
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2022

Learning scenario representation for solving two-stage stochastic Learning scenario representation for solving two-stage stochastic

integer programs integer programs

Yaoxin WU

Wen SONG

Zhiguang CAO
Singapore Management University, zgcao@smu.edu.sg

Jie ZHANG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the OS and Networks Commons

Citation Citation
WU, Yaoxin; SONG, Wen; CAO, Zhiguang; and ZHANG, Jie. Learning scenario representation for solving
two-stage stochastic integer programs. (2022). Proceedings of the 10th International Conference on
Learning Representations, ICLR 2022, Virtual Online, Apr 25-29.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8163

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8163&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Published as a conference paper at ICLR 2022

LEARNING SCENARIO REPRESENTATION FOR SOLV-
ING TWO-STAGE STOCHASTIC INTEGER PROGRAMS

Yaoxin Wu1∗ , Wen Song2∗, Zhiguang Cao3†, Jie Zhang1

1School of Computer Science and Engineering, Nanyang Technological University, Singapore
2Institute of Marine Science and Technology, Shandong University, Qingdao, China
3Singapore Institute of Manufacturing Technology, A*STAR, Singapore
{wuyaoxin,zhangj}@ntu.edu.sg; wensong@email.sdu.edu.cn

ABSTRACT

Many practical combinatorial optimization problems under uncertainty can be
modeled as stochastic integer programs (SIPs), which are extremely challenging
to solve due to the high complexity. To solve two-stage SIPs efficiently, we pro-
pose a conditional variational autoencoder (CVAE) based method to learn scenario
representation for a class of SIP instances. Specifically, we design a graph con-
volutional network based encoder to embed each scenario with the deterministic
part of its instance (i.e. context) into a low-dimensional latent space, from which a
decoder reconstructs the scenario from its latent representation conditioned on the
context. Such a design effectively captures the dependencies of the scenarios on
their corresponding instances. We apply the trained encoder to two tasks in typi-
cal SIP solving, i.e. scenario reduction and objective prediction. Experiments on
two graph-based SIPs show that the learned representation significantly boosts the
solving performance to attain high-quality solutions in short computational time,
and generalizes fairly well to problems of larger sizes or with more scenarios.

1 INTRODUCTION

Stochastic integer programs (SIPs) are a class of combinatorial optimization problems (COPs) with
uncertain parameters. They focus on finding a best decision for a practical task to optimize both
the deterministic cost and the expectation of stochastic costs on a set of potential scenarios. Since
the uncertain elements commonly exist in reality, SIPs are widely applied and studied in many fields
such as transportation, inventory management, energy optimization, and so on (Jammeli et al., 2019;
Dillon et al., 2017; Bruno et al., 2016; Wallace & Ziemba, 2005). However, optimally solving SIP
is intractable especially when many scenarios are involved, due to the fact that: 1) most integer
programs themselves are already NP-hard; 2) considerable (even continuous) scenarios significantly
increase the computational complexity (Klein, 2021). In reality, solving moderate-sized problems
may require prohibitively long time. Thus efficient and high-quality approximate solutions for SIPs
are often practically pursued.

The advances in deep (reinforcement) learning has aroused extensive studies on solving optimization
problems with neural networks. The related works have shown promising results in tackling some
classic COPs, e.g., vehicle routing, job shop scheduling, combinatorial auction, etc. (Kool et al.,
2019; Zhang et al., 2020; Lee et al., 2020; Kwon et al., 2020; Gasse et al., 2019; Chen & Tian, 2019;
Ichter et al., 2018; Hottung et al., 2020; Wu et al., 2021). However, most of the existing deep learning
based methods only focus on deterministic problems, which could hinder their practical applications
in the uncertain situation. On the other hand, a few early attempts introduce deep learning to solve
SIPs (Larsen et al., 2018; Abbasi et al., 2020; Joe & Lau, 2020; Bengio et al., 2020; Nair et al.,
2018). However, they are generally designed for only specific problems and also lack the ability of
generalizing across different problem sizes.

In this paper, we focus on graph-based SIPs, which is a general class of problems with broad ap-
plications. We propose to learn the deep latent representation of scenarios in SIPs, which can be

∗Equal contribution.
†Corresponding author (zhiguangcao@outlook.com).

1

Published as a conference paper at ICLR 2022

applied to various downstream tasks in solving SIPs, e.g., scenario reduction and objective predic-
tion. Based on the basic two-stage form of SIPs, we leverage conditional variational autoencoder
(CVAE) to learn latent and continuous representations of stochastic scenarios while considering the
deterministic part of a SIP instance, which we term the context. Specifically, we employ a graph
convolutional network (GCN) to learn embeddings of each deterministic integer program, which
models the first-stage problem with a single scenario. The learned embeddings are mapped into
continuous representations, and then decoded back into corresponding scenarios given the embed-
ding of the context. This design ensures that the learned representations of scenarios are correctly
linked to the corresponding instances.

The resulting latent space well represents scenarios in a class of SIP instances, and we demonstrate
its power with two tasks commonly used in solving SIPs. First, we leverage it for scenario reduction
by finding representative scenarios via an off-the-shelf clustering algorithm, which decreases the
problem complexity and meanwhile attains high-quality approximate solutions. Second, we further
extend the encoder with an additional sub-network to predict objective values for each scenario. Due
to the generalization in the latent continuous space, we readily deploy the prediction task in semi-
supervised manner with a small number of target objective values. In doing so, the latent space is
augmented with the predicted objective value and hence yields more representative scenarios, which
further shrinks the approximation gap to the optimal solutions of the original SIPs.

In summary, this paper aims to learn scenario representation for solving graph-based two-stage SIPs.
The main contributions are as follows:

• We firstly present a deep generative framework to learn representations for scenarios in graph-
based two-stage SIPs. It considers dependencies of the scenarios on the deterministic context of
each instance, and hence well differentiates scenarios in the latent space.

• We apply the learned representations to scenario reduction and objective prediction for SIPs. The
representative scenarios derived from clustering of the representations can be used to efficiently
compute high-quality solutions for SIPs. Moreover, we further shrink the approximation error by
predicting objective values of scenarios via semi-supervised learning.

• We evaluate the proposed method on two SIP problems, i.e., the network design problem and
facility location problem. Experimental results verify the superiority of the learned scenario rep-
resentation for solving SIPs. Our method significantly outperforms existing deep learning based
baselines. Notably, it also generalizes well to problems with larger sizes or more scenarios.

2 RELATED WORK

Learning based methods for SIPs. Recent works of deep learning for COPs mostly address de-
terministic problems, with scarce attention to uncertainty that commonly exist in practice. Though
a few methods apply deep learning to improve approximate solutions for two-stage SIPs, they are
mostly designed for some specific problems. Nair et al. (2018) train a bit-flipping policy with re-
inforcement learning to improve solutions iteratively, but it is limited to binary decision variables
and assumes no constraints in the first-stage problem. Larsen et al. (2018) predict properties of op-
timal solutions to integer programs (i.e. the first-stage problem with respective single scenario) in a
supervised manner. This method is only applicable when operational solutions are not needed. In
contrast, Abbasi et al. (2020) predict values of decision variables for blood transshipment problem
with fixed-sized instances. To reduce the complexity of SIPs, Bengio et al. (2020) aim to yield one
scenario for the first-stage problem, so that the derived solution achieves a small objective value
when evaluated with the original set of scenarios. This method assumes complete recourse, with
any generated scenario being feasible for the second-stage problem. All the above methods attempt
to reduce the expected cost of stochastic scenarios but their applications are limited by distinct as-
sumptions or fixed problem sizes. In contrast, our method can be used for more general two-stage
SIPs, and generalizes well to varying problem sizes or scenario quantities.

Scenario reduction for SIPs. In the SIP formulation, a set of scenarios is used to model stochastic
events on top of the first-stage problem. It introduces extra complexity which may exponentially
increase with its cardinality, owing to the combinatorial search space (Dyer & Stougie, 2006). Since
the direct optimization with massive scenarios is intractable, the scenario reduction is often con-
ducted to find a subset of scenarios that well replaces the original set with a small approximation

2

Published as a conference paper at ICLR 2022

error. Existing reduction methods mainly branches into distribution-oriented and problem-oriented
paradigms. The former ones pursue a group of scenarios that closely estimate the probability distri-
bution under the scenario space (Henrion & Römisch, 2017). The distance between the estimated
and actual probability are often measured by Wasserstein distance (Rujeerapaiboon et al., 2018),
polyhedral discrepancy (Henrion et al., 2008) or difference of moments (Høyland et al., 2003).
These methods neglect the influence of the context on the objective function, e.g., similar scenario
distributions may cause different expected costs in disparate SIP instances. Thus, there is a re-
cent trend towards the study of problem-oriented methods (Henrion & Römisch, 2018; Fairbrother
et al., 2019; Keutchayan et al., 2020; 2021), which attempts to involve problem-specific properties
in scenario reduction. For example, Keutchayan et al. (2021) propose to find K scenarios with their
objective values separately approximating the expected objective values in the K scenario subsets.
Most the above methods are mainly for theoretical proof on stochastic programs (without the restric-
tion of integers). In contrast, we firstly propose a deep learning method for SIPs to learn scenario
representation, which can be used for both scenario reduction and objective prediction.

3 PRELIMINARIES

3.1 TWO-STAGE STOCHASTIC INTEGER PROGRAMS

As an optimization problem, SIP is usually characterized by both the uncertain parameters that
potentially follow certain probability distributions and the discrete solution space due to the integer
restrictions. It is commonly described by a two-stage formulation as below:

min
x

µ⊤x+ Eω[Q(x, ω)] (1)

s.t. Ax ≤ b, x ∈ Rn1−p1 × Zp1 , (2)

where Q(x, ω) := miny{q⊤ω y|Wωy ≤ hω − Tωx; y ∈ Rn2−p2 × Zp2}.

In particular, Eq. (1) and (2) prescribe the first-stage problem with x ∈ Rn1 being the decision
variable, where n1 ≥ p1; Q(x, ω) prescribes the second-stage problem, with y ∈ Rn2 being the
decision variable, where n2 ≥ p2. We refer to the group of static parameters µ ∈ Rn1 , A ∈ Rm1×n1

and b ∈ Rm1 in the first stage as the context, and assume that the group of uncertain parameters
qω ∈ Rn2 , Wω ∈ Rm2×n2 , Tω ∈ Rm2×n1 and hω ∈ Rm2 follows a distribution P . Here we
focus on SIPs defined on graphs, which are a family of problems with practical applications in many
domains such as networks, transportation and scheduling (Rahmaniani et al., 2018; An & Lo, 2016).

The primary method to solve the above SIP is sample average approximation (Kleywegt et al.,
2002), which converts it into a mixed integer program (MIP) by Monte Carlo simulation and in turn
optimizes the following objective:

O(x) := min
x

µ⊤x+
1

N

∑N

i=1
Q(x, ωi), (3)

where {ωi}Ni=1 is a set of scenarios from P , i.e., an independently and identically distributed (i.i.d.)
random sample of N realizations of uncertain parameters. Typically, a large scenario set is often
required to make the distribution of scenarios P̃ well fit P , which may cause intractable MIP for a
given solver. In this paper, we aim to find a small number of informative representatives in {ωi}Ni=1
by learning representations of scenarios, which is supposed to considerably boost the computation
efficiency with tolerable approximation errors.

3.2 CONDITIONAL VARIATIONAL AUTOENCODER

As an unsupervised generative model, CVAE is developed on top of VAE, and it further controls
the data generation process conditioned on additional random variables (Sohn et al., 2015). These
conditional variables could be either class labels or certain properties of the data with specific dis-
tributions, which are engaged in the input to both the encoder and decoder. Optimized with the
stochastic gradient variational bayes (SGVB) framework (Kingma & Welling, 2014), the evidence
lower bound objective (ELBO) of CVAE on the marginal likelihood for the input data is defined as:

log pθ(X, c) ≥ ELBO(X, c) = Eqϕ(z|X,c)[log pθ(X|z, c)]− KL[qϕ(z|X, c)∥p(z|c)], (4)

3

Published as a conference paper at ICLR 2022

where X , c, z denote input, latent and conditional variables, respectively; both the encoder qϕ and
decoder pθ are typically parameterized by deep neural networks. Rather than simple distributions
of conditional variables in most existing works, in this paper we exploit CVAE to learn scenario
representation in SIPs, with conditional variables derived from continuous parameters in the context.
For more details of CVAE, we refer readers to (Kingma et al., 2014; Feng et al., 2021).

4 METHODOLOGY

Given a class of SIP instances {Xm}Mm=1 with parameters drawn from a distribution D, we regard
each instance as a 2-tuple Xm = (Dm, {ωim}Ni=1), where Dm denotes the context (i.e. the group
of static parameters) in the m-th instance, and ωim denotes the i-th scenario (i.e. the i-th realization
of uncertain parameters) in the m-th instance. We aim to learn latent representations (variables)
{zim}Ni=1 of scenarios {ωim}Ni=1 under the context Dm in each instance.

4.1 CVAE FOR SCENARIO REPRESENTATION

Our CVAE comprises an encoder for the inference process and a decoder for the generation process,
which are parameterized by deep neural networks qϕ and pθ, respectively. In the generation process,
the decoder approximates the posterior distribution of uncertain parameters in scenarios, given the
latent and conditional variables, such that:

pθ(ω
i
m|zim, cm) = f(ωim; zim, cm, θ); qϕ(cm|Dm) = h(cm;Dm, ϕ), (5)

where f and h denote likelihood functions (e.g. Gaussian or multinomial distributions) that are
instantiated by pθ and qϕ, respectively. Note that we do not take the raw context Dm as condi-
tional variables for the decoder since they are continuous and high-dimensional. It may not only
intensify the computational complexity but also overwhelm the latent variable which is typically
low-dimensional. In contrast, we leverage the graph neural network (GNN) in the encoder to derive
a low-dimensional conditional variable cm from Dm. Further by preserving the marginal inde-
pendence between latent and conditional variables, the decoder will more effectively govern the
generation of ωim according to the context Dm (Kingma et al., 2014).

In the inference process, the encoder approximates the posterior distribution of latent representations
(variables) of scenarios given (ωim, Dm), which is expressed as:

qϕ(z
i
m|ωim, Dm) = N (zim|µϕ(ωim, Dm), σ2

ϕ(ω
i
m, Dm)), (6)

where we assume a Gaussian distribution of scenario representations with µϕ and σϕ being param-
eterized by neural networks, respectively. As aforementioned, we exploit a GNN in the encoder
to embed the continuous and high-dimensional ωim and Dm, which is also used by the decoder to
embed the sole Dm. This parameter sharing design contributes to a fast learning of embeddings for
deriving the latent and conditional variables, i.e., zim and cm. To learn disentangled representations
for these two types of variables, we force the conditional independence as:

qϕ(z
i
m, cm|ωim, Dm) = qϕ(z

i
m|ωim, Dm)qϕ(cm|Dm). (7)

In summary, our CVAE hinges on two important steps, i.e., 1) we first use the encoder to attain
scenario representations with respect to the context in each SIP instance; 2) we then use the decoder
to reconstruct the scenarios from the latent space according to the context.

Semi-supervised CVAE. With the inferred scenario representations, we can directly conduct vari-
ous downstream tasks for solving SIPs, such as scenario reduction using an off-the-shelf clustering
algorithm. However, it may ignore the relationship between scenarios and objective values, which is
nontrivial since even similar scenarios would deliver different solutions. Therefore, we also extend
CVAE to predict the objective function in a semi-supervised manner. Given that the scenarios are
embedded into a continuous space by the encoder, the prediction is supposed to be well general-
ized (Gómez-Bombarelli et al., 2018).

Most CVAE models for semi-supervised learning predict discrete targets and regard the ground
truth, e.g., class labels, as conditional variables. In contrast, we predict a continuous property of the
data (i.e. the objective value) and directly approximate it through the encoder. To this end, we use

4

Published as a conference paper at ICLR 2022

GCN

[𝑠𝜔𝑖
1 ; 𝑑1]

ℎ𝑚
𝑖

ℎ𝑚

𝑐𝑚

𝑧𝑚
𝑖

ෝ𝜔𝑚
𝑖

MLP

Featurize the graph with (𝜔𝑚
𝑖 , 𝐷𝑚)

Featurize the graph with 𝐷𝑚

𝑌𝑚
𝑖

𝜇𝜙

𝜎𝜙

MLP

Linear projection

Linear projection

Linear projection

[𝑠𝜔𝑖
2 ; 𝑑2][𝑠𝜔𝑖

12; 𝑑12]

[0; 𝑑1] [0; 𝑑2][0; 𝑑12]
𝑣2𝑣1

𝑣3 𝑣4

𝑣2𝑣1

𝑣3 𝑣4

Sample

Figure 1: CVAE structure for learning scenario representations

CPLEX solver to collect optimal objective values {Y im}Ni=1 of the resulting MIP problems, which
are defined by respective scenarios with the context, for only a small volume (1% ·M) of instances
in {Xm}Mm=1. We refer to the underlying joint distribution of (ωim, Y

i
m, Dm) as DY . Then we infer

the objective values with a sub-network, which processes the GNN embedding of (ωim, Dm) in the
encoder, such that the objective function σ is parameterized as:

rψ(Y
i
m|him) = σ(Y im;him, ψ); qϕ(h

i
m|ωim, Dm) = g(him;ωim, Dm, ϕ), (8)

where him denotes the GNN embedding that is derived by qϕ.

4.2 NEURAL NETWORKS

A major challenge to parameterize CVAE for SIPs is how to derive an effective embedding of the
context, since it is high-dimensional and continuous. Moreover, it is also involved in the input to
both the encoder and decoder, and significantly influences the eventual scenario representation. A
direct use of multi-layer perceptron (MLP) to process static parameters in Dm may fail to leverage
the problem structure and cannot generalize across instances of different sizes. To overcome these
limits, we exploit a GNN (as aforementioned) to embed the context Dm for attaining conditional
variables in the decoder. Meanwhile, we apply the same GNN to embed each scenario with its
context (ωim, Dm) for attaining latent representations in the encoder. To this end, we first describe
the context with scenarios on a graph.

SIP graphs. We define a complete graph G = (V, E), where V = {v1, · · · , vn} denotes nodes
with features V ∈ Rn×dv ; E = {ejk|vj , vk ∈ V} denotes edges with features E ∈ Rn×n×de . We
formally represent the features on the j-th node as vjωi

= [sjωi
; dj] ([;] means concatenation). In

specific, sjωi
∈ ωim denotes a realization of uncertain parameters on the j-th node and dj ∈ Dm

denotes static parameters on the j-th node. Similarly, the features on edge ejk is represented as
ejkωi

= [sjkωi
; djk], where sjkωi

and djk denote the parameters from the i-th scenario and the context,
respectively. Different from existing works that only consider varying parameters on nodes, e.g.,
Nazari et al. (2018), our graph representation is more generic and could be applied to a broader class
of SIPs. Particularly, two examples of the graph representation on the network design problem and
facility location problem are introduced in Section 4.4.

On top of the SIP graphs, we can exploit GNN to derive embeddings for either the context Dm

or varying scenarios with the context, i.e., (ωim, Dm), i = {1, . . . , N}. In our method, we adopt
the graph convolutional network (GCN), which is a commonly used GNN variant (Kipf & Welling,
2017; Yao et al., 2019). The architecture of our GCN is similar to the one in Joshi et al. (2019),
which was leveraged to compute an adjacency matrix for solving the travelling salesman problem.
Specifically, we extend it for graph-based SIP problems to attain graph embeddings for Dm and
(ωim, Dm), denoted as hm and him, respectively. Detailed structure of the GCN is described in
Appendix A. Next, we will revisit our CVAE given the graph embeddings above.

Encoder. The encoder processes the graph embedding him with two separate linear projections to
compute 2-dimensional vectors of means and standard deviations for latent variables, respectively,
i.e., µϕ(ωim, Dm) and σϕ(ωim, Dm) in Eq. (6). Also, we linearly project the graph embedding hm
into a 2-dimensional vector, i.e., cm in Eq. (5).

5

Published as a conference paper at ICLR 2022

Decoder. We concatenate cm with the latent variables zim and pass them through an MLP to recon-
struct the scenario. The MLP is structured by two hidden layers with ReLU activation functions,
which are of 128 and 256 dimensions, respectively.

Semi-supervised learning. To echo the semi-supervised CVAE in Section 4.1, we leverage another
MLP as a sub-network to process him. It comprises a 512-dimensional hidden layer with a ReLU
activation function, and outputs a single value to estimate the objective value Y im.

The basic structure of neural networks is illustrated in Figure 1, where ω̂im and Ŷ im are the recon-
struction and predicted objective value for the i-th scenario, respectively. Note that we pad uncertain
parameters ωim with 0 to embed the sole context (in the lower grey square). In this way, the GCN
could be shared to attain both graph embeddings hm and him.

4.3 TRAINING & INFERENCE Algorithm 1 Training procedure
Input: encoder pθ , decoder qϕ, num. of epochs E , batch size
B .
1: Initialize parameters θ(0) and ϕ(0)

2: for epoch = 1, 2, . . . , E do
3: Shuffle the data inD andDY ;
4: for t = 1, 2, . . . , ⌊ |D|

B ⌋ do
5: Retrieve a batch of instances fromD;
6: Get a random scenario in each instance;
7: Compute ELBO in Eq. (9);
8: θ, ϕ← Adam(θ, ϕ,∇L(θ, ϕ));
9: if objective prediction is trained then
10: Retrieve a batch of instances fromDY ;
11: Compute MSE of objectives in Eq. (9);
12: ϕ, ψ ← Adam(ϕ, ψ,∇L(ϕ, ψ));
13: end if
14: end for
15: end for

The training objective is to minimize three loss
functions. The first one is defined by the mean
square error (MSE) between the reconstructed
scenarios from decoder and the original ones. It
is essentially employed in CVAE to maximize
the marginal likelihood of the data. The second
loss is defined by Kullback–Leibler divergence
from the latent variables to the prior Gaussian
distribution p(z) = N (z|0, I), which is used
for regularization. The third loss is defined by
the MSE between the predicted objective values
and their ground truth. Formally, the objective
for training our CVAE is expressed as:

L(θ, ϕ, ψ) = ED[−ELBO(Xm)]− α · EDY
[log rψ(Y

i
m|him)], (9)

where ELBO(Xm) = Eqϕ(zim|ωi
m,Dm)[log pθ(ω

i
m|zim, cm)]−β ·KL[qϕ(zim|ωim, Dm)∥p(z)] involves

the first MSE and KL divergence; α and β are hyperparameters to balance the three losses. Following
the typical training paradigm for VAE, we jointly optimize θ and ϕ via reparameterization trick and
Monte Carlo approximation (Kingma & Welling, 2014). The training procedure is summarized in
Algorithm 1 where we use the Adam optimizer to update the parameters (Kingma & Ba, 2015).

As shown in Algorithm 1, we randomly pick one scenario for each instance so that we can process
it with its context in a batch. The resulting generalization across both the contexts and scenarios of
different instances will allow for a fast training of neural networks. However, in the inference we
employ the trained encoder to attain the latent representations, by processing all scenarios from a set
of instances in parallel. It is realized by duplicating the context in each instance for all its scenarios.
In doing so, the computational efficiency will be considerably improved for solving the instance
with a large cardinality of scenarios, and thus a large amount of instances. For each instance, the
derived scenario representations from the encoder are then used for clustering to attain a few centers
that correspond to representatives among original scenarios, so we end with reduced scenarios.

4.4 APPLICATIONS

Table 1: Features on SIP graphs of NDP and FLP

Feats Types Parameters Digits

N
D

P

vj
ωi

dj None 0
sjωi

demand 1

ejkωi

djk opening cost, transportation cost, capacity 3
sjkωi

None 0

FL
P

vj
ωi

dj coordinate, opening cost (F.), capacity (F.) 2(4)
sjωi

presence (C.) 1

ejkωi

djk distance between nodes 1
sjkωi

None 0

We apply our method to learn scenario rep-
resentation in two typical SIP problems, i.e.,
the network design problem (NDP) and facil-
ity location problem (FLP) (Keutchayan et al.,
2021). We represent them as the SIP graphs,
whose features on nodes and edges including
both static and uncertain parameters are listed
in Table 1. For FLP, the parameters tokenized
by F. and C. mean that they are peculiar to fa-
cility and customer nodes, respectively. More
details about the two problems and their param-
eters can be found in Appendix B and C.

6

Published as a conference paper at ICLR 2022

5 EXPERIMENTS

We evaluate our method on NDP and FLP to demonstrate its effectiveness. On the one hand, we
train the CVAE to only learn representations for scenarios (Line 5∼8 in Algorithm 1), and the trained
encoder can attain representations in each instance, which are directly used for scenario reduction
by finding representatives via an off-the-shelf clustering algorithm. On the other hand, we train the
semi-supervised CVAE to simultaneously learn scenario representations and predict objective values
(Line 5∼13). After the training, the neural network can attain representations and objective values
for each scenario and we concatenate them for clustering to find more informative scenarios as
representatives. We refer to the above two paradigms as CVAE-SIP and CVAE-SIPA, respectively.
In the following experiments, we compare them with other learning based methods, and assess their
generalization performance across problems with varying sizes and scenario cardinalities.

5.1 SETUP

Instance generation. Our instances are generated following the way in (Keutchayan et al., 2021).
Specifically, we generate NDP instances with 14 nodes including 2 source nodes, 2 target nodes and
10 transition nodes. For FLP, we designate 10 facility nodes and 20 customer nodes. We generate
200 scenarios for each instance in both problems. To evaluate the generalization performance, we
generate larger instances by doubling and quadrupling the number of transition nodes for NDP,
respectively. We do the same to both facility and customer nodes for FLP. Besides, we also double
and quadruple the scenario cardinality in both problems. More details are provided in Appendix D.

Training. We collect 12, 800 instances (of normal size) for NDP and FLP, respectively, and normal-
ize each type of parameters into [0, 1] across instances. Regarding CVAE-SIP, we train our model
without the sub-network (used for the prediction task) by solely optimizing the ELBO loss in Eq.
(9). Regarding CVAE-SIP, we train neural networks for learning representation and objective pre-
diction simultaneously, as shown in Algorithm 1. We set hyperparameters β = 0.005 and α = 100
in Eq. (9). For both problems, CVAE-SIP and CVAE-SIPA are trained with 100 and 400 epochs,
respectively. The batch size and learning rate are set to 128 and 10−4. We run the training on a
server using a single GeForce RTX 2080 Ti GPU.

Testing. Pertaining to CVAE-SIP, we employ theK-medoids algorithm (Park & Jun, 2009) to obtain
representative scenarios based on the latent representations. We keep its default settings and only
change the number of clusters (i.e. K). Given the attained K representatives, we can derive the
approximation solution by reformulating Eq. (3) as:

Õ(x) := min
x

µ⊤x+
Nk

N

∑K

k=1
Q(x, ωk), (10)

where ωk means the representative from the k-th cluster and the number of intra-cluster population
equals to Nk. Accordingly, the approximation error is defined as the gap1 between objective values
of the approximate solution derived from Eq. (10) and the optimal solution from Eq. (3). Pertaining
to CVAE-SIPA, we infer both the latent representations and objective values of scenarios, which
are concatenated as augmented representations to attain the representatives. To reduce the influence
by the potential concurrent processes, we conduct the evaluation on a different desktop computer,
which uses a single Nvidia Quadro P4000 GPU with a Xeon W-2133 CPU@3.60 GHz.

5.2 COMPARISON ANALYSIS

We compare with four baselines2, i.e., 1) CPLEX IBM (2017), with default settings to compute
optimal solutions. It is also used to solve the approximation problem with representative scenarios.
2)K-medoids, the same clustering algorithm as used in our method. However, we apply it to directly
cluster the original scenarios rather than the learned low-dimensional representations. 3) Scenario-
M, a supervised method with hand-crafted features to predict a scenario for solving a variant of
FLP (Bengio et al., 2020). 4) Solution-M3, a supervised method with raw features to predict the
first-stage decision variables for solving blood transshipment problem (Abbasi et al., 2020).

1In specific, we denote the optimal solutions in Eq. (10) and Eq. (3) by x̃ and x∗ respectively. The gap is
defined as |O(x̃)−O(x∗)|/(|O(x∗)|+ ε), where we assume minimization problems and ε = 10−10.

2A short comparison with methods in operations research is also given in Appendix I.
3The training details of Scenario-M and Solution-M are summarized in Appendix E.

7

Published as a conference paper at ICLR 2022

Table 2: Comparison with baselines

NDP (14; 200) FLP (30; 200)
K=5 K=10 K=20 K=5 K=10 K=20

Method Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time

CPLEX 635.75 0.00 18s 635.75 0.00 18s 635.75 0.00 18s 236.71 0.00 18s 236.71 0.00 18s 236.71 0.00 18s
Scenario-M 2533.50 2.96 0.8s 2533.50 2.96 0.8s 2533.50 2.96 0.8s 1980.03 7.11 0.6s 1980.03 7.11 0.6s 1980.03 7.11 0.6s
Solution-M 798.81 0.26 0.8s 798.81 0.26 0.8s 798.81 0.26 0.8s 736.21 1.87 0.2s 736.21 1.87 0.2s 736.21 1.87 0.2s
K-medoids 976.47 0.54 0.3s 761.18 0.19 0.6s 677.02 0.08 1s 2390.06 9.06 0.2s 1344.39 4.57 0.3s 502.68 1.17 1s
CVAE-SIP 930.73 0.48 0.7s 734.24 0.15 0.9s 637.99 0.02 1s 929.61 2.87 0.7s 482.70 0.99 0.7s 282.49 0.23 1s

CVAE-SIPA 769.70 0.24 0.6s 687.68 0.08 0.8s 642.12 0.03 1s 709.08 1.71 0.6s 381.41 0.58 0.7s 264.01 0.15 1s
1 (n; N) means n nodes and N scenarios; Bold means the best result from the learning based methods.

Table 3: Generalization to large-scale problems

NDP (24; 200) FLP (60; 200)
K=5 K=10 K=20 K=5 K=10 K=20

Method Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time

CPLEX 602.47 0.00 2m 602.47 0.00 2m 602.47 0.00 2m 335.37 0.00 11m 335.37 0.00 11m 335.37 0.00 11m
Scenario-M 2238.63 2.68 2s 2238.63 2.68 2s 2238.63 2.68 2s - - - - - - - - -
Solution-M - - - - - - - - - - - - - - - - - -
K-medoids 981.94 0.63 0.8s 723.62 0.20 1s 662.46 0.09 3s 3549.25 9.72 1s 1549.53 3.74 4s 561.97 0.73 7s
CVAE-SIP 871.73 0.45 2s 696.22 0.16 2s 659.92 0.09 4s 1083.12 2.17 3s 748.59 1.21 5s 506.75 0.57 8s

CVAE-SIPA 809.65 0.34 2s 637.72 0.06 2s 610.58 0.01 5s 974.17 1.86 3s 746.02 1.18 5s 470.39 0.44 8s

NDP (44; 200) FLP (120; 200)
K=5 K=10 K=20 K=5 K=10 K=20

Method Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time

CPLEX 580.67 0.00 23m 580.67 0.00 23m 580.67 0.00 23m 484.60 0.00 1h 484.60 0.00 1h 484.60 0.00 1h
Scenario-M 2163.74 2.77 3s 2163.74 2.77 3s 2163.74 2.77 3s - - - - - - - - -
Solution-M - - - - - - - - - - - - - - - - - -
K-medoids 803.99 0.38 3s 652.78 0.12 7s 595.15 0.04 14s 6675.13 12.56 6s 2803.77 4.86 21s 1183.44 1.56 61s
CVAE-SIP 1079.80 0.84 5s 615.99 0.06 8s 588.18 0.02 16s 1585.53 2.27 12s 985.45 0.99 35s 627.30 0.28 56s

CVAE-SIPA 682.35 0.17 5s 627.62 0.08 8s 581.07 0.00 17s 2051.45 3.13 16s 910.50 0.84 33s 594.33 0.22 69s

We evaluate all methods on 200 instances of normal size for NDP and FLP, respectively. We set K
= 5, 10, 20 in K-medoids for both problems so that we could access the performance against the
number of representatives. Note that the computation by CPLEX, Scenario-M and Solution-M is
independent of K. The results are displayed in Table 2, where we record the average of objective
values, approximation errors and computational time over all instances, respectively. As shown, both
CVAE-SIP and CVAE-SIPA consistently outperform K-medoids in all cases. Though K-medoids
can also improve the solution quality as K grows, our methods efficiently attain solutions with
much smaller errors. It implies that we achieve more informative representatives with the learned
low-dimensional representations, which help deliver high-quality solutions. On the other hand, our
methods significantly outperform Scenario-M and Solution-M for the three respective values of K.
This suggests that the representatives found by our methods are able to approximate the original
problem more accurately than the approximation with the single scenario or solution. Furthermore,
we observe that CVAE-SIPA is generally superior to CVAE-SIP, which indicates that the predicted
objective values could effectively enrich the scenario representations for achieving more informative
representatives and thus better solutions. Last but not least, all the learning based methods consume
fairly short time compared to the sole CPLEX.

5.3 GENERALIZATION ACROSS PROBLEM SIZES

A desirable generalization to larger problems is necessary for learning based methods. To verify such
ability of our methods, we apply the previously trained networks to directly infer another 50 larger
instances (of two levels) for both NDP and FLP, respectively. The instances are generated following
the operation of doubling and quadrupling described in Section 5.1. The baselines are also directly
applied to these larger instances except Solution-M since its output dimension (i.e. number of deci-
sion variables) is fixed only for the problem of normal size. Similarly, Scenario-M is not applicable
to FLP where the scenario dimension (i.e. number of customer nodes) changes with problem sizes.
For CPLEX, we set a 1h time limit on FLP (120; 200). In Table 3, the upper and lower half contains
the results on doubling and quadrupling instances, respectively. As shown, CVAE-SIP is superior
to K-medoids and Scenario-M in most cases except NDP (44; 200) with K=5. On the other hand,
CVAE-SIPA generally achieves the smallest errors but performs inferior to CVAE-SIP on NDP (44;
200) with K=10 and FLP (120; 200) with K=5. This might stem from the degenerated accuracy
of objective prediction, which induces solutions with relatively large penalties on some instances.

8

Published as a conference paper at ICLR 2022

Table 4: Generalization to large scenario cardinalities

NDP (14; 400) FLP (30; 400)
K=5 K=10 K=20 K=5 K=10 K=20

Method Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time

CPLEX 634.50 0.00 1m 634.50 0.00 1m 634.50 0.00 1m 244.63 0.00 2m 244.63 0.00 2m 244.63 0.00 2m
Scenario-M 2266.88 2.58 1s 2266.88 2.58 1s 2266.88 2.58 1s 5260.62 12.79 2s 5260.62 12.79 2s 5260.62 12.79 2s
Solution-M 791.95 0.26 0.7s 791.95 0.26 0.7s 791.95 0.26 0.7s 1215.86 5.37 0.5s 1215.86 5.37 0.5s 1215.86 5.37 0.5s
K-medoids 972.69 0.53 0.3s 730.18 0.15 0.5s 650.45 0.04 1s 1848.21 6.12 0.2s 734.44 2.00 0.4s 497.64 0.92 1s
CVAE-SIP 887.76 0.41 0.8s 711.63 0.12 1s 656.06 0.05 2s 701.73 1.83 1s 468.47 0.86 1s 439.52 0.73 2s

CVAE-SIPA 881.05 0.38 0.8s 676.99 0.06 1s 645.75 0.03 2s 723.75 1.89 1s 439.08 0.77 1s 294.02 0.15 2s

NDP (14; 800) FLP (30; 800)
K=5 K=10 K=20 K=5 K=10 K=20

Method Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time

CPLEX 633.34 0.00 5m 633.34 0.00 5m 633.34 0.00 5m 239.45 0.00 7m 239.45 0.00 7m 239.45 0.00 7m
Scenario-M 2137.65 2.36 0.7s 2137.65 2.36 0.7s 2137.65 2.36 0.7s 3807.41 9.93 2s 3807.41 9.93 2s 3807.41 9.93 2s
Solution-M 815.13 0.28 0.8s 815.13 0.28 0.8s 815.13 0.28 0.8s 1082.62 3.76 0.7s 1082.62 3.76 0.7s 1082.62 3.76 0.7s
K-medoids 896.35 0.42 0.3s 770.99 0.20 0.7s 678.33 0.08 1s 1174.66 4.18 0.2s 1091.77 3.34 0.3s 732.85 1.72 1s
CVAE-SIP 900.59 0.42 1s 658.40 0.03 2s 685.74 0.09 2s 600.28 1.36 2s 351.18 0.49 2s 308.24 0.23 2s

CVAE-SIPA 761.84 0.20 1s 684.33 0.07 2s 652.69 0.04 2s 990.76 2.91 2s 420.95 0.77 2s 296.98 0.21 2s

Notably, the computational time by CPLEX rises drastically on larger problems, in comparison with
those in Table 2. Such low efficiency might not be acceptable in practice, especially where real-time
decisions are required for handling a number of problem instances simultaneously. In contrast, our
methods deliver solutions with small penalties in short runtime. In Appendix F, we draw curves of
the average error against the number of representative scenarios used in FLP problems.

5.4 GENERALIZATION ACROSS SCENARIO CARDINALITIES

From a practical view, the cardinality of scenarios in SIP problems might be changed due to certain
reasons, e.g., new observations are added or outdated ones are removed (Issac & Campbell, 2017).
Therefore, a learning based method for SIPs should be able to handle this varying dimension via
generalization. To this end, we evaluate our methods and baselines on 50 instances of NDP and
FLP with doubling and quadrupling scenarios, respectively. The results in Table 4 show that our
methods can still achieve the smallest errors across most settings, except NDP (14; 400) with K=5,
where Solution-M performs better. It implies that our methods are less sensitive to the scenario
cardinality. Since our methods process all scenarios in parallel, they solve instances with scenarios
up to 800 in about 2 seconds, which is significantly faster than CPLEX. Additionally, we also test
with scenarios generated from varying distributions and different dependencies on the context. The
details are provided in Appendix G.

5.5 OBJECTIVE PREDICTION

We further demonstrate the efficacy of the semi-supervised learning for objective prediction. The
trained model is directly adopted to infer objective values of scenarios in NDP and FLP instances.
The results are gathered in Figure 3 and 4, which show our prediction is fairly accurate for both
problems even when generalizing to larger problem sizes or scenario cardinalities. It well verifies
the effectiveness of our semi-supervised design, which only needs to solve a small volume (1%) of
training instances. In addition, the sample efficiency is also enhanced through the generalization
over the latent space. More details can be found in Appendix H.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we present a deep learning method to solve graph-based two-stage SIPs. We lever-
age CVAE to learn latent representations of stochastic scenarios conditioned on the context of a
SIP instance. With the learned representations, we conduct two downstream tasks for solving SIP,
i.e., scenario reduction and objective prediction. The evaluation on two classic SIP problems has
shown that our method is able to find less yet informative representatives for improving both solu-
tion quality and computation efficiency. Additional studies also verify that our method can be well
generalized to larger problem sizes, larger cardinalities of scenarios and different distributions of
scenarios. In the future, we will attempt to automate the decision on the optimal number of repre-
sentatives for scenario reduction, and extend our method towards solving general two-stage SIPs.

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGEMENTS

This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enter-
prises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited
(Singtel) and Nanyang Technological University (NTU) that is supported by A*STAR under its In-
dustry Alignment Fund (LOA Award number: I1701E0013). Wen Song is supported by the National
Natural Science Foundation of China under Grant 62102228, and the Shandong Provincial Natural
Science Foundation under Grant ZR2021QF063.

REFERENCES

Babak Abbasi, Toktam Babaei, Zahra Hosseinifard, Kate Smith-Miles, and Maryam Dehghani. Pre-
dicting solutions of large-scale optimization problems via machine learning: A case study in
blood supply chain management. Computers & Operations Research, 119:104941, 2020.

Kun An and Hong K Lo. Two-phase stochastic program for transit network design under demand
uncertainty. Transportation Research Part B: Methodological, 84:157–181, 2016.

Yoshua Bengio, Emma Frejinger, Andrea Lodi, Rahul Patel, and Sriram Sankaranarayanan. A
learning-based algorithm to quickly compute good primal solutions for stochastic integer pro-
grams. In International Conference on Integration of Constraint Programming, Artificial Intelli-
gence, and Operations Research, pp. 99–111. Springer, 2020.

Sergio Bruno, Shabbir Ahmed, Alexander Shapiro, and Alexandre Street. Risk neutral and risk
averse approaches to multistage renewable investment planning under uncertainty. European
Journal of Operational Research, 250(3):979–989, 2016.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimiza-
tion. In the 33rd Conference on Advances in Neural Information Processing Systems (NIPS), pp.
6278–6289, 2019.

Mary Dillon, Fabricio Oliveira, and Babak Abbasi. A two-stage stochastic programming model for
inventory management in the blood supply chain. International Journal of Production Economics,
187:27–41, 2017.

Martin Dyer and Leen Stougie. Computational complexity of stochastic programming problems.
mathematical programming, 106(3):423–432, 2006.

Jamie Fairbrother, Amanda Turner, and Stein W Wallace. Problem-driven scenario generation: an
analytical approach for stochastic programs with tail risk measure. Mathematical Programming,
pp. 1–42, 2019.

Hao-Zhe Feng, Kezhi Kong, Minghao Chen, Tianye Zhang, Minfeng Zhu, and Wei Chen. Shot-vae:
Semi-supervised deep generative models with label-aware elbo approximations. In Proceedings
of the 35th Conference on Artificial Intelligence (AAAI), pp. 7413–7421, 2021.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact com-
binatorial optimization with graph convolutional neural networks. In Proceedings of the 33rd
Conference on Neural Information Processing Systems (NIPS), 2019.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven contin-
uous representation of molecules. ACS central science, 4(2):268–276, 2018.

Holger Heitsch and Werner Römisch. Scenario reduction algorithms in stochastic programming.
Computational optimization and applications, 24(2):187–206, 2003.

René Henrion and Werner Römisch. Optimal scenario generation and reduction in stochastic pro-
gramming. Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät . . . ,
2017.

10

Published as a conference paper at ICLR 2022

Réne Henrion and Werner Römisch. Problem-based optimal scenario generation and reduction in
stochastic programming. Mathematical Programming, pp. 1–23, 2018.

René Henrion, Christian Küchler, and Werner Römisch. Discrepancy distances and scenario reduc-
tion in two-stage stochastic mixed-integer programming. Journal of Industrial & Management
Optimization, 4(2):363, 2008.

André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a latent search space for routing
problems using variational autoencoders. In the 8th International Conference on Learning Rep-
resentations (ICLR), 2020.

Kjetil Høyland, Michal Kaut, and Stein W Wallace. A heuristic for moment-matching scenario
generation. Computational optimization and applications, 24(2):169–185, 2003.

IBM(2017). Ibm ilog cplex 12.10 user manual ibm crop. 2017.

Brian Ichter, James Harrison, and Marco Pavone. Learning sampling distributions for robot motion
planning. In Proceedings of the International Conference on Robotics and Automation (ICRA),
pp. 7087–7094, 2018.

Preethi Issac and Ann Melissa Campbell. Shortest path problem with arc failure scenarios. EURO
Journal on Transportation and Logistics, 6(2):139–163, 2017.

Haifa Jammeli, Majdi Argoubi, and Hatem Masri. A bi-objective stochastic programming model for
the household waste collection and transportation problem: case of the city of sousse. Operational
Research, pp. 1–27, 2019.

Waldy Joe and Hoong Chuin Lau. Deep reinforcement learning approach to solve dynamic vehicle
routing problem with stochastic customers. In Proceedings of the 30th International Conference
on Automated Planning and Scheduling (ICAPS), volume 30, pp. 394–402, 2020.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. In INFORMS Annual Meeting, 2019.

Julien Keutchayan, David Munger, and Michel Gendreau. On the scenario-tree optimal-value error
for stochastic programming problems. Mathematics of Operations Research, 45(4):1572–1595,
2020.

Julien Keutchayan, Janosch Ortmann, and Walter Rei. Problem-driven scenario clustering in
stochastic optimization. arXiv preprint arXiv:2106.11717, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In the 3rd
International Conference on Learning Representations (ICLR), 2015.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In the 2nd International
Conference on Learning Representations (ICLR), 2014.

Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
learning with deep generative models. In the 28th Conference on Advances in Neural Information
Processing Systems (NIPS), pp. 3581–3589, 2014.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In the 5th International Conference on Learning Representations (ICLR), 2017.

Kim-Manuel Klein. About the complexity of two-stage stochastic ips. Mathematical Programming,
pp. 1–19, 2021.

Anton J Kleywegt, Alexander Shapiro, and Tito Homem-de Mello. The sample average approxima-
tion method for stochastic discrete optimization. SIAM Journal on Optimization, 12(2):479–502,
2002.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In the
7th International Conference on Learning Representations (ICLR), 2019.

11

Published as a conference paper at ICLR 2022

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. In the 34th Confer-
ence on Advances in Neural Information Processing Systems (NIPS), 2020.

Eric Larsen, Sébastien Lachapelle, Yoshua Bengio, Emma Frejinger, Simon Lacoste-Julien, and An-
drea Lodi. Predicting solution summaries to integer linear programs under imperfect information
with machine learning. arXiv preprint arXiv:1807.11876, 2018.

Mengyuan Lee, Seyyedali Hosseinalipour, Christopher Greg Brinton, Guanding Yu, and Huaiyu
Dai. A fast graph neural network-based method for winner determination in multi-unit combina-
torial auctions. IEEE Transactions on Cloud Computing, 2020.

Vinod Nair, Dj Dvijotham, Iain Dunning, and Oriol Vinyals. Learning fast optimizers for contextual
stochastic integer programs. In Proceedings of the 34th Conference on Uncertainty in Artificial
Intelligence (UAI), pp. 591–600, 2018.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. In the 32nd Conference on Neural Information
Processing Systems (NIPS), pp. 9839–9849, 2018.

Hae-Sang Park and Chi-Hyuck Jun. A simple and fast algorithm for k-medoids clustering. Expert
systems with applications, 36(2):3336–3341, 2009.

Ragheb Rahmaniani, Teodor Gabriel Crainic, Michel Gendreau, and Walter Rei. Accelerating the
benders decomposition method: Application to stochastic network design problems. SIAM Jour-
nal on Optimization, 28(1):875–903, 2018.

Napat Rujeerapaiboon, Kilian Schindler, Daniel Kuhn, and Wolfram Wiesemann. Scenario reduc-
tion revisited: Fundamental limits and guarantees. Mathematical Programming, pp. 1–36, 2018.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using
deep conditional generative models. the 29th Conference on Advances in Neural Information
Processing Systems (NIPS), 28:3483–3491, 2015.

Stein W Wallace and William T Ziemba. Applications of stochastic programming. SIAM, 2005.

Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search policy
for integer programming. Advances in Neural Information Processing Systems, 34, 2021.

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification.
In Proceedings of the 33rd Conference on Artificial Intelligence (AAAI), pp. 7370–7377, 2019.

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning to dispatch
for job shop scheduling via deep reinforcement learning. In the 34th Conference on Advances in
Neural Information Processing Systems (NIPS), volume 33, pp. 1621–1632, 2020.

12

Published as a conference paper at ICLR 2022

A GRAPH CONVOLUTIONAL NETWORK

Given a complete SIP graph as defined in Section 4.2, we first process the features of nodes and
edges by separate linear transformations as below:

V0 = VW0
v + bv; E0 = EW0

e + be, (11)

where V ∈ Rn×dv and E ∈ Rn×n×de are the raw features (i.e. parameters in Table 1) on nodes and
edges, respectively; W0

v ∈ Rdv×128 and W0
e ∈ Rde×128 are trainable weights with corresponding

bias vectors bv ∈ R1×128 and be ∈ R1×128. Note that we also use different linear transformations
for heterogeneous nodes or edges. For example, the location nodes of facilities and customers are
processed separately.

Next, we advance the node and edge embeddings by the graph convolution layer for L iterations,
and each iteration has its own parameters, which are expressed as:

vl+1
j = vlj + PReLU

(
BN

(
vljW

l
1 +

ejk∈V∑
k

ηljk ⊙ vljW
l
2

))
, ηljk =

σ(eljk)∑ejk∈V
k σ(eljk) + ϵ

el+1
jk = eljk + PReLU

(
BN

(
eljkW

l
3 + vljW

l
4 + vlkW

l
5

))
, l = 0, . . . , L− 1

(12)

where Wl
1, . . . ,W

l
5 ∈ R128×128; ⊙ means the element-wise product; σ is the sigmoid activation

function; ϵ is a small value to avoid numerical error. Initially, the node embedding v0
j is the j-th

row of matrix V0 and edge embedding e0jk is the element at the j-th row and k-th column of matrix
E0. The above graph layer is similar to the one in Joshi et al. (2019) except that we use parametric
rectified linear unit with its learnable parameter being 0.25.

After L (L=10) iterations of the above convolution, the node and edge embeddings are represented
as {vLj }nj=1 and {eLjk}nj,k=1, respectively. We attain the graph embedding by the mean pooling
over all the node embeddings. We neglect edge embeddings considering that their information has
already been involved in node embeddings, after multiple convolutions.

Parameter sharing The graph embedding network based on Eq. (11) and (12) is able to process
the sole context Dm with its static parameters on the graph. Also it can process the context with any
scenario in the instance, by featurizing the graph with both static parameters in Dm and a scenario
ωim. To foster the learning efficiency, we use a single network to process these two featurizations.
It is achieved by padding the uncertain parameters with zeros when we only process the context.
We represent the resulting graph embeddings by hm and him, which are further used to produce
conditional and latent variables and meanwhile predict objective values, as stated in Section 4.2.

B NETWORK DESIGN PROBLEM

Given a complete directed graph G = (V, E), each edge ejk ∈ E points from vj to vk where
vj , vk ∈ V . We denote the set of source and target nodes as S and T respectively. The features
on an edge include its capacity qjk, opening cost ojk and transportation cost hjkc for one unit of
commodity c ∈ C.

Scenarios The uncertainty exists in the demands on each node. In specific, the parameter divc denotes
the demand of commodity c on node v, in the i-th scenario. A penalty fs is given to a source node
if its commodities are not fully transported in a scenario due to the capacity limit of opened edges.

Decision variables The decision variable in the first stage is denoted by xjk. xjk = 1 means that the
edge ejk is open to transport commodities, otherwise xjk = 0. The decision variable in the second
stage is denoted by yijkc, which means the units of commodity c transported along the edge ejk in
the i-th scenario.

13

Published as a conference paper at ICLR 2022

The objective of NDP is to decide the edges to be opened, which minimizes the total opening cost
and expected transportation cost (including the penalty). The SIP formulation is expressed as:

min
∑
ejk∈E

ojkxjk +
1

N

N∑
i=1

(∑
c∈C

∑
ejk∈E

tjkch
i
jkc +

∑
s∈S

fszsc
)

(13)

s.t.
ejk∈E∑
vj=v

yijkc −
ejk∈E∑
vk=v

yijkc = divc, ∀(v, c, i) ∈ V × C × {1, . . . , N} (14)

ejk∈E∑
vj=t

yijkc =

ejk∈E∑
vk=s

yijkc = 0, ∀(s, t, c, i) ∈ S × T × C × {1, . . . , N} (15)

disc ≤
ejk∈E∑
vj=s

yijkc +Mzsc, ∀(s, c, i) ∈ S × C × {1, . . . , N} (16)

∑
c∈C

yijkc ≤ qjkxjk, ∀(vj , vk, i) ∈ V × V × {1, . . . , N} (17)

zsc, xjk ∈ {0, 1}; yijkc ∈ [0,∞). (18)
where M is a large value which ensures that the source node will not be penalized if all its com-
modities are transported.

C FACILITY LOCATION PROBLEM

The facility location problem comprises F and C locations for facilities and customers, respectively.
Each facility location is featured by an opening cost of , f ∈ {1, . . . , F} and a facility has q units of
resources that can be provided to customers. We assume that the number of facilities to be opened
is not larger than v. For each customer c ∈ {1, . . . , C}, it consumes qcf units of resources if it is
served by the facility at the location f , and the induced service cost is denoted by scf .

Scenarios The uncertainty exists in the presence of customers. In specific, the parameter hic refers to
the presence of the customer c in the i-th scenario, i.e., hic = 1 means that the customer c is present
to be served in scenario i, otherwise hic = 0. A penalty bf is given to the facility f in a scenario if
one additional unit of resource is needed for it to meet the demand.

Decision variables The decision variable in the first stage is denoted by xf . xf = 1 means that
a facility is open at location f to provide services, otherwise xf = 0. The second-stage decision
variables include yicf and zif . In specific, yicf = 1 means that the customer c is served by facility
at location f in the i-th scenario, otherwise yicf = 0. zif means the quantity of additional resources
required at facility location f to meet the total demand of its customers, in the i-th scenario.

The objective is to decide the locations to build the facilities, so as to minimize the total opening
cost and the expected service cost including the potential penalty. The two-stage SIP formulation of
the facility location problem is expressed as:

min
∑
f∈F

ofxf +
1

N

N∑
i=1

(∑
c∈C

∑
f∈F

scfy
i
cf +

∑
f∈F

bfz
i
f

)
(19)

s.t.
∑
f∈F

xf ≤ v, (20)

∑
c∈C

qcfy
i
cf ≤ qxf + zif , ∀(f, i) ∈ F × {1, . . . , N} (21)

zif ≤Mxf , ∀(f, i) ∈ F × {1, . . . , N} (22)∑
f∈F

yicf = hic, ∀(c, i) ∈ C × {1, . . . , N} (23)

xf , y
i
cf ∈ {0, 1}; zif ∈ [0,∞), (24)

14

Published as a conference paper at ICLR 2022

where M is a large value that constrains zif to 0 if xf = 0, so as to ensure that the facility f will not
be penalized if it is not open.

D DETAILS OF INSTANCE GENERATION

We generate NDP instances with 14 nodes, in which the commodities on two source nodes are trans-
ported to another two target nodes to meet their demands. The remaining nodes are only for transi-
tion without demands. We set two types of commodities and their quantities are uniformly sampled
from [5, 15] in each scenario. For each edge, we uniformly sample the opening cost, shipping cost
and capacity from [3, 11], [5, 11] and [10, 41], respectively. A penalty 1000 will be triggered for each
source node if its commodities cannot be fully transported due to the capacity limit of opened edges.
For FLP, we consider 10 facility nodes and 20 customer nodes, with their coordinates uniformly
sampled from the unit square [0, 1]× [0, 1]. The opening cost and capacity for each facility are uni-
formly sampled from [40, 81] and [30, 60]. We generate binary values through Bernoulli sampling
for customer nodes to indicate their presence in a scenario, with probabilities uniformly sampled
from [0.4, 0.6] for each node. A penalty 1000 is set for each facility node if it cannot meet one
unit of demands. We generate 200 scenarios for each instance of both problems. To test the gen-
eralization performance, we generate larger instances by doubling and quadrupling the number of
transition nodes for NDP, respectively. We do the same to both facility and customer nodes for FLP.
Regarding the scenario, we also double and quadruple its cardinality in both problems.

E TRAINING DETAILS FOR THE TWO BASELINES

Scenario-M This method aims to generate one scenario, which can result in a good approximate
solution. It is not easy since for each instance, sufficient scenarios need to be evaluated to attain the
target scenario for supervised learning. To avoid much computational burden, Bengio et al. (2020)
compute the average of scenarios as the initial one and then iteratively improve it to derive a similar
solution as the optimal one. However, the improvement heuristic used cannot guarantee that the
attained one exists in the original set of scenarios. To tackle this issue, we adapt the method to
track the improvement along existing scenarios. Specifically, we find the 20 scenarios nearest to the
average and compute the MIPs defined by each of them with the context. We determine the target
scenario by picking the one with the most similar solution to the optimal one. This method could be
used for both NDP and FLP.

We conduct the same featurization as described in Appendix A.4 in (Bengio et al., 2020), and use
both linear regression (LR) and artificial neural network (ANN) with MSE loss. In addition, we also
use the same GCN in our method to directly process raw parameters in SIP instances. Specifically,
we only input the context with the average of scenarios to GCN, and the graph embedding is linearly
projected into output to estimate scenarios. The reported results in the main paper are delivered by
GCN, which we find outperforms LR and ANN in most cases.

Solution-M Following (Abbasi et al., 2020), we directly predict the first-stage solution in both
NDP and FLP. Despite the machine learning algorithms listed in the paper, we use the same GCN
in our method for training. It is more powerful to process the raw parameters under the graph
representation. In our cases, the raw parameters are the static parameters in the context for both
NDP and FLP. We take them as the input into GCN and the output dimension is same as the number
of first-stage decision variables. If there is no static parameters on nodes or edges, we use 0 for them
to run GCN as usual.

For both supervised methods, we use 12,800 instances (of normal size) in the training with the
number of epochs 100, batch size 64 and learning rate 0.001. We test them with diverse instances as
described in corresponding experiments in the main paper.

F ADDITIONAL RESULTS ON LARGE FLP

We evaluate our methods on FLP of large sizes to show the trend of the average error as the number
of representative scenarios grows. We follow the experimental setting in Section 5.3 and apply the
trained model to solve 50 instances from FLP (60; 200) and FLP (120; 200). We set K from 1 to

15

Published as a conference paper at ICLR 2022

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Representatives (K)

0

20

40

60

80
Av

er
ag
e
Er
ro
r

FLP (60; 200)
K-medoids
CVAE-SIP
CVAE-SIPA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Representatives (K)

0

10

20

30

40

50

Av
er
ag
e
Er
ro
r

FLP (120; 200)
K-medoids
CVAE-SIP
CVAE-SIPA

Figure 2: Errors with different values of K

20 and thus attain solutions with varying numbers of representative scenarios. The curve of aver-
age approximation errors is plotted in Figure 2. We observe that both CVAE-SIP and CVAE-SIPA
persistently reduce errors towards 0 as K grows. It means that our methods are consistently attain-
ing more effective representatives from scenarios, which help deliver better solutions. Meanwhile,
CVAE-SIP and CVAE-SIPA outperform K-medoids with different K on both problems, especially
on FLP (120; 200). It again verifies the merit of the learned representations for solving SIP prob-
lems. The comparison between CVAE-SIP and CVAE-SIPA implies that though CVAE-SIPA is
superior to CVAE-SIP at the early stage of the curve, i.e., K=1,. . .,3, they are on par with each other
when more representatives are used eventually.

Table 5: Results on distributions and dependencies

NDP (14; 200); Normal NDP (14; 200); Binomial

K=3 K=5 K=10 K=3 K=5 K=10
Method Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time

CPLEX 513.82 0.00 16s 513.82 0.00 16s 513.82 0.00 16s 510.08 0.00 20s 510.08 0.00 20s 510.08 0.00 20s
Scenario-M 1039.48 0.93 0.8s 1039.48 0.93 0.8s 1039.48 0.93 0.8s 1271.23 1.21 0.6s 1271.23 1.21 0.6s 1271.23 1.21 0.6s
Solution-M 678.74 0.34 0.8s 678.74 0.34 0.8s 678.74 0.34 0.8s 729.81 0.51 0.2s 729.81 0.51 0.2s 729.81 0.51 0.2s
K-medoids 662.48 0.30 0.2s 585.66 0.14 0.3s 546.51 0.06 0.5s 684.71 0.34 0.3s 623.76 0.22 0.3s 583.25 0.14 0.5s
CVAE-SIP 622.98 0.23 0.6s 548.45 0.07 0.6s 527.59 0.03 0.9s 695.60 0.36 0.6s 592.40 0.16 0.6s 555.35 0.09 0.9s

CVAE-SIPA 562.87 0.11 0.5s 551.94 0.07 0.6s 531.94 0.04 0.8s 622.91 0.22 0.5s 592.91 0.16 0.6s 540.54 0.06 0.9s

NDP (14; 200); D0 NDP (14; 200); D1

K=3 K=5 K=10 K=3 K=5 K=10
Method Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time

CPLEX 563.16 0.00 17s 563.16 0.00 17s 563.16 0.00 17s 617.21 0.00 17s 617.21 0.00 17s 617.21 0.00 17s
Scenario-M 1061.20 0.87 0.7s 1061.20 0.87 0.7s 1061.20 0.87 0.7s 1434.12 1.37 0.9s 1434.12 1.37 0.9s 1434.12 1.37 0.9s
Solution-M 754.11 0.38 0.6s 754.11 0.38 0.6s 754.11 0.38 0.6s 1282.59 1.12 0.6s 1282.59 1.12 0.6s 1282.59 1.12 0.6s
K-medoids 1086.43 0.93 0.3s 744.53 0.32 0.4s 635.58 0.13 0.5s 1091.11 0.79 0.3s 816.62 0.33 0.3s 692.81 0.12 0.6s
CVAE-SIP 1070.44 0.89 0.6s 698.18 0.24 0.6s 632.03 0.12 0.9s 1180.53 0.90 0.6s 809.02 0.31 0.6s 675.19 0.09 0.9s

CVAE-SIPA 678.80 0.20 0.5s 663.97 0.18 0.6s 578.57 0.03 0.8s 758.14 0.23 0.5s 737.81 0.19 0.5s 643.50 0.04 0.8s

G GENERALIZATION ACROSS DISTRIBUTIONS AND DEPENDENCIES

We test the generalization performance of our method on NDP with scenarios sampling from the
Normal distribution and Binomial distribution. For the former, we set the expectation and standard
deviation to 10 and 2, respectively. For the latter, we set the number of runs and the probability to 20
and 0.5. The results are summarized in the upper half of Table 5. We observe that our methods con-
sistently outperform other learning based approaches with scenarios from both distributions. When
K=10, both CVAE-SIP and CVAE-SIPA achieve near-optimal solutions with slight approximation
errors. On the other hand, it can be found that the results delivered by CVAE-SIPA are generally
superior or comparable to those by CVAE-SIP, suggesting a better cross-distribution generalization.

In our training, we do not assume explicit dependencies between the context and scenarios, following
the settings in (Keutchayan et al., 2020; Nair et al., 2018; Abbasi et al., 2020). However, we would
like to show that the trained networks can well generalize to the dependent settings. In specific, we
construct in NDP two dependencies between the demand scenarios and costs in contexts as follows:

16

Published as a conference paper at ICLR 2022

Figure 3: Objective prediction against latent representations (NDP)

Figure 4: Objective prediction against latent representations (FLP)

1) D0: for each instance, the lower bound of Uniform demands is determined by the smaller value of
the average opening and shipping cost in the context; 2) D1: the lower and upper bounds of Uniform
demands are determined by the smaller and larger value of the average opening and shipping cost,
respectively. We generate 50 instances for each dependency. From the lower half of Table 5, we
observe that our methods outperform learning based baselines except the cases with K=3, where
CVAE-SIP loses its advantage over a few baselines. Generally, it indicates that our methods possess
fairly good generalization abilities to the setting where scenarios depend on the contexts.

H RESULTS ON OBJECTIVE PREDICTION

We first evaluate our trained model for the prediction task in three FLP instances, which are ran-
domly generated from FLP (30; 200), FLP (120; 200) and FLP (30; 800), respectively. For each
instance, we draw a scatter plot of the 2-dimensional latent representations for scenarios and repre-
sent the normalized objective values using different colors. The results are shown in the upper half

17

Published as a conference paper at ICLR 2022

Table 6: Comparison with OR methods

NDP (14; 200) FLP (30; 200)

K=5 K=10 K=20 K=5 K=10 K=20
Method Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time

CPLEX 635.75 0.00 18s 635.75 0.00 18s 635.75 0.00 18s 236.71 0.00 18s 236.71 0.00 18s 236.71 0.00 18s
CSSC 695.08 0.10 17s 689.43 0.09 17s 669.59 0.05 30s 338.84 0.39 12s 299.42 0.23 12s 264.98 0.16 14s

Scen-red 951.54 0.50 0.3s 739.41 0.18 0.5s 650.80 0.03 1s 640.07 1.54 0.3s 323.34 0.29 0.3s 246.57 0.08 1s
CVAE-SIP 930.73 0.48 0.7s 734.24 0.15 0.9s 637.99 0.02 1s 929.61 2.87 0.7s 482.70 0.99 0.7s 282.49 0.23 1s

CVAE-SIPA 769.70 0.24 0.6s 687.68 0.08 0.8s 642.12 0.03 1s 709.08 1.71 0.6s 381.41 0.58 0.7s 264.01 0.15 1s

NDP (44; 200) FLP (120; 200)

K=5 K=10 K=20 K=5 K=10 K=20
Method Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time

CPLEX 580.67 0.00 23m 580.67 0.00 23m 580.67 0.00 23m 484.60 0.00 1h 484.60 0.00 1h 484.60 0.00 1h
CSSC 618.10 0.07 2m 617.94 0.07 2m 612.77 0.06 4m 1101.83 1.28 34s 844.24 0.76 42s 715.46 0.59 2m

Scen-red 894.90 0.57 3s 667.90 0.15 6s 616.23 0.07 15s 1056.69 1.19 6s 793.45 0.68 15s 607.69 0.26 60s
CVAE-SIP 1079.80 0.84 5s 615.99 0.06 8s 588.18 0.02 16s 1585.53 2.27 12s 985.45 0.99 35s 627.30 0.28 56s

CVAE-SIPA 682.35 0.17 5s 627.62 0.08 8s 581.07 0.00 17s 2051.45 3.13 16s 910.50 0.84 33s 594.33 0.22 69s

of Figure 4, and the corresponding ground truth (i.e. optimal solution values attained by CPLEX)
are displayed in the lower half. It is clear that the prediction is fairly accurate with almost the same
patterns as the target values in the ground truth, even for the larger problem size or scenario cardi-
nality. It indicates that our design for semi-supervised learning is effective and the trained model
exhibits a desirable generalization ability.

We further evaluate the objective prediction on NDP. Specifically, the trained model is used to predict
objective values for the scenarios from three instances, which are randomly generated from NDP
(14; 200), NDP (44; 200) and NDP (14; 800), respectively. From the results in Figure 3, we observe
that our method can also predict the objective values accurately for NDP. Especially, the pattern of
predicted values for NDP (14; 800) is almost indistinguishable from the one by ground truth. It
reveals that our design for the semi-supervised learning is effective across distinct SIPs.

I COMPARISON WITH OR METHODS

In this section, we compare our methods with two mature methods from operations research (OR),
i.e., 1) Scen-red (Heitsch & Römisch, 2003), which seeks a subset of scenarios that is closest to
original scenarios in terms of Fortet-Mourier probability metric, and 2) CSSC (Keutchayan et al.,
2020), which solves a MILP to derive representative scenarios, each of which estimates the average
objective of some other scenarios. They are on behalf of the distribution-oriented and problem-
oriented paradigm, respectively. The tested instances are the same as the ones in Section 5.2 and
5.3. From the results in Table 6, we observe that our methods are comparable to or better than the
baselines and especially on NDP. While CVAE-SIP and CVAE-SIPA are inferior to CSSC on NDP
with K=5, they attain the best approximate solutions when K=10 and 20. Notably, the errors of our
methods are close to 0 on both normal and large instances when K=20. For FLP, while our methods
are inferior to CSSC and Scen-red on FLP when K=5 and 10, CVAE-SIPA surpasses CSSC on FLP
(30; 200) and gains the smallest objective value and error on FLP (120; 200), when K=20. Since
our runtime is shorter than CSSC and similar to Scen-red, the results again verify that our methods
are effective to reduce scenarios for good approximations.

J ABLATION STUDY

We further conduct an ablation study on NDP to verify the effectiveness of the learned scenario
representations, and meanwhile investigate the mixed use of these representations with the original
scenarios. In specific, we enrich the original scenario set for clustering in the following ways: 1)
CVAE-SIPA+Ori.: we concatenate the predicted objective values with their original scenarios (rather
than the learned representations in CVAE-SIPA); 2) CVAE-SIP+Ori.: we concatenate the learned
representations with their original scenarios (rather than merely use the learned representations in
CVAE-SIP). These two kinds of mixed representations are used for clustering to find representative
scenarios, where we set K=5, 10, 20. The tested instances are the same as the ones in Section
5.2 and 5.3. As shown in Table 6, both CVAE-SIP and CVAE-SIPA are generally superior to their

18

Published as a conference paper at ICLR 2022

Table 7: Ablation study

NDP (14; 200) NDP (44; 200)

K=5 K=10 K=20 K=5 K=10 K=20
Method Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time Obj. Error Time

CPLEX 635.75 0.00 18s 635.75 0.00 18s 635.75 0.00 18s 580.67 0.00 23m 580.67 0.00 23m 580.67 0.00 23m
K-medoids 976.47 0.54 0.3s 761.18 0.19 0.6s 677.02 0.08 1s 803.99 0.38 3s 652.78 0.12 7s 595.15 0.04 14s

CVAE-SIPA+Ori. 917.51 0.45 0.6s 741.81 0.17 0.9s 699.89 0.09 1s 918.16 0.57 5s 700.10 0.19 8s 619.29 0.06 18s
CVAE-SIPA 769.70 0.24 0.6s 687.68 0.08 0.8s 642.12 0.03 1s 682.35 0.17 5s 627.62 0.08 8s 581.07 0.00 17s

CVAE-SIP+Ori. 1208.19 0.93 0.6s 850.85 0.34 0.8 679.07 0.06 1s 1056.61 0.82 5s 785.60 0.32 9s 603.39 0.04 20s
CVAE-SIP 930.73 0.48 0.7s 734.24 0.15 0.9s 637.99 0.02 1s 1079.80 0.84 5s 615.99 0.06 8s 588.18 0.02 16s

1 Bold means the method outperforms its counterpart.

counterparts. The advantage of CVAE-SIPA over CVAE-SIPA+Ori. indicates that with the same
predicted objective values, our learned representations are effective to attain better representatives
than the original scenarios. Moreover, CVAE-SIP is superior to CVAE-SIP+Ori. probably because
the learned representations are overwhelmed by the original scenarios to some extent. It is also
interesting to identify an advantage that CVAE-SIP > K-medoids > CVAE-SIP+Ori, which means
the pure use of learned representations or original scenarios is better than the mixed use of both.

19

	Learning scenario representation for solving two-stage stochastic integer programs
	Citation

	Introduction
	Related Work
	Preliminaries
	Two-stage stochastic integer programs
	Conditional Variational Autoencoder

	Methodology
	CVAE for scenario representation
	Neural networks
	Training & inference
	Applications

	Experiments
	Setup
	Comparison analysis
	Generalization across problem sizes
	Generalization across scenario cardinalities
	Objective prediction

	Conclusions and future work
	Graph convolutional network
	Network design problem
	Facility location problem
	Details of instance generation
	Training details for the two baselines
	Additional results on large FLP
	Generalization across distributions and dependencies
	Results on objective prediction
	Comparison with OR methods
	Ablation study

