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Abstract—Spatial keyword queries are attractive techniques that have been widely deployed in real-life applications in recent years,

such as social networks and location-based services. However, existing solutions neither support dynamic update nor satisfy the

privacy requirements in real applications. In this article, we investigate the problem of Dynamic Searchable Symmetric Encryption

(DSSE) for spatial keyword queries. First, we formulate the definition of DSSE for spatial keyword queries (namely, DSSESKQ) and

extend the DSSE leakage functions to capture the leakages in DSSESKQ. Then, we present a practical DSSESKQ construction based on

geometric prefix encoding inverted-index and encrypted bitmap. Rigorous security analysis proves that our construction can achieve

not only forward/backward privacy but content privacy as well, which can resist the most existing leakage-abuse attacks. Evaluation

results using real-world datasets demonstrate the efficiency and feasibility of our construction. Comparative analysis reveals that our

construction outperforms state-of-the-art schemes in terms of privacy and performance, e.g., our construction is 175� faster than

existing schemes with only 51% server storage cost.

Index Terms—Spatial keyword queries, dynamic searchable symmetric encryption, location-based services, forward/backward privacy,

content privacy
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1 INTRODUCTION

NOWADAYS, spatial keyword data services have brought
great convenience to people’s daily life. Diverse appli-

cations based on spatial keyword services such as social net-
works (e.g., Facebook, Twitter), location-based services (e.g.,
Google Maps), and location-based games (e.g., Pok eA�mon Go)
are used by billions of users day by day. To cope with the
storage and query challenges of massive spatio-textual data,
several spatio-textual databases, such as Oracle Spatial1 and
PostGIS,2 are proposed. In spatio-textual databases, Boolean
Range Queries (BRQ) [1] is a typical type of spatial keyword
query, which takes both the spatial geometric range and tex-
tual keyword into account. Given a geometric range queryR
and a set of textual keywordsWQ, a BRQ search user aims to

retrieve from a database all objects that are located in R and
contain all keywords inWQ.

A mushrooming number of data owners are motivated
to outsource their data services to the cloud for cost-saving
and service flexibility. Unfortunately, the cloud server is
not fully trusted as a third party, which means the privacy
of the data and services outsourced to the cloud should be
protected [2], [3], [4], [5], [6], [7], [8]. To solve this problem,
Cui et al. [2] proposed several privacy-preserving BRQ
schemes on encrypted data. They proposed a Bloom filter
compression encoding method and constructed a Bloom
filter R-tree index for BRQ. Then, they introduced the
Asymmetric Scalar Product-preserving Encryption (ASPE)
[6] to encrypt and search the tree structure. However, Li
et al. [9] pointed out that the ASPE is insecure even in the
Ciphertext-Only Attack (COA) model, which means the
ASPE-based solutions cannot ensure query and data pri-
vacy. Next, Wang et al. [3] presented a BRQ scheme on
encrypted data with strong security. They encoded the
spatial data and textual keywords into gray code and
bitmap, respectively, and searched the encoded objects
through hidden vector encryption [10]. After that, Wang
et al. [11] improved the search efficiency by introducing
Hilbert curve and Bloom filter hierarchical tree. Recently,
Tong et al. [12] considered the access control problem and
proposed a privacy-preserving BRQ scheme with temporal
access control. Unfortunately, the above schemes ignore
the important requirement of dynamic update, which seri-
ously hinders the practical application of spatio-textual
data services in reality. For instance, an active user of
social networks may frequently update her/his interests
and locations.

How to construct efficient BRQ constructions on an encrypted
database that support dynamic update is still an unsolved issue.
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1.1 Summary and Limitations of Prior Arts

Dynamic Searchable Symmetric Encryption. Dynamic Search-
able Symmetric Encryption (DSSE) [16] allows a client to
encrypt a database before outsourcing it to an untrusted
server, while the encrypted database can still be searched
and updated. Almost all of the DSSE schemes allow reason-
able leak information about the database and queries to
improve search efficiency. Especially, update operations
leak some information that can be used to reveal the private
information of the database or queries. In 2016, Zhang et al.
[17] confirmed powerful update leakage-abuse attacks
called file-injection attacks, which are able to infer search
queries by inserting a limited number of documents into
encrypted databases. To resist such attacks, the forward pri-
vacy introduced in [18] has received significant attention.
In [19], Bost formally defined the forward privacy for DSSE
and proposed a concrete forward private DSSE scheme.
Moreover, Bost et al. [20] formalized backward privacy
with three-level privacy leakage-resistance levels from
strong to weak, denoted Type-I to Type-III, and presented
several corresponding schemes. Next, Chamani et al. [21]
presented several backward private DSSE schemes based
on ORAM. Sun et al. [22] designed a symmetric puncturable
encryption scheme to construct a practical Type-III back-
ward private DSSE. Recently, a series of forward/backward
private DSSE constructions [23], [24], [25], [26], [27], [28],
[29], [30], [31] were proposed to improve privacy, efficiency
and searchability.

Limitation-I. Most of the existing forward/backward private
DSSE schemes primarily focus on single-keyword queries, which
do not satisfy the requirements of BRQ (BRQ requires both tex-
tual keyword queries and geometric range queries).

Geometric Range Queries on Encrypted Data.Usually, we
need compute-then-compare operations to perform Geometric
Range Queries (GRQ). For instance, to confirm whether a
point is inside a circle, we first compute the distance from
the point to the circle’s center and then compare the circle’s
radius with the distance. Homomorphic Encryption (HE)
[32] is an theoretically cryptography tools that can evaluate
compute-then-compare operations securely. Nevertheless, the
HE cannot directly reveal compare results from encrypted
data to the cloud, which incurs multiple round-trips
between the client and the server. To achieve efficient single
round-trip GRQ, Xu et al. [33] proposed a scheme based on
the polynomial fitting technique and the ASPE [6]. Unfortu-
nately, as described above, the ASPE-based solution is not
strong enough to cope with real-world attacks. Wang et al.
[13], [34], [35] presented several GRQ schemes with strong
security based on the Predicate Encryption (PE) [36]. Their
key idea is to convert GRQ into the evaluation of whether
the two vectors’ inner product is zero so that they can per-
form a search securely using PE. In [34], they achieved cir-
cular range queries by mapping a circular range to a
concentric circle set. Next, they represented spatial data and
search queries by Bloom filters to support arbitrary geomet-
ric range queries [35]. To improve efficiency, they proposed
FastGeo [13] that leverages a two-level search scheme to
check whether a point is inside a geometric range or not.
The first level is the x-axis coordinate of the spatial space
and the second level is the y-axis that converted to equality-
vector form. Following this work, Guo et al. [37] enhanced

the search efficiency by replacing the y-axis equality-vector
to GeoHash. Note that the encrypted database in FastGeo
can be updated by uploading a vector of the second-level
index, but it does not consider forward and backward pri-
vacy. In addition, recent researchers find that the access pat-
tern and communication volume may enable an attacker to
reconstruct the spatial dataset [38], [39], [40], [41], but they
are not be considered in forward and backward privacy.
The ORAM-based DSSE schemes [21] can hide the access
pattern but still leak the volume pattern. At the same time,
ORAM brings multiple round-trips of communication,
which reduce the practicability of real applications.

To address the above-mentioned issues, Kasra et al. [14]
defined a security notion called content privacy. Content pri-
vacy captures the leakages that do not be considered by for-
ward/backward privacy for GRQ, it excludes the leakage on
the updated points of the encrypted databases during update
and search. Then, they proposed two schemes for range
queries, the first scheme (Constru� I) is Type-II backward and
content private, and the second scheme (Constru� II) is for-
ward and content private. Next, to improve the search effi-
ciency in large-scale databases, Kasra et al. [15] presented a
Type-II backward and content private DSSE scheme based on
R-tree and secret sharing, called Geo-DRS. However, Geo-
DRS introduces two non-colluding servers,which are difficult
to implement in real-world applications, to avoidmultiple cli-
ent-server round-trips. Moreover, Constru� I, Constru� II and
Geo-DRS convert the GRQ to their minimum bounding rect-
angle to perform the query, which cannot support arbitrary
geometric range queries on encrypted databases.

Limitation-II. All of the above schemes can only support either
forward or backward and content privacy, which cannot provide a
comprehensive response to various privacy challenges.

1.2 Our Contributions

In this work, we investigate the challenging problem of
DSSE for spatial keyword queries. The main contributions
of our work are listed as below:

1) We formulate the new definition of DSSE for spatial
keyword queries (namely, DSSESKQ) and extend the
leakage functions in DSSE to capture privacy lea-
kages in DSSESKQ (see Section 3).

2) We propose a forward/backward and content pri-
vate DSSESKQ construction. Specifically, we first
reduce the geometric range queries to range queries
through the Hilbert curve [42] and cover the range
queries using prefix encoding. Then, based on the
prefix encoded inverted-index and homomorphic
encrypted bitmap, we present a DSSESKQ construc-
tion with forward/backward and content privacy
(see Sections 4 and 5).

3) We implement the proposed construction and evalu-
ate it over real-world datasets. The results show that
our DSSESKQ is practical on large-scale datasets and
more efficient than the other existing schemes. Par-
ticularly, our construction is 175� faster than the
state-of-the-art scheme with only 51% storage cost
(see Section 6).

We compare the properties of our DSSESKQ with related
prior work in Table 1. As far as we know, our construction



is the first to achieve dynamic update with forward/back-
ward and content privacy for spatial keyword queries.

2 PRELIMINARIES

In this section, we review the cryptography tools and defini-
tions used in our construction and security analysis.

2.1 Delegatable Pseudorandom Functions

Delegatable Pseudorandom Functions (DPRF) [43] enable
the delegation of the evaluation of a PRF to an untrusted
proxy according to a given predicate. The predicate defines
the inputs of the PRF that will be evaluated on the proxy.
For a range predicate DPRF, the master key holder who
keeps the secret key K can generate a delegated key KC

associated with a range predicate C 2 C, where C is the
whole range domain. The delegated key KC can evaluate
PRF on inputs v iff v 2 C. Here, we briefly define a DPRF ~F :
f0; 1g� � V ! Z: ( ~F:DelKey, ~F:Derive) as follows:

� KC  ~F:DelKeyðK;CÞ: On input a master key K 2
f0; 1g� and a range predicate C 2 C, it returns a dele-
gated keyKC .

� y ~F:DeriveðKC; vÞ: On input a delegated key KC

and v 2 V, it returns z 2 Z iff v 2 C.

2.2 An Lightweight Additive Homomorphic
Symmetric Encryption

Following [44], a lightweight additive homomorphic sym-
metric encryption P is described as follows:

� n Initð1�Þ: On input a security parameter �, it
returns a public size parameter n, where n ¼ 2l, l is
the maximum number of files can be supportd in a
scheme.

� e Encðsk;m; nÞ: On input a a message mð04m <
nÞ, a size parameter n, and a random one-time
secret key skð04sk < nÞ, this algorithm computes a
ciphertext e ¼ skþmmodn.

� m Decðsk; e; nÞ: On input a ciphertext e, a size
parameter n, and an one-time secret key sk, it
decrypts the message asm ¼ e� skmodn.

� be Addðe1; e2; nÞ: On input two ciphertexts e1; e2,
and a size parameter n, it returns be e1 þ e2 modn.

Note that for two ciphertexts e1 ¼ m1 þ sk1 modn and
e2 ¼ m2 þ sk2 modn, anybody can compute be ¼ e1 þ
e2 modn. However, only the one know sk1 þ sk2 modn can
decrypt be and recoverm1 þm2 modn. We have

Decð bsk; be; nÞ ¼ be� bskmodn ¼ m1 þm2 modn; (1)

where bsk ¼ sk1 þ sk2 modn.
Perfectly Security [44]. Note that if every secret key sk is

used once only, P enjoys perfect security. If the secret key
sk is kept secret, for any Probabilistic Polynomial-Time
(PPT) adversary A, its advantage inthe perfectly-secure
game is

AdvPSP;Að�Þ ¼ jPr½AðEncðsk;m1; nÞÞ ¼ 1��
Pr½AðEncðsk;m2; nÞÞ ¼ 1�j � neglð�Þ; (2)

where neglð�Þ denotes a negligible function in the security
parameter �, n Initð1�Þ, 0 � m1;m2 < n.

2.3 Dynamic Searchable Symmetric Encryption

A DSSE scheme contains an algorithm and two client-server
protocols as follows:

� ðs;EDBÞ  Setupð1�Þ: On input a security parameter
�, it returns a state s, and an encrypted database
EDB.

� R  SearchðQ; s;EDBÞ: On input a query Q and a
state s, the client produces a search request to the
server, the server performs the search over EDB and
return resultR to the client after this protocol.

� ðs0;EDB0Þ  Updateðs; up; O;EDBÞ: On input a state
s, a update object O and a update operation up 2
fins; delg. The client first generates an update request
to the server. Upon receiving the request, the server
inserts or deletes the object O from EDB. Finally, the
state s0 and the encrypted databaseEDB0 are updated.

Security. Except for some explicit leakage, in a DSSE
scheme, an adversary should not obtain any useful informa-
tion from the encrypted database and the queries. As shown
in [16], the DSSE security is captured by using the real-
world versus ideal-world game. Let L ¼ ðLStp;LSrch;LUpdtÞ
be a leakage function that capture the information leaked to
the adversary from Setup, Search and Update, respectively.

TABLE 1
Comparison With Existing Schemes



The adversary’s task is to distinguish between the following
experiments Real and Ideal.

Definition 1 (Adaptive Security of DSSE). For any PPT
adversary A that makes a polynomial number of queries qð�Þ,
we say that a DSSE scheme Setup;Search;Update is L-adap-
tively-secure, if there exists an efficient simulator S such that

jPr½RealAð�Þ ¼ 1� � Pr½IdealA;S;Lð�Þ ¼ 1�j � neglð�Þ;

where RealA and IdealA;S;L are defined as:

� RealA: A chooses a database DB, and obtains EDB
from Setup. Next, A adaptively runs Search or
Update. Finally, A outputs a bit b 2 f0; 1g by observ-
ing real transcripts of all operations.

� IdealA;S;L: A chooses \tag{2} a database DB, and
obtains EDB from the simulator SðLStpðDBÞÞ. Next,
A runs Search or Update (simulated by SðLSrchÞ or
SðLUpdt)) adaptively. Eventually, A outputs a bit
b 2 f0; 1g by observing simulated transcripts for all
operations.

2.3.1 Generic Leakage Functions in DSSE

The leakage function L keeps as state the query list Q, i.e.,
the list of all queries issued so far. Each entry of Q is either a
search query (u;w) on keyword w or an update query
(u; up; ðw; fÞ), where ðw; fÞ is a keyword/file identifier pair
and u is a timestamp initially set to 0 and gradually
increased with queries. The general leakage functions [19]
associated with DSSE schemes can be defined as follows:

� spðwÞ ¼ fujðu; ðu;wÞg 2 Qg denotes the search pat-
tern which leaks whether two search queries corre-
spond to the same keyword w or not.

� TimeDBðwÞ ¼ fðu; fÞjðu; ins; ðw; fÞÞ 2 Q ^ 8u;0
ðu;0 del; ðw; fÞÞ =2 Qg denotes the list of all documents
mathcing w, excluding the deleted ones, together
with the timestamp of when they were inserted in
the database.

� UpdatesðwÞ ¼ fujðu; up; ðw; fÞ 2 QÞg denotes the list
of timestamps of each insertion/deletion operation
for w.

2.3.2 Forward/backward and Content Privacy

Forward and backward privacy of DSSE were first defined
in [18], and first formalized by Bost et al. [19], [20]. In this
subsection, we briefly review the original definitions of for-
ward and backward privacy.

Definition 2 (Forward Privacy [19]).We say that an L-adap-
tively-secure DSSE scheme is forward-private iff LUpdt is

LUpdtðup; ðw; fÞÞ ¼ L0ðup; ðfi; uiÞÞ;

where ðfi; uiÞ is a set that captures all updated files as the num-
ber of keywords ui modified in file fi, L0 is stateless.

Definition 3 (Type-II Backward Privacy [20]).We say that
an L-adaptively-secure DSSE scheme is Type-II backward-pri-
vate iff LSrch and LUpdt is

LUpdtðup; ðw; fÞÞ ¼ L0ðup; wÞ;
LSrchðwÞ ¼ L00ðTimeDBðwÞ;UpdatesðwÞ; spðwÞÞ;

where L0 and L00 are stateless.
Content privacy was first introduced by Kasra et al. [14]

for spatial data. They formulated a leakage that was not cap-
tured in forward/backward privacy. In addition to update
patterns, content privacy also captures the leakage of
updated file identifiers in the search and update. Specifi-
cally, backward privacy leaks about the content in the
search queries via access pattern (TimeDBðwÞ in Def. 3),
whereas the content privacy does not leak about the content
during the search.

Definition 4 (Content Privacy [14]). We say that an L-adap-
tively-secure DSSE scheme is content-private iff LSrch and
LUpdt is

LUpdtðup; ðw; fÞÞ ¼ L0ðup; wÞ;
LSrchðwÞ ¼ L00ðwÞ;

where L0 and L00 are stateless.

3 PROBLEM FORMULATION

Here, we define the framework of DSSE for spatial keyword
queries and formulate its security. Table 2 describes the
main notations used in our work.

3.1 DSSE for Spatial Keyword Queries

System Model. As shown in Fig. 1, our system model consists
of two entities, a client and a server. The client may be a com-
pany or an organization that stores its spatio-textual datasets
on the server to reduce its local cost. Each object in a spatio-
textual dataset contains a spatial point p and a textual key-
words set W. In addition, the client also wants to perform
BRQ over its outsourced spatio-textual dataset. The server is
honest-but-curious, which means, it will provide services hon-
estly but try to obtain the client’s data or search queries.
Thus, the client encrypts its spatio-textual datasets and search
queries with its own secret key before submitting them to
the server. Meanwhile, the server should perform the BRQ

TABLE 2
Notations Used in Our Construction

Notation Description

� Security parameter
f File identifier
p ¼ fx; yg Spatial point
W Textual keywords set
N # of objects in a database
Q ¼ fR;WQg BRQ query
R Geometric range of spatial data
Hð�Þ Hilbert curve encoding
j � j # of elements in a set
P A prefix family
BPC Best prefix cover of a geometric range
l Maximum number of supported files
neglð�Þ A negligible function in �



search on encrypted data without decryption, and it should
return the correct search results to the client.

Based on the systemmodel as described above, we define
the DSSE for spatial keyword queries (namely DSSESKQ) as
follows:

Definition 5 (DSSESKQ). A DSSESKQ scheme S contains one
algorithm and two client-server protocols as follows:

� ðKS; s;EDBÞ  Setupð1�Þ: On input a security
parameter �, it ouputs a set of secret key KS, a state s,
and an encrypted database EDB.

� R  SearchðKS; Q ¼ fR;WQg; s;EDBÞ: For a
query Q ¼ fR;WQg, where R is a geometric range,
and WQ is a textual keywords set. The client gener-
ates a search request to the server, the server per-
forms the search over EDB and returns results R to
the client.

� ðKS; s
0;EDB0Þ  UpdateðKS; s; up; O ¼ fp;W; fg;

EDBÞ: The client inputs (KS; s; up; O ¼ fp;W; fgÞ,
where up 2 fins; delg denotes an insertion or a
deletion operation, p is a spatial loation, W is a set
of textual keywords, and f is the identifier of the
object O. The server inserts or deletes the object O
from EDB.

3.2 Leakage Functions in DSSESKQ

Before defining the leakage functions inDSSESKQ, we define
a BRQ query Q ¼ ðu;R;WQÞ ¼ fu; p; wgp2BPC;w2WQ

, where u

is a timestamp, p 2 BPC is a prefix element that belongs to
the best prefix cover of a geometric range.3 Define an update
queryO ¼ ðu; up; p;W; BÞ ¼ fu; p; w;Bgw2W;p2P , where u is a
timestamp, p 2 P is a prefix element that belongs to a prefix
family3, up is the update operation, and B is the bitmap of a
list file identifier to be updated. The leakage functions associ-
atedwithDSSESKQ can be defined as follows:

� sp0ðQÞ ¼ fujðu;w; pÞgw2WQ;p2BPC denotes the search

pattern repetition of search queries on w 2 WQ and
p 2 BPC.

� TimeDB0ðQÞ ¼ fTimeDBðwÞ;TimeDBðpÞgw2WQ;p2BPC
denotes the list of all documents mathcing w; p,
excluding the deleted ones, together with the time-
stamp of when they were inserted in the database.

� Updates0ðQÞ ¼ fUpdatesðwÞ;UpdatesðpÞgw2WQ;p2BPC
denotes the list of timestamps of each insertion or
deletion operation for w and p.

3.3 Forward/Backward and Content Privacy of
DSSESKQ

Definition 6 (Forward Privacy of DSSESKQ). We say that
an L-adaptively-secure DSSE scheme is forward-private iff
LUpdt is

LUpdtðOÞ ¼ L0ðup; ðfi; uiÞÞ;

where ðfi; uiÞ is a set that captures all updated files as the num-
ber of keywords ui modified in file fi, L0 is stateless.

Definition 7 (Type-II Backward Privacy of DSSESKQ).
We say that an L-adaptively-secure DSSE scheme is Type-II
backward-private iff LSrch and LUpdt is

LUpdtðup; ðO; fÞÞ ¼ fL0ðup; w; pÞgw2WQ;p2P ;

LSrchðwÞ ¼ L00ðTimeDB0ðQÞ;Updates0ðQÞ; sp0ðQÞÞ;

where L0 and L00 are stateless.
Definition 8 (Content Privacy of DSSESKQ). We say that

an L-adaptively-secure DSSE scheme is content-private iff
LSrch and LUpdt is

LUpdtðup; ðO; fÞÞ ¼ fL0ðup; w; pÞgw2WQ;p2P ;

LSrchðQÞ ¼ fL00ðp; wÞgw2WQ;p2BPC;

where L0 and L00 are stateless.

4 PROPOSED DSSESKQ CONSTRUCTION

In this section, we propose aDSSESKQ construction that sup-
ports BRQ and dynamic update. In particular, we first adopt
a geometric prefix encoding method to convert geometric
range queries into keyword queries as the basis of our
DSSESKQ. We then present our DSSESKQ construction with
forward/backward and content privacy. The DSSESKQ rep-
resents file identifiers as bitmap index. To cover a spatio-tex-
tual database with up to l files, we set the string-length of B
to l-bits. For an existing file fi, the ith bit ofB is set to 1; other-
wise, the ith bit of B is set to 0. Fig. 2 gives an example of
insertion and deletion of a bitmap. Specifically, Fig. 2a shows
a bitmap index for a database with up to l ¼ 6 files which
contains files ff1; f2; f4g. Fig. 2b shows an example of insert-
ing a file f0 to the database. Since f0 corresponds to bit string
000001, 000001 is added to the index. Fig. 2c shows an exam-
ple of file deletion operation. To delete a file f4 from the

Fig. 1. System model.

Fig. 2. Bitmap index example.

3. See Section 4.1 for more details.



database, we can subtract the string 010000 from the index or
by adding�ð010000Þ2 ¼ ð110000Þ2 to the index.

4.1 The Geometric Prefix Encoding Method

To construct forward/backward and content private DSSE
for spatial keyword queries, our key idea is to reduce the
BRQ to multiple single-keyword queries, so that we can sup-
port BRQ according to forward/backward and content pri-
vate inverted-index. As we described in Section 1.1, BRQ
requires both geometric range queries and textual keyword
queries. Textual keyword queries can be supported by sin-
gle-keyword queries. Hence, the main challenge is: How to
reduce geometric range queries to multiple single-keyword queries?
To address this issue,we adopt the geometric prefix encoding
method [11]. Before describing the proposedmethod, we first
introduce theHilbert curve used in ourmethod as follows.

Hilbert Space-Filling Curve. Space-filling curves are prom-
ising techniques [42] to mapmulti-dimensional spatial space
to one-dimensional space. Since its clustering property, we
use the classic Hilbert curve [42] as the building block. Hil-
bert curve ia a continuous Space-filling curve, if two data
points are close to each other in the Hilbert curve, they are
also close to each other in d-dimensional space. This property
makes it beneficial to improve the performance of geometric
prefix codingmethod. The basic element of a Hilbert curve is
a U-shape, which can fill 2� 2 square grid. To make the
space division more accurate, we can represent this 2� 2
grid as 4� 4 grid and traverse the grid at a high level follow-
ing 2� 2 grid pattern. Denote h to be the order of the Hilbert
curve, which means each space will be divided in half for h
times. For a d-dimensional spatial space, an order h Hilbert
curve will partition the whole space into 2dh regions and rep-
resents each region as a dh-bits value. In Fig. 3a, we give
examples of the Hilbert curve, where the original dimension
is 2 and the order is 3. A user generates a query range asR1 ¼
½8; 15� or R2 ¼ ½38; 47� if he/she wants to obtain all objects
inside R1 or R2. Thus, we can transforme any geometric
range queries on d-dimensional space into range queries on
one-dimensional space. In the rest of this paper, we useHð�Þ
to denote theHilbert encoding of a point or a range.

Geometric Prefix Encoding Method. We now formally pres-
ent geometric prefix encoding method, including two algo-
rithms PreCode;PreCover as follows:

� P  PreCodeðpÞ: Given a spatial point p, it gener-
ates the Hilbert curve HðpÞ and outputs the corre-
sponding prefix family P. For a v-bits Hilbert curve

HðpÞ ¼ b1b2 � � �bv, we denote its prefix family as P ¼
fb1b2 � � �bv;b1b2 � � �bv�1�; . . . ;b1 � � � � �; � � � � � �g,
where the family size is vþ 1 and ith prefix elements
is b1b2 � � �bv�iþ1 � � � � � .

� BPC PreCoverðRÞ: Given a geometric range query
R, this algorithm first converts it into one-dimen-
sional range queries HðRÞ, and then outputs their
Best Prefix Cover (BPC). For an one-dimensional
range query ½xmin; xmax�, the BPC is the minimum set
of prefix elements that cover the range. For example,
for a 4-bits spatial database, the search query of [4,7]
is generated as BPC ¼ f01 � �g. For any spatial data
X and a query range ½xmin; xmax�, X 2 ½xmin; xmax� iff
PreCodeðXÞ \ BPCð½xmin; xmax�Þ 6¼ ;. For instance,
for a 4-bits spatial database, the prefix family of 5 is
P ¼ f0101; 010�; 01 � �; 0 � ��; � � ��g. We have P \
BPC ¼ 01 � �, thus 5 falls in range [4,7].

Let xmin and xmax be two v-bits spatial data, the number
of prefix elements in PreCoverð½xmin; xmax�Þ is at most 2v�
2. We can now reduce the geometric range queries to a mul-
tiple single-keyword queries according to the Hilbert curve
and prefix encoding of spatial data. For the reader’s under-
standing, we provide an example as follows.

Algorithm 1. Update Protocol

UpdateðKS; O ¼ fp;Wg; B; s;EDB ¼ fSDB;KDBgÞ:
@ Client:
1 P  PreCodeðpÞ;
2 foreach p 2 P do
3 KpjjK0p  FKS

ðpÞ; c T½p�;
4 if c ¼ ? then c �1;
5 Tp

cþ1  ~F:DeriveðKp;Ccþ1Þ;T½p�  cþ 1;
6 UTp

cþ1  H1ðKp;
0 Tp

cþ1Þ;
7 skpcþ1  H2ðKp;

0 cþ 1Þ;
8 epcþ1  Encðskpcþ1; B; nÞ;
9 Send ðUTp

cþ1; e
p
cþ1Þ to the server.

10 foreach w 2 W do
11 KwjjK0w  FKS

ðwÞ; c T½w�;
12 if c ¼ ? then c �1;
13 Tw

cþ1  ~F:DeriveðKw;Ccþ1Þ;T½w�  cþ 1;
14 UTw

cþ1  H1ðKw;
0 Tw

cþ1Þ;
15 skwcþ1  H2ðKw;

0 cþ 1Þ;
16 ewcþ1  Encðskwcþ1; B; nÞ;
17 Send ðUTw

cþ1; e
w
cþ1Þ to the server.

@ Server:
18 foreach p 2 P do SDB½UTp

cþ1�  epcþ1;
19 foreach w 2 W do KDB½UTw

cþ1�  ewcþ1;

Fig. 3. Hilbert curve and geometric prefix encoding examples.



Algorithm 2. Search Protocol

Search(KS; Q ¼ fR;WQg; s;EDB ¼ fSDB;KDBg):
@ Client:
1 BPC PreCoverðRÞ;
2 foreach w 2 WQ do
3 KwjjK0w  FKS

ðwÞ; c T½w�;
4 if c ¼ ? then return ;;
5 STw  ~F:DelKeyðKw;CcÞ;
6 Send fK0w; STw; cg to the server.
7 foreach p 2 BPC do
8 KpjjK0p  FKS

ðpÞ; c T½p�;
9 if c ¼ ? then return ;;
10 STp  ~F:DelKeyðKp;CcÞ;
11 Send fK0p; STp; cg to the server.

@ Server:
12 SumP  0;
13 foreach {K0p; ST

p; c} do
14 Sump

e  0;
15 for i ¼ c to 0 do
16 Tp

i  ~F:DeriveðSTp; iÞ;
17 UTp

i  H1ðK0p; T p
i Þ;

18 epc  KDB½UTp
i �;

19 if epc ¼ ; then break;
20 else Sump

e  AddðSump
e; e

p
c ; nÞ;

21 KDB½UTp
i �  ;;

22 KDB½UTp
c �  Sump

e ;
23 SumP  AddðSumP ; Sump

e; nÞ;
24 foreach {K0w; ST

w; c} do
25 Sumw

e  0;
26 for i ¼ c to 0 do
27 Tw

i  ~F:DeriveðSTw; iÞ;
28 UTw

i  H1ðK0w; Tw
i Þ;

29 ewc  KDB½UTw
i �;

30 if ewc ¼ ; then break;
31 else Sumw

e  AddðSumw
e ; e

w
c ; nÞ;

32 KDB½UTw
i �  ;;

33 KDB½UTw
c �  Sumw

e ;
34 Send SumP , fSumw

e gw2WQ
to the client.

@ Client:
35 SumPsk  0;
36 for p 2 BPC do
37 for i ¼ c to 0 do
38 skpi  H2ðK0p; iÞ;
39 SumPsk  SumPsk þ skpi modn;
40 BR  DecðSumPsk; SumP ; nÞ;
41 for w 2 WQ do
42 Sumw

sk  0;
43 for i ¼ c to 0 do
44 skwi  H2ðK0w; iÞ;
45 Sumw

sk  Sumw
sk þ skwi modn;

46 BR  BR&DecðSumw
sk; Sum

w
e ; nÞ;

Example. In Fig. 3b, we give examples of GRQ on the spa-
tial database using geometric prefix encoding method. The
example spatial database consists of four spatial objects.
Each spatial object is encoded by geometric prefix encoding
method. To query all objects in R1 or R2, a serach user enco-
des query area using Hilbert curve and generates the corre-
sponding prefixes as f001 � ��g or f101 � ��; 10011�g. Since
001 � �� 2 PðHðO1ÞÞ, 101 � �� 2 PðHðO3ÞÞ, and 10011� 2
PðHðO4ÞÞ, we have O1 2 R1 and O3; O4 2 R2.

4.2 Our DSSESKQ Construction

Overview of OurDSSESKQ. In ourDSSESKQ, we use inverted-
index to store the spatial keyword data. Specifically, the
server keeps two maps SDB and KDB, which store keyword/
identifier pairs and prefix/identifier pairs, independently.
The prefixes are generated by the above-mentioned geomet-
ric prefix encodingmethod, and each identifier is represented
by the bitmap. We employ DPRF to generate update tokens
so that the update operation does not leak information about
previous queries. When the client wants to update an object,
he/she generates update tokens according to the DPRF. The
server can perform searches over newly updated objects iff
he/she obtains the newest delegated key of DPRF, which
ensures that previously issued queries cannot be executed on
newly inserted objects (i.e., forward privacy). To support
backward and content privacy, we introduce the lightweight
additive homomorphic symmetric encryption that can
update files by adding bitmaps on encrypted data. Therefore,
only the client can obtain the final query results without
revealing the content of historical update operations, which
does not leak information about the file identifiers.

Details of Our DSSESKQ. We now formally present our
DSSESKQ construction. In particular, our construction uses a
DPRF ~F , a 2�-bit PRF F , two keyed hash founctions H1; H2,
and a lightweight additive homomorphic symmetric encryp-
tion schemeP. DenoteCc be the range predicate ½0; c�.
� Setupð1�Þ: For a security parameter �, it first randomly

generates a master secret keyKS. Next, it initializes the pub-
lic parameter n. The encrypted database EDB is initialized
by two empty sets KDB, SDB, which store keyword and spa-
tial prefix, respectively.
� UpdateðKS; O ¼ fp;Wg; B; s;EDBgÞ: To update an

objectO ¼ fp;Wg, the client first obtains prefixes of p accord-
ing to PreCode. Then, the client generates secret keys for
every p 2 P (or w 2 W) by F . Next, the client increases the
update counter c and generates token Tp

cþ1 (or T
w
cþ1) by ~F . The

update token UTp
cþ1 (or UTw

cþ1) is derived from the token by
H1. The bitmap is encrypted by Enc according toH2. Finally,
on the server-side, the SDB stores the prefix token/bitmap
pairs, the KDB stores keyword token/bitmap pairs. Fig. 4a

Fig. 4. Update and search examples of DSSESKQ.



shows examples to update a keyword w 3 times. At the first
time, the client inserts w=f1 into the EDB. The client first sets
the update counter c as c ¼ 0 and generates update token
(data location in the EDB) according to DPRF and c. Next, the
clients sets the bitmap of f1 as 0010 and encrypts it using Enc.
Finally, the client submits update token/encrypted bitmap
pair to the server. The second update is similar to the first
update, note that its update token is different from the first
time since the update counter changed to c ¼ 1. The third
update is a deletion operation, thus the bitmap is set to 1100.
� SearchðKS; Q ¼ fR;Wg; s;EDBÞ: Given a query Q ¼

fR;Wg, the client first obtains the best prefix cover BPC of R
according to PreCover. Then, the client generates secret keys
for every p 2 P (or w 2 W), and derives search token STp (or
STw) from ~F . Finally, the client sends fK0p; STp; cg and
fK0w; STw; cg to the server. Upon receiving the search tokens,
the server obtains index locations according to ~F and H1.
Then, the server computes the updated bitmaps by Add and
returns the ciphertexts of bitmaps SumP , fSumw

e gw2W to the
client.4 The client decrypts the SumP to obtain all files match-
ing R. The plaintext of Sumw

e is the bitmap of all files match-
ing w 2 W. To obtain all files matching BRQ Q, the server
computes the intersection of geometric range query bitmap
and every keyword query bitmap. As the example shown in
Fig. 4b, the client needs to search the previously updated
keyword w. She/he first generates search token UTw

c accord-
ing tow and the corresponding counter ½0; c�. Next, the server
backtracks all previously updated bitmaps of w according to
theUTw

c and c. The search result is the sum of all bitmaps and
the server replaces the bitmap stored in EDB½UTw

c � as the
search result and removes all previously updated bitmaps to
save the storage space.

Batch Updates. We can slightly modify the update proto-
col to support batch updates on files. For a list of files, we
can update a single keyword/bitmap (or prefix/bitmap)
pair for every unique keyword (or prefix), where the bitmap
covers all update objects. For instance, referring to the
example described in Fig. 2a, if a client wants to insert two
files f0; f3 containing keyword w1, she/he can generate an
update corresponding to w1=B, where B ¼ 001001. As for
deletion operation, if a client wants to delete two files f4; f2
from the bitmap in Fig. 2a, she/he can generate an update
bitmap as B ¼ 101100.

Arbitrary Boolean Queries for Textual Keywords.We can also
slightly modify the search protocol to support arbitrary
Boolean queries for textual keywords. In the Search proto-
col, the client decrypts every bitmap Bw corresponding to
every textual keyword w 2 WQ and performs ”AND” oper-
ations with spatial query result BR, which obtains all files
that located in R and contain all keywords inWQ. Since the
bitmap of every keyword is independent, the client can per-
form Boolean operations on the bitmaps of every textual
keyword before performing ”AND” operations with the
spatial query result BR. In this way, the final result is all
files that are located in R and satisfy the Boolean query rule
of textual keywords. For example, if the search query is Q ¼
fR; fw1 OR w2gg, which means the search user wants to

find all files that are located in R and contain w1 or w2. Sup-
pose that Bw1

¼ 00100, Bw2
¼ 01110, and BR ¼ 11110, the

client first computes BW ¼ Bw1
OR Bw2

¼ 01110, and then
computes BR ¼ BR&BW ¼ 01110, which satisfy the ”OR”
Boolean queries for textual keywords.

Algorithm 3.G2 and ~G2

Setupð1�Þ:
1 bad 0, n Initð1�Þ;KS  $ f0; 1g�;
2 T;KDB;SDB ; ;
3 return (KS;T; n;EDB ¼ fKDB;SDBg).
UpdateðKS; O ¼ fp;Wg; B; s;EDB ¼ fSDB;KDBgÞ:

@ Client:
1 P  PreCodeðpÞ;
2 foreach p 2 P do
3 KpjjK0p  KðpÞ; c T½p�;
4 Tp

cþ1  ~F:DeriveðKp; cþ 1Þ;
5 T½p�  ðTp

0 ; T
p
1 ; . . .; T

p
cþ1; cþ 1Þ;

6 UTp
cþ1  f0; 1g�;

7 if H1ðk0p; T p
cþ1Þ 6¼ ? then

8 bad 1;UTp
cþ1  H1ðK0p; T p

cþ1Þ
9 UT½p; cþ 1�  UTp

cþ1;
10 skpcþ1  H2ðKp;

0 cþ 1Þ;
11 epcþ1  Encðskpcþ1; B; nÞ;
12 Send ðUTp

cþ1; e
p
cþ1Þ to the server.

@ Server:
13 foreach p 2 P do
14 SDB½UTp

cþ1�  epcþ1
Search(KS; Q ¼ fR;Wg; s;EDB ¼ fSDB;KDBg):
@ Client:

1 BPC PreCoverðRÞ;
2 foreach p 2 BPC do
3 KpjjK0p  KðpÞ, ðTp

0 ; T
p
1 ; . . .; T

p
c ; cÞ  T½p�;

4 for i ¼ 0 to c do
5 H1ðK0p; T p

i Þ  UT½p; i�
6 STp  ~F:DelKeyðKp;CcÞ;
7 Send fK0p; STp; cg to the server.

@ Server:
8 SumP  0;
9 foreach {K0p; ST

p; c} do
10 Sump

e  0;
11 for i ¼ c to 0 do
12 Tp

i  ~F:DeriveðSTp; iÞ;
13 UTp

i  H1ðK0p; T p
i Þ;

14 epc  KDB½UTp
i �;

15 if epc ¼ ; then break;
16 elseSump

e  AddðSump
e; e

p
c ; nÞ;

17 KDB½UTp
i �  ;;

18 KDB½UTp
c �  Sump

e ;
19 SumP  AddðSumP ; Sump

e; nÞ;
20 Send SumP to the client.

5 SECURITY ANALYSIS

In our DSSESKQ, the adversary cannot obtain the final file
identifiers from the homomorphically encrypted bitmaps,
which achieves content privacy. Content privacy provides
more privacy preservation for forward/backward privacy.
The Update with content privacy only leaks the number of
keywords jWj and the prefix family size jPj. As for Search, it
leaks the search pattern of every search query Q. Besides,

4. Note that, to save the storage space, the locations are set to empty
once they are searched if they are not the newest location. Only the
newest location will be set to the final bitmap.



the adversary can know update time for every p 2 BPC and
w 2 WQ. However, the adversary cannot learn TimeDB0ðQÞ
anymore since the content privacy hides the access pattern,
which means our DSSESKQ provides better privacy than
Type-II backward privacy.

Theorem 1 (Forward/backward and content privacy of
DSSESKQ). Let F be a secure pseudo-random function, ~F be a
secure DPRF function, H1; H2 be two hash functions modeled
as Random Oracles (RO), and P ¼ ðInit; Enc; Dec; AddÞ be a
perfectly secure additive homomorphic symmetric encryption.
DSSESKQ is LFB-adaptively forward/backward and content
private with LFB ¼ fLUpdt;LSrchg defined as

LUpdtðins; OÞ ¼ LðjPj þ jWjÞ;
LSrchðQÞ ¼ ðsp0ðQÞ;Updates0ðQÞÞ:

Proof. We use a hybrid argument that derives several
games from the real-world game RealAð�Þ to complete
the proof proceeds. Since the proof of spatial data and
textual keywords are similar, we got rid of code about
textual keywords.

GameG0: It is the real-world game RealfbA

Pr½RealfbAð�Þ ¼ 1� ¼ Pr½G0 ¼ 1�:
Game G1: Instead of calling the PRF F , this game stores a
table K to map the query on p to F ðpÞ. Every time a new
spatial prefix is used, the table picks a new random out-
put and stores the prefix/output pair. Hence, The adver-
sary A cannot distinguish betweenG0 andG1 unless he/
she break the security of PRF F . We can build a reduction
B1 and have

Pr½G0 ¼ 1� ¼ Pr½G1 ¼ 1� � AdvprfF;B1 :

Game G2: This game stores update tokens produced by
DPRF ~F in the map UT. Besides, nstead of calling the
hash functionH1, it picks and stores random strings in the
mapH1. Algorithm 3 formally describesG2, and the addi-
tional boxed lines describes the intermediate game ~G2.
Every time the Search protocol is called, the randomoracle
H1 generates random tokens such that H1ðK0p; T p

c Þ ¼
UT½p; c�. In addition, in order to exactly programH1 when
it is queried by the adversary on a valid ðK0p; T p

c Þ couple,
~G2 and G2 make some bookkeeping of the tokens Tp

c .
Thus, H1’s behaviors in ~G2 and G1 are perfectly indistin-
guishable:

Pr½ ~G2 ¼ 1� ¼ Pr½G1 ¼ 1�:

H1 will produce random result if H1 does not include the
tuple ðK0p; T p

c Þ, but if the update token Tp
c gets a collision

with another token, H1 will return the corresponding
value of the equivalent token and set a flag bad to 1. Thus,
the advantage of distinguishing between G2 and ~G2 is
smaller than the probability that the bad 1 occurs in ~G2

jPr½G2 ¼ 1� � Pr½ ~G2 ¼ 1�j � Pr½bad 1 in ~G2�:
Note that bad 1 occurs in ~G2 iff an adversary breaks
the one-wayness of DPRF ~F . Also, for an adversary who

makes ‘ queries to the RO, the probability that H1 was
called on ðK0p; T p

c Þ is ‘ � 2�� since Tp
c is uniformly random.

By constructing a reduction B2 from a distinguisher A
inserting N prefix/identifier pairs in the database, we
have

jPr½G1 ¼ 1� � Pr½G2 ¼ 1�j ¼ jPr½ ~G2� � Pr½G2�j

� N �Advdprf~F;B2
ð�Þ þ N ‘

2�
:

Game G3. The H2 is modeled as a RO in this game. If the
key K0p keeps secret, for an adversary A who makes ‘
queries, we have

jPr½G2 ¼ 1� � Pr½G3 ¼ 1�j � ‘

2�
:

Game G4. We replace the bitmap B by the bitmap of all
zeros. The adversary A cannot distinguish between G4

and G3 unless he/she break the perfect security of P, so
we can build a reduction B3 and have

jPr½G3 ¼ 1� � Pr½G4 ¼ 1�j � AdvpsP;B3ð�Þ:

Simulator. The ideal world simulator is shown in Algo-
rithm 4, we get rid of a part of the code in Algorithm 3
that does not influence the view of the adversary. For the
BRQ queryQ, we use the first timestamp bQ minsp0ðQÞ.

Next, we will show that G4 and Simulator S are indis-
tinguishable. For Update, the indistinguishability is obvi-
ous since each update in G4 is a new random string. As
for Search, for each p generated from bQ, we program H1

and H2 according to UT and sk, respectively. Eventually,
the pairs ðp; iÞ are mapped to the global update count u,
which helps us to map the values randomly chosen in
the Update to the corresponding values in the Search.
Hence, we have

Pr½G5 ¼ 1� ¼ Pr½IdealfbA;S;LFBð�Þ ¼ 1�:

Conclusion. By combining all of the above games, the
advantage of any PPT adversary attacking our scheme is

jPr½RealfbAð�Þ ¼ 1� � Pr½IdealfbA;S;LFBð�Þ� ¼ 1j

� AdvprfF;B1 þN �Advdprf~F;B2
ð�Þ þAdvpsP;B3ð�Þ þ

ðN þ 1Þ‘
2�

;

which completes the proof. tu

6 PERFORMANCE ANALYSIS

In this section, we analyze the performance of the proposed
construction from both theoretical and experimental aspects.

6.1 Theoretical Analysis

Here, we analyze the theoretical computation and commu-
nication complexity of our construction. In Update, the client
generates update tokens for every prefix p 2 P and every
keyword w 2 W, the computation cost isOðjPj þ jWjÞ. Since
each update token ðUT; eÞ is ð2�þ lÞ-bits, the communica-
tion cost is OððjPj þ jWjÞð2�þ lÞÞ. In Search, for every prefix
p 2 BPC and keyword w 2 WQ, the client generates a search



token. For every new update of p and w, the server com-
putes the encrypted bitmap according to the search tokens,
the computation cost is OðawðjBPCj þ jWQjÞÞ. The search
result is an encrypted bitmap for the geometirc range query
and jWQj encrypted bitmaps for keyword queries, the com-
munication cost is Oðð1þ jWQjÞlÞ. Since the maxmium
number of prefixes is 2jPj, the maxmium storage cost of a
one-time updated EDB is at most Oðð2jPj þ nwÞð2�þ lÞÞ,
where nw is the number of unique keyword. Besides, every
time the client updates a new object, the EDB stores the
newly updated tokens in new locations, which incurs
OðawðjPj þ jWjÞð2�þ lÞÞ storage cost. Note that the addi-
tional storage cost caused by newly updated objects is
much smaller than Oðð2jPj þ nwÞð2�þ lÞÞ and the additional
storage will be removed when a search query is performed,
the storage cost is still Oðð2jPj þ nwÞð2�þ lÞÞ for a frequently
queried database.

Algorithm 4. Simulator S
UpdateðjPjÞ:
@ Client:

1 for 0 to jPj do
2 UT½u�  $ f0; 1g�sk½u�  f0; 1g�;

$

3 e½u�  Encðsk½u�; 0 s; nÞ;
4 Send fUT½u�; e½u�g to the server;
5 u uþ 1;
Search(sp0ðQÞ;Updates0ðQÞ):
@ Client:

1 bQ minsp0ðQÞ;
2 dBPC bQ;

3 for p 2 dBPC do
4 KpjjK0p  K½p�; ðTp

c ; cÞ  T½p�;
5 Parse Updates0ðpÞ as ðu0; u1; . . .; ucÞ, where

Updates0ðpÞ 2 Updates0ð bQÞ;
6 for i ¼ 0 to c do
7 ProgramH1 s.t.H1ðK0p; T p

i Þ  UT½ui�;
8 ProgramH2 s.t.H2ðK0p; iÞ  sk½ui�
9 Send fK0p; STp; cg to the server;

In Table 3, we compare our construction with existing
schemes.5 Note that the ELCBFR+ [2] and PBRQ-Q [3] are
static schemes that generate the whole encrypted database
during the system setup, we employ their computation and

communication costs of the whole encrypted database as the
cost of Update in the table. As for Constru� I, Constru� II [14],
and our construction, we show the cost of a single update.
We can observe that the update and search complexity of our
construction only rely on the size of W;WQ;P, and BPC,
which are much smaller than T; 2t;M;N in other schemes. 2t,
T and M are usually large (larger than 104) to guarantee
query accuracy, and the N is obviously large in a large-scale
dataset. Hence, the computation cost of our construction is
significantly lower than that of the other schemes.

6.2 Experimental Evaluation

Implementation. We use the JAVA programming language to
implement our construction. The PRF F and keyed hash
functions H1; H2 are instantiated with HMAC-SHA256. For
the DPRF ~F , we implement it using GGM PRF [43]. All
experiments are executed on a machine with 2.6 GHz CPU
and 128 GB RAM. The security parameter is set to � ¼ 128.

Datasets. Similar to the related spatial keyword schemes
[2], [3], we use a combination of a real spatial dataset FLA6

and a real document dataset 20 Newsgroups7 to eveluate the
proformance. The FLA contains 1,070,376 different locations.
We randomly choose 3,000 unique textual keywords from
the 20 Newsgroups. For each object in FLA, we attach the
keywords from a 20 Newsgroups document, where each
object contains 12 keywords (jWj ¼ 12) for average.

Performance of Update. As shown in Figs. 6a and 6b, we test
the running time and communication cost of every update
with different jPj and l, respectively, where jWj ¼ 12. Since
the computation cost and ciphertext size of Enc grow line-
arly with increasing l, it is obvious that both the communica-
tion cost and running time of the update grow linearly with
the increasing l. Besides, since a larger jPj incurs more
update tokens, the running time and communication cost of
the update also grow linearly with the increasing jPj.

Performance of Search. We evaluate the search time with
different l and jW jQ, where jBPCj ¼ 3, aw ¼ 1, and plot the
results in Fig. 5a. We can observe that the search time grows
linearly with increasing l andWQ. In Search, the server per-
forms the Add for every search token, whose running time
grows linearly with increasing l. In insertion, a larger jPj
incurs more search tokens, which raises the search time. We
also evaluate the search time with different aw and jWQj in
Fig. 5b, where jBPCj ¼ 3; l ¼ 220. Obviously, the running

TABLE 3
Theoretically Performance Comparison

Scheme Update Search EDB Storage
Computational Communication Computational Communication

ELCBFR+ Oð2MðN þ logNÞÞ Oð2MðN þ logNÞ�Þ Oð2MlogNÞ Oð2M�Þ Oð2MðN þ logNÞ�Þ
PBRQ-Q OðT ðN þ logNÞÞ OðT ðN þ logNÞ�Þ OðTklogNÞ OðTk�Þ OðT ðN þ logNÞ�Þ
Constu� I OðtNÞ OðtNÞ OðN logR0Þ OðN logR0Þ Oð2tNÞ
Constu� II Oð2tNÞ Oð2tNÞ OðN logR0Þ OðN logR0Þ Oð2tNÞ
Ours OðjPj þ jWjÞ OððjPj þ jWjÞð2�þ lÞÞ OðawðjBPCj þ jWQjÞÞ Oðð1þ jWQjÞlÞ Oðð2jPj þ nwÞð2�þ lÞÞ
Note.N : number of data in dataset; M: the size of a Bloom filter in [2]; T; k: the size of Gray code and bitmap, and the number of query token in [3]; R;0 t: side
length of a square query, and bit length of coordinates (x and y) in [14]; aw; nw: number of new updates, number of unique keyword in dataset. Note that
jWj; jWQj; jPj; jBPCj 	M;T; 2t; R0.

5. In this paper, we do not compare our construction with Geo-DRS
because Geo-DRS uses two non-colluding servers, which is a different
model from the other works.

6. http://users.diag.uniroma1.it/challenge9
7. http://qwone.com/
jason/20Newsgroups/

http://users.diag.uniroma1.it/challenge9
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/


time of Search grows linearly with increasing aw and jWQj.
Since every newly updated object performs insertion by Add

on the server-side, larger aw incursmore Add, which increase
the computation cost. Next, we plot the running time of
Search with different size of query range jRj (% of the map),
where l ¼ 220; aw ¼ 1. From Fig. 5c, we can observe that the
search time is not linearly increasing with the query range
size. This is because the search time depends on the number
of prefixes that cover the query range (i.e., jBPCj), which
does not linearly increase with the query range size. Finally,
we show the communacation cost of Search in Fig. 5d with
different l and jWQj, where jBPCj ¼ 3. The communication
cost grows linearly with increasing both l and jWQj, because
the number of search tokens depends on jWQj and the size of
result bitmaps depends on l.

Comparative Evaluation. Here, we compare our construc-
tion with the existing schemes. Specifically, we implement
the ELCBFR+ [2], PBRQ-Q [3], Constru� I and Constru� II [14]
using the JAVA programming language. For ELCBFR+, we
set the m=n ¼ 5 and t0 ¼ 5 of Bloom filter, where m is the
length of Bloom filter, n is the number of elements inserted
into Bloom filter, and t0 is the number of hash functions. As
for PBRQ-Q, the maximum capacity of deepest non-leaf
nodes is set to 16. For a fair comparison, we set l ¼ N in our
construction, and generate our EDB using batch update in

one time (i.e., aw ¼ 1). The search query is a square R with
five keywords (i.e., jWQj ¼ 5), where jRj ¼ 5%. We vary the
number of data objects N from 2� 104 to 105 to compare the
performance. Figs. 7a and 7b show the EDB storage cost and
search time against data sizes. We can observe that both the
EDB size and search time grow with increasing data sizes for
all schemes. Besides, both the EDB storage cost and the search
time of our construction outperform that of existing schemes.
Specifically, the search time of our construction over 105 data
is only 1.241 ms, which is 175� faster than the most efficient
existing scheme Constru� I. As for storage cost, the EDB in
our construction costs 2.369 GB, which is 51:7% of the best
existing scheme Constru� I. Note that ELCBFR+ and PBRQ-Q
cannot support dynamic update. Although Constru� I [14]
and Constru� II are able to support updates, they can only
achieve either backword or forward privacy, which cannot
provide a comprehensive privacy guarantee. Generally
speaking, both the performance and privacy guarantee of
our construction outperform those of the existing schemes.

7 CONCLUSION

In this work, we formally defined the framework and secu-
rity of DSSE for spatial keyword queries and proposed a
corresponding practical construction with forward/back-
ward and content privacy. We provided detailed security
analysis and performance evaluations to prove the security
and efficiency of our construction. Our construction is the
first to achieve both dynamic update, forward/backward
and content privacy for spatial keyword queries. We would
like to design more scalable DSSE schemes with more
expressive queries in our future work.
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