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Abstract—Hybrid fuzzing which combines fuzzing and con-
colic execution has become an advanced technique for software
vulnerability detection. Based on the observation that fuzzing
and concolic execution are complementary in nature, the state-
of-the-art hybrid fuzzing systems deploy “demand launch” and
“optimal switch” strategies. Although these ideas sound in-
triguing, we point out several fundamental limitations in them,
due to oversimplified assumptions. We then propose a novel
“discriminative dispatch” strategy to better utilize the capability
of concolic execution. We design a novel Monte Carlo based
probabilistic path prioritization model to quantify each path’s
difficulty and prioritize them for concolic execution. This model
treats fuzzing as a random sampling process. It calculates each
path’s probability based on the sampling information. Finally, our
model prioritizes and assigns the most difficult paths to concolic
execution. We implement a prototype system DigFuzz and eval-
uate our system with two representative datasets. Results show
that the concolic execution in DigFuzz outperforms than those
in state-of-the-art hybrid fuzzing systems in every major aspect.
In particular, the concolic execution in DigFuzz contributes to
discovering more vulnerabilities (12 vs. 5) and producing more
code coverage (18.9% vs. 3.8%) on the CQE dataset than the
concolic execution in Driller.

I. INTRODUCTION

Software vulnerability is considered one of the most se-
rious threats to the cyberspace. As a result, it is crucial to
discover vulnerabilities in a piece of software [12], [16], [25],
[27], [32]. Recently, hybrid fuzzing, a combination of fuzzing
and concolic execution, has become increasingly popular in
vulnerability discovery [5], [29], [31], [39], [42], [46]. Since
fuzzing and concolic execution are complementary in nature,
combining them can potentially leverage their unique strengths
as well as mitigate weaknesses. More specifically, fuzzing
is proficient in exploring paths containing general branches
(branches that have large satisfying value spaces), but is inca-
pable of exploring paths containing specific branches (branches
that have very narrow satisfying value spaces) [27]. In contrast,
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concolic execution is able to generate concrete inputs that
ensure the program to execute along a specific execution path,
but it suffers from the path explosion problem [9]. In a hybrid
scheme, fuzzing normally undertakes the majority tasks of path
exploration due to the high throughput, and concolic execution
assists fuzzing in exploring paths with low probabilities and
generating inputs that satisfy specific branches. In this way,
the path explosion problem in concolic execution is alleviated,
as concolic execution is only responsible for exploring paths
with low probabilities that may block fuzzing.

The key research question is how to combine fuzzing and
concolic execution to achieve the best overall performance.
Driller [39] and hybrid concolic testing [29] take a “demand
launch” strategy: fuzzing starts first and concolic execution is
launched only when the fuzzing cannot make any progress
for a certain period of time, a.k.a., stuck. A recent work [42]
proposes an “optimal switch” strategy: it quantifies the costs
for exploring each path by fuzzing and concolic execution
respectively and chooses the more economic method for ex-
ploring that path.

We have evaluated both “demand launch” and “optimal
switch” strategies using the DARPA CQE dataset [13] and
LAVA-m dataset [15], and find that although these strategies
sound intriguing, none of them work adequately, due to unre-
alistic or oversimplified assumptions.

For the “demand launch” strategy, first of all, the stuck
state of a fuzzer is not a good indicator for launching concolic
execution. Fuzzing is making progress does not necessarily
mean concolic execution is not needed. A fuzzer can still
explore new code, even though it has already been blocked by
many specific branches while the concolic executor is forced to
be idle simply because the fuzzer has not been in stuck state.
Second, this strategy does not recognize specific paths that
block fuzzing. Once the fuzzer gets stuck, the demand launch
strategy feeds all seeds retained by the fuzzer to concolic
execution for exploring all missed paths. Concolic execution
is then overwhelmed by this massive number of missed paths,
and might generate a helping input for a specific path after a
long time. By then, the fuzzer might have already generated a
good input to traverse that specific path, rendering the whole
concolic execution useless.

Likewise, although the “optimal switch” strategy aims to
make optimal decisions based on a solid mathematical model
(i.e., Markov Decision Processes with Costs, MDPC for short),
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it is nontrivial to quantify the costs of fuzzing and concolic
execution for each path. For instance, to quantify the cost of
concolic execution for a certain path, MDPC requires to collect
the path constraint, which is already expensive. As a result, the
overall throughput of MDPC is greatly reduced. Furthermore,
when quantifying the cost of fuzzing, MDPC assumes a
uniform distribution on all test cases. This assumption is
oversimplified, as many state-of-the-art fuzzing techniques [4],
[12], [16] are adaptive and evolutionary. Finally, even if the
costs of fuzzing and concolic execution can be accurately
estimated, it is challenging to normalize them for a unified
comparison, because these two costs are estimated by tech-
niques with different metrics.

Based on these observations, we argue for the following
design principles when building a hybrid fuzzing system:
1) since concolic execution is several orders of magnitude
slower than fuzzing, we should only let it solve the “hardest
problems”, and let fuzzing take the majority task of path
exploration; and 2) since high throughput is crucial for fuzzing,
any extra analysis must be lightweight to avoid adverse impact
on the performance of fuzzing.

In this paper, we propose a “discriminative dispatch”
strategy to better combine fuzzing and concolic execution. That
is, we prioritize paths so that concolic execution only works
on selective paths that are most difficult for fuzzing to break
through. Therefore, the capability of concolic execution is
better utilized. Then the key for this “discriminative dispatch”
strategy to work is a lightweight method to quantify the
difficulty level for each path. Prior work solves this problem
by performing expensive symbolic execution [18], and thus is
not suitable for our purpose.

In particular, we propose a novel Monte Carlo based
probabilistic path prioritization (MCP 3) model, to quantify
each path’s difficulty in an efficient manner. To be more
specific, we quantify a path’s difficulty by its probability of
how likely a random input can traverse this path. To calculate
this probability, we use the Monte Carlo method [35]. The
core idea is to treat fuzzing as a random sampling process,
consider random executions as samples to the whole program
space, and then calculate each path’s probability based on the
sampling information.

We have implemented a prototype system called DigFuzz.
It leverages a popular fuzzer, American Fuzzy Lop (AFL) [47],
as the fuzzing component, and builds the concolic executor on
top of Angr, an open-source symbolic execution engine [38].
We evaluate the effectiveness of DigFuzz using the CQE bina-
ries from DARPA Cyber Grand Challenge [13] and the LAVA
dataset [15]. The evaluation results show that the concolic
execution in DigFuzz contributes significantly more to the
increased code coverage and increased number of discovered
vulnerabilities than state-of-the-art hybrid systems. To be more
specific, the concolic execution in DigFuzz contributes to
discovering more vulnerabilities (12 vs. 5) and producing more
code coverage (18.9% vs. 3.8%) on the CQE dataset than the
concolic execution in Driller [39].

Contributions. The contributions of the paper are summarized
as follows:

• We conduct an independent evaluation of two state-

of-the-art hybrid fuzzing strategies (“demand launch”
and “optimal switch”), and discover several important
limitations that have not been reported before.

• We propose a novel “discriminative dispatch” strategy
as a better way to construct a hybrid fuzzing system.
It follows two design principles: 1) let fuzzing con-
duct the majority task of path exploration and only
assign the most difficult paths to concolic execution;
and 2) the quantification of path difficulties must
be lightweight. To achieve these two principles, we
design a Monte Carlo based probabilistic path priori-
tization model.

• We implement a prototype system DigFuzz, and eval-
uate its effectiveness using the DARPA CQE dataset
and LAVA dataset. Our experiments demonstrate that
DigFuzz outperforms the state-of-the-art hybrid sys-
tems Driller and MDPC with respect to more discov-
ered vulnerabilities and higher code coverage.

II. BACKGROUND AND MOTIVATION

Fuzzing [30] and concolic execution [9] are two representa-
tive techniques for software testing and vulnerability detection.
With the observation that fuzzing and concolic execution can
complement each other in nature, a series of techniques [5],
[29], [31], [39], [42] have been proposed to combine them
together and create hybrid fuzzing systems. In general, these
hybrid fuzzing systems fall into two categories: “demand
launch” and “optimal switch”.

A. Demand Launch

The state-of-the-art hybrid schemes such as Driller [39]
and hybrid concolic testing [29] deploy a “demand launch”
strategy. In Driller [39], the concolic executor remains idle
until the fuzzer cannot make any progress for a certain period
of time. It then processes all the retained inputs from the fuzzer
sequentially to generate inputs that might help the fuzzer and
further lead to new code coverage. Similarly, hybrid concolic
testing [29] obtains both a deep and a wide exploration of
program state space via hybrid testing. It reaches program
states quickly by leveraging the ability of random testing
and then explores neighbor states exhaustively with concolic
execution.

In a nutshall, two assumptions must hold in order to make
the “demand launch” strategy work as expected:

(1) A fuzzer in the non-stuck state means the concolic execu-
tion is not needed. The hybrid system should start concolic
execution only when the fuzzer gets stuck.

(2) A stuck state suggests the fuzzer cannot make any progress
in discovering new code coverage in an acceptable time.
Moreover, the concolic execution is able to find and solve
the hard-to-solve condition checks that block the fuzzer so
that the fuzzing could continue to discovery new coverage.

Observations. To assess the performance of the “demand
launch” strategy, we carefully examine how Driller works on
118 binaries from DARPA Cyber Grand Challenge (CGC) for
12 hours and find five interesting yet surprising facts.
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Fig. 2: The number of inputs retained by the fuzzer and the
number of inputs taken by concolic execution.

(1) Driller invoked concolic execution on only 49 out of 118
binaries, which means that the fuzzer only gets stuck on
these 49 binaries. This fact is on par with the numbers
(42) reported in the paper of Driller [40].

(2) For the 49 binaries from Fact 1, we statistically calculate
the stuck time periods, and the the distribution of stuck
time periods is shown in Figure 1. We can observe that
that more than 85% of the stuck time periods are under
100 seconds.

(3) On average, it takes 1654 seconds for the concolic executor
to finish the dynamic symbolic execution on one concrete
input.

(4) Only 7.1% (1709 out of 23915) of the inputs retained by
the fuzzer are processed by the concolic executor within
the 12 hours of testing. Figure 2 presents this huge gap
between the number of inputs taken by concolic execution
and that the number of inputs retained by fuzzing.

(5) The fuzzer in Driller can indeed get help from concolic
execution (import at least one input generated by concolic
execution) on only 13 binaries among the 49 binaries from
Fact 1, with a total of 51 inputs imported after 1709 runs
of concolic execution.

Limitations. The aforementioned results indicate two major
limitations of the “demand launch” strategy.

First, the stuck state of a fuzzer is not a good indicator to
decide whether the concolic execution is needed. According
to Fact 1, the fuzzer only gets stuck on 49 binaries, meaning
concolic execution is never launched for the other 77 binaries.
Manual investigation on the source code of these 77 binaries
shows that they all contain specific branches that can block
fuzzing. Further combining with Fact 2, we could see that the
fuzzer in a stuck state does not necessarily mean it actually
needs concolic execution since most of the stuck states are
really short (85% of the stuck states are under 100 seconds).
These facts break the Assumption 1 described above.

Second, the “demand launch” strategy can not recognize
the specific paths that block fuzzing, rendering very low
effectiveness for concolic execution. On one hand, concolic
execution takes 1654 seconds on average to process one input
(Fact 3). On the other hand, a fuzzer often retains much more
inputs than what concolic execution could handle (Fact 4). As
a result, the input corresponding to the specific branch that
block the fuzzing (i.e., the input that could lead execution
to the target place) only has a very small chance to be
picked up and processed by concolic execution. Therefore, the
Assumption 2 described above does not really hold in practice.
This conclusion can be further confirmed by Fact 5 where the

concolic execution can help the fuzzing on merely 13 binaries
despite that it is launched on 49 binaries. Moreover, only 51
inputs from the concolic execution are imported by the fuzzer
after 1709 runs of concolic execution, indicating a very low
quality of the inputs generated by concolic execution.

B. Optimal Switch

The “optimal switch” strategy aims to make an optimal
decision on which method to use to explore a given execution
path, based on a mathematical model (i.e., Markov Decision
Processes with Costs, MDPC for short). To achieve optimal
performance, MDPC always selects the method with lower
cost to explore each path. In order for this strategy to work
well, the following assumptions must hold:

(1) The costs for exploring a path by fuzzing and concolic
execution can be accurately estimated.

(2) The overhead of cost estimation is negligible.
(3) The algorithm for making optimal decisions is lightweight.

Observations. To assess the performance of “optimal switch”,
we evaluate how MDPC works on the 118 binaries from the
CQE dataset for 12 hours and have 3 interesting observations.

TABLE I: Execution Time Comparison

Fuzzing Concolic execution MDPC decision
Minimum 0.0007s 18s 0.16s
25% percentile 0.0013s 767s 13s
Median 0.0019s 1777s 65s
Average 0.0024s 1790s 149s
75% percentile 0.0056s 2769s 213s
Maximum 0.5000s 3600s 672s

(1) Table I shows the throughput gap among fuzzing, concolic
execution, and the optimal decision in MDPC. We can
observe that the optimal decisions is very expensive, which
is several thousand times larger than fuzzing.

(2) As MDPC makes optimal decision before exploring each
path, the overall analysis throughput is significantly re-
duced, from 417 executions per second in pure fuzzing to
2.6 executions per second in MDPC.

(3) With the impact of reduced throughput, MDPC discov-
ers vulnerabilities only in 29 binaries, whereas the pure
fuzzing can discover vulnerabilities in 67 binaries.

As MDPC makes the optimal decision before exploring
each path, the expensive optimal decision takes away the
advance of the high throughput of fuzzing. As an optimization,
we can move the optimal decision out, make it work in parallel
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with fuzzing, and build a concurrent MDPC. That is, the
optimal decision in the concurrent MDPC does not interfere
the working progress of fuzzing, and it just collected coverage
statistics from fuzzing to calculate cost. From the evaluation
of this concurrent MDPC, we have another observation.

(4) Nearly all the missed paths are decided to be explored
by concolic execution in several seconds after the fuzzing
starts. By examining the coverage statistics, we observe
that the fuzzer is able to generate hundreds of test cases in
several seconds, which leads to a high cost for exploring a
missed path by fuzzing, based on the algorithm in MDPC.
On the contrary, the cost of concolic execution is smaller
even we assign the highest solving cost (50 as defined [42])
to every path constraint.

Limitations. The aforementioned observations indicate that
the key limitation of the “optimal switch” strategy is that
estimating the cost for exploring a path by fuzzing and concolic
execution is heavyweight and inaccurate, which overshadows
the benefit of making optimal solutions.

First, estimating the cost of concolic execution relies on
collecting path constraints and identifying the solving cost
for these constraints. As collecting path constraints requires
converting program statements into symbolic expressions, such
interpretation is also heavyweight, especially for program with
long paths. In addition, MDPC designs a greedy algorithm
for optimal decision. This algorithm depends on path-sensitive
program analysis. For programs with large states, the path-
sensitive analysis is also heavyweight.

Second, it is nontrivial to accurately estimate cost for
exploring a given path by fuzzing and concolic execution.
MDPC estimates the solving cost based on the complexity
of equalities, and estimates the cost of random testing based
on coverage statistics. These estimations are concerned with
the runtime throughput of fuzzing, the performance of the
constraint solver, and the symbolic execution engine, and
each of them are different program analysis techniques in
nature. Therefore, it is challenging to define a unified metric
to evaluating the cost of different techniques.

III. PROBABILISTIC PATH PRIORITIZATION GUIDED BY
MONTE-CARLO

To address the aforementioned limitations of the current
hybrid fuzzing systems, we propose a novel “discriminative
dispatch” strategy to better combine fuzzing and concolic
execution.

A. Key Challenge

As discussed above, the key challenge of our strategy is
to quantify the difficulty of traversing a path for a fuzzer in
a lightweight fashion. There are solutions for quantifying the
difficulty of a path using expensive program analysis, such as
value analysis [45] and probabilistic symbolic execution [5].
However, these techniques do not solve our problem: if we
have already performed heavyweight analysis to quantify the
difficulty of a path, we might as well just solve the path
constraints and generate an input to traverse the path. A
recent study [42] proposes a theoretical framework for optimal

concolic testing. It defines the optimal strategy based on the
probability of program paths and the cost of constraint solving,
and then reduces the problem as Markov Decision Processes
with Costs (MDPC for short). This study shares the similar
problem scope with our work. However, the Markov Decision
Process itself is heavyweight for programs with large state
space. Furthermore, the costs of fuzzing and concolic execution
are challenging to evaluate and normalize for comparison.

B. Monte Carlo Based Probabilistic Path Prioritization Model

In this study, we propose a novel Monte Carlo based
Probabilistic Path Prioritization Model (MCP 3 for short) to
deal with the challenges. In order to be lightweight, our model
applies the Monte Carlo method to calculate the probability
of a path to be explored by fuzzing. For the Monte Carlo
method to work effectively, two requirements need to be
full-filled: 1). the sampling to the search space has to be
random; 2). a large number of random sampling is required to
make the estimations statistically meaningful. Since a fuzzer
randomly generates inputs for testing programs, our insight is
to consider the executions on these inputs as random samples
to the whole program state space, thus the first requirement
is satisfied. Also, as fuzzing has a very high throughput, the
second requirement can also be met. Therefore, by regarding
fuzzing as a sampling process, we can statistically estimate the
probability in a lightweight fashion with coverage statistics.

According to the Monte Carlo method, we can simply
estimate the probability of a path by statistically calculating
the ratio of executions traverse this path to all the executions.
However, this intuitive approach is not practical, because
maintaining path coverage is a challenging and heavyweight
task. With this concern, most of the current fuzzing techniques
adopt a lightweight coverage metric such as block coverage
and branch coverage. For this challenge, we treat an execution
path as a Markov Chain of successive branches, inspired by a
previous technique [4]. Then, the probability of a path can be
calculated based on the probabilities of all the branches within
the path.

Probability for each branch. The probability of a branch
quantifies the difficulty for a fuzzer to pass a condition
check and explore the branch. Equation 1 shows how MCP 3

calculates the probability of a branch.

P (bri) =

{
cov(bri)

cov(bri)+cov(brj)
, cov (bri) 6= 0

3
cov(brj)

, cov (bri) = 0
(1)

In Equation 1, bri and brj are two branches that share the
same predecessor block, and cov(bri) and cov(brj) refer to
the coverage statistics of bri and brj , representing how many
times bri and brj are covered by the samples from a fuzzer
respectively.

When bri has been explored by fuzzing (cov(bri) is non-
zero), the probability for bri can be calculated as the coverage
statistics of bri divided by the total coverage statistics of bri
and brj .
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When bri has never been explored before (cov(bri) is zero),
we deploy the rule of three in statistics [43] to calculate the
probability of bri. The rule of three states that if a certain
event did not occur in a sample with n subjects, the interval
from 0 to 3/n is a 95% confidence interval for the rate of
occurrences in the population. When n is greater than 30, this
is a good approximation of results from more sensitive tests.
Following this rule, the probability of bri becomes 3/cov (brj)
if cov(brj) is larger than 30. If cov(brj) is less than 30, the
probability is not statistically meaningful. That is, we will not
calculate the probabilities until the coverage statistics is larger
than 30.

Probability for each path. To calculate the probability for a
path, we apply the Markov Chain model [19] by viewing a
path as continuous transitions among successive branches [4].
The probability for a fuzzer to explore a path is calculated as
Equation 2.

P (pathj) =
∏
{P (bri) |bri ∈ pathj} (2)

The pathj in Equation 2 represents a path, bri refers to a
branch covered by the path and P (bri) refers the probability of
bri. The probability of pathj shown as P (pathj) is calculated
by multiplying the probabilities of all branches along the path
together.

C. MCP 3 based Execution Tree

In our “discriminative dispatch” strategy, the key idea
is to infer and prioritize paths for concolic execution from
the runtime information of executions performed by fuzzing.
For this purpose, we construct and maintain a MCP 3 based
execution tree, which is defined as follows:

Definition 1. An MCP 3 based execution tree is a directed
tree T = (V, E, α), where:

• Each element v in the set of vertices V corresponds to a
unique basic block in the program trace during an execution;

• Each element e in the set of edges E ⊆ V × V corresponds
to the a control flow dependency between two vertices v and
w , where v ,w ∈ V . One vertex can have two outgoing edges
if it contains a condition check;

• The labeling function α : E → Σ associates edges
with the labels of probabilities, where each label indicates the
probability for a fuzzer to pass through the branch.

IV. DESIGN AND IMPLEMENTATION

In this section, we present the system design and imple-
mentation details for DigFuzz.

A. System Overview

Figure 3 shows the overview of DigFuzz. It consists of
three major components: 1) a fuzzer; 2) the MCP 3 model;
and 3) a concolic executor.

Our system leverages a popular off-the-shelf fuzzer, Amer-
ican Fuzzy Lop (AFL) [47] as the fuzzing component, and

builds the concolic executor on top of angr [38], an open-
source symbolic execution engine, the same as Driller [39].

The most important component in DigFuzz is the MCP 3

model. This component performs execution sampling, con-
structs the MCP 3 based execution tree, prioritizes paths
based on the probability calculation, and eventually feeds the
prioritized paths to the concolic executor.

DigFuzz starts the testing by fuzzing with initial seed
inputs. As long as inputs are generated by the fuzzer, the
MCP 3 model performs execution sampling to collect cov-
erage statistics which indicate how many times each branch is
covered during the sampling. Simultaneously, it also constructs
the MCP 3 based execution tree through trace analysis and
labels the tree with the probabilities for all branches that
are calculated from the coverage statistics. Once the tree
is constructed and paths are labeled with probabilities, the
MCP 3 model prioritizes all the missed paths in the tree, and
identifies the paths with the lowest probability for concolic
execution.

As concolic execution simultaneously executes programs
on both concrete and symbolic values for simplifying path
constraints, once a missed path is prioritized, the MCP 3

model will also identifies a corresponding input that can guide
the concolic execution to reach the missed path. That is, by
taking the input as a concrete value, the concolic executor
can execute the program along the prefix of the missed path,
generate and collect symbolic path constraints. When reaching
to the missed branch, it can generate the constraints for
the missed path by conjoining the constraints for the path
prefix with the condition to this missed branch. Finally, the
concolic executor generates inputs for missed paths by solving
path constraints, and feeds the generated inputs back to the
fuzzer. Meanwhile, it also updates the execution tree with the
paths that have been explored during concolic execution. By
leveraging the new inputs from the concolic execution, the
fuzzer will be able to move deeper, extent code coverage and
update the execution tree.

To sum up, DigFuzz works iteratively. In each iteration, the
MCP 3 model updates the execution tree through trace anal-
ysis on all the inputs retained by the fuzzer. Then, this model
labels every branch with its probability that is calculated with
coverage statistics on execution samples. Later, the MCP 3

model prioritizes all missed paths, and selects the path with
the lowest probability for concolic execution. The concolic
executor will generate inputs for missed branches along the
trace, return the generated inputs to the fuzzer, and update
the execution tree with paths that have been explored during
concolic execution. After these steps, DigFuzz will enter into
another iteration.

B. Execution Sampling

Random sampling is required for DigFuzz to calculate
probabilities using the Monte Carlo method [35]. Based on the
observation that a fuzzer by nature generates inputs randomly,
we consider the fuzzing process as a random sampling process
to the whole program space. Due to the high throughput of
fuzzing, the number of generated samples will quickly become
large enough to be statistically meaningful, which is defined
by rule of three [43] where the interval from 0 to 3/n is a 95%

5



FuzzingInitial 
input

Execution sampling

Concolic execution Prioritized 
paths 

New 
inputs

Probability 
based path 

prioritization

Execution tree 
construction

b4

b1

b2 b3

b6 b8

Probabilistic path prioritization model based on Monte Carlo

Fig. 3: Overview of DigFuzz

Algorithm 1 Execution Sampling

1: P ← {Target binary}
2: Fuzzer ← {Fuzzer in DigFuzz }
3: Setinputs ← {Initial seeds}
4: HashMapCovStat ← ∅;SetNewInputs ← ∅
5:
6: while True do
7: SetNewInputs ← Fuzzer{P, Setinputs}
8: for input ∈ SetNewInputs do
9: Coverage← GetCoverage(P, input)

10: for branch ∈ Coverage do
11: Index← Hash(branch)
12: HashMapCovStat{Index}+ +
13: end for
14: end for
15: Setinputs ← Setinputs ∪ SetNewInputs

16: end while
output the HashMapCovStat as coverage statistics

confidence interval when the number of samples is greater than
30.

Following this observation, we present Algorithm 1 to
perform the sampling. This algorithm accepts three inputs and
produces the coverage statistics in a HashMap. The three
inputs are: 1) the target binary P ; 2) the fuzzer Fuzzer;
and 3) the initial seeds stored in Setinputs. Given the three
inputs, the algorithm iteratively performs the sampling during
fuzzing. Fuzzer takes P and Setinputs to generate new
inputs as SetNewInputs (Ln. 7). Then, for each input in
NewInputs, we collect coverage statistical information for
each branch within the path determined by P and input (Ln.
9) and further update the existing coverage statistics stored in
HashMapCovStat (Ln. 11 and 12). In the end, the algorithm
merges SetNewInputs into Setinputs (Ln. 15) and starts a new
iteration.

C. Execution Tree Construction

As depicted in Figure 3, DigFuzz generates the MCP 3

based execution tree using the runtime information from the
fuzzer.

Algorithm 2 demonstrates the tree construction process.
The algorithm takes three inputs, the control-flow graph for
the target binary CFG, inputs retained by the fuzzer Setinputs

 

 

 

 void main(argv) {  int chk_in () { 

 recv(in); b6 res = is_valid(in) 

 switch (argv[1]) { b7 if (!res) 

b1 case ‘A’: b8 return; 

b2 chk_in(in); b9 if (strcmp(in, ‘BK’) == 0); 

 break; b10 //vulnerability 

b3 case ‘B’: b11 else …  } 
b4 is_valid(in);  int is_valid(in) { 

 break; b12 if all_char(in) 

b5 default: … b13 return 1; 

 }} b14 return 0; } 

           Fig. 4: Running Example

Algorithm 2 Execution Tree Construction

1: CFG← {Control flow graph for the target binary.}
2: Setinputs ← {Inputs retained by the fuzzer}
3: HashMapCovStat ← {Output from Algorithm 1}
4: ExecTree← ∅
5:
6: for input ∈ Setinputs do
7: trace← TraceAnalysis(input)
8: if trace /∈ ExecTree then
9: ExecTree← ExecTree ∪ trace

10: end if
11: end for
12: for bri ∈ ExecTree do
13: brj ← GetNeighbor(bri, CFG)
14: prob← CalBranchProb(bri, brj , HashMapCovStat)
15: LabelProb(ExecTree, bri, prob)
16: end for

output ExecTree as the MCP 3 based execution tree

and the coverage statistics HashMapCovStat , which is also
the output from Algorithm 1. The output is a MCP 3 based
execution tree ExecTree. There are mainly two steps in the
algorithm. The first step is to perform trace analysis for each
input in Setinputs to extract the corresponding trace and then
merge the trace into ExecTree (Ln. 6 to 11). The second
step is to calculate the probability for each branch in the
execution tree (Ln. 12 to 16). To achieve this, for each branch
bri in ExecTree, we extract its neighbor branch brj (bri
and brj share the same predecessor block that contains a
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Fig. 5: The execution tree with probabilities

condition check) by examining the CFG (Ln. 13). Then, the
algorithm leverages Equation 1 to calculate the probability for
bri (Ln. 14). After that, the algorithm labels the execution
tree ExecTree with the calculated probabilities (Ln. 15) and
outputs the newly labeled ExecTree.

To avoid the potential problem of path explosion in the
execution tree, we only perform trace analysis for the seed
inputs retained by fuzzing. The fuzzer typically regards those
mutated inputs with new code coverage as seeds for further
mutation. Traces on these retained seeds is a promising ap-
proach to model the program state explored by fuzzing. For
each branch along an execution trace, whenever the opposite
branch has not been covered by fuzzing, then a missed path
is identified, which refers to a prefix of the trace conjuncted
with the uncovered branch. In other words, the execution tree
does not include an uncovered branch of which the opposite
one has not been covered yet.

To ease representation, we present a running example,
which is simplified from a program in the CQE dataset [13],
and the code piece is shown in Figure 4. The vulnerability
is guarded by a specific string, which is hard for fuzzing to
detect. Figure 5 illustrates the MCP 3 based execution tree
for the running example in Figure 4. Each node represents
a basic block. Each edge refers a branch labeled with the
probability. We can observe that there are two traces (t1 =
〈b1, b2, b6, b12, b13, b7, b9, b11〉 and t2 = 〈b1, b3, b4, b12, b14〉)
in the tree marked as red and blue.

Algorithm 3 Path Prioritization in DigFuzz

1: ExecTree← {Output from Algorithm 2}
2: SetProb ← ∅
3: for trace ∈ ExecTree do
4: for bri ∈ trace do
5: brj ← GetNeighbor(bri, CFG)
6: missed← GetMissedPath(trace, bri, brj)
7: if missed /∈ ExecTree then
8: prob← CalPathProb(missed)
9: SetProb ← {trace,missed, prob}

10: end if
11: end for
12: end for

output SetProb as missed paths with probabilities corre-
sponding to each trace

D. Probabilistic Path Prioritization

We then prioritize paths based on probabilities. As shown
in Equation 2, a path is treated as a Markov chain and its
probability is calculated based on the probabilities of all the
branches within the path. A path can be represented as a
sequence of covered branches, and each branch is labeled with
its probability that indicates how likely a random input can
satisfy the condition. Consequently, we leverage the Markov
Chain model to regard the probability for a path as the
sequence of probabilities of the transitions.

The detailed algorithm is presented in Algorithm 3. It takes
the MCP 3 based execution tree ExecTree from Algorithm 2
as the input and outputs SetProb, a set of missed paths and
their probabilities. DigFuzz will further prioritize these missed
paths based on SetProb and feed the one with the lowest
probability to concolic execution. The algorithm starts with the
execution tree traversal. For each branch bri on every trace
within ExecTree, it first extracts the neighbor brj (Ln. 5)
and then collects the missed paths missed along the given
trace (Ln. 6). Then, the algorithm calculates the probability
for missed by calling CalPathProb() which implements
Equation 2 and stores the information in SetProb. Eventually,
the algorithm produces SetProb, a set of missed paths with
probabilities for every trace.

After we get SetProb, we will prioritize missed paths by a
decrease order on their probabilities, and identify the path with
the lowest probability for concolic execution. As the concolic
executor takes a concrete input as the concrete value to perform
trace-based symbolic execution, we will identify an input on
which the execution is able to guide the concolic executor to
the prioritized missed path.

Take the program in Figure 4 as an example. In Figure 5,
the missed branches are shown as dotted lines. After the
execution tree is constructed and properly labeled, Algorithm 3
is used to obtain missed paths and calculate probabilities for
these paths. We can observe that there are 4 missed paths in
total denoted as P1, P2, P3 and P4, respectively. By calling
CalPathProb() function, the probabilities of these missed paths
are calculated as shown in the figure, and the lowest one is of
P1. To guide the concolic executor to P1, DigFuzz will pick
the input that leads to the trace 〈b1, b2, b6, b12, b13, b7, b9, b11〉
and assign this input as the concrete value of concolic
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execution, because this trace share the same path prefix,
〈b1, b2, b6, b12, b13, b7, b9〉, with the missed path P1.

V. EVALUATION

In this section, we conduct comprehensive evaluation on
the effectiveness and the runtime performance of DigFuzz
by comparing with the state-of-the-art hybrid fuzzing systems,
Driller [39] and MDPC [42], with respect to code coverage,
number of vulnerabilities discovered, and contribution of con-
colic execution. In the end, we conduct a detailed analysis of
DigFuzz using a case study.

A. Datasets

We leverage two datasets: the DARPA CGC Qualifying
Event (CQE) dataset [13], the same as Driller [39], and the
LAVA dataset, a widely adopted dataset in recent studies [12],
[27], [34]. Both of them provide ground-truth for verifying
detected vulnerabilities.

The CQE dataset contains 131 applications which are
deliberately designed by security experts to test automated
vulnerability detection systems. Every binary is injected one
or more memory corruption vulnerabilities. In addition, many
CQE binaries have complex protocols and large input spaces,
making these vulnerabilities harder to trigger. In our eval-
uation, we exclude 5 applications involving communication
between multiple binaries and use 126 binaries as in Driller.

For the LAVA dataset [15], we adopt LAVA-M as pre-
vious techniques [12], [27], which consists of 4 real world
programs, uniq, base64, md5sum, and who. Each program
in LAVA-M is injected with multiple bugs, and each injected
bug has a unique ID.

B. Baseline Techniques

As the main contribution of DigFuzz is to propose a more
effective strategy to combine fuzzing with concolic execution,
the advance of fuzzing itself is out of our scope. Therefore,
we do not compare DigFuzz with non-hybrid fuzzing sys-
tems such as CollAFL [16], Angora [12], AFLfast [4] and
VUzzer [34].

To quantify the contribution of concolic execution, we
leverage unaided fuzzing as a baseline. We deploy the original
AFL to simulate fuzzing assisted by a dummy concolic execu-
tor that makes zero contribution. This configuration is denoted
as AFL.

To compare DigFuzz with other hybrid fuzzing systems,
we choose the state-of-the-art hybrid fuzzing systems, Driller
and MDPC.

We use Driller1 to represent this configuration. Moreover,
to evaluate the impact of path prioritization component alone,
we modify Driller to enable the concolic executor to start from
the beginning by randomly selecting inputs from fuzzing. We
denote this configuration as Random. The only difference
between Random and DigFuzz is the path prioritization.
This configuration eliminates the first limitation described in
Section II-A.

1The configuration of Driller in our work is different from Driller paper as
further discussed in Section V-C

In the original MDPC model [42], fuzzing and concolic ex-
ecution alternate in a sequential manner, whereas all the other
hybrid systems work in parallel to better utilize computing
resources. To make a fair comparison, we configure the MDPC
model to work in parallel. More specifically, if MDPC chooses
fuzzing to explore a path, then the fuzzer generates a new test
case for concrete testing. Otherwise, MDPC will assign this
path that requires to be explored by concolic execution to a job
queue, and contibues to calculate probabilities for other paths.
The concolic executor will take a path subsequently from the
job queue. In this way, we can compare MDPC with other
hybrid systems with the same computing resources.

Besides, as estimating the cost for solving a path constraint
is a challenge problem, we simply assign every path constraints
with the solving cost of 50, which is the highest solving cost as
defined [42]. Please note that with this configuration, the time
cost by MDPC for optimal decision is lower, because it does
not spent effort in collecting and estimating path constraints.

C. Experiment setup

The original Driller [39] adopts a shared pool design, where
the concolic execution pool is shared among all the fuzzer
instances. With this design, when fuzzing gets stuck, Driller
adds all the inputs retained by the fuzzer into a global queue of
the concolic execution pool and performs concolic execution
by going through these inputs sequentially. This design is not
suitable for us as the fuzzer instances are not fairly aided by
the concolic execution.

To better evaluate our new combination strategy in Dig-
Fuzz, we assign computer resources evenly to ensure that
the analysis on each binary is fairly treated. As there exist
two modes in the mutation algorithm of AFL (deterministic
and non-deterministic modes), we allocate 2 fuzzing instances
(each running in one mode) for every testing binary. In details,
we allocates 2 fuzzing instances for testing binaries with AFL,
2 fuzzing instances and 1 concolic execution instance with
Driller, Random, MDPC and DigFuzz. Each run of concolic
execution is limited to 4GB of memory and run-time up to
one hour, which is the same as in Driller.

We run the experiments on a server with three computer
nodes, and each node is configured with 18 CPU cores
and 32GB RAM. Considering that random effects play an
important role in our experiments, we choose to run each
experiment for three times, and report the mean values for
more comprehensive understanding of the performance. In
order to give enough time for fuzzing as well as limit the
total time of three runs for each binary, we choose to assign
12 hours to each binary from the CQE dataset, and stop the
analysis as long as a crash is observed. For the LAVA dataset,
we analyze each binary for 5 hours as in the LAVA paper.

D. Evaluation on the CQE dataset

In this section, we demonstrate the effectiveness of our ap-
proach on the CQE dataset from three aspects: code coverage,
the number of discovered vulnerabilities, and the contribution
of concolic execution to the hybrid fuzzing.
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Fig. 6: Normalized bitmap size on CQE dataset

1) Code coverage: Code coverage is a critical metric for
evaluating the performance of a fuzzing system. We use the
bitmap maintained by AFL to measure the code coverage.
In AFL, each branch transition is mapped into an entry of
the bitmap via hashing. If a branch transition is explored, the
corresponding entry in the bitmap will be filled and the size
of the bitmap will increase.

As the program structures vary from one binary to another,
the bitmap sizes of different binaries are not directly com-
parable. Therefore, we introduce a metric called normalized
bitmap size to summarize how the code coverage increases for
all tested binaries. For each binary, we treat the code coverage
of the initial inputs as the base. Then, at a certain point during
the analysis, the normalized bitmap size is calculated as the
size of the current bitmap divided by the base. This metric
represents the increasing rate of the bitmap.

Figure 6 presents how the average of normalized bitmap
size for all binaries grows. The figure shows that DigFuzz
constantly outperforms the other fuzzing systems. By the
end of 12 hours, the normalized bitmap sizes in DigFuzz,
Random, Driller, and AFL are 3.46 times, 3.25 times, 3.02
times and 2.91 times larger than the base, respectively. Taking
the normalized bitmap sizes AFL that is aided by dummy
concolic execution as a baseline, the concolic execution in
in DigFuzz, Random and Driller contributes to discovering
18.9%, 11.7%, and 3.8% more code coverage, respectively.

We can draw several conclusions from the numbers. First,
Driller can considerably outperform AFL. This indicates that
concolic execution could indeed help the fuzzer. This con-
clusion is aligned with the Driller paper [39]. Second, the
optimization in Random does help increase the effectiveness
of the concolic execution compared to Driller. This observation
shows that the second limitation of “demand launch” strategy
described in Section II can considerably affect the concolic ex-
ecution. Third, by comparing DigFuzz and Random, we can
observe that the path prioritization implemented in DigFuzz
greatly strengthens the hybrid fuzzing system in exploring new
branches. Further investigation shows that the contribution of
concolic execution to bitmap size in DigFuzz is much larger
than those in Driller (18.9% vs. 3.8%) and Random (18.9%
vs. 11.7%). This fact demonstrates the effectiveness of our
strategy in term of code exploration.

We can also see that MDPC is even worse than AFL.

TABLE II: Number of discovered vulnerabilities

= 3 ≥ 2 ≥ 1
DigFuzz 73 77 81
Random 68 73 77
Driller 67 71 75
AFL 68 70 73
MDPC 29 29 31

By carefully examining the working progress of MDPC,
we find that the main reason is the reduced throughput of
fuzzing. In contrast to the average throughput in AFL that
is 417 executions per second, the throughput reduces to 2.6
executions per second. It indicates that decision making for
each path as MDPC is too expensive, completely taking away
the power of fuzzing.

As an optimization, one would move the optimal decision
module out and make it work in parallel with fuzzing. In this
manner, the concurrent MDPC would be able to take advantage
of the high throughput of fuzzing. However, using the defined
solving cost [42], the concurrent MDPC assigns all the missed
paths to concolic execution only in several seconds after the
fuzzing starts. Then, the concurrent MDPC will degrade to
Random. The reason is that the cost of concolic execution
(50 as defined in the original paper) might be too small.
Actually, how to normalize the cost of fuzzing and concolic
for a unified comparison is difficult, because these two costs
are estimated by using different metrics, which are concerned
with the runtime throughput of fuzzing, the performance of
the constraint solver, and the symbolic execution engine. It
is difficult (if not impossible) to define a unified metric to
evaluate the cost of different techniques.

Unlike MDPC that estimates the cost for exploring each
path by fuzzing and concolic execution respectively, DigFuzz
prioritizes paths by quantifying the difficulties for fuzzing
to explore a path based on coverage statistics. Granted, the
sampling may be biased as generated test cases by fuzzing
are not uniform distributed rendering even lower possibility to
explore the difficult paths than theory, such bias in fact works
for our favor. Our goal is to find the most difficult branches
for fuzzing by quantifying the probabilities. With the bias, it
lowers the probability calculated and increases the chance for
DigFuzz to pick the least visited branches by fuzzing.

2) Number of Discovered Vulnerabilities: We then present
the numbers of vulnerabilities discovered by all four config-
urations via Table II. The column 2 displays the numbers of
vulnerabilities discovered in all three runs. Similarly, columns
3 and 4 show the numbers of vulnerabilities that are discovered
at least twice and once out of three runs, respectively.

We can observe that in all three metrics, DigFuzz discovers
considerably more vulnerabilities than the other configurations.
In contrast, Driller only has a marginal improvement over AFL.
Random discovers more vulnerabilities than Driller yet still
falls behind DigFuzz due to the lack of path prioritization.

This table could further exhibit the effectiveness of Dig-
Fuzz by comparing with the numbers reported in the Driller
paper. In the paper, Driller assigns 4 fuzzing instances for each
binary, and triggers crashes in 77 applications in 24 hours [39].
Among these 77 binaries, 68 of them are crashed purely by
AFL, and only 9 binaries are crashed with the help of concolic
execution. This result is on par with the numbers in column 3
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TABLE III: Performance of concolic execution

Ink. CE Aid. Imp. Der. Vul.

DigFuzz
64 1251 37 719 9,228 12
64 668 39 551 7,549 11
63 1110 41 646 6,941 9

Random
68 1519 32 417 5,463 8
65 1235 23 538 5,297 6
64 1759 21 504 6,806 4

Driller
48 1551 13 51 1,679 5
49 1709 12 153 2,375 4
51 877 13 95 1,905 4

for DigFuzz. This means DigFuzz is able to perform similarly
with only half of the running time (12 hours vs. 24 hours) and
much less hardware resources (2 fuzzing instances per binary
vs. 4 fuzzing instances per binary).

3) Contribution of concolic execution: Here, we dive
deeper into the contribution of concolic execution by present-
ing some detailed numbers for imported inputs and crashes
derived from the concolic execution.

The number of inputs generated by the concolic execution
and later imported by the fuzzer indicates the contribution of
concolic execution to the fuzzer. Therefore, we analyze each
imported input, trace back to its source and present numbers
in Table III.

The second column (Ink.) lists the number of binaries for
which the concolic execution is invoked during testing. For this
number, we exclude binaries on which the concolic execution
is invalid. Such invalid concolic execution is either caused by
path divergence that the symbolic execution path disagrees
with the realistic execution trace, or caused by the resource
limitation (we kill the concolic execution running for more
than 1 hour or exhausting more than 4GB memory).

The third column (CE) shows the total number of concolic
executions launched on all the binaries. We can see that
Random invokes slightly more concolic execution jobs than
DigFuzz, indicating that a concolic execution job in DigFuzz
takes a bit longer to finish. As the fuzzing keeps running, the
specific branches that block fuzzing become deeper. This result
implies that DigFuzz is able to select high quality inputs and
dig deeper into the paths.

The forth column (Aid.) refers to the number of binaries
on which the fuzzer imports at least one generated input from
the concolic execution. We can observe that the number for
Random is larger than that in Driller. This indicates that the
concolic execution can better help fuzzing if it is invoked from
the beginning. This result also confirms that a non-stuck state
of the fuzzer does not necessarily mean the concolic execution
is not needed. Further, since the number for DigFuzz is larger
than Random, it shows that the concolic execution can indeed
contribute more with path prioritization.

The fifth column (Imp.) refers to the number of inputs that
are imported by the fuzzer from concolic execution while the
sixth column (Der.) shows the number of inputs derived from
those imported inputs by the fuzzer. We can see significant
improvements on imported inputs and derived inputs for Dig-
Fuzz than Random and Driller. These improvements show
that the inputs generated by DigFuzz is of much better quality
in general.

The last column (Vul.) shows the number of binaries for
which the crashes are derived from concolic execution. For
each crashed binary, we identify the input that triggers the
crash, and then examine whether the input is derived from
an imported input generated by the concolic execution. The
number shows that concolic execution in DigFuzz contributes
to discovering more crashes (12 vs. 5) than that in Driller.

To sum up, from the numbers reported, we clearly see
that by mitigating the two limitations of “demand launch”
strategy, our new strategy outperforms the state-of-the-art
hybrid system, Driller, in every important aspect.

E. Evaluation on the LAVA dataset

In this section, we demonstrate the effectiveness of our
approach on the LAVA-M dataset.

1) Discovered vulnerabilities: The LAVA dataset is widely
adopted for evaluation in recent studies [12], [27], [32]. A
recent report [14] shows that the fuzzing on binaries in
LAVA-M can be assisted by extracting constants from these
binaries and constructing dictionaries for AFL. According to
this report [14], we analyze every binary for 5 hours with and
without dictionaries respectively.

The discovered vulnerabilities are shown in Table IV. It
shows that with dictionaries, the four techniques, DigFuzz,
Random, Driller and AFL can detect nearly all injected bugs
in base64, md5sum and uniq. With the impact of reduced
of throughput, MDPC discovers less vulnerabilities than other
techniques. By contrast, without dictionaries, these techniques
can detect significantly fewer bugs (and in many cases, no
bug). As demonstrated in LAVA [15], the reason why concolic
execution cannot make much contribution for md5sum and
uniq are hash functions and unconstrained control dependency.
This results indicate that it is the dictionaries contributing to
detect most bugs in base64, md5sum and uniq.

An exception is who, for which, DigFuzz outperforms
Random, Driller, MDPC and AFL with a large margin. Look-
ing closer, Driller can only detect 26 bugs in who, MDPC can
detect 34 bugs, while DigFuzz could detect 111 bugs. To better
understand the result, we carefully examine the whole testing
process, and find that the concolic executor in Driller is less
invoked than that in DigFuzz and Random. This shows even
fuzzer in Driller could not make much progress in finding bugs,
it rarely gets stuck when testing who. This result confirms our
claim that the stuck state is not a good indicator for launching
concolic execution and a non-stuck state does not necessarily
mean concolic execution is not needed. Likewise, with the
impact of reduced throughput, the fuzzer in MDPC generates
less seeds than DigFuzz and Random. Then the number of
paths along traces on these seeds will be smaller as well.
That is, the task of path exploration for the concolic executor
in MDPC is lighter than concolic executors in DigFuzz and
Random. As a consequence, MDPC explores smaller program
states and discovers less bugs than DigFuzz and Random.

2) Code coverage: As the trigger mechanism used by
LAVA-M is quite simple (a comparison against a 4 byte magic
number), extracting constants from binaries and constructing
dictionaries for AFL will be very helpful [14], especially for
base64, md5sum, and uniq. Consequently, the code coverage
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TABLE IV: Number of discovered vulnerabilities

Binaries With dictionaries Without dictionary
DigFuzz Random Driller MDPC AFL DigFuzz Random Driller MDPC AFL

base64 48 48 48 32 47 3 3 3 3 2
md5sum 59 59 59 13 58 0 0 0 0 0

uniq 28 28 25 2 29 0 0 0 0 0
who 167 153 142 39 125 111 92 26 34 0
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Fig. 7: Normalized incremental bitmap size on LAVA dataset

generated by these fuzzing systems (except MDPC due to
the reduced throughput) will be about the same if dictionaries
are used. As a result, we present the code coverage without
dictionary.

From the Figure 7, we can observe that DigFuzz can cover
more code than the other three configurations. Both of the
DigFuzz and Random outperform MDPC and Driller, and all
the hybrid systems (DigFuzz, Random, MDPC and Driller)
is stably better than AFL.

The code coverage in Figure 7 shows that our system is
more effective than Random with only a very small margin.
This is due to the fact that all the four programs are very small,
and the injected bugs are close to each other. For example, in
who, all the bugs are injected into only two functions. With
these two factors, the scale of the execution trees generated
from the programs in LAVA-M are small and contains only a
few execution paths. Thus, path prioritization (the core part in
DigFuzz) can not contribute much since there exists no path
explosion problem.

F. Evaluation on real programs

We also attempt to evaluate DigFuzz on large real-world
programs. However, we observe that the symbolic engine,
angr, used in DigFuzz, does not have sufficient support for
analyzing large real-world programs. This is also supported by
a recent fuzzing research [32]. More specifically, the current
version of angr lacks support for many system calls and cannot
make any progress once it reaches an unsupported system call.
We test DigFuzz on more than 20 real-world programs, and
the results show that the symbolic engine on average can only
execute less than 10% branches in a whole execution trace
before it reaches an unsupported system call. We argue that
the scalability of symbolic execution is a different research
area which is orthogonal to our focus in this paper. We will
leave the evaluation of real-world programs as future work.

G. Case study

In this section, we demonstrate the effectiveness of
our system by presenting an in-depth comparison between
DigFuzz and Driller via a case study. The binary used
(NRFIN 00017) comes from the CQE dataset, which is also
taken as a case study in the Driller paper [39].

Figure 8 shows the core part of the source code for the
binary. As depicted, the execution has to pass three nested
checks (located in Ln. 4, 7, and 15) so as to trigger the vul-
nerability. We denote the three condition checks as check 1,
check 2, and check 3.

1  int main(void) { 
… 

2   RECV(mode, sizeof(uint32_t)); 
3   switch (mode[0]) { 
4     case MODE_BUILD: ret = do_build(); break; 

… } 
 

5  int do_build() {  
… 

6    switch(command) { 
7     case B_CMD_ADD_BREAKER: 
8     model_id = recv_uint32(); 
9     add_breaker_to_load_center(model_id, &result);
10    break; 

…}} 
 

11  int8_t add_breaker_to_load_center() { 
12     get_new_breaker_by_model_id(…);} 

13  int8_t get_new_breaker_by_model_id(…) { 
14     switch(model_id){ 
15       case FIFTEEN_AMP: 
16         //vulnerability 
17         break; 

    …}} 

 Fig. 8: The vulnerability in NRFIN 00017.
1) Performance comparison: Due to the three condition

checks, AFL failed to crash the binary after running for 12
hours. In contrast, all of the three hybrid fuzzing systems were
able to trigger the vulnerability.

Through examining the execution traces, we observed that
the fuzzer in Driller got stuck at the 57th second, the 95th
second, and the 903rd second caused by check 1, check 2,
and check 3, respectively. Per design, only at these moment
will the concolic executor in Driller be launched to help
fuzzing. Further inspection shows that the concolic executor
had to process 7, 23 and 94 inputs retained by the fuzzer for
the three condition checks in order to solve the three branches.
Eventually, it took 2590 seconds for Driller to generate a
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satisfying input for check 3, and guide the fuzzer to reach
the vulnerable code. Not surprisingly, DigFuzz and Random
were able to trigger the vulnerability much faster, in 691 and
1438 seconds.

Unlike Driller, both Random and DigFuzz run the fuzzer
and the concolic executor in parallel from the beginning.
In each iteration, Random randomly selects an input for
concolic execution, whereas DigFuzz selects the paths with
the highest priority. Figure 10 and Figure 11 show the time
stamps when concolic executions were invoked and how they
helped fuzzing in DigFuzz and Random. As we can see
from the figures, DigFuzz performed 7 concolic executions
in 691 seconds while Random finished 26 executions in 1438
seconds before they could generate inputs to satisfy check 3
and help fuzzing reach the vulnerability. In terms of the input
generation, DigFuzz managed to generate 96 inputs within
which 37 were imported by fuzzing. Random, on the other
hand, generated 373 inputs and 44 of them were imported.
Moreover, by the time of the 691st second, DigFuzz generated
37 imported inputs while Random can only generate 4. These
numbers show that DigFuzz could generate inputs with much
higher quality than Random.

2) In-depth analysis: We further present the details on
how concolic execution helped the fuzzer to bypass these
three checks in DigFuzz. Figure 9 briefly shows the ex-
ecution tree for NRFIN 00017. In the figure, the path
that leads to the vulnerability is shown as the red path. To
trigger the vulnerability, the execution has to go through
three checks (check 1, check 2 and check 3) and dives into
three functions (do build(), add breaker to load center() and
get new breaker by model id()).

The fuzzer was blocked at check 1 and got stuck quickly
after start. For this specific branch, all DigFuzz, Random
and Driller quickly generated a satisfying input to bypass
check 1, because the current execution tree is pretty small
as shown in Figure 9. After this, the fuzzers resumed from
the stuck state. It went into do build(), quickly generated
23 interesting inputs in less than 1 minute and then reached
the check 2. The concolic executor in DigFuzz prioritized
the 23 inputs, accurately selected the one that corresponded
to check 2 and solved the condition in just one run at the
636th second. Further, the fuzzer went into the third function
get new breaker by model id() and reached check 3. Note
that even though the fuzzer was blocked by check 3, it did
not get stuck, because there are a number of paths that the
fuzzer can go through as shown in Figure 9. At this moment,
the concolic executor was handed with 97 inputs from the
fuzzer and had to pick the right one to reach check 3.
From Figure 10, we can observe that DigFuzz took only
2 concolic executions to bypass check 3. And eventually,
DigFuzz reached the vulnerability at the 691st second.

To further demonstrate the effectiveness of path priori-
tization, we examined how the concolic executors work in
DigFuzz, Random, and Driller. In particular, when the fuzzer
had bypassed check 2, it quickly discovered more blocks thus
retained amount of inputs. As shown in Figure 9, there are a
number of paths that the fuzzer can go through. Therefore,
the fuzzer took a long time to get stuck again. However, along
with the red path in Figure 9, the fuzzer quickly got blocked at
check 3. Driller will not identify this specific branch until the

the fuzzer gets stuck again. Random requires to go through
all the covered paths for discovering missed paths. With path
prioritization, DigFuzz is able to identify specific paths that
block the fuzzer in time.

By monitoring the status of the fuzzer, we also observe that
the fuzzer got stuck for 8 times in Driller, 3 times in Random,
and only 1 time in DigFuzz. This result indicates that the path
prioritization in DigFuzz was able to generate satisfying inputs
for specific paths that block the fuzzer in time. As a result, the
fuzzer avoided being stuck for majority of checks.

VI. DISCUSSION

A. Threats to Validity

Our experimental results are based on the limited dataset
presented in the paper. Efforts have been made to evaluate
DigFuzz on real programs, but Angr [38] fails to symbolically
execute programs whenever it encounters an unsupported sys-
tem call. Therefore, the results may not be fully representative
of real-world programs. An evaluation on such programs is
necessary to draw conclusions on the effectiveness of the
proposed techniques in practice. We will leave the evaluation
of real-world programs as our future work.

B. Limitations

First, although the “discriminitive dispatch” in DigFuzz
is designed to be a lightweight approach, it still imposes
some runtime and memory consumption overhead including
collecting runtime information of fuzzing and constructing
the execution tree. However, based on our evaluation, we
can see the throughput reduction for fuzzer is negligible.
Moreover, since each node in the tree only carries very limited
information, the total memory consumption of the execution
tree is very manageable.

Second, since DigFuzz only estimates the difficulty of
paths for fuzzer to explore but does not consider the complexity
of constraint solving, it is possible that the constraints collected
from the picked path can be unsolvable which may result in
a waste of concolic execution cycle. In addition, it is also
possible that the most promising path which could lead to a
vulnerability is not the hardest path picked by DigFuzz. These
two limitations are due to our model of finding the right path
to explore. We consider solving them as future work.

VII. RELATED WORK

Fuzzing and symbolic execution are the two mainstream
techniques for program testing. Many prior efforts have been
made to improve them [3], [27], [33], [36]. BuzzFuzz [17]
leverages dynamic tainting to identify inputs bytes that are
processed by suspicious instructions. Dowser [20] employs
reverse engineering techniques to identify input fields that are
concerned with suspicious functions. Vuzzer [34] leverages
control- and data-flow features to accurately determine where
and how to mutate such inputs. Skyfire [40] leverages the
knowledge in the vast amount of existing samples to generate
well-distributed seed inputs for fuzzing programs. Angora [12]
aims to increase branch coverage by solving path constraints
without symbolic execution. T-Fuzz [32] firstly allows the
fuzzer to work on the transformed program by removing
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Fig. 9: The execution tree for NRFIN 00017.
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Fig. 10: Concolic executions by DigFuzz on NRFIN 00017.

sanity checks that the fuzzer fails to bypass. As an auxiliary
post-processing step, T-Fuzz leverages a symbolic execution-
based approach to filter out false positives. CollAFL [16] is
a coverage sensitive fuzzing solution, which mitigates path
collisions by providing more accurate coverage information.
It also utilizes the coverage information to apply three new
fuzzing strategies. Veritesting [1] tackles the path explosion
problem by employing static symbolic execution to amplify the
effect of dynamic symbolic execution. Mayhem [10] proposes
to combine on-line and off-line symbolic execution to deal with
the problem of exhausted memory. The main contribution of
DigFuzz is to propose a more effective strategy to combine
fuzzing with concolic execution. Therefore, the advances of
fuzzing and concolic execution are out of our scope.

Hybrid fuzzing system. Most of hybrid fuzzing systems fol-
low the observation to augment fuzzing with selective symbolic

execution [29], [39], [41]. Both Driller and hybrid concolic
testing deploy a “demand launch” strategy. Instead, DigFuzz
designs a novel “discriminative dispatch” strategy to better
utilize the capability of concolic execution. TaintScope [41]
deploys dynamic taint analysis to identify the checksum check
points and then applies symbolic execution to generate inputs
satisfying checksum. TaintScope is specifically designed for
dealing with checksum, and DigFuzz has a more general
scope. More important, DigFuzz employs the Monte Carlo
model to estimate probabilities and prioritize paths, which is
more lightweight than the dynamic taint analysis.

MDPC [42] proposes a theoretical framework for optimal
concolic testing. It defines the optimal strategy based on the
probability of program paths and the cost of constraint solving,
which is similar with our insight to identify path probabilities.
In contrast to MDPC [42] that adoptes heavyweight techniques
to calculate the cost of fuzzing and concolic execution, our
model calculates probabilities with coverage statistics, which
is more lightweight and practical.

QSYM [46] integrates the symbolic emulation with the
native execution using dynamic binary translation. It also
alleviates the strict soundness requirements of conventional
concolic executors to achieve better performance as well as to
make it scalable to real-world programs. The main focus for
QSYM is to improve the efficiency of concolic execution while
our approach tries to make better use of concolic executor by
selectively dispatching only the hardest work to it.

Another type of hybrid fuzzing system is to regard the
symbolic execution as a guide for input generation or path
selection. Pak [31] proposes a hybrid fuzzing system to apply
symbolic execution to collects path constraints, then the system
generates inputs that respect the path predicates and transits
to the fuzzer. DeepFuzz [5] applies probabilistic symbolic
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Fig. 11: Concolic executions by Random on NRFIN 00017.

execution to assign probabilities to program paths, and then
takes these probabilities to guide the path exploration in
fuzzing.

Path prioritization in symbolic execution. Path prioriti-
zation is promising for mitigating the path explosion prob-
lem in dynamic symbolic execution. Representative studies
include heuristics techniques and sound program analysis
techniques [9]. These heuristics include using the control-
flow graph to guide the exploration, frequency-based and
random-based techniques [6]–[8]. Recently, path prioritization
is adopted to combine with evolutionary search, in which a
fitness function is defined to guide the symbolic execution [2].
Compared with these path exploration techniques, the path pri-
oritization in DigFuzz is to prioritize paths with probabilities
how difficult for fuzzing to pass through. To the best of our
knowledge, we are the first to investigate the path prioritization
problem in the hybrid fuzzing system.

Directed symbolic execution also employs path prioriti-
zation to reach a target. These techniques aim to search for
a feasible path for a target statement or branch [37], [45].
Compared with directed symbolic execution techniques, the
path prioritization in DigFuzz is to identify the targeted paths
for concolic execution, instead of searching for a feasible path
for a given target.

Seed scheduling in fuzzing. Seed selection plays an important
role in fuzzing, and several studies have been proposed to
improve the seed scheduler [4], [11], [44] by prioritizing
seed inputs. Woo et al. [44] model black-box fuzzing as a
multi-armed bandit problem where the energy of a seed is
computed based on whether or not it has exposed a crash
in any previous fuzzing iteration. AFLfast [4] improves the
seed selection strategy of AFL by assign more energy to
inputs that are less frequently taken by AFL. The basic insight
behind these seed scheduling technique is to search for a seed
on which the mutated execution is more likely to discover
new program states. In our future work, we plan to design
scheduling technique to offload the fuzzer with paths that are
difficult to explore.

Test case prioritization attempts to reorder test cases in a
way that increases the rate at which faults are detected [21],
[22], [24], [26], [28]. The path prioritization in this study is
to obtain the missed paths that are most likely to block the

fuzzer. The search algorithm is also closely related to the
search-based test prioritization and other search-based software
engineering [23].

VIII. CONCLUSION

In this paper, we perform a thorough investigation on some
state-of-the-art hybrid fuzzing systems and point out several
fundamental limitations in the “demand launch” and “optimal
switch” strategies deployed in these systems. We further pro-
pose a “discriminative dispatch” strategy to better utilize the
capability of concolic execution by designing a Monte Carlo
based probabilistic path prioritization model to quantify each
path’s difficulty. We implement a prototype system DigFuzz
based on the design and conduct comprehensive evaluation
using two popular datasets. The evaluation results show that the
concolic execution in DigFuzz contributes much more to the
increased code coverage and increased number of discovered
vulnerabilities compared with state-of-the-art hybrid fuzzing
system Driller and MDPC.
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