j = 0, and pi,j = 0. We have

bixi,j − pi,j = 0, xi,j = 0. (8)

Otherwise, xi,j = 1. The asking price of Mj is aj,i = bi−dj,i

or aj,i = cj,izi, satisfying aj,i ≤ bi. According to lines 7-10
of Algorithm 3, the payment pi,j of Mj satisfies

pi,j ≤ bi, (9)

which means

bixi,j − pi,j ≥ 0, xi,j = 1. (10)

Thus, we can conclude that

UPi =
∑

Mj∈M
(bixi,j − pi,j) ≥ 0, (11)

indicating that Pi meets the individual rationality.

For certain MU Mj , if he does not join platform Pi, then
yj,i = 0, pi,j = 0, which means that

pi,j − cj,iziyj,i = 0, yj,i = 0. (12)

Otherwise, yj,i = 1. Mj receives the payment pi,j paid by Pi,
where pi,j ≥ aj,i. Because Mj’s asking price is aj,i = cj,izi

or aj,i = bi − dj,i ≥ cj,izi, we have
pi,j − cj,iziyj,i ≥ 0, yj,i = 1. (13)

As a result,

UMj
=

∑
Pi∈P

(pi,j − cj,iziyj,i) ≥ 0, (14)

the individual rationality of MU is satisfied.
Therefore, Theorem 2 is proved. □
Lemma 1: If a platform wins the auction with the bid b,

it also wins the auction when bidding b′ > b.
Proof: Let certain MU realize the maximum utility

U (max)
M ∈ R as expected after performing winning platform

determination. If a winning platform rises its bid from b to b′,
the new maximum utility Ũ (max)

M ∈ R for the MU intuitively
to be

Ũ (max)
M = U (max)

M + b′ − b. (15)

However, suppose the platform loses the auction with b′

through the proof by contradiction. Then, Ũ (max)
M does not

involve the utility deriving from this platform. We have

Ũ (max)
M > U (max)

M + b′ − b⇒ U (max)
M < Ũ (max)

M − b′ + b.
(16)

Eq. 16 means that U (max)
M is not the MU’s maximum utility

when the platform bids b, which brings the conflict with the
proposition. Thus, Lemma 1 is proved. □

Lemma 2: If a MU wins the auction with the asking price
a, he also wins the auction when asking a′ < a.

Proof: In the auction, the platform selects several MUs
with the lowest asking prices to recruit. The MU with a′ < a
must win the auction if he wins the auction with a. Therefore,
Lemma 2 is proved. □

Theorem 3: PAM3S satisfies truthfulness as given in
subsection III-B.

Proof: We first prove that PAM3S ensures the truthful-
ness of platforms, which always bid as the budget constraints.
Then, we prove the truthfulness of MUs, which also declare
the calculated asking prices. All proofs are based on Lemma 1
and Lemma 2. We take the auctions between Pi and Mj as
an example.

Suppose Pi has the real bid bi, and the fake bid is b′i.
We have the following cases.

Case 1: If b′i > bi or b′i < bi, Pi always loses the auction
regardless of b′i and bi. In this case, the utility that Pi realizes
from Mj is 0.

Case 2: If b′i > bi, Pi wins the auction with both b′i and
bi. At this point, Pi’s bid increases by (b′i− bi). However, the
asking price a′j,i of Mj under b′i is unchanged if no critical
neighbor of Pi exists, which equals to cj,izi, that is a′j,i = aj,i.
If there exists critical neighbor of Pi, the calculated d′j,i also
increases by (b′i − bi), then we have

a′j,i = b′i − d′j,i
= bi + (b′i − bi)− (dj,i + (b′i − bi))
= bi − dj,i = aj,i. (17)

Therefore, Pi cannot realize a higher utility by bidding b′i.
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Case 3: If b′i < bi, Pi wins the auction with both b′i and bi.
The bid of Pi decreases by (bi − b′i), we have a′j,i = cj,izi =
aj,i if no critical neighbor of Pi exists. Otherwise, if Pi has
critical neighbors, due to the fact that the calculated d′j,i also
decreases by (bi − b′i), we have

a′j,i = b′i − d′j,i
= bi − (bi − b′i)− (dj,i − (bi − b′i))
= bi − dj,i = aj,i. (18)

Pi also cannot realize a higher utility by bidding b′i.
Case 4: If b′i > bi, Pi loses the auction with bi, and wins

with b′i. When Pi wins the auction, if there is no critical
neighbor, we have

b′i > cj,izi ≥ bi. (19)

At this point, Mj asks aj,i = cj,izi. The payment that Pi

pays to Mj satisfies pi,j ≥ aj,i if Pi recruits Mj . Thus, the
utility that Pi gets from Mj is nonpositive. If there exists
the critical neighbor, suppose the maximum utility that Mj

realizes as expected is U (max)
Mj

∈ R when Pi bids bi, and

Ũ (max)
Mj

∈ R when Pi bids b′i. To make Pi win the auction
with b′i, it requires

(b′i − bi) ≥ (Ũ (max)
Mj

− U (max)
Mj

). (20)

Meanwhile, the asking price of Mj is

aj,i = bi + (b′i − bi)− (Ũ (max)
Mj

− U (max)
Mj

) ≥ bi. (21)

Pi cannot get the positive utility from Mj because of pi,j ≥
aj,i. Thus, it is disabled for Pi to get a higher utility than 0 by
bidding b′i.

Case 5: If b′i < bi, Pi loses the auction with b′i, and wins
with bi. This case means that Pi can get the utility from Mj

no less than 0 with bi. Nevertheless, Pi’s utility is 0 when
bidding b′i. Therefore, Pi still cannot realize a higher utility
by bidding b′i.

The discussions above show that if Mj asks aj,i as ruled,
Pi cannot realize a higher utility by bidding falsely. However,
Mj may ask for more or less than aj,i out of considering
improving utility, as shown below.

Suppose Mj asks a′j,i, where cj,izi ≤ a′j,i ≤ aj,i. Because
Pi learns that Mj may decrease the asking price to cj,izi at
most, it could bid falsely in the auction to win and decide
whether to recruit Mj later. This situation leads that Case 4
mentioned above cannot be avoided. However, the fake bid of
Pi is unfavorable for Mj to determine which platforms to join
to maximize Mj’s utility. The first stage MU-oriented auction
is meaningless. Thus, Mj will not asking a′j,i ≤ aj,i.

We also focus on the case in which Mj asks a′j,i > aj,i.
The increase of Mj’s asking price has no impact on the bid
of Pi. Under this condition, we have the following cases:
• No matter Mj asks a′j,i or aj,i, he always wins the auc-

tion. The payment for Mj remains the critical payment,
which is unchanged. Thus, Mj cannot realize a higher
utility by asking a′j,i.

• Mj wins the auction when asking aj,i, and loses when
asking a′j,i. With aj,i, we have

pi,j − cj,iziyj,i ≥ 0, (22)

meaning aj,i brings the nonnegative utility for Mj . Since
a′j,i makes Mj’s utility be 0, Mj also cannot get a higher
utility by asking a′j,i.

To sum up, Mj cannot realize a higher utility by increasing
or decreasing aj,i. The truthfulness of MUs is established.
On this premise, PAM3S also ensures the truthfulness of
platforms. Thus, Theorem 3 is proved. □

Theorem 4: PAM3S ensures budget balance shown in
subsection III-B.

Proof: Considering Pi, it has the bid bi. Meanwhile,
aj,i ≤ bi for Mj in the auction. If Mj wins the auction, Pi’s
final paid payment pi,j is the critical payment of Mj , which
is the asking price of Mj’s critical neighbor and still does not
exceed bi. Thus, we have

bixi,j − pi,j ≥ 0, xi,j = 1. (23)

Otherwise, if Mj loses the auction, we have

bixi,j − pi,j = 0, xi,j = 0. (24)

Eq. 25 always holds to achieve budget balance,∑
Mj∈M

(bixi,j − pi,j) ≥ 0. (25)

Therefore, Theorem 4 is proved. □

B. Performance Bound
We further analyze the performance bound of PAM3S from

the view of the platform and the MU, respectively. Before
a detailed description, we define the following two cases in
which the utilities obtained by MUs or platforms can be
viewed as values that bound the best utilities under the specific
contexts since there are natural conflicts between MUs and
platforms’ utilities.

Platform_optimal: A platform determines the winning MU
set and recruits the corresponding MUs in the set without mak-
ing MUs perform a first-stage auction, meaning the platform
can choose from a broader range of MUs.

MU_optimal: Each MU determines the winning platform
set and is recruited by all inclined platforms.

In Platform_optimal, a MU will regard sensing costs as
asking prices for the corresponding platforms since the MU
does not perform the first stage auction to maximize the utility.
As for MU_optimal, a platform can suffer because the number
of recruited MUs does not align with its expectations, and the
paid payments exceed its budget. The platform also cannot
calculate the appropriate payments for MUs since each MU
does not have critical neighbors. Therefore, we rule that each
platform recruits all MUs selecting it and pays the MUs with
its bid to guarantee the best utility of MUs, which is not
feasible in reality.

Take MU Mj and platform Pi as an example during
analysis. Let Prk′,j be the probability that P ′k recruits Mj ,
P ′k ∈ Wj,P , Prk′,j ∈ R, and 0 ≤ Prk′,j ≤ 1. al′,i is the
asking price of the critical neighbor determined by Pi under
the second stage platform-oriented auction. And we assume
aopt,i is the asking price of the critical neighbor Pi determines
under Platform_optimal. The relationship between bk′ and
pk′,j is described by the function f1, and the relationship
between al′,i and aopt,i is described by the function f2.
We have bk′ = f1(pk′,j) and aopt,i = f2(al′,i).

Theorem 5: For a MU Mj and a platform Pi, we have
UMj

≥ min(Prk′,j(1 −
pk′,j

cj,k′zk′
))U (max)

Mj
and UPi

≥
(1 − al′,i

bi
)U (max)

Pi
, respectively, where UMj

, UPi
are Mj’s

and Pi’s utilities in PAM3S, and U (max)
Mj

, U (max)
Pi

represent
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their optimal utilities realized under MU_optimal and Plat-
form_optimal.

Proof: We first discuss the performance bound from the
view of the MU. Specifically, under MU_optimal, since Mj is
recruited by each platform he is inclined to and is paid with
the platform’s bid, we can learn that U (max)

Mj
=

∑
P ′k∈Wj,P

(bk′ − cj,k′zk′), where cj,k′zk′ is the total costs for Mj to
join P ′k.

As for UMj , at this time, on the one hand, Mj may not be
recruited by the inclined platform P ′k, where the probability
of recruitment is Prk′,j . On the other hand, Mj’s received
payment pk′,j is no more than bk′ . Therefore, we have UMj =∑

P ′k∈Wj,P
Prk′,j(pk′,j − cj,k′zk′).

In extreme cases, if U (max)
Mj

= 0, there must be UMj = 0,

meaning U (max)
Mj

= UMj . Otherwise, we can learn that

UMj

U (max)
Mj

=

∑
P ′k∈Wj,P

Prk′,j(pk′,j − cj,k′zk′)∑
P ′k∈Wj,P

(bk′ − cj,k′zk′)

≥ min(
Prk′,j(pk′,j − cj,k′zk′)

bk′ − cj,k′zk′
)

= min(
Prk′,j(pk′,j − cj,k′zk′)

f1(pk′,j)− cj,k′zk′
)

= min(Prk′,j(1−
pk′,j − f1(pk′,j)

cj,k′zk′ − f1(pk′,j)
)). (26)

Since 0 < cj,k′zk′ ≤ pk′,j , cj,k′zk′ < f1(pk′,j), and pk′,j ≤
f1(pk′,j) establish, we have pk′,j−f1(pk′,j)

cj,k′zk′−f1(pk′,j)
≤ pk′,j

cj,k′zk′
. There-

fore,
UMj

U (max)
Mj

≥ min(Prk′,j(1−
pk′,j − f1(pk′,j)

cj,k′zk′ − f1(pk′,j)
))

≥ min(Prk′,j(1−
pk′,j

cj,k′zk′
)). (27)

We also analyze the platform’s performance bound. Pi will
recruit li MUs with the lowest asking prices aopt,i of the
determined critical neighbor under Platform_optimal. Then
U (max)

Pi
=

∑
Mj∈M(bixi,j − pi,j) = li(bi − aopt,i), where

∀xi,j = 1, pi,j = aopt,i.
The payment that equals to al′,i and paid in PAM3S is no

less than aopt,i, which is the main difference between UPi
and

U (max)
Pi

. It can be seen that UPi =
∑

Mj∈M(bixi,j − pi,j) =
li(bi − al′,i), ∀xi,j = 1, pi,j = al′,i at this time.

Similarly, U (max)
Pi

= UPi
= 0 if U (max)

Pi
= 0 in extreme

cases. Otherwise, we have
UPi

U (max)
Pi

=
li(bi − al′,i)
li(bi − aopt,i)

=
bi − al′,i

bi − f2(al′,i)

= 1− al′,i − f2(al′,i)
bi − f2(al′,i)

. (28)

Due to the fact 0 < al′,i ≤ bi, meaning 0 <
al′,i
bi
≤ 1,

al′,i−f2(al′,i)

bi−f2(al′,i)
≤ al′,i

bi
. Thus,

UPi

U (max)
Pi

≥ 1− al′,i

bi
. (29)

□

C. Computational Complexity
This subsection gives the computational complexities of

the proposed algorithms (Algorithm 1-Algorithm 3) as
follows.

Consider the first stage MU-oriented auction.
In Algorithm 1, the dynamic programming is utilized
first by Mj with Zj on |Pj | platforms. The required
computational complexity is O(|Pj |Zj). Then, Mj traces
back to |Pj | platforms to determine the inclined ones with the
complexity O(|Pj |). Let the maximum resources among m
MUs be Z, and a MU intends to join n platforms at most. The
upper bound computational complexity of Algorithm 1 is
O(nZ).

As for Algorithm 2, to calculate the asking prices, Mj

first removes each platform like P ′k in Wj,P from Pj and
re-performs Algorithm 1. The corresponding computa-
tional complexity is O((|Pj | − 1)Zj). Later, Mj gets dj,k′

by counting of utilities before and after removing P ′k with
the complexity O(|Wj,P |) if |Wj,P | ≥ |W ′

j,P |, and with the
complexity O(|W ′

j,P |) otherwise. The asking price aj,k′ can
be calculated within the constant complexity O(1). Supposing
there are |WP | winning platforms at most, Algorithm 2
has the computational complexity of O(|WP |(n − 1)Z),
|WP | ≤ |Pj | ≤ n.

We can get the computational complexities of
Algorithm 3 through a similar analysis. Let there be
at most m MUs intending to join a platform, and the
maximum number of recruited MU is l. Algorithm 3 has
the complexity O(m2) + O(l) + O(l(m − 1)2), in which
O(m2) is the computational complexity of sorting m MUs
with non-decreasing order according to their asking prices.

D. Communication Overhead
PAM3S has the limited communication overhead as follows.
In the first stage MU-oriented auction, Pi publishes

(bi, εi, zi) to m MUs. Mj sends the calculated asking prices to
the n′ platforms intending to join, where n′ ∈ Z, 0 ≤ n′ ≤ n.
At this time, it requires a message for Pi and n′ messages for
Mj to transmit. Numbers can represent both the messages of
the recruitment information and the asking prices. Then, after
receiving the asking prices from m′ MUs, Pi checks these
MUs and performs winning MU determination and payment
determination, where m′ ∈ Z, 0 ≤ m′ ≤ m. These processes
have no message to transmit. Later, the auction results are sent
by Pi to m′ MUs, which need m′ messages to transmit. Since
the single number can represent whether MU is recruited or
not, Pi transmits m′ numbers.

Take 10 platforms and 500 MUs as an example, meaning
n = 10, and m = 500. Suppose n′ = n and m′ = m, which
are the largest values that n′ and m′ can reach. We have
1.96 KB for Pi and 0.04 KB for Mj to transmit while a
number owns 32 bits, which is consistent with the practice.
The communication overheads are limited. Furthermore, with
the development of 5G technology, the bandwidth and commu-
nication capabilities for platforms and MUs will be improved.
PAM3S’s communication overhead is negligible.

VI. PERFORMANCE EVALUATION

This section discusses the performance of PAM3S through
extensive experiments. We first give the experimental setup.
Then, detailed discussions are provided.
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TABLE III
THE PARAMETERS’ VALUES

A. Experimental Setup
Experimental environment: The experiments are pro-

grammed with Java language, and the experimental environ-
ment is Apple M1, 16GB RAM. The Operating System is
macOS Big Sur.

Dataset and parameters setup: The experiments are built
on the real data set Urban Data [31], widely applied in the
MCS research [32]. We adopt the taxi GPS data, consisting of
taxi id, latitude, longitude, occupancy status, etc. The taxis
are viewed as MUs. The limited resources that each MU
owns are obtained by counting the number of times that
the taxi is not occupied. Because of the large amount of
GPS data, we select 380 active taxis for the experiments,
meaning m = 380. Meanwhile, suppose there are 7 platforms
in the system, n = 7. Each platform aims to recruit 30
MUs. According to the existing works, the values above are
just set as an example. Since each platform targets different
applications and has various sensing tasks, the same MU has
different costs for different platforms. Similar to the existing
works [33], we regard the distance between the MU and
the platform’s sensing task as the required total cost under
demanded resources.1 The locations of sensing tasks are gen-
erated randomly within the area determined by the minimum
and maximum latitudes and longitudes of all MUs. Besides
distance, the MU’s cost is influenced by other factors. Thus,
the cost above also fluctuates. The values of parameters are set
in TABLE III. To capture MUs’ various sensing evaluations,
we set some MUs unreliable, which with low evaluations. The
sensing evaluations for these MUs are within [20, 50], while
the evaluations for the others are within [50, 100].

Comparison indexes: We compare PAM3S’s performance
with the existing works [5], [13]. In particular, we are
mainly concerned with the platforms’ competition in MP-
Coopetition [5]. And we consider Cai et al. [13] proposed
CPAS and VPAS. Both of them are the latest works based on
the auction. The indexes include the utilities of platforms and
MUs, platforms’ achieved sensing quality and earned profits,
MUs’ resource utilization, as well as execution time delay are
compared.

B. Utilities
This subsection first evaluates platforms’ and MUs’ utilities,

then pays attention to the optimality gap.
• Utility of platform: The utility of a platform depends

on the earned profits and the paid payments. In particular, the
earned profits are mainly determined by the recruited MUs’
achieved sensing quality. And the payments are related to the
platforms’ bids. Thus, each platform’s utility is discussed from
the sensing quality and bids.

1Here, we just take an example for making the distance as the total cost,
which is easy to calculate on the dataset and can be others.

Fig. 5. Average utility of each platform under different sensing quality
thresholds. PAM3S enables the highest utilities regardless of the thresholds.

Fig. 6. Average utility of each platform under different distributions
of MUs’ sensing evaluations. PAM3S makes each platform’s average utility
better than the existing works.

In PAM3S, the sensing quality is influenced by the sens-
ing quality thresholds and the distributions of MUs’ sensing
situations reflected by the sensing evaluations. Fig. 5(a) and
Fig. 5(b) give the average utility of each platform under
different thresholds in 100 experiments. Since more platforms
can recruit satisfied MUs when their thresholds are 65, the
average utilities are higher than when their thresholds are 75.
For example, the average utilities of PAM3S, MP-Coopetition,
CPAS, and VPAS are 322.65, 115.00, 198.33, and 200.41 for
platform 1 when the thresholds are 65; when the thresholds
equal to 75, platform 1’s average utilities correspond to 208.03,
86.16, 118.96, and 116.62, respectively.

Since all recruited MUs in PAM3S have the sensing evalu-
ations as each platform desires, the brought profits are high,
as shown in Fig. 12 and Fig. 14. Meanwhile, PAM3S lets a MU
join multiple platforms. Each platform can recruit appropriate
MUs, which avoids the limited successful recruitment to
reduce average utility. Therefore, PAM3S enables the highest
utilities regardless of the thresholds. Additionally, a MU in
MP-Coopetition is only allowed to join one platform. Unlike
the other works, where each platform will not continue to
recruit MUs once its requirement is satisfied, most of the MUs
in MP-Coopetition may join a few platforms. It causes MP-
Coopetition’s different curve patterns, which may have larger
fluctuation than others, as shown in Fig. 5(b) and other figures.

Fig. 6(a) and Fig. 6(b) show each platform’s average utility
under different distributions of MUs’ sensing evaluations in
100 experiments. By taking platform 5 as an example, the
average utilities of PAM3S, MP-Coopetition, CPAS, and VPAS
are 301.75, 169.70, 187.28, and 179.79, when the percentage
of unreliable MUs that with low evaluations is 30%; when
the percentage is 40%, the corresponding utilities are 292.46,
94.44, 165.67, and 159.28, respectively.

Because PAM3S enables each platform to recruit MUs with
sensing evaluations as its threshold set, meaning high sensing
quality, PAM3S earns high profits. Meanwhile, the recruitment
of MUs with low sensing evaluations causes low profits for the
platform of the existing works. Thus, PAM3S always makes
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Fig. 7. Average utility of each platform under different bidding scopes.
PAM3S ensures the utility of each platform is good no matter the bidding
strategies.

Fig. 8. Recruited MUs’ average utilities under different bidding scopes
of platforms. The average utilities of MUs in PAM3S are higher than the
existing works in general.

each platform’s utility better than the existing works regardless
of the percentage of unreliable MUs.

In addition, Fig. 7(a) and Fig. 7(b) give each platform’s
average utility under different bidding scopes. Taking platform
4 as an example, in Fig. 7(a), the average utilities of PAM3S,
MP-Coopetition, CPAS, and VPAS are 134.22, 74.83, 60.78,
and 75.13, respectively, while 394.33, 185.06, 320.77, and
299.41 in Fig. 7(b).

The increase in the bid makes the platform recruit the
desired MUs with a greater probability, which reduces the auc-
tion’s failure. Therefore, the average utility for each platform
rises. Overall, PAM3S ensures the platform’s preferable utility
no matter the bidding strategies.
• Utility of MU: Certain MU’s utility relies on the received

payments and the costs of joining platforms. Because a MU’s
final received payments are influenced by the bids of each
platform he joins, we mainly focus on platforms’ bids and
MUs’ costs. This section divides 100 experiments into ten
groups equally. The final recruited MUs’ average utility under
each experiment is calculated first, then the result of every
group is observed.

Fig. 8(a) and Fig. 8(b) show the average utilities of the
recruited MUs under various platforms’ bidding scopes. When
bi ∈ [5, 20], the average results on MUs’ utilities of several
groups for PAM3S, MP-Coopetition, CPAS, and VPAS are
1.68, 0.65, 0.54, and 0.12, respectively. And the corresponding
utilities are 15.95, 3.73, 0.57, and 0.58 while bi ∈ [25, 40].

PAM3S enables a MU to join multiple platforms under
specific resources. Under this condition, thanks to utility-
based winning platform determination, careful asking price
determination, and payment determination, the average
utilities of recruited MUs in PAM3S are higher than the
existing works. Moreover, for PAM3S, once a MU joins the
platform with a higher bid, he can obtain a higher payment.
Therefore, the average utilities in Fig. 8(b) are higher than in
Fig. 8(a).

Apart from the costs of MUs having 20% fluctuation as
default, we also discuss the average utilities of the recruited

Fig. 9. Recruited MUs’ average utilities under different costs. PAM3S
ensures high utilities of final recruited MUs no matter the fluctuation of costs.

Fig. 10. The average utilities of platforms and recruited MUs of PAM3S,
Platform_optimal, and MU_optimal that reflect the optimality gap. The
optimality gap of PAM3S is acceptable from the perspectives of platforms’
and MUs’ utilities.

MUs while their costs fluctuate by 30%. The results are shown
in Fig. 9(a) and Fig. 9(b), respectively.

The change in costs brings the variation of MUs’ asking
prices, which further impacts the received payments. However,
as the results of payments minus costs, the utilities of the
recruited MUs are not significantly influenced. PAM3S ensures
the high utilities of recruited MUs no matter the costs’ fluc-
tuation. Compared with the existing works, PAM3S increases
10.74 times of MUs’ utilities on average under the default
parameters.
• Optimality gap: We discuss the optimality gap of PAM3S

based on the utilities by comparing with Platform_optimal and
MU_optimal. Note that our scenario has multiple platforms
which face the same MUs. We make multiple platforms
recruit MUs in random order in Platform_optimal to avoid
the situation where MUs are selected by several platforms
simultaneously but do not have enough resources to cooperate.
A MU will not participate in the subsequent recruitment once
resources are exhausted.

Fig. 10(a) and Fig. 10(b) give the realized utilities of
platforms and MUs reflecting the optimality gap, respectively.

In Fig. 10(a), the platforms’ utilities in Platform_optimal
are higher than PAM3S. Moreover, the utilities of platforms
in MU_optimal are the lowest. We can see that in MU_optimal,
platforms even obtain negative utilities because too many
MUs are needed to be paid. PAM3S’s progressive auction
considers the platforms’ utilities in the second stage, making
the results relatively considerable, which are a little lower
than the utilities in Platform_optimal and higher than those in
MU_optimal. Overall, the optimality gap of PAM3S is limited
in the experiments from the perspective of platforms’ utilities
by comparing with Platform_optimal.

Moreover, in Fig. 10(b), the utilities of recruited MUs in
MU_optimal are the highest but do not feasible in practice.
Since Platform_optimal does not think about MUs’ utilities,
which does not allow each MU to allocate his resources
well to seek more utility, the utilities of recruited MUs are
low. Similarly, PAM3S’s progressive auction considers the
MUs’ utilities in the first stage, leading to the results well.
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Fig. 11. Average sensing quality of each platform for recruited MUs
under different thresholds. PAM3S ensures the recruited MUs satisfy the
sensing quality thresholds.

Fig. 12. Average earned profits of each platform under different
thresholds. The platform’s earned profits in PAM3S are the highest compared
to existing works.

The optimality gap of PAM3S is also acceptable from the
perspective of MUs’ utilities by comparing with MU_optimal.

C. Sensing Quality and Earned Profits
First, this subsection observes each platform’s average

sensing quality of the recruited MUs, measured by MUs’
sensing evaluations. Then, the specifically earned profits are
discussed. When computing the average quality of MUs under
100 experiments, the situation where the platform does not
recruit any MU is not considered.

Fig. 11(a) and Fig. 11(b) give each platform’s average
sensing quality of recruited MUs under different thresholds.
Because the threshold set by each platform in Fig. 11(b) is
higher than that in Fig. 11(a), the final recruited MUs in
Fig. 11(b) have more excellent sensing evaluations in PAM3S,
which makes the higher average sensing quality. Meanwhile,
ensuring the sensing quality is above the thresholds in the
existing works is difficult.

PAM3S enables each recruited MU to meet the threshold.
For MP-Coopetition, CPAS, and VPAS, the platform does not
consider MUs’ sensing evaluations. Thus, the average sensing
quality of each platform is the highest in PAM3S compared
with the existing works.

For the earned profits, let the profits brought by the sensing
data derived from the MU with a lower sensing evaluation
than the threshold be the profits achieved by the MU with
expected evaluation times the proportion of the low evaluation
in the threshold. The profits achieved by the MU with expected
evaluation exactly mean the platform’s bid. Each platform’s
average earned profits under different thresholds are shown in
Fig. 12. Specifically, when the thresholds are 65, the average
earned profits for platform 4 of 100 experiments are 598.50,
426.92, 464.22, and 450.32 for PAM3S, MP-Coopetition,
CPAS, and VPAS; the relevant profits are 579.60, 372.74,
434.16 and 435.57 when the thresholds are 75.

On the one hand, the sensing data derived from the MU
with the evaluation lower than the threshold brings a low profit
to the existing works. On the other hand, PAM3S enables a

Fig. 13. Average sensing quality of each platform for the recruited MUs
under different distributions of MU’s sensing evaluations. The average
quality in PAM3S is always above the thresholds.

Fig. 14. Average earned profits of each platform under different
distributions of MUs’ sensing evaluations. PAM3S’s profits are the highest
with various MUs’ evaluation distributions.

MU to join multiple platforms, making more platforms recruit
satisfied MUs to earn high profits. Thus, the platform’s earned
profits in PAM3S are the highest compared to existing works.

Fig. 13(a) and Fig. 13(b) present the average sensing
quality of each platform for the recruited MUs under dif-
ferent MUs’ sensing evaluation distributions. Regardless of
the distributions, since PAM3S ensures all the recruited MUs
have evaluations no less than platforms’ demand, the average
quality is always above the thresholds, as solid red lines
show. For MP-Coopetition, CPAS, and VPAS, the platform
does not consider MUs’ sensing evaluations. Therefore, the
corresponding average quality cannot reach the thresholds.
Compared with 30% unreliable MUs, each platform is more
likely to recruit unreliable MUs when the percentage is 40%.
Thus, the existing works’ average sensing quality in Fig. 13(b)
is lower than in Fig. 13(a).

Fig. 14 gives each platform’s average earned profits under
different distributions of MUs’ sensing evaluations. As the
results show, the earned profits under 30% unreliable MUs are
generally higher than that under 40% for the existing works.
Similarly, the platform’s profits are the highest in PAM3S.

D. Resource Utilization of MUs
This section evaluates the resource utilization of MUs.

Specifically, Mj’s utilization rate of resources is defined as
Z′j/Zj , where Z ′j is the allocated units of resources, and Zj is
Mj’s total units of resources. We also divide 100 experiments
into ten groups. The average resource utilization rate of the
recruited MUs is calculated for each group based on the
average value of each experiment.

We discuss the resource utilization of the recruited MUs
under different platforms’ bidding scopes and MUs’ costs.
Both of them impact whether a MU joins a platform. The
results are shown in Fig. 15 and Fig. 16, respectively.

Since there are 7 platforms in the system, and each of
them aims to recruit 30 MUs, the platform with a high bid
and little costs determined by 380 MUs will have enough
choices. Moreover, the platform fails to recruit MUs once
the number of MUs is less than required. The recruited
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Fig. 15. Resource utilization of the recruited MUs under different
bidding scopes of platforms. PAM3S can always guarantee the MUs’ high
resource utilization under different platforms’ bids.

Fig. 16. Resource utilization of the recruited MUs under different costs.
The recruited MUs’ average resource utilization rates of PAM3S are high
regardless of the costs.

Fig. 17. Average execution time delay. The time delay of PAM3S is limited.

MUs’ average resource utilization rate is not generally high.
However, PAM3S can still guarantee relatively high results.
Similar to PAM3S, since VPAS enables MUs to join multiple
platforms, the average resource utilization rates of recruited
MUs are also high. As for MP-Coopetition and CPAS, each
MU only joins one platform. Thus, the resource utilization
rates of these two works are low. In general, compared with
the situation where bi ∈ [5, 20], the relevant rates are higher
when bi ∈ [25, 40]. There is no significant impact of cost
fluctuation on the results.

E. Execution Time Delay
Last, we discuss the execution time delay of PAM3S and

the existing works. The results are shown in Fig. 17, where
we treat every 100 experiments as a trial for calculating the
average time delay. The PAM3S’s time delay is limited to
about 12.80 ms.

Because CPAS requires multiple iterations of the auction
until a termination condition is met, its required time delay
is the highest. For VPAS, since the auction just needed to
run once, the relevant average time delay reduces. Although
PAM3S executes the auction with two progressive stages,
the adoption of effective methods like dynamic programming
while solving 0-1 knapsack makes its average time delay
close to VPAS and even smaller. The average time delay
of MP-Coopetition is the least since only simple arithmetical
operations are desired.

VII. CONCLUSION AND FUTURE WORK

The existing works fail to maximize the utilities of platforms
and MUs as far as possible in the multi-platform multi-
user scenario, which impedes MCS development. Aiming
at this problem, we propose PAM3S, a progressive two-
stage auction-based multi-platform multi-user mutual selection
scheme. Specifically, we develop the forward and reverse
auction models to maximize the utilities of MUs and plat-
forms. Later, on account of the forward MU model, the first
stage MU-oriented auction is constructed, based on which the
second stage platform-oriented auction is further constructed
under the guidance of the reverse platform model. This pro-
gressive two-stage auction completes mutual selection well.
Theoretical analysis shows that PAM3S meets design goals.
Extensive experiments on the real dataset indicate PAM3S is
effective.

In the future, to address the limitations and enable the
selection in the multi-platform multi-user scenario to be better,
we will establish more detailed auction models to cope with
more complex situations, such as platforms misreporting other
items rather than bids in recruitment information and the
number of MUs is not enough in MCS.
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