
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2015

Towards automatic generation of security-centric descriptions for Towards automatic generation of security-centric descriptions for

Android apps Android apps

Mu ZHANG

Yue DUAN
Singapore Management University, yueduan@smu.edu.sg

Qian FENG

Heng YIN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
ZHANG, Mu; DUAN, Yue; FENG, Qian; and YIN, Heng. Towards automatic generation of security-centric
descriptions for Android apps. (2015). Proceedings of the 22nd ACM Conference on Computer and
Communications Security, Colorado, USA, 2015 October 12-16. 2015, 518-529.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8174

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8174&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8174&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Towards Automatic Generation of Security-Centric
Descriptions for Android Apps

Mu Zhang$
∗

Yue Duan† Qian Feng† Heng Yin†

$NEC Labs America, Inc. †Department of EECS, Syracuse University, USA
$mu@nec-labs.com †{yuduan,qifeng,heyin}@syr.edu

ABSTRACT
To improve the security awareness of end users, Android markets
directly present two classes of literal app information: 1) permis-
sion requests and 2) textual descriptions. Unfortunately, neither can
serve the needs. A permission list is not only hard to understand but
also inadequate; textual descriptions provided by developers are
not security-centric and are significantly deviated from the permis-
sions. To fill in this gap, we propose a novel technique to automat-
ically generate security-centric app descriptions, based on program
analysis. We implement a prototype system, DESCRIBEME, and
evaluate our system using both DroidBench and real-world An-
droid apps. Experimental results demonstrate that DESCRIBEME
enables a promising technique which bridges the gap between de-
scriptions and permissions. A further user study shows that au-
tomatically produced descriptions are not only readable but also
effectively help users avoid malware and privacy-breaching apps.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Documentation; D.4.6 [Operating Systems]: Se-
curity and Protection—Invasive software

General Terms
Security

Keywords
Android; Malware prevention; Textual description; Program anal-
ysis; Subgraph mining; Natural language generation

1. INTRODUCTION
As usage of Android platform has grown, security concerns have

also increased. Malware [12, 43, 45], software vulnerabilities [17,
20, 24, 44] and privacy issues [14, 46] severely violate end user se-
curity and privacy.

∗This work was conducted while Mu Zhang was a PhD student at
Syracuse University, advised by Prof. Heng Yin.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CCS’15, October 12–16, 2015, Denver, Colorado, USA.
c© 2015 ACM. ISBN 978-1-4503-3832-5/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2810103.2813669.

Unlike traditional desktop systems, Android provides end users
with an opportunity to proactively accept or deny the installation of
any app to the system. As a result, it is essential that the users be-
come aware of app behaviors so as to make appropriate decisions.
To this end, Android markets directly present the consumers with
two classes of information regarding each app: 1) the requested An-
droid permissions and 2) textual description provided by the app’s
developer. Unfortunately, neither can fully serve this need.

Permissions are not easy to understand. First, prior study [15]
has shown that few users are cautious or knowledgeable enough
to comprehend the security implications of Android permissions.
Second, a permission list merely tells the users which permissions
are used, but does not explain how they are used. Without such
knowledge, one cannot properly assess the risk of allowing a per-
mission request. For instance, both a benign navigation app and
a spyware instance of the same app can require the same permis-
sion to access GPS location, yet use it for completely different
purposes. While the benign app delivers GPS data to a legitimate
map server upon the user’s approval, the spyware instance can pe-
riodically and stealthily leak the user’s location information to an
attacker’s site. Due to the lack of context clues, a user is not able to
perceive such differences via the simple permission enumeration.

Textual descriptions provided by developers are not security-
centric. There exists very little incentive for app developers to de-
scribe their products from a security perspective, and it is still a dif-
ficult task for average developers (usually inexperienced) to write
dependable descriptions. Malware authors can also intentionally
hide malice from innocent users by providing misleading descrip-
tions. Studies [26, 28] have revealed that the existing descriptions
deviate considerably from requested permissions. Thus, developer-
driven description generation cannot be considered trustworthy.

To address this issue, we propose a novel technique to auto-
matically generate app descriptions which accurately describe the
security-related behaviors of Android apps. To interpret panoramic
app behaviors, we extract security behavior graphs as high-level
program semantics. To create concise descriptions, we further con-
dense the graphs by mining and compressing the frequent sub-
graphs. As we traverse and parse these graphs, we leverage Natu-
ral Language Generation (NLG) to automatically produce concise,
human-understandable descriptions.

A series of efforts have been made to describe the functionali-
ties of traditional Java programs as human readable text via NLG.
Textual summaries are automatically produced for methods [30],
method parameters [32], classes [25], conditional code snippets [11]
and algorithmic code structures [31] through program analysis and
comprehension. However, these studies focus upon depicting the
intra-procedural structure-based operations. In contrast, our tech-
nique presents the whole-program’s semantic-level activities. Fur-

518

(a) Permission Requests. (b) Old+New Descriptions.
Figure 1: Metadata of the Example App.

thermore, we take the first step towards automating Android app
description generation for security purposes.

We implement a prototype system, DESCRIBEME, in 25 thou-
sand lines of Java code. Our behavior graph generation is built
on top of Soot [8], while our description production leverages an
NLG engine [7] to realize texts from the graphs. We evaluate our
system using both DroidBench [3] and real-world Android apps.
Experimental results demonstrate that DESCRIBEME is able to ef-
fectively bridge the gap between descriptions and permissions. A
further user study shows that our automatically-produced descrip-
tions are both readable and effective at helping users avoid malware
and privacy-breaching apps.

Natural language generation is in general a hard problem, and it
is an even more challenging task to describe app behaviors to av-
erage users in a comprehensive yet concise, and most importantly,
human-readable manner. While we have demonstrated promising
results, we do not claim that our system is fully mature and has ad-
dressed all the challenges. However, we believe that we have made
a solid step towards this goal. We also hope the report of our expe-
rience can attract more attention and stimulate further research.

In summary, this paper makes the following contributions:

• We propose a novel technique that automatically describes
security-related app behaviors to the end users in natural lan-
guage. To the best of our knowledge, we are the first to pro-
duce Android app descriptions for security purpose.

• We implement a prototype system, DESCRIBEME, that com-
bines multiple techniques, including program analysis, sub-
graph mining and natural language generation, and adapts
them to the new problem domain, which is to systematically
create expressive, concise and human-readable descriptions.

• Evaluation and user study demonstrate that DESCRIBEME
significantly improves the expressiveness of textual descrip-
tions, with respect to security-related behaviors.

2. OVERVIEW

2.1 Problem Statement
Figure 1a and Figure 1b demonstrate the two classes of descrip-

tive metadata that are associated with an Android app available via
Google Play. The app shown leaks the user’s phone number and

Android App Market

Behavior Analysis &
Natural Language

GenerationDeveloper’s App

Submit

Analysis

NLG

Security-centric
Descriptions

Attach

Figure 2: Deployment of DESCRIBEME

service provider to a remote site. Unfortunately, neither of these
two pieces of metadata can effectively inform end users of the risk.

The permission list (Figure 1a) simply enumerates all of the per-
missions requested by the app while replacing permission primi-
tives with straightforward explanations. Besides, it can merely tell
users the app uses two separate permissions, READ_PHONE_STATE
and INTERNET, but cannot indicate that these two permissions are
used consecutively to send out phone number. The textual descrip-
tions are not focused on security. As depicted in the example (the
top part in Figure 1b), developers are more interested in describing
the app’s functionalities, unique features, special offers, use of con-
tact information, etc. Prior studies [26,28] have revealed significant
inconsistencies between app descriptions and permissions.

We propose a new technique, DESCRIBEME, which addresses
these shortcomings and can automatically produce complementary
security-centric descriptions for apps in Android markets. It is
worth noting that we do not expect to replace the developers’ de-
scriptions with ours. Instead, we hope to provide additional app
information that is written from a security perspective. For exam-
ple, as shown in the bottom part of Figure 1b, our security-sensitive
descriptions are attached to the existing ones. The new description
states that the app retrieves the phone number and writes data to
network, and therefore indicates the privacy-breaching behavior.
Notice that Figure 1b only shows a portion of our descriptions, and
a complete version is depicted in Appendix A.

We expect to primarily deploy DESCRIBEME directly into the
Android markets, as illustrated in Figure 2. Upon receiving an app
submission from a developer, the market drives our system to an-
alyze the app and create a security-centric description. The gener-
ated descriptions are then attached to the corresponding apps in the
markets. Thus, the new descriptions, along with the original ones,
are displayed to consumers once the app is ready for purchase.

Given an app, DESCRIBEME aims at generating natural language
descriptions based on security-centric program analyses. Specifi-
cally, we achieve the following design goals:

• Semantic-level Description. Our approach produces descrip-
tions for Android apps solely based upon their program se-
mantics. It does not rely upon developers’ statements, users’
review, or permission listings.

• Security-centric Description. The generated descriptions
focus on the security and privacy aspects of Android apps.
They do not exhaustively describe all program behaviors.

• Human Readability. The crafted descriptions are natural
language based scripts that are comprehensible to end users.
Besides, the descriptive texts are concise. They do not con-
tain superfluous components or repetitive elements.

2.2 Architecture Overview
Figure 3 depicts the workflow of our automated description gen-

eration. This takes the following steps:

519

Android App

getDeviceId

{ }
startRecording

{ }
sendTextMessage

{ }

getDeviceId

startRecording

sendTextMessage

{ }

{ }

getDeviceId

startRecording

sendTextMessage

{ }

Behavior Graph Generation Subgraph Mining & Graph Compression Natural Language Generation

Security-Centric
Descriptions

Figure 3: Overview of DESCRIBEME

(1) Behavior Graph Generation. Our natural language descrip-
tions are generated via directly interpreting program behavior
graphs. To this end, we first perform static program analyses to
extract behavior graphs from Android bytecode programs. Our
program analyses enable a condition analysis to reveal the trig-
gering conditions of critical operations, provide entry point dis-
covery to better understand the API calling contexts, and lever-
age both forward and backward dataflow analyses to explore
API dependencies and uncover constant parameters. The result
of these analyses is expressed via Security Behavior Graphs
that expose security-related behaviors of Android apps.

(2) Subgraph Mining & Graph Compression. Due to the com-
plexity of object-oriented, event-driven Android programs, static
program analyses may yield sizable behavior graphs which are
extremely challenging for automated interpretation. To address
this problem, we next reduce the graph size using subgraph
mining. More concretely, we first leverage data mining based
technique to discover the frequent subgraphs that bear specific
behavior patterns. Then, we compress the original graphs by
substituting the identified subgraphs with single nodes.

(3) Natural Language Generation. Finally, we utilize natural
language generation technique to automatically convert the se-
mantically rich graphs to human understandable scripts. Given
a compressed behavior graph, we traverse all of its paths and
translate each graph node into a corresponding natural lan-
guage sentence. To avoid redundancy, we perform sentence
aggregation to organically combine the produced texts of the
same path, and further assemble only the distinctive descrip-
tions among all the paths. Hence, we generate descriptive scripts
for every individual behavior graph derived from an app and
eventually develop the full description for the app.

3. SECURITY BEHAVIOR GRAPH

3.1 Security-related Behavioral Factors
We consider the following four factors as essential when describ-

ing the security-centric behaviors of an Android app sample:

1) API call and Dependencies. Permission-related API calls di-
rectly reflect the security-related app behaviors. Besides, the
dependencies between certain APIs indicate specific activities.

2) Condition. The triggering conditions of certain API calls imply
potential security risks. The malice of an API call is sometimes
dependent on the absence or presence of specific preconditions.
For instance, a missing check for user consent may indicate un-
wanted operations; a condition check for time or geolocation
may correspond to trigger-based malware.

3) Entry point. Prior studies [12, 40] have demonstrated that the
entry point of a subsequent API call is an important security in-
dicator. Depending on the fact an entry point is a user interface
or background event handler, one can infer whether the user is
aware that such an API call has been made or not.

4) Constant. Constant parameters of certain API calls are also es-
sential to security analysis. The presence of a constant argument
or particular constant values should arouse analysts’ suspicions.

3.2 Formal Definition
To consider all these factors, we describe app behaviors using

Security Behavior Graphs (SBG). An SBG consists of behavioral
operations where some operations have data dependencies.

Definition 1. A Security Behavior Graph is a directed graph G
= (V, E, α) over a set of operations Σ, where:
• The set of vertices V corresponds to the behavioral operations

(i.e., APIs or behavior patterns) in Σ;
• The set of edges E⊆ V× V corresponds to the data dependen-

cies between operations;
• The labeling function α : V → Σ associates nodes with the

labels of corresponding semantic-level operations, where each label
is comprised of 4 elements: behavior name, entry point, constant
parameter set and precondition list.

Notice that a behavior name can be either an API prototype or a
behavior pattern ID. However, when we build SBGs using static
program analysis, we only extract API-level dependency graphs
(i.e., the raw SBGs). Then, we perform frequent subgraph mining
to identify common behavior patterns and replace the subgraphs
with pattern nodes. This will be further discussed in Section 4.

3.3 SBG of Motivating Example
Figure 4 presents an SBG of the motivating example. It shows the

app first obtains the user’s phone number (getLine1Number())
and service provider name (getSimOperatorName()), then en-
codes the data into a format string (format(String,byte[])),
and finally sends the data to network (write(byte[])).

All APIs here are called after the user has clicked a GUI com-
ponent, so they share the same entry point, OnClickListener
.onClick. This indicates that these APIs are triggered by user.

The sensitive APIs, including getLine1Number(), getSim-
OperatorName() and write(byte[]), are predominated by a
UI-related condition. It checks whether the clicked component is a
Button object of a specific name. There exist two security impli-
cations behind this information: 1) the app is usually safe to use,
without leaking the user’s phone number; 2) a user should be cau-
tious when she is about to click this specific button, because the
subsequent actions can directly cause privacy leakage.

The encoding operation, format(String,byte[]), takes a con-
stant format string as the parameter. Such a string will later be used

520

<TelephonyManager: getLine1Number()>,
OnClickListener.onClick, Ø const, Setcond

Setcond = {findViewById(View.getId)==Button(“Confirm”)}

<TelephonyManager: getSimOperatorName()>,
OnClickListener.onClick, Ø const, Setcond

<String: format(String,Object[])>,
OnClickListener.onClick, Setconst, Ø cond

Setconst = {100/app_id=an1005/ani=%s/dest=%s/phone_number=%s/company=%s/}

<OutputStream: write(byte[])>,
OnClickListener.onClick, Ø const, Setcond

Setcond = {findViewById(View.getId)==Button(“Confirm”)}

Setcond = {findViewById(View.getId)==Button(“Confirm”)}

Figure 4: An example SBG

to compose the target URL, so it is an important clue to understand
the scenario in which the privacy-related data is used.

3.4 Graph Generation
To generate an SBG, we have implemented a static analysis tool,

built on top of Soot [8], in 22K lines of code.
To extract API data dependencies and constant parameters, we

perform context-sensitive, flow-sensitive, and interprocedural data-
flow analysis. In theory, we take the same approach as the prior
works [9,24,34,40]. Our analysis first considers the dataflow within
individual program “splits” and then conducts inter-split analysis
with respect to Android Activity/Service lifecycles. Notice that our
analysis does not support implicit dataflow at this point.

We use the algorithm in prior work [40] to discover entry points.
We perform callgraph analysis while taking asynchronous calls into
consideration. Thus, the identified entry points can faithfully reflect
whether an API is triggered by a user action.

Condition Reconstruction. We then perform both control-flow
and dataflow analyses to uncover the triggering conditions of sen-
sitive APIs. All conditions, in general, play an essential role in se-
curity analysis. However, we are only interested in certain trigger
conditions for our work. This is because our goal is to generate hu-
man understandable descriptions for end users. This implies that an
end user should be able to naturally evaluate the produced descrip-
tions, including any condition information. Hence, it is pointless if
we generate a condition that cannot be directly observed by a user.

Consequently, our analysis is only focused on three major types
of conditions that users can directly observe. 1) User Interface.
An end user actively communicates with the user interface of an
app, and therefore she directly notices the UI-related conditions,
such as a click on a specific button. 2) Device status. Similarly, a
user can also notice the current phone status, such as WIFI on/off,
screen locked/unlocked, speakerphone on/off, etc. 3) Natural envi-
ronment. A user is aware of environmental factors that can impact
the device’s behavior, including the current time and geolocation.

The algorithm for condition extraction is presented in Algorithm 1.
This algorithm accepts a supergraph SG as the input and produces
Set<a,c> as the output. SG is derived from callgraph and control-
flow analyses; Set<a,c> is a set of < a, c > pairs, each of which
is a mapping between a sensitive API and its conditions.

Given the supergraph SG, our algorithm first identifies all the
sensitive API statements, Setapi, on the graph. Then, it discovers
the conditional predecessors Setpred (e.g., IF statement) for each
API statement via GetConditionalPredecessors(). Condi-

Algorithm 1 Condition Extraction for Sensitive APIs

SG← Supergraph
Set<a,c> ← null
Setapi ← {sensitive API statements in the SG}
for api ∈ Setapi do

Setpred ← GetConditionalPredecessors(SG,api)
for pred ∈ Setpred do

for ∀var defined and used in pred do
DDG← BackwardDataflowAnalysis(var)
Setcond ← ExtractCondition(DDG, var)
Set<a,c> ← Set<a,c> ∪ {< api, Setcond >}

end for
end for

end for
output Set<a,c> as a set of < API, conditions > pairs

<CheckBox android:id="
@id/binary" android:text="
@string/send_binarysms"/>

<public type="id"
name="binary" id="
0x7f050002" />

<string name="send_binarysms">
Send binary sms (to port 8091)
</string>

{type=Checkbox,
id name=binary,
string name=send_binarysms}

<string name=send_binarysms,
text=Send binary sms (to port
8091)>

<id=0x7f050002,
id name=binary>

3-tuple={type=Checkbox,
id=0x7f050002,
text=Send binary sms (to port 8091)}

res/values/public.xml

<GUI ID, id name> {GUI type, id name, string name}

{GUI type, GUI ID, text}

res/values/strings.xml res/layout/main.xml

<string name, text>

Step 1 Step 2 Step 3

Step 4

Figure 5: Extraction of UI Information from Resource Files

tional predecessor means that it is a predominator of that API state-
ment but the API statement is not its postdominator. Intuitively, it
means the occurrence of that API statement is indeed conditional
and depends on the predicate within that predecessor. Next, for ev-
ery conditional statement pred in Setpred, it performs backward
dataflow analysis on all the variables defined or used in its pred-
icate. The result of BackwardDataflowAnalysis() is a data
dependency graph DDG, which represents the dataflow from the
variable definitions to the conditional statement. The algorithm fur-
ther calls ExtractCondition(), which traverses this DDG and
extracts the conditions Setcond for the corresponding api state-
ment. In the end, the API/conditions pair < api, Setcond > is
merged to output set Set<a,c>.

We reiterate that ExtractCondition() only focuses on three
types of conditions: user interface, device status and natural en-
vironment. It determines the condition types by examining the
API calls that occur in the DDG. For instance, an API call to
findViewById() indicates the condition is associated with GUI
components. The APIs that retrieve multiple phone states (e.g.,
isWifiEnabled(), isSpeakerphoneOn()) are clues to identify
phone status related conditions. Likewise, if the DDG involves
time or location APIs (e.g., getHours(), getLatitude()), the
condition is corresponding to natural environment.

User Interface Analysis in Android Apps. We take special con-
siderations when extracting UI-related conditions. Once we dis-
cover such a condition, we expect to know exactly which GUI com-
ponent it corresponds to and what text is actually displayed to users.

In order to retrieve GUI information, we perform an analysis on
the Android resource files for the app. Our UI resource analysis is
different from the prior work (i.e., AsDroid [21]) in that AsDroid
examines solely the GUI-related call chains while we aim for the
depiction of application-wide behaviors. Therefore, AsDroid only
needs to correlate GUI texts to program entry points and then de-

521

tect any conflicts on the callgraph. In contrast, we have to further
associate the textual resources to specific conditional statements,
so that we can give concrete meaning to the subsequent program
logics preceded by the conditions. Besides, the previous work did
not consider those GUI callbacks that are registered in XML lay-
out files, whereas we handle both programmatically and statically
registered callbacks in order to guarantee the completeness.

Figure 5 illustrates how we perform UI analysis. This analysis
takes four steps. First, we analyze the res/values/public.xml
file to retrieve the mapping between the GUI ID and GUI name.
Then, we examine the res/values/strings.xml file to extract
the string names and corresponding string values. Next, we recur-
sively check all layout files in the res/layout/ directory to fetch
the mapping of GUI type, GUI name and string name. At last, all
the information is combined to generate a set of 3-tuples {GUI type,
GUI ID, string value}, which is queried by ExtractCondition()
to resolve UI-related conditions.

Notice that dynamically generated user interfaces are not han-
dled through our static analysis. To address this problem, more ad-
vanced dynamic analysis is required. We leave this for future study.

Condition Solving. Intuitively, we could use a constraint solver to
compute predicates and extract concrete conditions. However, we
argue that this technique is not suitable for our problem. Despite its
accuracy, a constraint solver may sometimes generate excessively
sophisticated predicates. It is therefore extremely hard to describe
such complex conditions in a human readable manner. Thus, we
instead focus on simple conditions, such as equations or negations,
because their semantics can be easily expressed in natural language.

Therefore, once we have extracted the definitions of condition
variables, we further analyze the equation and negation operations
to compute the condition predicates. To this end, we analyze how
the variables are evaluated in conditional statements. Assume such
a statement is if(hour == 8). In its predicate (hour == 8), we
record the constant value 8 and search backwardly for the definition
of variable hour. If the value of hour is received directly from API
call getHours(), we know that the condition is current time

is equal to 8:00am. For conditions that contain negation, such
as a condition like WIFI is NOT enabled, we examine the com-
parison operation and comparison value in the predicate to retrieve
the potential negation information. We also trace back across the
entire def-use chain of the condition variables. If there exists a
negation operation, we negate the extracted condition.

One concern for our condition extraction is that attackers with
prior knowledge of our system can deliberately create complex
predicates to disable the analysis. However, we argue that even
if the logics cannot be resolved, the real malicious API calls will
still be captured and described alongside with other context and
dependency information.

4. SUBGRAPH MINING & COMPRESSION
Static analysis sometimes results in huge behavior graphs. To ad-

dress this problem, we identify higher-level behavior patterns from
raw SBGs so as to compress them and produce concise descriptions.

4.1 Frequent Behavior Mining
Experience tells us certain APIs are typically used together to

achieve special goals. For example, SMSManager.getDefault()
always happens before SMSManager.sendTextMessage(). We
expect to extract these behavior patterns, so that we can describe
each pattern as an entirety instead of depicting every API included.
To this end, we first discover the common subgraph patterns, and
later compress the original raw graphs by collapsing pattern nodes.

getLastKnownLocation()

getLongitude() getLatitude()

getLastKnownLocation()

getLongitude() getLatitude()getAltitude()

write() getFromLocation()

Raw SBG #1 Raw SBG #2

getLastKnownLocation()

getLongitude() getLatitude()

Frequent Pattern

Graph Mining

Figure 6: Graph Mining for getLastKnownLocation()
We leverage the graph mining technique to extract the frequent

behavior patterns in raw SBGs. Given the raw SBG dataset S =
{G1, G2, . . . , GN}, where N = |S| is the size of the set, we hope
to discover the frequent subgraphs appearing in S. To quantify the
subgraph frequency, we introduce the support value supportg for
a subgraph g. Suppose the set of graphs, containing subgraph g, is
defined as Sg = {Gi|g ⊆ Gi, 1 ≤ i ≤ N}. Then, supportg =
|Sg|/N , where |Sg| denotes the cardinality of Sg . It demonstrates
the proportion of graphs in S that contains the subgraph g. Conse-
quently, we define the frequent subgraphs appearing in S as:

F(S, ρ) = {g | supportg ≥ ρ} (1)

, where ρ is a threshold. Therefore, to discover a frequent behavior
pattern is to select a ρ and find all subgraphs whose supportg ≥ ρ.

A naive way to solve this problem is to directly apply behavior
mining to the entire behavior graph set S, and extract the frequent
behaviors shared by all the graphs. However, there exist two prob-
lems in this solution. First, a behavior graph includes too many at-
tributes in a node. As a result, we cannot really learn the common
patterns when considering every attribute. In fact, we are more in-
terested in the correlations of API calls, and thus can focus only
on their topological relations. Second, critical behaviors may not
be discovered as patterns because they do not frequently happen
over all raw SBGs. To uncover those critical yet uncommon API
patterns, we conduct an “API-oriented” mining and extract the fre-
quent patterns that are specific to individual APIs.

Given an API θ, the “API-oriented” behavior mining operates
on the subset S/θ = {G1, G2, . . . , GM}, where G1, G2, . . . , GM
are raw SBGs in S containing the API θ. Hence, we need to select
an individual support threshold ρθ for each S/θ. The quality of
discovered patterns is then determined by these thresholds.

To achieve a better quality, we need to consider two factors: sup-
port value and graph size. On the one hand, we hope a discovered
pattern is prevalent over apps and therefore bears a higher support
value. On the other hand, we also expect an identified subgraph
is large enough to represent meaningful semantic information. To
strike a balance between these two factors, we utilize the data com-
pression ratio [27] to quantify the subgraph quality. Given an API
θ, g is any subgraph that contains θ; Sg is the set of graphs that
contain subgraph g; and Gḡ is the compressed graph of G, where
subgraph g has been replaced. Then, our goal is to optimize the
total compression ration (TCR) by adjusting the threshold ρθ:

max TCR(θ, ρθ) =
∑
G,g

(1− |Gḡ|/|G|)

subject to 0 ≤ ρθ ≤ 1

supportg ≥ ρθ
G ∈ S/θ

(2)

, where supportg =
|Sg|
|S/θ| . To maximize the objective function, we

utilize the Hill Climbing algorithm [29] to find the optimal support
values. This in turn produces subgraphs of optimized quality.

522

〈description〉 ::= 〈sentence〉*
〈sentence〉 ::= 〈sentence〉 ‘and’ 〈sentence〉

| 〈statement〉 〈modifier〉
〈statement〉 ::= 〈subject〉 〈verb〉 〈object〉
〈subject〉 ::= 〈noun phrase〉
〈object〉 ::= 〈noun phrase〉

| 〈empty〉
〈modifier〉 ::= 〈modifier〉 〈conj〉 〈modifier〉

| 〈when〉 〈sentence〉
| 〈if 〉 [‘not’] 〈sentence〉
| 〈constant〉
| 〈empty〉

〈conj〉 ::= ‘and’
| ‘or’

〈when〉 ::= ‘once’

〈if 〉 ::= ‘if’
| ‘depending on if’

〈empty〉 ::= ‘ ’

Figure 7: An Abbreviated Syntax of Our Descriptions

We follow the approach in the previous work [40] and conduct
concept learning to obtain 109 security-sensitive APIs. Hence, we
focus on these APIs and perform “API-oriented” behavior mining
on 1000 randomly-collected top Android apps. More concretely,
we first construct the subset, S/θ, specific to each individual API.
On average, each subset contains 17 graphs. Then, we apply sub-
graph mining algorithm [38] to each subset.

Figure 6 exemplifies our mining process. Specifically, it shows
that we discover a behavior pattern for the API getLastKnown-
Location(). This pattern involves two other API calls, getLong-
itude() and getLatitude(). It demonstrates the common prac-
tice to retrieve location data in Android programs.

4.2 Graph Compression
Now that we have identified common subgraphs in the raw SBGs,

we can further compress these raw graphs by replacing entire sub-
graphs with individual nodes. This involves two steps, subgraph
isomorphism and subgraph collapse. We utilize the VF2 [13] al-
gorithm to solve the subgraph isomorphism problem. In order to
maximize the graph compression rate, we always prioritize a better
match (i.e., larger subgraph). To perform subgraph collapse, we
first replace subgraph nodes with one single new node. Then, we
merge the attributes (i.e., context, conditions and constants) of all
the removed nodes, and put the merged label onto the new one.

5. DESCRIPTION GENERATION

5.1 Automatically Generated Descriptions
Given a SBG, we translate its semantics into textual descriptions.

This descriptive language follows a subset of English grammar, il-
lustrated in Figure 7 using Extended Backus-Naur form (EBNF).
The description of an application is a conjunction of individual
sentences. An atomic sentence makes a statement and spec-
ifies a modifier. A non-empty atomic modifier, recursively, can
be an adverb clause of condition, which contains another sentence.

The translation from a SBG to a textual description is then to map
the graph components to the counterparts in this reduced language.
To be more specific, each vertex of a graph is mapped to a single
sentence, where the API or behavioral pattern is represented by a

statement; the conditions, contexts and constant parameters are
expressed using a modifier. Each edge is then translated to “and”
to indicate data dependency.

One sentence may have several modifiers. This reflects the
fact that one API call can be triggered in compound conditions
and contexts, or a condition/context may accept several parameters.
The modifiers are concatenated with “and” or “or” in order to ver-
balize specific logical relations. A context modifier begins with
“once” to show the temporal precedence. A condition modifier

starts with either “if” or “depending on if”. The former is ap-
plied when a condition is statically resolvable while the latter is
prepared for any other conservative cases. Notice that it is always
possible to find more suitable expressions for these conjunctions.

In our motivating example, getLine1Number() is triggered un-
der the condition that a specific button is selected. Due to the so-
phisticated internal computation, we did not extract the exact predi-
cates. To be safe, we conservatively claim that the app retrieves the
phone number depending on if the user selects Button “Confirm”.

5.2 Behavior Description Model
Once we have associated a behavior graph to this grammatical

structure, we further need to translate an API operation or a pattern
to a proper combination of subject, verb and object. This translation
is realized using our Behavior Description Model. Conditions and
contexts of SBGs are also translated using the same model because
they are related to API calls.

We manually create this description model and currently sup-
port 306 sensitive APIs and 103 API patterns. Each entry of this
model consists of an API or pattern signature and a 3-tuple of nat-
ural language words for subject, verb and object. We construct
such a model by studying the Android documentation [6]. For in-
stance, the Android API call createFromPdu(byte[]) program-
matically constructs incoming SMS messages from underlying raw
Protocol Data Unit (PDU) and hence it is documented as “Create an
SmsMessage from a raw PDU” by Google. Our model records its
API prototype and assigns texts “the app”, “retrieve” and “incom-
ing SMS messages” to the three linguistic components respectively.
These three components form a sentence template. Then, constants,
concrete conditions and contexts serve as modifiers to complete the
template. For example, the template of HttpClient.execute()
is represented using words “the app”, “send” and “data to network”.
Suppose an app uses this API to deliver data to a constant URL
“http://constant.url”, when the phone is locked (i.e., keyguard is
on). Then, such constant value and condition will be fed into the
template to produce the sentence “The app sends data to network
“http://constant.url” if the phone is locked.” The condition APIs
share the same model format. The API checking keyguard status
(i.e., KeyguardManager.isKeyguardLocked()) is modeled as
words “the phone”, “be” and “locked”.

It is noteworthy that an alternative approach is to generate this
model programmatically. Sridhara et al. [31] proposed to automat-
ically extract descriptive texts for APIs and produce the Software
Word Usage Model. The API name, parameter type and return
type are examined to extract the linguistic elements. For example,
the model of createFromPdu(byte[]) may therefore contain the
keywords “create”, “from” and “pdu”, all derived from the function
name. Essentially, we can take the same approach. However, we
argue that such a generic model was designed to assist software de-
velopment and is not the best solution to our problem. An average
user may not be knowledgeable enough to understand the low-level
technical terms, such as “pdu”. In contrast, our text selections (i.e.,
“the app”, “retrieve” and “incoming SMS messages”) directly ex-
plain the behavior-level meaning.

523

<TelephonyManager: getLine1Number()>,
OnClickListener.onClick, Ø const, Setcond

Setcond = {findViewById(View.getId)==Button(“Confirm”)}

<TelephonyManager: getSimOperatorName()>,
OnClickListener.onClick, Ø const, Setcond

<String: format(String,Object[])>,
OnClickListener.onClick, Setconst, Ø cond

Setconst = {100/app_id=an1005/ani=%s/dest=%s/phone_number=%s/company=%s/}

<OutputStream: write(byte[])>,
OnClickListener.onClick, Ø const, Setcond

Setcond = {findViewById(View.getId)==Button(“Confirm”)}

Setcond = {findViewById(View.getId)==Button(“Confirm”)}

The app retrieves your phone number,
and encodes the data into format “100/app_id=an1005/

ani=%s/dest=%s/phone_number=%s/company=%s/”,
and sends data to network

depending on if the user selects the Button ``Confirm’’

“The app”, “send”, “data to network”

depending on if “the user”, “select”, “the Button ``Confirm’’ “

“The app”, “retrieve”, “your phone number”

depending on if “the user”, “select”, “the Button ``Confirm’’ “

“The app”, “encode”, “the data into format”

“100/app_id=an1005/ani=%s/dest=%s/phone_number=%s/company=%s/“

Description:
Once a GUI component is clicked, the app retrieves your
phone number, and encodes the data into format “100/
app_id=an1005/ani=%s/dest=%s/phone_number=%s/
company=%s/”, and sends data to network, depending
on if the user selects the Button “Confirm”.

Entry Point

API prototype

Conditions

Once “a GUI
component”,

“be”, “clicked”

Once “a GUI
component”,

“be”, “clicked”

Once “a GUI
component”,

“be”, “clicked”

Once a GUI
component is

clicked

Finalize

Behavior Graph Natural Language Generation

A
g
g
r
e
g
a
t
e

A
g
g
r
e
g
a
t
e

A
g
g
r
e
g
a
t
e

Realize Sentence

Translate

using model

Figure 8: Description Generation for the Motivating Example

Table 1: Program Logics in Behavioral Patterns
Program Logic How to Describe
Singleton Retrieval Describe the latter.
Workflow Describe both.
Access to Hierarchical Data Describe the former.

We generate description model for API patterns based on their
internal program logics. Table 1 presents the three major logics
that we have discovered. 1) A singleton object is retrieved for
further operations. For example, a SmsManager.getDefault()

is always called prior to SmsManager.sendTextMessage() be-
cause the former fetches the default SmsManager that the latter
needs. We therefore describe only the latter which is associated to
a more concrete behavior. 2) Successive APIs constitute a dedi-
cated workflow. For instance, divideMessage() always happens
before sendMultipartTextMessage(), since the first provides
the second with necessary inputs. In this case, we study the doc-
ument of each API and describe the complete behavior as an en-
tirety. 3) Hierarchical information is accessed using multiple levels
of APIs. For instance, to use location data, one has to first call
getLastKnownLocation() to fetch a Location object, and then
call getLongitude() and getLatitude() to read the “double”-
typed data from this object. Since the higher level object is already
meaningful enough, we hence describe this whole behavior accord-
ing to only the former API.

In fact, we only create description models for 103 patterns out of
the total 109 discovered ones. Some patterns are large and complex,
and are hard to summarize. For these patterns, we have to fall back
to the safe area and describe them in a API-by-API manner.

In order to guarantee the security-sensitivity and readability of
the descriptive texts, we carefully select the words to accommo-
date the model. To this end, we learn from the experience of prior
security studies [26,28] on app descriptions: 1) The selected vocab-
ulary must be straightforward and stick to the essential API func-
tionalities. As an counterexample, an audio recording behavior can
hardly be inferred from the script “Blow into the mic to extinguish

the flame like a real candle” [26]. This is because it does not ex-
plicitly refer to the audio operation. 2) Descriptive texts must be
distinguishable for semantically different APIs. Otherwise, poorly-
chosen texts may confuse the readers. For instance, an app with
description “You can now turn recordings into ringtones” in real-
ity only converts previously recorded files to ringtones, but can be
mistakenly associated to android.permission.RECORD_AUDIO

due to the misleading text choice [26, 28].
Notice that the model generation is a one-time effort. More-

over, this manual effort is a manageable process due to two rea-
sons. First, we exclusively focus on security-sensitive behaviors
and therefore describe only security-related APIs. After apply-
ing concept learning, we further conclude that, a limited amount
of sensitive APIs contributes to a majority of harmful operations.
Thus, we can concentrate on and create models for more crucial
ones. Second, the number of discovered patterns is also finite. This
is because we can tune the parameters of objective function (Equa-
tion 2) so that the amount of identified subgraphs is manageable.

5.3 Behavior Graph Translation
Now that we have defined a target language and prepared a model

to verbalize sensitive APIs and patterns, we further would like to
translate an entire behavior graph into natural language scripts. Al-
gorithm 2 demonstrates our graph traversal based translation.

This algorithm takes a SBG G and the description model Mdesc

as the inputs and eventually outputs a set of descriptions. The over-
all idea is to traverse the graph and translate each path. Hence, it
first performs a breadth-first search and collects all the paths into
Setpath. Notice that the graph traversal algorithm (i.e., BFS or
DFS) does not affect the quality of output. Next, it examines each
path in Setpath to parse the nodes in sequence. Each node is then
parsed to extract the node name, constants, conditions and contexts.
The node name node.name (API or pattern) is used to query the
model Mdesc and fetch the {subj,vb,obj} of a main clause. The

524

Algorithm 2 Generating Descriptions from a SBG

G← {A SBG }
Mdesc ← {Description model}
Setdesc ← ∅
Setpath ← BFS(G)
for path ∈ Setpath do

desc← null
for node ∈ path do

{subj,vb,obj}← QueryMdesc (node.name)
Cmod← null
Setconst ← GetConsts(node)
for ∀const ∈ Setconst do

Cmod← Aggregate(Cmod,const)
end for
Setcc ← GetConditionsAndContext(node)
for ∀cc ∈ Setcc do

{subj,vb,obj}cc ← QueryMdesc (cc)
textcc ← RealizeSentence({subj,vb,obj}cc)
Cmod← Aggregate(Cmod,textcc)

end for
text← RealizeSentence({subj,vb,obj,Cmod})
desc← Aggregate(desc, text)

end for
Setdesc ← Setdesc ∪ {desc}

end for
output Setdesc as the generated description set

constants, conditions and contexts are organized into the modifier
(Cmod) of main clause, respectively. In the end, the main clause
is realized by assembling {subj,vb,obj} and the aggregate modifier
Cmod. The realized sentence is inserted into the output set Setdesc
if it is not a redundant one.

5.4 Motivating Example
We have implemented the natural language generation using a

NLG engine [7] in 3K LOC. Figure 8 illustrates how we step-by-
step generate descriptions for the motivating example.

First, we discover two paths in the SBG: 1) getLine1Number()
→ format() → write() and 2) getSimOperatorName() →
format()→ write().

Next, we describe every node sequentially on each path. For ex-
ample, for the first node, the API getLine1Number() is modeled
by the 3-tuple {“the app”, “retrieve”, “your phone number”}; the
entry point OnClickListener.onClick is mapped to {“a GUI
component”, “be”, “clicked”} and preceded by “Once”; the con-
dition findViewById(View.getId)==Button(“Confirm”) is
translated using the template {“the user”, “select”, “ ”}, which ac-
cepts the GUI name, Button “Confirm”, as a parameter. The con-
dition and main clause are connected using “depending on if”.

At last, we aggregate the sentences derived from individual nodes.
In this example, all the nodes share the same entry point. Thus, we
only keep one copy of “Once a GUI component is clicked”. Simi-
larly, the statements on the nodes are also aggregated and thus share
the same subject “The app”. We also aggregate the conditions in or-
der to avoid the redundancy. As a result, we obtain the description
illustrated at the bottom left of Figure 8.

6. EVALUATION
In this section, we evaluate the correctness, effectiveness, con-

ciseness of generated descriptions and the runtime performance of
DESCRIBEME.

Table 2: Description Generation Results for DroidBench
Total # Correct Missing Desc. False Statement
65 55 6 4

6.1 Correctness and Security-Awareness
Correctness. To evaluate the correctness, we produce textual de-
scriptions for DroidBench apps (version 1.1) [3]. DroidBench apps
are designed to assess the accuracy of static analyses on Android
programs. We use these apps as the ground truths because they are
open-sourced programs with clear semantics. However, it is worth
noting that DroidBench does not include any test cases for native
code or dynamic loaded classes. Thus, this evaluation only demon-
strates whether DESCRIBEME can correctly discover the static pro-
gram behaviors at bytecode level. In fact, static analysis in gen-
eral lacks the capability of extracting runtime behaviors and can
be evaded accordingly. Nevertheless, we argue that any analysis
tools, both static and dynamic, can be utilized in our framework to
achieve the goal. Detailed discussion is presented in Section 7.1.

Table 2 presents the experimental results, which show that DE-
SCRIBEME achieves a true positive rate of 85%. DESCRIBEME
misses behavior descriptions due to three major reasons. 1) Points-
to analysis lacks accuracy. We rely on Soot’s capability to perform
points-to analysis. However, it is not precise enough to handle the
instance fields accessed in callback functions. 2) DESCRIBEME
does not process exception handler code and therefore loses track
of its dataflow. 3) Some reflective calls cannot be statically re-
solved. Thus, DESCRIBEME fails to extract their semantics.

DESCRIBEME produces false statements mainly because of two
reasons. First, our static analysis is not sensitive to individual array
elements. Thus, it generates false descriptions for the apps that
intentionally manipulate data in array . Second, again, our points-
to analysis is not accurate and may lead to over-approximation.

Despite the incorrect cases, the accuracy of our static analysis is
still comparable to that of FlowDroid [9], which is the state-of-the-
art static analysis technique for Android apps. Moreover, we would
like to again point out that the accuracy of static analysis is not the
major focus of this work. Our main contribution lies in the fact that,
we combine program analysis with natural language generation so
that we can automatically explain program behaviors to end users
in human language.
Permission Fidelity. To demonstrate the security-awareness of
DESCRIBEME, we use a description vetting tool, AutoCog [28],
to evaluate the “permission-fidelity” of descriptions. AutoCog ex-
amines the descriptions and permissions of an app to discover their
discrepancies. We use it to analyze both the original descriptions
and the security-centric ones produced by DESCRIBEME, and as-
sess whether our descriptions can be associated to more permis-
sions that are actually requested.

Unfortunately, AutoCog only supports 11 permissions in its cur-
rent implementation. In particular, it does not handle some crucial
permissions that are related to information stealing (e.g., phone
number, device identifier, service provider, etc.), sending and re-
ceiving text messages, network I/O and critical system-level be-
haviors (e.g., KILL_BACKGROUND_PROCESSES). The limitation of
AutoCog in fact brings difficulties to our evaluation: if generated
descriptions are associated to these unsupported permissions, Au-
toCog fails to recognize them and thus cannot conduct equitable as-
sessment. Such a shortcoming is also shared by another NLP-based
(i.e., natural language processing) vetting tool, WHYPER [26],
which focuses on even fewer (3) permissions. This implies that it is
a major challenge for NLP-based approaches to achieve high per-
mission coverage, probably because it is hard to correlate texts to
semantically obscure permissions (e.g., READ_PHONE_STATE). In

525

0

2

4

6

8

1 49N
u

m
b

er
 o

f
Pe

rm
is

si
o

n
s

App ID

Described Permissions

New Desc. Orig. Desc. Permission List

Figure 9: Permissions Reflected in Descriptions

contrast, our approach does not suffer from this limitation because
API calls are clearly associated to permissions [10].

Despite the difficulties, we manage to collect 30 benign apps
from Google play and 20 malware samples from Malware Genome
Project [5], whose permissions are supported by AutoCog. We
run DESCRIBEME to create the security-centric descriptions and
present both the original and generated ones to AutoCog. How-
ever, we notice that AutoCog sometimes cannot recognize certain
words that have strong security implications. For example, DE-
SCRIBEME uses “geographic location” to describe the permissions
ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION. Yet,
AutoCog cannot associate this phrase to any of the permissions.

The fundamental reason is that AutoCog and DESCRIBEME use
different glossaries. AutoCog performs machine learning on a par-
ticular set of apps and extracts the permission-related glossary from
these existing descriptions. In contrast, We manually select de-
scriptive words for each sensitive API, using domain knowledge.

To bridge this gap, we enhance AutoCog to recognize the man-
ually chosen keywords. The experimental result is illustrated in
Figure 9, where X-axis is the app ID and Y-axis is the amount of
permissions. The three curves, from top to bottom, represent the
amounts of permissions that are requested by the apps, recognized
by AutoCog from security-centric descriptions and identified from
original descriptions, respectively. Cumulatively, 118 permissions
are requested by these 50 apps. 20 permissions are discovered from
the old descriptions, while 66 are uncovered from our scripts. This
reveals that DESCRIBEME can produce descriptions that are more
security-sensitive than the original ones.

DESCRIBEME fails to describe certain permission requests due
to three reasons. First, some permissions are used for native code
or reflections that cannot be resolved. Second, a few permissions
are not associated to API calls (e.g., RECEIVE_BOOT_COMPLETED),
and thus are not included into the SBGs. Last, some permissions
are correlated to certain API parameters. For instance, the query

API requires permission READ_CONTACTS only if the target URI
is the Contacts database. Thus, if the parameter value cannot be
extracted statically, such a behavior will not be described.

6.2 Readability and Effectiveness
To evaluate the readability and effectiveness of generated de-

scriptions, we perform a user study on the Amazon’s Mechanical
Turk (MTurk) [1] platform. The goal is two-fold. First, we hope
to know whether the generated scripts are readable to average au-
dience. Second, we expect to see whether our descriptions can ac-
tually help users avoid risky apps. To this end, we follow Felt et
al.’s approach [16], which also designs experiments to understand
the impact of text-based protection mechanisms.

Methodology. We produce the security-centric descriptions for
Android apps using DESCRIBEME and measure user reaction to
the old descriptions (Condition 1.1, 2.1-2.3), machine-generated

1

2

3

4

5

1 100

R
ea

d
a

b
ili

ty
 S

co
re

App ID

Readability Comparison

Condition 1.1 Old Desc. Condition 1.2 Generated Desc.

Figure 10: Readability Ratings

ones (Condition 2.1) and the new descriptions (Condition 2.4-2.6).
Notice that the new description is the old plus the generated one.

Dataset. Due to the efficiency consideration, we perform the
user study based on the descriptions of 100 apps. We choose these
100 apps in a mostly random manner but we also consider the dis-
tribution of app behaviors. In particular, 40 apps are malware and
the others are benign. We manually inspect the 60 benign ones and
further put them into two categories: 16 privacy-breaching apps
and 44 completely clean ones.

Participants Recruitment. We recruit participants directly from
MTurk and we require participants to be smartphone users. We also
ask screening questions to make sure participants understand basic
smartphone terms, such as “Contacts” or “GPS location”.

Hypotheses and Conditions.
Hypothesis 1: Machine-generated descriptions are readable to

average smartphone users. To assess the readability, we prepare
both the old descriptions (Condition 1.1) and generated ones (Con-
dition 1.2) of the same apps. We would like to evaluate machine-
generated descriptive texts via comparison.

Hypothesis 2: Security-centric descriptions can help reduce the
downloading of risky apps. To test the impact of the security-
centric descriptions, we present both the old and new (i.e., old +
generated) descriptions for malware (Condition 2.1 and 2.4), be-
nign apps that leak privacy (Condition 2.2 and 2.5) and benign apps
without privacy violations (Condition 2.3 and 2.6). We expect to
assess the app download rates on different conditions.

User Study Deployment. We post all the descriptions on MTurk
and anonymize their sources. We inform the participants that the
tasks are about Android app descriptions and we pay 0.3 dollars for
each task. Participants take part in two sets of experiments. First,
they are given a random mixture of original and machine-generated
descriptions, and are asked to provide a rating for each script with
respect to its readability. The rating is ranged from 1 to 5, where 1
means completely unreadable and 5 means highly readable.

Second, we present the participants another random sequence
of descriptions. Such a sequence contains both the old and new
descriptions for the same apps. Again, we stress that the new de-
scription is the old one plus the generated one. Then, we ask par-
ticipants the following question: “Will you download an app based
on the given description and the security concern it may bring to
you?”. We emphasize “security concern” here and we hope partic-
ipants should not accept or reject an app due to the considerations
(e.g., functionalities, personal interests) other than security risks.

Limitations. The security-centric descriptions are designed to
be the supplement to the original ones. Therefore, we present the
two of them as an entirety (i.e., new description) to the audience, in
the second experiment. However, this may increase the chance for
participants to discover the correlation between a pair of old and
new descriptions. As a result, we introduce randomness into the
display order of descriptions to mitigate the possible impact.

Results and Implications. Eventually, we receive 573 responses

526

Table 3: App Download Rates (ADR)
Condition ADR
2.1 Malware w/ old desc. 63.4%
2.2 Leakage w/ old desc. 80.0%
2.3 Clean w/ old desc. 71.1%
2.4 Malware w/ new desc. 24.7%
2.5 Leakage w/ new desc. 28.2%
2.6 Clean w/ new desc. 59.3%

and a total of 2865 ratings. Figure 10 shows the readability rat-
ings of 100 apps for Condition 1.1 and 1.2. For our automati-
cally created descriptions, the average readability rating is 3.596
while over 80% readers give a rating higher than 3. As a compar-
ison, the average rating of the original ones is 3.788. This indi-
cates our description is readable, even compared to texts created by
human developers. The figure also reveals that the readability of
human descriptions are relatively stable while machine-generated
ones sometimes bear low ratings. In a further investigation, we no-
tice that our descriptions with low ratings usually include relatively
technical terms (e.g., subscriber ID) or lengthy constant string pa-
rameters. We believe that this can be further improved during post-
processing. We discuss this in Section 7.2.

Table 3 depicts experimental results for Condition 2.1 - 2.6. It
demonstrates the security impact of our new descriptions. We can
see a 38.7% decrease of application download rate (ADR) for mal-
ware, when the new descriptions instead of old ones are presented
to the participants. We believe that this is because malware au-
thors deliberately provide fake descriptions to avoid alerting vic-
tims, while our descriptions can inform users of the real risks. Sim-
ilar results are also observed for privacy-breaching benign apps,
whose original descriptions are not focused on the security and pri-
vacy aspects. On the contrary, our descriptions have much less im-
pact on the ADR of clean apps. Nevertheless, they still raise false
alarms for 11.8% participants. We notice that these false alarms
result from descriptions of legitimate but sensitive functionalities,
such as accessing and sending location data in social apps. A possi-
ble solution to this problem is to leverage the “peer voting” mecha-
nism from prior work [23] to identify and thus avoid documenting
the typical benign app behaviors.

6.3 Effectiveness of Behavior Mining
Next, we evaluate the effectiveness of behavior mining. In gen-

eral, we have discovered 109 significant behaviors involving 109
sensitive APIs, via subgraph mining in 2069 SBGs of 1000 Android
apps. Figure 11 illustrates the sizes of the identified subgraphs and
shows that one subgraph contains 3 nodes on average. We further
study these pattern graphs. As presented in Table 1, they effectively
reflect common program logics and programming conventions.

Furthermore, we reveal that the optimal patterns of different APIs
are extracted using distinctive support threshold values. Figure 12
depicts the distribution of selected support thresholds over 109 APIs.
It indicates that a uniform threshold cannot guarantee to produce
satisfying behavior pattern for every API. This serves as a justifica-
tion for our “API-oriented” behavior mining.

To show the reduction of description size due to behavior min-
ing, we compare the description sizes of raw SBGs and compressed
ones. We thus produce descriptions for 235 randomly chosen apps,
before and after graph compression. The result, illustrated in Fig-
ure 13, depicts that for over 32% of the apps, the scripts derived
from compressed graphs are shorter. The maximum reduction ratio
reaches 75%. This indicates that behavior mining effectively helps
produce concise descriptions.

6.4 Runtime Performance
We evaluate the runtime performance for 2851 apps. Static pro-

gram analysis dominates the runtime, while the description gener-

ation is usually fairly fast (under 2 seconds). The average static
analysis runtime is 391.5 seconds, while the analysis for a majority
(80%) of apps can be completed within 10 minutes. In addition,
almost all the apps (96%) are processed within 25 minutes. Notice
that, though it may take minutes to generate behavior graphs, this
is a one-time effort, for a single version of each app. Provided there
exists a higher requirement on analysis latency, we can alternatively
seek more speedy solutions, such as AppAudit [35].

7. DISCUSSION

7.1 Evasion
The current implementation of DESCRIBEME relies on static

program analysis to extract behavior graphs from Android bytecode
programs. However, bytecode-level static analysis can cause false
negatives due to two reasons. First, it cannot cope with the usage
of native code as well as JavaScript/HTML5-based programs run-
ning in WebView. Second, it cannot address the dynamic features
of Android programs, such as Java reflection and dynamic class
loading. Thus, any critical functionalities implemented using these
techniques can evade the analysis in DESCRIBEME.

Even worse is that both benign and malicious app authors can in-
tentionally obfuscate their programs, via Android packers [2,4,42],
in order to defeat static analysis. Such packers combine multiple
dynamic features to hide real bytecode program, and only unpack
and execute the code at runtime. As a result, DESCRIBEME is not
able to extract the true behaviors from packed apps.

However, we argue that the capability of analysis technique is or-
thogonal to our main research focus. In fact, any advanced analysis
tools can be plugged into our description generation framework.
In particular, emulation-based dynamic analysis, such as Copper-
Droid [33] or DroidScope [37], can capture the system-call level
runtime behaviors and therefore can help enable the description of
the dynamic features; symbolic execution, such as AppIntent [39],
can facilitate the solving of complex conditions.

7.2 Improvement of Readability
There exists room to improve the readability of automatically

generated descriptions. In fact, some of the raw text is still techni-
cal to the average users. We hope higher readability can be achieved
by post-processing the generated raw descriptions. That is, we
may combine natural language processing (NLP) and natural lan-
guage generation (NLG) techniques to automatically interpret the
“raw” text, select more appropriate vocabulary, re-organize the sen-
tence structure in a more smooth manner and finally synthesize a
more natural script. We may also introduce experts’ knowledge
or crowd-sourcing and leverage an interactive process to gradually
refine the raw text.

8. RELATED WORK
Software Description Generation. There exists a series of stud-

ies on software description generation for traditional Java programs.
Sridhara et al. [30] automatically summarized method syntax and
function logic using natural language. Later, they [32] improved
the method summaries by also describing the specific roles of method
parameters. Further, they [31] automatically identified high-level
abstractions of actions in code and described them in natural lan-
guage.In the meantime, Buse [11] leveraged symbolic execution
and code summarization technique to document program differ-
ences. Moreno et al. [25] proposed to discover class and method
stereotypes and use such information to summarize Java classes.The
goal of these studies is to improve the program comprehension for

527

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

1	 101	

Pa
#
er
n	
Si
ze

APP	 ID

Pa#ern	 Size	 Distribu0on	

Figure 11: Subgraph Sizes

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

1	 101	

O
p#

m
iz
ed

	 p

APP	 ID

Op#mized	 p	 Distribu#on	

Figure 12: Optimal Support Thresholds

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 200

D
es

cr
ip

ti
o

n
 S

iz
e

(B
yt

e)

Before Graph Compression After Graph Compression

Figure 13: Size Reductions

developers. As a result, they focus on documenting intra-procedural
program logic and low-level code structures. On the contrary, DE-
SCRIBEME aims at helping end users to understand the risk of An-
droid apps, and therefore describes high-level program semantics.

Text Analytics for Android Security. Recently, efforts have
been made to study the security implications of textual descriptions
for Android apps. WHYPER [26] used natural language processing
technique to identify the descriptive sentences that are associated to
permissions requests. AutoCog [28] further applied machine learn-
ing technique to automatically correlate the descriptive scripts to
permissions. Inspired by these studies, we expect to automatically
bridge the gap between the textual description and security-related
program semantics.

Program Analysis using Graphs. Prior studies have focused on
using behavior graphs for program analysis. Kolbitsch et al. [22]
utilized dynamic analysis to extract syscall dependency graphs as
signature, so as to discover unknown malicious programs. Fredrik-
son et al. [19] proposed an automated technique to extract near-
optimal specifications that uniquely identify a malware family. Ya-
maguchi et al. [36] introduced the code property graph, which can
model common vulnerabilities. Feng et al. [18] constructed ker-
nel object graph for robust memory analysis. Zhang et al. [41]
generated static taint graphs to help mitigate component hijacking
vulnerabilities in Android apps. As a comparison, we take a step
further and transform behavior graphs into natural language.

9. CONCLUSION
We propose a novel technique to automatically generate security-

centric app descriptions, based on program analysis. We implement
a prototype, DESCRIBEME, and evaluate our system using Droid-
Bench and real-world Android apps. Experimental results demon-
strate that DESCRIBEME can effectively bridge the gap between
descriptions and permissions.

10. ACKNOWLEDGMENT
We would like to thank anonymous reviewers and our shepherd,

Prof. Lorenzo Cavallaro, for their feedback in finalizing this paper.
This research was supported in part by National Science Founda-
tion Grant #1054605 and Air Force Research Lab Grant #FA8750-
15-2-0106. Any opinions, findings, and conclusions made in this
material are those of the authors and do not necessarily reflect the
views of the funding agencies.

11. REFERENCES
[1] amazon mechanical turk.

https://www.mturk.com/mturk/welcome.
[2] bangcle. http://www.bangcle.com.
[3] Droidbench-benchmarks.

http://sseblog.ec-spride.de/tools/droidbench/.
[4] ijiami. http://www.ijiami.cn.
[5] Malware Genome Project.

http://www.malgenomeproject.org.

[6] Reference - Android Developers. http://developer.
android.com/reference/packages.html.

[7] simplenlg: Java API for Natural Language Generation.
https://code.google.com/p/simplenlg/.

[8] Soot: a Java Optimization Framework.
http://www.sable.mcgill.ca/soot/.

[9] ARZT, S., RASTHOFER, S., FRITZ, C., BODDEN, E., BARTEL, A.,
KLEIN, J., LE TRAON, Y., OCTEAU, D., AND MCDANIEL, P.
FlowDroid: Precise Context, Flow, Field, Object-sensitive and
Lifecycle-aware Taint Analysis for Android Apps. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’14) (June 2014).

[10] AU, K. W. Y., ZHOU, Y. F., HUANG, Z., AND LIE, D. PScout:
Analyzing the Android Permission Specification. In Proceedings of
the 2012 ACM Conference on Computer and Communications
Security (CCS’12) (October 2012).

[11] BUSE, R. P., AND WEIMER, W. R. Automatically Documenting
Program Changes. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (ASE’10)
(September 2010).

[12] CHEN, K. Z., JOHNSON, N., D’SILVA, V., DAI, S.,
MACNAMARA, K., MAGRINO, T., WU, E. X., RINARD, M., AND
SONG, D. Contextual Policy Enforcement in Android Applications
with Permission Event Graphs. In Proceedings of the 20th Annual
Network and Distributed System Security Symposium (NDSS’13)
(February 2013).

[13] CORDELLA, L. P., FOGGIA, P., SANSONE, C., AND VENTO, M. A
(Sub) Graph Isomorphism Algorithm for Matching Large Graphs.
IEEE Transactions on Pattern Analysis and Machine Intelligence
(2004).

[14] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG, J.,
MCDANIEL, P., AND SHETH, A. N. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy Monitoring
on Smartphones. In Proceedings of the 9th USENIX Symposium on
Operating Systems Design and Implementation (OSDI’10) (October
2010).

[15] FELT, A. P., HA, E., EGELMAN, S., HANEY, A., CHIN, E., AND
WAGNER, D. Android Permissions: User Attention, Comprehension,
and Behavior. In Proceedings of the Eighth Symposium on Usable
Privacy and Security (SOUPS’12) (July 2012).

[16] FELT, A. P., REEDER, R. W., ALMUHIMEDI, H., AND CONSOLVO,
S. Experimenting at Scale with Google Chrome’s SSL Warning. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI’14) (April 2014).

[17] FELT, A. P., WANG, H. J., MOSHCHUK, A., HANNA, S., AND
CHIN, E. Permission Re-delegation: Attacks and Defenses. In
Proceedings of the 20th USENIX Security Symposium (August 2011).

[18] FENG, Q., PRAKASH, A., YIN, H., AND LIN, Z. MACE:
High-Coverage and Robust Memory Analysis for Commodity
Operating Systems. In Proceedings of Annual Computer Security
Applications Conference (ACSAC’14) (December 2014).

[19] FREDRIKSON, M., JHA, S., CHRISTODORESCU, M., SAILER, R.,
AND YAN, X. Synthesizing Near-Optimal Malware Specifications
from Suspicious Behaviors. In Proceedings of the 2010 IEEE
Symposium on Security and Privacy (Oakland’10) (May 2010).

[20] GRACE, M., ZHOU, Y., WANG, Z., AND JIANG, X. Systematic
Detection of Capability Leaks in Stock Android Smartphones. In
Proceedings of the 19th Network and Distributed System Security
Symposium (NDSS’12) (February 2012).

528

https://www.mturk.com/mturk/welcome
http://www.bangcle.com
http://sseblog.ec-spride.de/tools/droidbench/
http://www.ijiami.cn
http://www.malgenomeproject.org
http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html
https://code.google.com/p/simplenlg/
http://www.sable.mcgill.ca/soot/

[21] HUANG, J., ZHANG, X., TAN, L., WANG, P., AND LIANG, B.
AsDroid: Detecting Stealthy Behaviors in Android Applications by
User Interface and Program Behavior Contradiction. In Proceedings
of the 36th International Conference on Software Engineering
(ICSE’14) (May 2014).

[22] KOLBITSCH, C., COMPARETTI, P. M., KRUEGEL, C., KIRDA, E.,
ZHOU, X., AND WANG, X. Effective and Efficient Malware
Detection at the End Host. In Proceedings of the 18th Conference on
USENIX Security Symposium (August 2009).

[23] LU, K., LI, Z., KEMERLIS, V., WU, Z., LU, L., ZHENG, C.,
QIAN, Z., LEE, W., AND JIANG, G. Checking More and Alerting
Less: Detecting Privacy Leakages via Enhanced Data-flow Analysis
and Peer Voting. In Proceedings of the 22th Annual Network and
Distributed System Security Symposium (NDSS’15) (February 2015).

[24] LU, L., LI, Z., WU, Z., LEE, W., AND JIANG, G. CHEX: Statically
Vetting Android Apps for Component Hijacking Vulnerabilities. In
Proceedings of the 2012 ACM Conference on Computer and
Communications Security (CCS’12) (October 2012).

[25] MORENO, L., APONTE, J., SRIDHARA, G., MARCUS, A.,
POLLOCK, L., AND VIJAY-SHANKER, K. Automatic Generation of
Natural Language Summaries for Java Classes. In Proceedings of the
2013 IEEE 21th International Conference on Program
Comprehension (ICPC’13) (May 2013).

[26] PANDITA, R., XIAO, X., YANG, W., ENCK, W., AND XIE, T.
WHYPER: Towards Automating Risk Assessment of Mobile
Applications. In Proceedings of the 22nd USENIX Conference on
Security (August 2013).

[27] POYNTON, C. Digital video and HD: Algorithms and Interfaces.
Elsevier, 2012.

[28] QU, Z., RASTOGI, V., ZHANG, X., CHEN, Y., ZHU, T., AND
CHEN, Z. AutoCog: Measuring the Description-to-permission
Fidelity in Android Applications. In Proceedings of the 21st
Conference on Computer and Communications Security (CCS)
(November 2014).

[29] RUSSELL, S. J., AND NORVIG, P. Artificial Intelligence: A Modern
Approach. 2003.

[30] SRIDHARA, G., HILL, E., MUPPANENI, D., POLLOCK, L., AND
VIJAY-SHANKER, K. Towards Automatically Generating Summary
Comments for Java Methods. In Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering
(ASE’10) (September 2010).

[31] SRIDHARA, G., POLLOCK, L., AND VIJAY-SHANKER, K.
Automatically Detecting and Describing High Level Actions Within
Methods. In Proceedings of the 33rd International Conference on
Software Engineering (ICSE’11) (May 2011).

[32] SRIDHARA, G., POLLOCK, L., AND VIJAY-SHANKER, K.
Generating Parameter Comments and Integrating with Method
Summaries. In Proceedings of the 2011 IEEE 19th International
Conference on Program Comprehension (ICPC’11) (June 2011).

[33] TAM, K., KHAN, S. J., FATTORI, A., AND CAVALLARO, L.
CopperDroid: Automatic Reconstruction of Android Malware
Behaviors. In Proceedings of the 22nd Annual Network and
Distributed System Security Symposium (NDSS’15) (February 2015).

[34] WEI, F., ROY, S., OU, X., AND ROBBY. Amandroid: A Precise and
General Inter-Component Data Flow Analysis Framework for
Security Vetting of Android Apps. In Proceedings of the 21th ACM
Conference on Computer and Communications Security (CCS’14)
(November 2014).

[35] XIA, M., GONG, L., LV, Y., QI, Z., AND LIU, X. Effective
Real-time Android Application Auditing. In Proceedings of the 36th
IEEE Symposium on Security and Privacy (Oakland’15) (May 2015).

[36] YAMAGUCHI, F., GOLDE, N., ARP, D., AND RIECK, K. Modeling
and Discovering Vulnerabilities with Code Property Graphs. In
Proceedings of the 35th IEEE Symposium on Security and Privacy
(Oakland’14) (May 2014).

[37] YAN, L.-K., AND YIN, H. DroidScope: Seamlessly Reconstructing
OS and Dalvik Semantic Views for Dynamic Android Malware
Analysis. In Proceedings of the 21st USENIX Security Symposium
(August 2012).

[38] YAN, X., AND HAN, J. gspan: Graph-based Substructure Pattern
Mining. In Proceedings of IEEE International Conference on Data
Mining(ICDM’03) (December 2002).

[39] YANG, Z., YANG, M., ZHANG, Y., GU, G., NING, P., AND WANG,
X. S. AppIntent: Analyzing Sensitive Data Transmission in Android
for Privacy Leakage Detection. In Proceedings of the 20th ACM
Conference on Computer and Communications Security (CCS’13)
(November 2013).

[40] ZHANG, M., DUAN, Y., YIN, H., AND ZHAO, Z. Semantics-Aware
Android Malware Classification Using Weighted Contextual API
Dependency Graphs. In Proceedings of the 21th ACM Conference on
Computer and Communications Security (CCS’14) (November
2014).

[41] ZHANG, M., AND YIN, H. AppSealer: Automatic Generation of
Vulnerability-Specific Patches for Preventing Component Hijacking
Attacks in Android Applications. In Proceedings of the 21th Annual
Network and Distributed System Security Symposium (NDSS’14)
(February 2014).

[42] ZHANG, Y., LUO, X., AND YIN, H. DexHunter: Toward Extracting
Hidden Code from Packed Android Applications. In Proceedings of
the 20th European Symposium on Research in Computer Security
(ESORICS’15) (September 2015).

[43] ZHOU, Y., AND JIANG, X. Dissecting Android Malware:
Characterization and Evolution. In Proceedings of the 33rd IEEE
Symposium on Security and Privacy (Oakland’12) (May 2012).

[44] ZHOU, Y., AND JIANG, X. Detecting Passive Content Leaks and
Pollution in Android Applications. In Proceedings of the 20th
Network and Distributed System Security Symposium (NDSS’13)
(February 2013).

[45] ZHOU, Y., WANG, Z., ZHOU, W., AND JIANG, X. Hey, You, Get
Off of My Market: Detecting Malicious Apps in Official and
Alternative Android Markets. In Proceedings of 19th Annual
Network and Distributed System Security Symposium (NDSS’12)
(February 2012).

[46] ZHOU, Y., ZHANG, X., JIANG, X., AND FREEH, V. W. Taming
Information-Stealing Smartphone Applications (on Android). In
Proceedings of the 4th International Conference on Trust and
Trustworthy Computing (TRUST’11) (June 2011).

APPENDIX
A. GENERATED DESCRIPTIONS OF THE

MOTIVATING EXAMPLE

Once a GUI component is clicked, the app reads data from
network and sends data to network, depending on if the user
selects Button “Confirm”.

Once a GUI component is clicked, the app retrieves
you phone number, and econdes the data into format
“100/app_id=an1005/ani=%s/dest=%s/phone_number=%s/
company=%s/”, and sends data to network, depending on if
the user selects the Button “Confirm”.

Once a GUI component is clicked, the app retrieves the
service provider name, and econdes the data into format
“100/app_id=an1005/ani=%s/dest=%s/phone_number=%s/
company=%s/”, and sends data to network, depending on if
the user selects the Button “Confirm”.

The app retrieves text from user input and displays text to
the user.

Once a GUI component is clicked, the app retrieves text
from user input and sends data to network, depending on if the
user selects Button “Confirm”.

The app opens a web page.
The app reads from file “address.txt”.
The app reads from file “contact.txt”.
The app reads from file “message.txt”.

529

	Towards automatic generation of security-centric descriptions for Android apps
	Citation

	Introduction
	Overview
	Problem Statement
	Architecture Overview

	Security Behavior Graph
	Security-related Behavioral Factors
	Formal Definition
	SBG of Motivating Example
	Graph Generation

	Subgraph Mining & Compression
	Frequent Behavior Mining
	Graph Compression

	Description Generation
	Automatically Generated Descriptions
	Behavior Description Model
	Behavior Graph Translation
	Motivating Example

	Evaluation
	Correctness and Security-Awareness
	Readability and Effectiveness
	Effectiveness of Behavior Mining
	Runtime Performance

	Discussion
	Evasion
	Improvement of Readability

	Related Work
	Conclusion
	Acknowledgment
	References
	Generated Descriptions of the Motivating Example

