
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2020

Using reinforcement learning to minimize the probability of delay Using reinforcement learning to minimize the probability of delay

occurrence in transportation occurrence in transportation

Zhiguang CAO
Singapore Management University, zgcao@smu.edu.sg

Hongliang Guo

Wen Song

Kaizhou Gao

Zhengghua Chen

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Transportation Commons

Citation Citation
CAO, Zhiguang; Guo, Hongliang; Song, Wen; Gao, Kaizhou; Chen, Zhengghua; Zhang, Le; and Zhang, Xuexi.
Using reinforcement learning to minimize the probability of delay occurrence in transportation. (2020).
IEEE Transactions on Vehicular Technology. 69, (3), 2424-2436.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8158

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8158&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8158&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1068?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8158&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Zhiguang CAO, Hongliang Guo, Wen Song, Kaizhou Gao, Zhengghua Chen, Le Zhang, and Xuexi Zhang

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/8158

https://ink.library.smu.edu.sg/sis_research/8158

1

Using Reinforcement Learning to Minimize the
Probability of Delay Occurrence in Transportation

Zhiguang Cao, Hongliang Guo∗, Wen Song, Kaizhou Gao, Zhenghua Chen, Le Zhang, Xuexi Zhang

Abstract—Reducing traffic delay is of crucial importance for
the development of sustainable transportation systems, which is
a challenging task in the studies of stochastic shortest path (SSP)
problem. Existing methods based on the probability tail model
to solve the SSP problem, seek for the path that minimizes the
probability of delay occurrence, which is equal to maximizing
the probability of reaching the destination before a deadline (i.e.,
arriving on time). However, they suffer from low accuracy or high
computational cost. Therefore, we design a novel and practical
Q-learning approach where the converged Q-values have the
practical meaning as the actual probabilities of arriving on time
so as to improve the accuracy of finding the real optimal path.
By further adopting dynamic neural networks to learn the value
function, our approach can scale well to large road networks
with arbitrary deadlines. Moreover, our approach is flexible to
implement in a time dependent manner, which further improves
the performance of returned path. Experimental results on some
road networks with real mobility data, such as Beijing, Munich
and Singapore, demonstrate the significant advantages of the
proposed approach over other methods.

I. INTRODUCTION

Transportation and mobility are crucial to the sustainable
development of any city. With the ever-increasing demands
for mobility and modern logistics, the vehicle population has
been steadily growing over the past several years from 920
million units in 2006 to 1.3 billion units in 2015 [1]. One
of the adverse consequences of the vehicle population growth
is the occurrence of traffic delay, which usually causes huge
economic loss and inestimable environmental damage [2], [3].
Addressing the issue of traffic delay attracts broad attention
from government, industry and research community due to
its high relevance to people’s daily life. Among all solutions,
studying the stochastic shortest path (SSP) problem is con-
sidered as an efficient way to mitigate the traffic delay and
enhance the driver’s mobility experience, which may also help
to alleviate traffic congestion [4], [5]. On the other hand, as one

* Corresponding Author: Hongliang Guo.
Zhiguang Cao is with the Department of Industrial Systems Engineering and

Management, National University of Singapore, Singapore (email: zhiguang-
cao@outlook.com).

Hongliang Guo is with the School of Automation Engineering,
University of Electronic Science and Technology of China (email:
guohl1983@uestc.edu.cn).

Wen Song is with the Institute of Marine Science and Technology, Shan-
dong University, China (email: wensong@email.sdu.edu.cn).

Kaizhou Gao is with the Macau Institute of Systems Engineering,
Macau University of Science and Technology, Macau, China (email: kz-
gao@must.edu.mo).

Zhenghua Chen and Le Zhang are with the Institute for Infocomm Research
(I2R), Singapore(email: chen0832@e.ntu.edu.sg, zhangleuestc@gmail.com).

Xuexi Zhang is with the School of Automation, Guangdong University of
Technology, China (email:zxxnet@gdut.edu.cn).

of the most attractive emerging technologies, reinforcement
learning has been widely and successfully adopted in various
scenarios, e.g., Alphago [6], learning actions for autonomous
vehicles [7], and solving combinatorial optimization prob-
lem [8]. In this paper, we focus on nourishing the solutions to
the SSP problems by exploring the approach of reinforcement
learning, which in particular, aims to minimize the probability
of delay occurrence in transportation.

A. SSP Problem and Arriving on Time

Different from deterministic shortest path problem which
seeks static routes (e.g., the shortest path), the stochastic
shortest path problem takes into account various uncertain-
ties in real-world traffic and yields route recommendations
dynamically, leading to a better solution to the development of
sustainable transport systems [9], [10]. The least expected time
(LET) path was first proposed to address the stochastic shortest
path problem, where a path is optimal if it guarantees least
expected travel time [11]. Miller-Hooks and Mahmassani [12]
solved the time dependent LET path problem with and without
waiting policy. Then, Waller and Ziliaskopoulos [13] solved
the LET path problem considering correlations between travel
time of road links. The promising aspect about the LET path
finding is that it can be converted into a deterministic problem
which can be efficiently solved by traditional Dijkstra or A∗

algorithm. However, the LET path may fail to meet driver’s
expectation if there is a large variance of travel time. There-
fore, Bell and Cassir [14] proposed and solved the problem of
Mean-Risk path, which aims to find a path that minimizes the
sum of linear combination of mean and variance regarding
the travel time. Nikolova and Stier-Moses, and Lianeas et
al. [15], [16] improved the computational efficiency of the
Mean-Risk path by developing a quasi-convex optimization
based solution. However, real-world transport scenarios often
involve an important requirement of specific deadlines [17].
For example, in the cases of organ delivery, fire rescue, and
catching up flights, drivers must reach destination before a
specific deadline in which the LET or Mean-Risk path may
fail to meet this requirement.

With the deadlines, Fan et al. [18] proposed the probability
tail model where an optimal policy is defined as finding
the next node to visit, so as to minimize the probability of
delay occurrence for the whole path, which is also equal to
maximizing the probability of arriving at destination before the
deadline (i.e., arriving on time). This model has two attractive
properties: 1) it takes the specific demand of deadline into
account, giving drivers an extra dimension of settings and 2) it

2

uses a probabilistic instead of deterministic metric to evaluate
stochastic traffic situations, which is more realistic especially
with uncertainties [18], [19]. Christman and Cassamano [20]
presented a dynamic programming based approach to solve
this problem. Particularly, given a source, destination, and time
budget, the goal is to adaptively choose the next node to visit
to maximize the probability of arriving to the destination on
time. However, the computation efficiency is not justified in
this work. To improve the computational efficiency of solving
the probability tail model for the stochastic shortest path prob-
lem, several quasi-convex optimization based solutions were
developed [19], [21], [22]. However, these solutions are limited
by strong assumptions, such as Gaussian distribution of travel
time, independence among travel time on different road links,
and relatively large deadlines. These assumptions are imposed
because the analytic formula of the model does not follow any
canonical optimization forms, thus preventing its wide applica-
tions in real transport systems. To overcome these limitations,
a data-driven solution was proposed [23], [24], [25], which
formulates path finding as a cardinality minimization problem.
The cardinality minimization is then approximately solved by
reformulating it as a mixed integer linear programming (MILP)
problem based on the travel time data of each road link.
This data-driven approach circumvents strong assumptions, but
significantly decreases computation efficiency. Additionally, its
approximation solution leaves room for further improvement
in accuracy for this arriving on time problem.

B. Adaptive and Heuristic Solutions to SSP Problem
The solutions in the preceding subsection always explicitly

formulate the SSP problem as an optimization format, such as
integer linear programming or mixed integer programming.
Although those solutions can express various and complex
constraints and objective functions conveniently, they suffer
from prohibitive computation inefficiency. On the other hand,
adaptive and heuristic solutions are attractive, because they
can guarantee tractable computation for SSP problems of
large scale, and less depend on optimization model. Eiger
et al. [26] introduced a preference structure of paths over
probabilistic networks, and proved that stochastic optimal path
(SOP) under linear and exponential utility functions can be
solved efficiently by the heuristic solutions with satisfactory
accuracy, such as Dijkstra-like methods. Current et al. [27]
proposed a solution to the stochastic shortest covering path
problem, and solved it by a heuristic based on Lagrangian
relaxation technique. They further developed an exact al-
gorithm evolving from a branch and bound method, which
can efficiently solve the problem. Bander and White [28]
applied AO* algorithm to non-stationary stochastic shortest
path problem, by using heuristic function as a lower bound of
cost. Thus, a portion of the unnecessary states were eliminated,
which significantly saved computation time in comparison
to the dynamic programming approach. Rambha et al. [29]
formulated an adaptive transit routing problem as finite horizon
Markov decision process and solved it via a dynamic program-
ming approach, before which, an elimination of the redundant
individual states was adopted to exclude some unnecessary so-
lution candidates. To circumvent the disadvantages (i.e., strong

assumption and curse of dimensionality) of the parametric
model based methods for adaptive routing, Mao and Shen [30]
applied reinforcement learning as a non-parametric model-free
method to minimize the average travel time in stochastic time-
dependent network. The Q-learning method for both discrete
and continuous state space demonstrated encouraging evidence
for solving the real world routing problem. More recently,
there is a trend to apply deep neural network or deep rein-
forcement learning for solving the variants of SSP problem,
such as traveling salesman problem (TSP) or vehicle routing
problem (VRP). In particular, those methods mainly adopt
Pointer Network, self-attention, Transformer, reinforcement
learning or their combinations to perform decision making for
sequentially selecting nodes to visit next [31], [32], [33], [34].

Although the adaptive and heuristic solutions have achieved
big success in the general SSP problem or its variants, none of
them have been applied to solve the arriving on time based SSP
problem. Therefore, it is significant to leverage the advantages
of the probability tail model in SSP problem, and the model-
free nature as well as the tractable computation of the adaptive
and heuristic solutions.

C. Our Contribution

In this paper, we consider an adaptive solution, i.e., Q-
learning approach, to solve the arriving on time based SSP
problem. Q-learning is generally model-free, and it does not
need to explore the traffic engineering knowledge to model an
exponential-like function of local traffic condition. In contrast,
Q-learning takes advantage of the Temporal-Difference (TD)
prediction with a data-driven nature, which directly takes
the real traffic data as input. Thus, it does not require the
problem to follow any optimization forms, and inherently gets
rid of those strong assumptions in conventional methods. On
the other hand, relying only on trial data, Q-learning has
been used in many traffic related problems such as traffic
signal control [35], cooperative route planning [36], traffic flow
control [37], and adaptive routing [30], but not for the arriving
on time based stochastic shortest path problems. To apply
Q-learning in our work, we need to address two additional
challenges: 1) how to design the algorithm so as to achieve
optimal or close-to-optimal solutions and 2) how to deal with
the extremely large state space caused by infinite number of
possible (continuous) deadlines and large-scale road networks.

Specifically, our proposed Q-learning approach is designed
to maximize the probability of arriving on time, which is
approximated as the ratio between the number of times in
which the vehicle reaches the destination before deadline, i.e.,
success, and the total number of travels. Each success event
is considered as a reward. Moreover, road intersections (i.e.,
the locations of vehicle) and time deadlines in the probability
tail model are naturally represented as states. In so doing, the
converged Q-values have the practical meaning as the actual
probabilities of arriving on time; hence exactly achieving the
goal. Moreover, by employing a dynamic neural network to
learn the value function, our approach scales well to large
road networks and can support both discrete and continuous
values of the deadlines. Moreover, our approach is flexible in

3

incorporating more relevant traffic factors and provide time
dependent routing service. We conduct extensive experiments
and the results on both artificial and real road networks justify
the significant advantages of our approach over other methods.

We wish to note that this paper is an extension to our
prior work [38]. The major extensions include: the proof of
convergence for γ = 1 in our stochastic shortest path problem;
the warm start strategy for both discrete deadlines and contin-
uous deadlines, and their improvements by experimentation;
one more basic Q-learning method as benchmark; and the
enrichment of introduction and related work.

II. Q-LEARNING FOR DISCRETE DEADLINES

We first present the mathematical formulation of the prob-
ability tail model in the SSP problem, and then describe this
arriving on time based SSP problem as a Markov Decision Pro-
cess (MDP). Afterwards, we present the Q-learning approach
to solve the MDP. Generally, Q-learning is tablewise [39].
Therefore, we start with a simpler case in this section in which
each deadline takes a value from a discrete finite set (i.e.,
discrete time budget). The purpose is to clearly showcase the
special design of our approach in which the converged Q-
values have the practical meaning as the actual probabilities of
arriving on time, achieving an optimal solution. We will then
show in the next section on how to extend the basic model of
the Q-learning approach to address continuous deadlines (i.e.,
continuous time budget) and large road networks by adopting
dynamic neural networks.

A. Analytic Formula of Probability Tail Model

We start with a directed graph G = (V,L), where V is
the set of nodes, representing road intersections, and L is the
set of arcs, representing road links. Besides, we have o,d ∈
V , representing the origin and destination, respectively. Thus,
the objective considered in the probability tail model can be
formulated as follows [24], [20]:

max
~x

Prob(~w>~x ≤ τ)
∣∣∣M~x = ~b; ~x ∈ {0, 1}|L|, (1)

where ~w is the vector containing the random travel times for
the road links; M is the node-arc incidence matrix of G with
size of |V| × |L|, and each column of M corresponds to an
arc, with the two ends (nodes) being 1 and -1, respectively,
and the remaining elements being 0; τ is the time budget with
respects to the user-defined deadline; ~b is the o-d (i.e., origin-
destination) with size of |V| × 1, all elements of which are
zeros except for the origin o (“1”) and the destination d (“-
1”); and ~x is the set of road links with size of |L|× |1, where
an element is “1” if the road link is on the corresponding path.
The equality constraint guarantees that ~x is a connected path
from the origin to the destination. Eq. (1) aims to maximize the
probability of reaching destination before the deadline, which
is equal to minimizing the probability of delay occurrence.

B. MDP Expression and the Q-learning Approach

The probability tail model in Eq. (1) is difficult to solve
efficiently because it does not follow typical optimization

forms, e.g., convex or quasi-convex optimization. However, it
can be viewed from a data-driven perspective. Specifically, let
a vehicle traverse on a path for N times. For each time, if the
vehicle reaches the destination within the time budget τ , the
counter is increased by one. Then, the probability of arriving
on time is approximated as the ratio between the counter and
N . Note that, in this paper, we adopt this ratio to represent
the probability, thus the arriving on time based SSP problem
can be naturally modeled as an MDP, which aims to find a
path with the maximum probability of arriving on time, given
any o-d pair and any deadline. In light of this, the Q-learning
approach could be explored to solve this MDP [39].

Particularly, with respects to the arriving on time based SSP
problem, the MDP is defined by a five-tuple (S, A, P s

′

s,a, R(s),
γ ∈ [0, 1]), where,
• S = {〈v1, τ1〉, 〈v2, τ2〉, . . .} represents the state space.

The states s, s′ ∈ S, s = 〈v, τ〉, s′ = 〈v′, τ ′〉, represent
the current state and the next state it transited to. v, v′ ∈
V , and v′ is the succeeding intersection of v. Γ (τ, τ ′ ∈ Γ)
is the set of time budgets (or remaining time budgets)
with respects to the deadline, and we have τ -tv,v′ = τ ′,
where tv,v′ is the sampled travel time on road link lv,v′
(lv,v′ ∈ L). τ ′ is the remaining time budget at v′. We
would like to note that the time budget at the origin o is
determined by user. For the arriving on time based SSP
problem, we have to consider both road intersection and
time budget in each state (i.e., state space is |V| × |Γ|).1

• A is the finite set of actions, and a ∈ A, i.e., driving
directions2.

• P s
′

s,a = Pr(st+1 = s′|st = s, at = a) is the distribution
of travel time cost by action a such that the vehicle will
move from intersection v with time budget τ at step t
to intersection v′ with remaining time budget τ ′ at step
t+ 1.

• γ ∈ [0, 1] is the discount factor.
• R(s′) is the immediate reward received after transiting

to intersection v′ with time budget τ ′ from intersection v
with time budget τ . The reward depends on whether the
vehicle arrives on time or not. The details are defined in
Section II-C.

Consequently, the generalized update of Q-values within an
episode is formulated as follows:

Qt+1(s, a)=Qt(s, a)+α[R(s′)+γmax
a

Qt(s
′, a)−Qt(s, a)],(2)

s← s′, (3)

where Qt(s, a) is the value of state-action pair at the t-
th step, and α ∈ (0, 1] is the learning rate. To balance
exploitation and exploration, during train, we adopt the classic
ε-greedy strategy to select actions. We note that our Q-learning
approach is flexible to consider other practical factor(s) in the
states, e.g., weather condition, as long as we integrate it into
s = 〈v, τ〉. Moreover, time dependent routing service by our
Q-learning approach is applicable if P s

′

s,a is obtained in a time

1This is precisely why it is challenging to deal with the continuous time
budget, which will be addressed in the next section.

2Suppose at the intersection of a crossroad, the direction can be going
straight, turning left, turning right, or turning back.

4

dependent manner, which is easy to achieve due to the data-
driven nature of our approach. Since the basic Q-learning can
only cope with small state space, we only consider small graph
of map, and finite time budget and travel time in this section.
To achieve the latter, intuitively, we may apply discretization
by rounding up the time budget and travel time into integers.

C. Q-Value Representation and Path Planning

The converged Q-values in standard Q-learning represent
the expected summation of discounted future reward, i.e.,
Q∗(s, a) = E (

∑∞
t=0 γ

tRt), where γ ∈ (0, 1] is the discount
factor, and Rt is the immediate reward at the t-th step.
We define the reward and discount factor in a way that
the converged Q-value represents the probability of arriving
on time. Specifically, we describe the immediate reward as
R(s′) ∈ {0, 1}, and R(s′) = 1 if and only if v′ = d and
τ − tv,v′ ≥ 0. Thus, the immediate reward is 1 only at the
intersection node preceding d if the vehicle can arrive at the
destination before the deadline. Otherwise, R(s′) = 0. We
set the discount factor γ to be 1. In this case, after an o-
d pair is determined, we update the Q-value using Eq. (2)
for each intersection, which starts with v (i.e., v = o) in
each episode. To transit to next intersection v′, we employ
the action selection policy, i.e., Softmax strategy [39]. This
strategy balances between exploration and exploitation for
the candidate succeeding intersections. Then, we use P s

′

s,a to
sample tv,v′ to decide τ ′ at v′. We repeat these steps until all
Q-values converge.

The converged Q-values can be shown to be the probabilities
of arriving on time in the following. From Eq. (2), the Q-value
converges when Qt+1(s, a) = Qt(s, a), ∀s and ∀a. After the
convergence, we have the Q-value defined as Q∗(s, a) given by
Q∗(s, a) = Q∗(s, a)+α[R(s′)+ γmaxaQ

∗(s′, a)−Q∗(s, a)].
After a simple combination and elimination, we have

Q∗(s, a) = R(s′) + γmax
a

Q∗(s′, a). (4)

As this equation will be executed for a large number of
times given different samples of rewards, in essence, it is
the averaged/expected reward. Thus, Eq. (4) can be written
as Q∗(s, a) = E (R(s′)) +γmaxaQ

∗(s′, a), which is exactly
the probability of arriving on time.

After Q∗(s, a) is reached, we can obtain an optimal path
by first stopping the Softmax strategy and then determining
the best action a∗ at the specified intersection with a certain
deadline as follows:

a∗(s) = arg max
a

Q∗(s, a). (5)

We first compute a∗(〈o, τ〉) to determine the optimal driving
direction at origin, i.e., the current state, with a user-defined
time budget with respects to the deadline. The direction will
determine the next intersection, i.e., next state. Then, we input
the second intersection with the remaining time budget into
Eq. (5), to find the next intersection. The same steps are
repeated until the destination is reached. Thus, the optimal
path can be found in an online manner.

D. Convergence Proof
Canonical Q-learning algorithms are guaranteed to con-

verge, but with an explicit constraint that the discount factor
γ should be strictly less than 1. However, in our Q-learning
algorithm for the stochastic shortest path problem, we need to
set γ = 1, which enables Q-value to represent the probability
of arriving on time. Therefore, we prove the convergence
of the algorithm with γ = 1, by answering two questions.
Firstly, whether the simple iterative step as described in Eq. (2)
converges? Secondly, where are they converging to? Also, we
are targeting at the following converged Q-values for all the
state-action pairs:

Q∗(s, a) =E (R(s′)) +γ
∑

P s
′′

s,a max
a

Q∗(s′′, a), (6)

where we use s′′ = 〈v′′, τ ′′〉 to avoid later symbol confusions.
Subtracting Eq. (2) with Eq. (6) from both sides with simple
manoeuvres, we can get:

Qt+1(s, a)−Q∗(s, a) = (1− α)(Qt(s, a)−Q∗(s, a))

+α (R(s′)− E (R(s′))) + αγ(max
a

Qt(s
′, a)−∑

P s
′′

s,amax
a

Q∗(s′′,a)). (7)

Since
∑
P s

′′

s,a = 1, we can transform Eq. (7) into:

Qt+1(s, a)−Q∗(s, a) =(1− α)(Qt(s, a)−Q∗(s, a)) +

α(R(s′)− E(R(s′))) + αγ(
∑

P s
′′

s,a max
a

Qk(s′, a)−∑
P s

′′

s,a max
a

Q∗(s′′, a)). (8)

Taking the absolute value from both sides, and performing
simple deductions, we can arrive at:

|Qt+1(s, a)−Q∗(s, a)| ≤ (1− α)|(Qt(s, a)−Q∗(s, a))|
+α|(R(s′)− E(R(s′)))|+ αγ(

∑
P s

′′

s,a|max
a

Qt(s
′, a)

−max
a

Q∗(s′′, a)|). (9)

Since the second term of Eq. (9) will filter out in the long
run. This is from the fact that they are essentially the same
component when we are sampling an infinite number of times.
Eq. (9) can be further simplified to

|Qt+1(s, a)−Q∗(s, a)| ≤ (1− α)|(Qt(s, a)−Q∗(s, a))|
+αγ(

∑
P s

′′

s,a|max
a

Qt(s
′, a)−max

a
Q∗(s′′, a)|)≤ (1−α)

|(Qt(s, a)−Q∗(s, a))|+ αγ(
∑

P s
′′

s,a max
a
|Qt(s′, a)

−Q∗(s′′, a)|). (10)

We define ∆t = maxs,a(Qt(s, a) − Q∗(s, a)), Eq. (10) can
be represented as follows:

|Qt+1(s, a)−Q∗(s, a)| ≤ (1− α)∆t+αγ
(∑

P s
′′

s,a∆t

)
≤ (1− α+ αγ)∆t. (11)

Since Eq. (11) holds for all the state-action pairs, which
indicates that:

∆t+1 ≤ (1− α+ αγ)∆t. (12)

5

In our vehicle routing, we set γ = 1, which derives that:

0 ≤ ∆t+1 ≤ ∆t. (13)

Consequently, we can conclude that ∆t will converge as
t goes to +∞, but cannot simply say that ∆t converges to
zero. We assume that ∆t converges to a constant C > 0 as
t approaches +∞, which satisfies both Eq. (2) and Eq. (6)
(i.e., the Bellman equation), and we have maxs,a |Qk(s, a)−
Q∗(s, a)| = C. However, this condition cannot hold as t goes
to infinity. Because when t goes to infinity, it means that the
remaining time budget is definitely below zero, and in that
case, we should have Qt(s, a) = Q∗(s, a) = 0, which has
been initialized. Thus, the constant C must be equal to 0.
Another perspective of the convergence with γ = 1 is the
absorbing states in the constructed MDP. Since we have added
the temporal constraint into this MDP, and whenever the travel
time violates the predefined deadline, the process stops. In par-
ticular, the agent reaches an absorbing state. This special case
assures that the agent will never accumulate infinitely large
reward even though it may execute the algorithm infinitely.

III. Q-LEARNING FOR CONTINUOUS DEADLINES

The basic model of our Q-learning approach previously
introduced will become prohibitively time-consuming in the
case with continuous deadlines (i.e., continuous time budgets)
and large road networks due to the huge size of the state
space. Therefore, we introduce a dynamic neural network
to approximate the value function, which maps the state-
related features to the maximal Q value to efficiently handle
continuous deadlines and large road networks. To this end,
we firstly present the overall update scheme and skeleton of
the approximator in Section III-A, which is a fully connected
neural network. Then, we flesh the approximator with the
requested features, labels, and procedures for parameter op-
timization in Section III-B.

A. Dynamic Neural Network for Value Function

In Q-learning, a value function is used to calculate the
optimal Q-values [39]. Particularly, the value function under
policy π is defined as follows:

V (s)π = max
a

Qπ(s, a), (14)

where Qπ(s, a) is the expected reward under policy π, which
is expressed as

∑
P s

′

s,α[V π(s′) + R(s′)]. In view of this, the
value function with any time budget can be learned from the
iteration for each intersection, formally,

Vk+1(s)=max
a

{∑
P s

′

s,a[Vk(s′) +R(s′)]
}
, (15)

where 0 ≤ V (s′) ≤ 1, V (s′) = 0 if v′ = d, and k is the
iteration number. V (·) is used to compute an optimal Q-value.

To approximate Vk(·), we adopt a two-layer dynamic neu-
ral network3 fk(·) to learn Vk(·) in each iteration, which

3Other traditional supervised machine learning methods, such as support
vector regression, can also be employed for function approximation. We
use the dynamic neural network here because it can naturally output values
between zero and one (due to its sigmoid function) for representing the
probabilities of arriving on time.

represents the probability of arriving on time from a given
intersection with a given time budget. Specifically, fk(·) is
expressed as follows:

fk(~z) = g2(g1(~z · ~w1 + u1) · ~w2 + u2), (16)

where ~z is the feature input, ~w1, u1, ~w2, and u2 are parameters
of the two-layer neural network, g1(·) and g2(·) are activation
functions. Thus, we can compute Vk(s′) on the right-hand side
of Eq. (15) through the learned fk(~z). Vk+1(s) on the left-
hand side can then be updated accordingly. It will be adopted
as new labels of the neural network to learn fk+1(~z) in the
next iteration. The steps are repeated until the value functions
converge. Afterwards, fk(·) will act as Vk(·).

B. Feature Selection and Algorithm Training

f(~z) is used to compute the probability of arriving on time
with respect to the deadline. First, the remaining time budget τ
is a suitable feature in ~z. Besides, from Eq. (1), the probability
of arriving on time is also associated with the mean and
standard deviation of travel time. Hence, we calculate the K-
shortest paths between the current location and destination.
Then, we adopt the mean ~µ and standard deviation ~σ of the
travel time on the paths as additional features. They can be
easily computed based on the travel time data on each road
link. Consequently, the feature of a training sample for s can
be expressed as ~z = [τ, ~µ, ~σ]>, where the lengths of ~µ and ~σ
are K. Since f(~z) will be applied for continuous time budgets,
τ in training samples should cover extensive values. Therefore,
we randomly select N time budgets, each of which is denoted
by τi, and we have τi = β · Te, where β is the deadline
parameter, and β ∈ [0, 2]. Te is the least expected travel time
from v to d. Thus, the entire feature space of an individual
intersection v is expressed as follows:

~Zs = [τ1, ~µ, ~σ; · · · ; τN , ~µ, ~σ]>. (17)

Note that the features of all intersections can be obtained
similarly. However, to reduce the computation time of training,
we may adopt only some intersections4 in the road network
to train the learning function.

Traditionally, value function V0(〈v, τ〉) is initialized as 0,
which may slow down the convergence speed [40]. Therefore,
we propose a warm start method which approximates the
probability of arriving on time for vehicles at intersection v
with time budget τ as follows:

V0(〈v, τ〉) = 1/(1 + eζ(τ−Te)), (18)

where ζ is the coefficient. Note that the warm start is also
applicable to our basic model of the Q-learning approach for
discrete deadlines as presented in Section II.

We summarize the dynamic learning process of value func-
tions in Algorithm 1. Lines 1-2 initialize parameters and
prepare feature values. In Lines 3-29, we dynamically learn the
value functions for each intersection using the neural network.
In particular, in Lines 5-14, for each intersection, we use the

4 An intuitive way is to uniformly select the intersections according to the
node index in the adjacency matrix of the map graph.

6

ALGORITHM 1: Value Function Learning
input : G = (V, E), road network; Ωv,v′ , set of travel time data

on lv,v′ ; o-d pair;
N , size of travel time data on each road link; N, the

configured neural network;
ε1, ε2, ε3, εbest the average convergence error, the total

convergence error, convergence error threshold (a small positive
number), the current best convergence error;

k, kbest, the iteration number and the best iteration
number; Φ, threshold for additional iterations.

1 Initialize V0(s) by Eq. (18); ε1 = εbest = 1; ε2 = 0;
k = kbest = 0; N = 1000; ζ = 0.025; Φ = 10.

2 Import feature data ~Zs for each s by Eq. (17);
3 while k − kbest < Φ do
4 foreach v ∈ V do
5 foreach v′ that succeeds v do
6 Sample N travel time tv,v′ out of Ωv,v′ ;
7 if v′ 6= d then
8 Compute Vk(s′) in Eq. (15) by the learned

function fk(~z) (if k ≥1), or by initial values
V0(s′) (if k = 0);

9 end
10 else
11 Compute the reward R(s′) in Eq. (15);
12 end
13 end
14 Update Vk+1(s) in Eq. (15);
15 if k ≥ 1 then
16 Update ε2 = ε2 + |Vk+1(s)− Vk(s)|;
17 end
18 end
19 if k ≥ 1 then
20 Update ε1 = ε2/|V|;
21 if εbest − ε1 >= ε3 then
22 εbest = ε1;
23 kbest = k;
24 end
25 Reset ε2 = 0;
26 end
27 Learn fk+1(~z) by incorporating feature ~Zs and new label

Vk+1(〈v, τ〉) for each v into N;
28 Update iteration number: k = k + 1;
29 end

output: Converged V ∗(s) for the iteration of kbest.

trained neural network from the preceding iteration to compute
the value functions of the succeeding intersections, which are
used to update the value function of the current intersection.
In Lines 15-17, we accumulate the convergence errors of all
intersections for iteration k. In Lines 19-26, we update the
average convergence error for the learned value function, and
compare it with the current best convergence error. If their
difference is larger than a threshold, then the current best
convergence error and the corresponding iteration number will
be updated. Together with the condition in Line 3, the current
best convergence error and the best iteration number will judge
the convergence and decide the loop termination. In Lines
27-28, we train the neural network using feature values and
updated labels, and then update the iteration number. Finally,
we output the learned value functions that will be used to find
an optimal path.

Remarks: Other than the basic Q-learning and approximate
Q-learning, many other RL variants, such as DQN [41],

DDPG [42] and A3C [43], can also be adopted to maximize
the probability of arriving on time. We only select the basic RL
model because the focus of this paper is to investigate whether
RL can be applied to solve the arriving on time problem and
outperform the conventional methods, rather than compare the
performance of different RL variants. On the other hand, we
can see from Section IV and V that the basic RL model already
significantly outperforms the conventional methods. However,
it is still worth to explore more advanced RL variants in future.

IV. EXPERIMENTATION FOR ARTIFICIAL NETWORK AND
DISCRETE DEADLINES

In this section, we conduct experiments to evaluate the
proposed Q-learning approach for discrete deadlines. To this
end, we first introduce the testing bed and baselines, where
we also define the ground-truth path. Then, we analyze the
performance of our approach against the baselines. All experi-
ments are performed on a typical PC with Intel Core i7-3540M
processor and 16GB RAM.

We implement the basic Q-learning approach introduced
in Section II on an artificial road network, which is a grid
network of 20 × 20 intersections. We first use m1 = 15 as
the mean and σ1 = 3 as the standard deviation to randomly
generate the mean travel time m2 for each individual link. We
then adopt m2 and σ2 = 0.3m2 to generate 200 travel time
samples for each corresponding road link to represent P s

′

s,a. All
travel time is rounded up into positive integers, and the unit is
assumed to be in second. At each grid, there are four traveling
directions, i.e., north, south, west and east. We compare the
proposed Q-learning approach with three methods: (1) LET
based method computes a path of the least expected travel time
based on the travel time data, (2) Mean-Risk based method
computes a path with minimal value of µp + λνp, where µp
is the expected travel time, νp is the variance, and λ is the
coefficient [15], and (3) Cardinality method approximates and
computes a path of the probability tail model by formulating
it as an MILP problem [24], the computation of which is
speed up by the partial Lagrigian multiplier method [4]. To
test the performance of our approach, we randomly select 100
o-d pairs and use β = 0.85, 0.90, . . . , 1.10, 1.15 to represent
different levels of time budgets (as defined in Section III-B).
For each o-d pair and a specified time budget τ (obtained
based on β), we consider a ground-truth path, which is
determined as follows: If there are 200 travel time samples
on each link, then we assume that there are 200 times of
complete traveling on each path given an o-d pair. Thus,
the ground-truth path has the maximal ratio of not being
late regarding the given o-d pair and deadline. Intuitively,
the ground-truth path can be found through enumerating all
paths between the o-d pair and then comparing travel time
on those paths against the time budgets. In light of this, we
calculate the accuracy of hitting the ground truth path for all
the methods. Particularly, the accuracy is defined as follows:
Suppose that we need to find an optimal path for each query qi
∈ (< o1, d1, τ1 >, · · · , < oi, di, τi >, · · · , < oN , dN , τN >).
If the route returned by a method is exactly the same with
the ground-truth path regarding the same < oi, di, τi >, then

7

β
0.85 0.9 0.95 1 1.05 1.1 1.15

A
ve

ra
g
e
 A

cc
u
ra

cy

0.75

0.8

0.85

0.9

0.95

1

1.05

LET based method
Mean-Risk based method
Cardinality method
Q-learning approach

(a) accuracy with different deadlines
0 10 20 30 40 50Remaining Time Budgets (s)

0

0.2

0.4

0.6

0.8

1

Q
-v

a
lu

e
s

North
South
West
East

(b) examples of converged Q-values
0.85 0.9 0.95 1 1.05 1.1 1.15

0

1

2

3

4

5

A
ve

ra
g
e
 E

p
is

o
d
e
s

105

Q-learning approach
Q-learning approach: warm

(c) average episodes

Fig. 1: Results on Artificial Network with Discrete Deadlines. [Best Viewed in Color]

we call it a success. Meanwhile, we call it a failure if one
or more road links are different from that of the ground truth
path. Thus, the accuracy for this method is defined as the ratio
of the quantity of success over N . We would like to note that,
although rare, multiple ground truth paths may simultaneously
exist if they share the same highest ratio of not being late. In
this case, we count it a success as long as the returned route
belongs to them. Accordingly, we plot the accuracy of finding
the ground-truth path for all methods in Fig. 1(a).

From Fig. 1(a) we can observe that the proposed Q-learning
approach and cardinality method always achieve higher aver-
age accuracy for all selected deadlines, which are above 95%.
The LET based method and Mean-Risk based method obtain
the average accuracy of around 88%. The advantage of the
former two methods comes from the fact that they incorporate
the event of arriving at the destination before deadline in the
reward and objective function, respectively. This superiority
can also be verified by the plot of converged Q-values for an
intersection which is two grids to the north of the destination
as shown in Fig. 1(b). From Fig. 1(b), the converged Q-values
are between zero and one, which denote the probabilities
of arriving on time from the current location by taking the
corresponding action. Meanwhile, the optimal action usually
changes with the time budgets, e.g., traveling west is optimal
as the remaining time budget is between 10 and 20, and
traveling east is optimal as the time budget becomes larger
than 20. The Q-value for traveling south is not higher than that
of traveling west and east although the current location north
to the destination, this happens because the cost of traveling
south is always large according to the generated traffic data.
Therefore, traveling south yields a lower chance of arriving
on time. We also observe that the Q-values for all actions
are zero as the remaining time budget is less than 4, which
is too tight. Consequently, we conclude that an optimal path
depends strongly on the time budget even though an origin is
fixed. This factor is not incorporated in the LET based method
or Mean-Risk based method. Therefore, there are fluctuations
in their average accuracy as the remaining time budget is
varied. In comparison with the cardinality method, the Q-
learning approach always achieves the average accuracy of
100% for all selected time budgets. This firmly justifies that
the Q-value is able to represent the probability of arriving on

time. By contrast, the cardinality method adopts `1-norm to
approximately minimize the frequency of not being later than
the deadline. This inherently minimizes the summation of total
delays. Consequently, the Q-learning approach achieves the
highest accuracy.

Besides, we also apply the warm start mechanism proposed
in section III-B to the Q-learning approach, and the result is
shown in Fig. 1(c). The proposed Q-learning approach, which
initializes the Q-value as zero, usually needs around 400,000
episodes before convergence. On contrary, with the warm start
in Eq. (18), it needs around 180,000 episodes. The speed up
of the convergence is 50%-60%.

V. EXPERIMENTATION FOR REAL NETWORKS AND
CONTINUOUS DEADLINES

In this section, we verify the proposed Q-learning approach
for the arriving on time based SSP problem with continuous
deadlines. To this end, we first introduce the new testing
beds and settings. Then we evaluate our approach regarding
accuracy, computation time, time dependent performance and
average travel time, respectively.

We perform experiments on three large road networks,
which are extracted from the city maps of Singapore, Munich,
and Beijing, as shown in Fig. 2. To conduct the experiments,
we adopt the same device, definitions of accuracy and ground
truth path, and deadline parameter β, with the ones in Sec-
tion IV, respectively. The scales of the three road networks
are summarized in the first two rows of Table I. We randomly
select 200 o-d pairs on each network, and the average minimal
number of road links between each origin and destination is
shown in the third row of Table I. Particularly, the average
minimal number of road links is defined as follows: Suppose
that the lengths of all road links are 1, then the shortest path
between an o-d pair is also the one with minimal number of
road links. Thus, for each o-d pair, there would be a path with
minimal number of road links. Since we select multiple o-d
pairs on each road network, then the average minimal number
of road links is referred to the average number of road links
over those o-d pairs. The average minimal number of road
links roughly reflects the quantity of decision making a vehicle
needs to perform before it reaches the destination. Note that,
as defined previously, we call it a failure even if only one road
link is different from that of the ground truth path.

8

(a) Singapore (b) Munich (c) Beijing

Fig. 2: The Three Real Road Networks.

TABLE I: Settings of the Three Real Road Networks

Singapore Munich Beijing
#Nodes 6,476 51,517 129,607
#Links 10,225 115,651 294,868

Mean.Mini. #Links Btwn. O-D 86 221 358

Meanwhile, we prepare 1,000 travel time samples for each
road link: (1) On Singapore network, we use actual length
of each road link as the mean to randomly generate travel
time data, and the standard deviation is 0.3 times the length5;
(2) On Munich network, we use actual length of each road
link to divide the collected real travel speed of vehicles6 (i.e.,
from July-2014 to March-2015); (3) On Beijing network, we
directly use the travel time data, which are collected from
real travel trajectories of taxi (i.e., from September-2013 to
October-2013) [45]. Thus, we assume that there are 1,000
complete traveling for each o-d pair. Then, our Q-learning
approach adopts Algorithm 1 to dynamically learn the value
function for each specified destination. Besides, we randomly
select 100 destinations on the same network and concatenate
their feature values to the same matrix (i.e., ~Zs in Eq. (17)).
Then, we run Algorithm 1 only once for each network.
We refer to this as the “Q-learning approach: generalized”.
Note that the Q-learning approach needs to learn one value
function for each destination, no matter where the origin is.
Nevertheless, the generalized Q-learning approach only learns
one value function for the whole road network regardless of
the origin and destination. We do not explicitly explore the
dependence or correlation of travel time on different links, as
it will be inherently included in the data if there is any, and
the travel time data is the direct input to our approaches.

A. Accuracy

We test the accuracy of the five methods and plot the results
in Figs. 3(a), (b) and (c). The accuracy for our proposed Q-
learning approach and the generalized Q-learning approach
approximately ranges from 90% to 97.5%, the average of
which is about 94%, higher than that of all other methods for
each deadline. Again, the accuracy of the cardinality method
is higher than that of the LET based method and Mean-Risk

5All relevant information is obtained from OpenStreetMap [44].
6This data set is provided by the BMW Group, Germany.

based method. The proposed Q-learning approach is slightly
better than the generalized Q-learning approach due to the fact
that the Q-learning approach separately runs Algorithm 1 for
each selected destination to learn the value function and then
use it to find a path for the same selected destination. By
contrast, the generalized Q-learning approach may only run
Algorithm 1 once and adopt the learned value function to find
a path for all selected destinations. However, the difference in
the accuracy between the two approaches is small. Moreover,
the accuracy of all methods becomes higher as the time budget
increases on the three networks. Nevertheless, in comparison
with the three baselines, the Q-learning approach and the
generalized Q-learning approach are less affected because they
always dynamically update the Q-values according to each
specified time budget. Compared with the results in Fig. 1(a),
the Q-learning approach achieves slightly lower accuracy.
This is because, to handle continuous deadlines, we use a
neural network to learn the value function in which errors
due to learning always exist. Besides, the three networks are
considerably larger than the grid network.

Besides, we record the overall accuracy of the five methods
as well as the 2%-tolerance accuracy7 of the generalized Q-
learning approach, which is plotted in Fig. 4(a). We observe
that the overall accuracy on the Munich network and Beijing
network is slightly lower than that of the Singapore network
for most of the methods. This is because the sizes of the
Munich network and Beijing network are much larger, and
the number of possible paths between an o-d pair is greater.
Thus, it is more difficult to achieve the ground-truth path.
In particular, the two Q-learning approaches will determine
a road link to traverse at each intersection, and even if only
one road link is not on the ground-truth path, the returned
path is counted as a failure. In the case that there are at least
358 intersections on average (Table I) for each path finding
on the Beijing network, the overall accuracy of around 94%
for the generalized Q-learning approach is sufficiently high.
Moreover, the 2%-tolerance accuracy of the generalized Q-
learning approach is almost 100%.

Additionally, we test the accuracy against the quantity of

7If the difference between the probability of arriving on time for the path
returned by our approach and the probability for the ground-truth path is less
than 2%, then the returned path is counted as a success in the calculation of
the accuracy.

9

0.85 0.9 0.95 1 1.05 1.1 1.15
β

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

u
ra

cy

LET based method
Mean-Risk based method
Cardinality method
Q-learning approach
Q-learning approach: generalized

(a) Singapore
0.85 0.9 0.95 1 1.05 1.1 1.15

β

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

u
ra

cy

LET based method
Mean-Risk based method
Cardinality method
Q-learning approach
Q-learning approach: generalized

(b) Munich
0.85 0.9 0.95 1 1.05 1.1 1.15

β

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

u
ra

cy

LET based method
Mean-Risk based method
Cardinality method
Q-learning approach
Q-learning approach: generalized

(c) Beijing

Fig. 3: Results on Real Road Networks with Continuous Deadlines. [Best Viewed in Color]

travel time data on each road link. We take the Beijing network
as an example since its size is the largest. We plot the results
in Fig. 4(b). We observe that the Q-learning approach and the
generalized Q-learning approach are almost not affected by
the quantity of travel time data. They always achieve higher
overall accuracy than that of other methods. By contrast, the
LET based method, Mean-Risk based method, and cardinality
method are likely to achieve high accuracy as the number of
samples of travel time data increases, i.e., from 400 to 1000.
However, their accuracy almost does not change as the quantity
of data becomes larger.

B. Computation Time

We also test the improvement brought by the warm start.
The results are shown in Fig. 4(c). Clearly, the warm start
saves around 20%-30% of iterations for the two proposed Q-
learning approaches on the three networks. The generalized Q-
learning approach needs larger number of iterations since the
amount of training samples is much larger than that of the Q-
learning approach. In comparison with the results in Fig. 1(c),
the number of iterations in Fig. 4(c) is considerably small.
The major reason is that in each episode of the Q-learning
with discrete deadlines, the Q-values are updated using the
local travel time data only for the intersections visited within
that episode, while in the case of continuous deadlines, the
value function is updated for all intersections by exploring all
the travel time data on the road links in each iteration.

Moreover, in each iteration of the value function learning,
we record the means of absolute errors for all training samples
on the three road networks, which are shown in Fig. 5(a).
From Fig. 5(a), we see that the average absolute errors become
smaller as the dynamic neural network evolves and converges.
This clearly justifies the efficacy of dynamic neural network
to learn the more accurate value function. Meanwhile, the
learned value function generally converges faster (i.e., around
60 iterations) on the Singapore network than that of the
Munich network and Beijing network (i.e., around 75 and 85
iterations respectively).

Normally, the computation time in each iteration of the
dynamic neural network is associated with the size of training
samples. Previously, we adopted the training samples of all
intersections in the road network to learn the value function.

To improve the computation efficiency of learning the value
function, we may only need samples from some intersections,
while maintaining an acceptable level of accuracy. Therefore,
we adopt the generalized Q-learning to find the optimal paths
on the three networks and evaluate the average computation
time in each iteration and accuracy with respect to different
sizes of training samples. The results are plotted in Fig. 5(b).
From Fig. 5(b), we observe that, as expected, the computation
time and the accuracy decrease as the sizes of training samples
reduce. On the Beijing network, the deterioration of accuracy
is only around 1% while the reduction of computation time
is around 460 seconds (i.e., almost half) as we use about 1/3
of the training samples8. Therefore, we may adopt 1/3 of the
training samples to achieve satisfactory computation time and
accuracy for the Beijing network. Similarly, we may determine
proper sizes of training samples for the other two networks.
We would like to note that, according to Fig. 5(b), the average
computation time is around 400s per iteration for 1/3 on
Beijing network, thus the total computation time is about
400sx80=32000s=8.8hrs. Although comparatively long, it is
the time for training, which can be performed in advance using
the historical data (note that the testing time is sufficiently
short considering the result in Fig. 5(c), which is around 1.2
seconds on Beijing network).

We also record the average computation time of each routing
for all the five methods. The results are shown in Fig. 5(c).
We only count the time of path finding (i.e., also known as
the testing time) for the generalized Q-learning since learning
value function can be done off-line, although its computation
time is comparatively longer. Note that we did not count
the computation time of the K-shortest paths in our method,
because normally those paths are static, which can be stored
in a look-up table. From Fig. 5(c), the LET based method
and Mean-Risk based method have the shortest average com-
putation time, which slightly increases as the network size
increases. However, the two methods do not take the deadline
into account, and their accuracy of finding an optimal path
is not high, especially on the Beijing network. The cardi-
nality method needs around 187 seconds to compute a path

8In the adjacency matrix of the map graph, we select the nodes (or
intersections) whose index is a multiple of 3. The similar principle also applies
for ‘1/2,‘1/4,‘1/5.

10

Singapore Munich Beijing

0.8

0.9

1

1.1

1.2

A
ve

ra
g
e
 A

cc
u
ra

cy

LET based method
Mean-Risk based method
Cardinality method
Q-learning approach
Q-learning approach: generalized
Q-learning approach: generalized & 2% tolerance

(a) average accuracy
Number of Traffic Data

400 600 800 1000 1200

A
ve

ra
g
e
 A

cc
u
ra

cy

0.7

0.8

0.9

1

1.1
LET based method
Mean-Risk based method
Cardinality method
Q-learning approach
Q-learning approach: generalized

(b) different data sizes
Singapore Munich Beijing

A
ve

ra
g
e
 I
te

ra
tio

n
s

0

50

100

150
Q-learning approach
Q-learning approach: warm
Q-learning approach: generalized
Q-learning approach: generalized&warm

(c) average iterations

Fig. 4: Comprehensive Results. [Best Viewed in Color]

on Beijing network, which is prohibitively long and caused
by solving the MILP problem. Nevertheless, the cardinality
method is able to achieve comparatively high accuracy. By
contrast, the computation time of the generalized Q-learning
approach is slightly longer than that of the LET based method
and Mean-Risk based method. The computation time also
increases as the network size increases. As it takes only 1.216
seconds to obtain an optimal path on the Beijing network, the
generalized Q-learning approach is highly efficient.

With high accuracy and low computation time, the gener-
alized Q-learning approach is appealing. Especially, it is able
to avoid multiple runs of Algorithm 1 compared with the Q-
learning approach.

C. Time Dependent Performance

Our Q-learning approach is data-driven and easy to execute
in a time dependent manner, which further improves the
performance of routing service, i.e., avoiding frequent value
function learning while maintaining an acceptable level of
accuracy. To justify, we explore the travel time data of eight
continuous weeks (i.e., July and August) on the Munich net-
work and further extract eight segments according to different
time units: (1) week, we divide the data into eight weeks,
and each segment represents a week, (2) day, we extract the
data of eight Mondays separately, and each segment represents
a Monday, (3) hour, we extract the data of 7am-9am (i.e.,
peak hours) on each Monday separately, and each segment
represents a span of peak hour. For all of the three units,
we apply the generalized Q-learning approach only on the
first segment of the traffic data and then use the learned
value functions to perform routing service based on all of the
eight segments accordingly. Other settings are the same as the
previous experiments, and the results are recorded in Table II.

TABLE II: Accuracy of Time Dependent Q-learning (%)

1 2 3 4 5 6 7 8
week 94.8 93.7 95.1 93.3 94.5 92.9 90.8 91.6
day 96.1 95.0 94.2 95.5 95.8 96.3 94.1 93.2

hour 97.4 97.7 97.0 96.2 97.3 98.2 96.5 96.1

From Table II we can observe that, segment 1 usually
achieves higher accuracy than that of the other seven segments.

This is because the training data and testing data are the same
for segment 1. Generally, as the segment index increases, the
accuracy will decrease, but the deterioration is very slight,
especially for the hour, which achieves the accuracy higher
than 96% even for week 8. Another remarkable observation
is that the higher the time resolution (we do not consider
minute, second and so on), the better the accuracy. This
happens because the high time resolution usually captures
the traffic characteristics better, i.e., peak hour pattern, and
each segment for the hour shares this pattern. From Table II,
we can conclude that the time dependent Q-learning approach
helps to avoid frequent value function learning while achieving
good accuracy, especially for the time unit hour (i.e., no need
for re-training within at least two months from Table II).
We also wish to note that, in most of the literature, ‘time-
dependency is characterized by a random variable, which
represents the stochastic travel time for the corresponding road
link and varies with time, such as [46]. Although the problem
expression and the way to find a solution for our method
are different from [46], they share the same goal: find an
optimal path by considering the time-dependent travel time.
On one hand, our method is data-driven, and we may not
need to explicitly express the time dependency as it would be
implicitly included inside the data if there is any. On the other
hand, if our method can find an optimal path for ‘Monday
7am-9am, it is supposed to be able to find optimal solutions
for other time slots, days or weeks as well, which is solving
the time dependent route optimization in a different way. In
addition, we did not explicitly consider traffic congestion, as
both saturated and under-saturated traffic conditions might be
implicitly included in the real traffic data. Intuitively, the hour
may refer to the former condition, while the day and week
may refer to the latter condition.

D. Average Travel Time

TABLE III: Comparison of Average Travel Time (mins)

LET Mean-Risk Cardinality Q-Learning: generalized
39.7 42.3 41.9 42.6

We further evaluate the performance regarding the average
travel time. We take the Beijing network as an example,

11

20 40 60 80 100
Iterations

2

4

6

8

10

M
e
a
n
 o

f
A

b
so

lu
te

 E
rr

o
rs

×10-3

Singapore
Munich
Beijing

(a) mean of absolute errors
1 1/2 1/3 1/4 1/5

Size of Training Samples

200

400

600

800

1000

1200

1400

1600

A
ve

ra
g
e
 T

ra
in

in
g
 T

im
e
 (

s)

0.85

0.9

0.95

1

1.05

1.1

A
ve

ra
g
e
 A

cc
u
ra

cy

Average Computation Time: Munich
Average Computation Time: Singapore
Average Computation Time: Beijing
Accuracy: Munich
Accuracy: Singapore
Accuracy: Beijing

(b) different sizes of training samples
Munich Singapore Beijing

-1

0

1

2

3

C
o

m
p

u
ta

tio
n

 T
im

e
 (

s)
 (

L
o

g
1

0(x
))

0.243
0.249

12.04

0.296

0.051
0.063

8.674

0.107

0.795
0.809

14.58

1.216

LET based method
Mean-Risk based method
Cardinality method
Q-learning approach: generalized

(c) average iterations

Fig. 5: Comprehensive Results. [Best Viewed in Color]

and use the same setting as in Section V-A. Then the travel
time is averaged over all O-D pairs and time budgets, and
the results are recorded in Table III. From Table III we can
observe that, there is no significant difference among them.
If we zoom in, the LET achieves the lowest value, which is
normal as it directly aims to minimize the expected travel time.
The cardinality method ranks second because it approximately
maximizes the probability of arriving on time, by minimizing
the average delay regarding the time budget. The mean-risk
method ranks third, as it considers average travel time, and
the variance as well, in the objective function. Our approach
produces relatively higher average travel time, which is normal
as it does not directly consider minimizing the travel time.
However, our approach is not far away from LET, because
maximizing the chance of arriving on time also helps to reduce
the travel time to some extent. However, on one hand, average
travel time might not be the most important metric as it does
not take into account the risk (or variance), e.g., the LET path
cannot guarantee highest probability of arriving on time. On
the other hand, there is a possibility in our approach that the
vehicle goes on detour when the time budget is ample, because
in this case the detour might not influence the probability of
arriving on time, which is likely to increase the travel time.
To avoid those unnecessary detours, an intuitive strategy might
be that assigning negative rewards to the agent if it travels on
unnecessary u-turns or circles.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have designed a Q-learning approach
to solve the probability tail model based stochastic shortest
path problem, which aims to minimize the probability of
delay occurrence. In this approach, we have used the Q-
value to represent the probability of reaching the destination
before the deadline, which also has been theoretically proved.
Experiments on both artificial network and real large road
networks have shown the attractive results for finding an
optimal path in terms of accuracy and computation time.
Particularly, the main benefit of the proposed method is its
practicality, in that it can be readily applied in the real world,
specifically: 1) it is computationally feasible even for large
road networks, 2) it is interpretable by the users: the converged
Q-values have the practical meaning as the actual probabilities

of reaching destination before deadline, 3) it enables the capa-
bility of providing time-dependent path recommendations, 4) it
directly utilizes available travel time data and does not require
any strong assumptions. However, we also acknowledge that
shortcomings of the Q-learning approach also exist, e.g., it
requires very big data set to learn the model and the results
regarding a road network might not be generic to others.

In future, we plan to consider other reinforcement learning
variants, such as deep Q-network [41] and DDPG [42] to
solve the probability tail model based stochastic shortest path
problem. Besides, we will also consider other factors, e.g.,
weather condition, number of lanes on the road link, traffic
lights [47], and incentive schemes [48]. Additionally, we will
come up strategies to avoid travelling on the unnecessary
’circle links’ when the time budget is significantly ample.

VII. ACKNOWLEDGEMENT

This work is supported by the National Natural Sci-
ence Foundation of China (61803104, 61603169, 61772290),
Fundamental Research Funds for the Central Universities
(63192616), Fundamental Research Funds of Shandong Uni-
versity (62420079614084), and Singapore National Research
Foundation (NRF-RSS2016-004).

REFERENCES

[1] OICA, “Number of passenger cars and commercial vehicles in use
worldwide from 2006 to 2015,” Feb 2017.

[2] E. Demir, Y. Huang, S. Scholts, and T. Van Woensel, “A selected review
on the negative externalities of the freight transportation: Modeling and
pricing,” Transportation research part E: Logistics and transportation
review, vol. 77, pp. 95–114, 2015.

[3] D. Sever, L. Zhao, N. Dellaert, E. Demir, T. Van Woensel, and
T. De Kok, “The dynamic shortest path problem with time-dependent
stochastic disruptions,” Transportation Research Part C: Emerging Tech-
nologies, vol. 92, pp. 42–57, 2018.

[4] Z. Cao, H. Guo, J. Zhang, D. Niyato, and U. Fastenrath, “Improving the
efficiency of stochastic vehicle routing: A partial lagrange multiplier
method,” IEEE Transactions on Vehicular Technology, vol. 65, no. 6,
pp. 3993–4005, 2016.

[5] H. Guo, Z. Cao, M. Seshadri, J. Zhang, D. Niyato, and U. Fastenrath,
“Routing multiple vehicles cooperatively: Minimizing road network
breakdown probability,” IEEE Transactions on Emerging Topics in
Computational Intelligence, vol. 1, no. 2, pp. 112–124, 2017.

[6] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, p. 484, 2016.

12

[7] H. Yu, H. E. Tseng, and R. Langari, “A human-like game theory-based
controller for automatic lane changing,” Transportation Research Part
C: Emerging Technologies, vol. 88, pp. 140–158, 2018.

[8] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” in Advances in
Neural Information Processing Systems, pp. 6348–6358, 2017.

[9] Z. Cao, H. Guo, J. Zhang, and U. Fastenrath, “Multiagent-based route
guidance for increasing the chance of arrival on time,” in Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI),
pp. 3814–3820, 2016.

[10] Z. Cao, H. Guo, and J. Zhang, “A multiagent-based approach for vehicle
routing by considering both arriving on time and total travel time,” ACM
Transactions on Intelligent Systems and Technology (TIST), vol. 9, no. 3,
p. 25, 2018.

[11] H. Frank, “Shortest paths in probabilistic graphs,” Operations Research,
vol. 17, no. 4, pp. 583–599, 1969.

[12] E. D. Miller-Hooks and H. S. Mahmassani, “Least expected time paths
in stochastic, time-varying transportation networks,” Transportation Sci-
ence, vol. 34, no. 2, pp. 198–215, 2000.

[13] S. T. Waller and A. K. Ziliaskopoulos, “On the online shortest path
problem with limited arc cost dependencies,” Networks, vol. 40, no. 4,
pp. 216–227, 2002.

[14] M. G. Bell and C. Cassir, “Risk-averse user equilibrium traffic assign-
ment: an application of game theory,” Transportation Research Part B:
Methodological, vol. 36, no. 8, pp. 671–681, 2002.

[15] E. Nikolova and N. E. Stier-Moses, “A mean-risk model for the traffic
assignment problem with stochastic travel times,” Operations Research,
vol. 62, no. 2, pp. 366–382, 2014.

[16] T. Lianeas, E. Nikolova, and N. E. Stier-Moses, “Asymptotically tight
bounds for inefficiency in risk-averse selfish routing,” in Proceedings of
the Twenty-Fifth international joint conference on Artificial Intelligence
(IJCAI), pp. 338–344, 2016.

[17] S. Lim and D. Rus, “Stochastic motion planning with path constraints
and application to optimal agent, resource, and route planning,” in Pro-
ceedings of the International Conference on Robotics and Automation
(ICRA), pp. 4814–4821, 2012.

[18] Y. Fan, R. Kalaba, and J. Moore II, “Arriving on time,” Journal of
Optimization Theory and Applications, vol. 127, no. 3, pp. 497–513,
2005.

[19] E. Nikolova, J. A. Kelner, M. Brand, and M. Mitzenmacher, “Stochastic
shortest paths via quasi-convex maximization,” in European Symposium
on Algorithms, pp. 552–563, 2006.

[20] A. Christman and J. Cassamano, “Maximizing the probability of arriving
on time,” in International Conference on Analytical and Stochastic
Modeling Techniques and Applications, pp. 142–157, 2013.

[21] Y. M. Nie and X. Wu, “Shortest path problem considering on-time arrival
probability,” Transportation Research Part B: Methodological, vol. 43,
no. 6, pp. 597–613, 2009.

[22] S. Lim, H. Balakrishnan, D. Gifford, S. Madden, and D. Rus, “Stochastic
motion planning and applications to traffic,” The International Journal
of Robotics Research, vol. 30, no. 6, pp. 699–712, 2011.

[23] Z. Cao, H. Guo, J. Zhang, D. Niyato, and U. Fastenrath, “A data-
driven method for stochastic shortest path problem,” in Proceedings of
the IEEE 17th International Conference on Intelligent Transportation
Systems (ITSC), pp. 1045–1052, 2014.

[24] Z. Cao, H. Guo, J. Zhang, D. Niyato, and U. Fastenrath, “Finding the
shortest path in stochastic vehicle routing: a cardinality minimization
approach,” IEEE Transactions on Intelligent Transportation Systems,
vol. 17, no. 6, pp. 1688–1702, 2016.

[25] Z. Cao, Y. Wu, A. Rao, F. Klanner, S. Erschen, W. Chen, L. Zhang,
and H. Guo, “An accurate solution to the cardinality-based punctuality
problem,” IEEE Intelligent Transportation Systems Magazine, 2018.

[26] A. Eiger, P. B. Mirchandani, and H. Soroush, “Path preferences and
optimal paths in probabilistic networks,” Transportation Science, vol. 19,
no. 1, pp. 75–84, 1985.

[27] J. R. Current, C. S. Revelle, and J. L. Cohon, “The median shortest path
problem: A multiobjective approach to analyze cost vs. accessibility in
the design of transportation networks,” Transportation Science, vol. 21,
no. 3, pp. 188–197, 1987.

[28] J. L. Bander and C. C. White, “A heuristic search approach for a
nonstationary stochastic shortest path problem with terminal cost,”
Transportation Science, vol. 36, no. 2, pp. 218–230, 2002.

[29] T. Rambha, S. D. Boyles, and S. T. Waller, “Adaptive transit routing in
stochastic time-dependent networks,” Transportation Science, vol. 50,
no. 3, pp. 1043–1059, 2016.

[30] C. Mao and Z. Shen, “A reinforcement learning framework for the
adaptive routing problem in stochastic time-dependent network,” Trans-
portation Research Part C: Emerging Technologies, vol. 93, pp. 179–
197, 2018.

[31] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Proceed-
ings of the 29th Conference on Neural Information Processing Systems
(NIPS), pp. 2692–2700, 2015.

[32] I. Bello and H. Pham, “Neural combinatorial optimization with rein-
forcement learning,” in Proceedings of the 5th International Conference
on Learning Representations (ICLR), 2017.

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Proceedings of the 31st Conference on Neural Information Processing
Systems (NIPS), pp. 5998–6008, 2017.

[34] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve
routing problems!,” in Proceedings of the 7th International Conference
on Learning Representations (ICLR), 2019.

[35] T. Chu, J. Wang, L. Codecà, and Z. Li, “Multi-agent deep reinforcement
learning for large-scale traffic signal control,” IEEE Transactions on
Intelligent Transportation Systems, pp. 1–10, 2019.

[36] G. d. O. Ramosa, A. L. Bazzana, and B. C. da Silvaa, “Analysing the
impact of travel information for minimising the regret of route choice,”
Transportation Research Part C: Emerging Technologies, vol. 88, 2018.

[37] Z. Jiang, W. Fan, W. Liu, B. Zhu, and J. Gu, “Reinforcement learning
approach for coordinated passenger inflow control of urban rail transit in
peak hours,” Transportation Research Part C: Emerging Technologies,
vol. 88, pp. 1–16, 2018.

[38] Z. Cao, H. Guo, F. Oliehoek, J. Zhang, and U. Fastenrath, “Maximizing
the probability of arriving on time: A practical q-learning method,”
in Proceedings of the 31th AAAI Conference on Artificial Intelligence
(AAAI), pp. 4481–4487, 2017.

[39] R. S. Sutton and A. G. Barto, Reinforcement learning: An Introduction
(Second Edition). MIT press, 2018.

[40] S. Carden, “Convergence of a q-learning variant for continuous states
and actions,” Journal of Artificial Intelligence Research, pp. 705–731,
2014.

[41] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, and G. Ostrovski, “Human-
level control through deep reinforcement learning,” Nature, vol. 518,
no. 7540, pp. 529–533, 2015.

[42] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” International Conference on Learning Representations, 2016.

[43] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International Conference on Machine Learning,
2016.

[44] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,”
IEEE Pervasive Computing, vol. 7, no. 4, pp. 12–18, 2008.

[45] Y. Wang, Y. Zheng, and Y. Xue, “Travel time estimation of a path
using sparse trajectories,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pp. 25–34, 2014.

[46] Y. Pan, L. Sun, and M. Ge, “Finding reliable shortest path in stochastic
time-dependent network,” Procedia-Social and Behavioral Sciences,
vol. 96, pp. 451–460, 2013.

[47] Z. Cao, S. Jiang, J. Zhang, and H. Guo, “A unified framework for
vehicle rerouting and traffic light control to reduce traffic congestion,”
IEEE transactions on intelligent transportation systems, vol. 18, no. 7,
pp. 1958–1973, 2016.

[48] Z. Cao, Q. Li, H. W. Lim, and J. Zhang, “A multi-hop reputation
announcement scheme for vanets,” in Proceedings of IEEE International
Conference on Service Operations and Logistics, and Informatics,
pp. 238–243, 2014.

13

Zhiguang Cao received the Ph.D degree from In-
terdisciplinary Graduate School, Nanyang Techno-
logical University, Singapore, 2017. He received
the B.Eng. degree in Automation from Guangdong
University of Technology, Guangzhou, China, in
2009 and the M.Sc. degree in Signal Processing
from Nanyang Technological University, Singapore,
in 2012, respectively. He worked as a Research
Fellow with Future Mobility Research Lab, and
Energy Research Institute @ NTU (ERI@N), Singa-
pore. He is currently a Research Assistant Professor

with the Department of Industrial Systems Engineering and Management,
National University of Singapore, Singapore. His research interests include
the application of AI to traffic and transportation management.

Hongliang Guo received his Bachelor of Engi-
neering in Dynamic Engineering and a Master of
Engineering in Dynamic Control at the Beijing
Institute of Technology, China. He holds a PhD
degree in Electrical and Computer Engineering from
the Stevens Institute of Technology, USA. He later
joined Almende in Rotterdam, the Netherlands as
a postdoc research in 2011. His research inter-
ests include self-organizing systems and agent-based
technologies. In 2013, he joined NTU as a research
fellow. From September 2016, he becomes an Asso-

ciate professor in University of Electronics Science and Technology of China.

Wen Song received the B.S. degree in automation
and the M.S. degree in control science and engineer-
ing from Shandong University, China, in 2011 and
2014, respectively, and the Ph.D. degree in computer
science from the Nanyang Technological University,
Singapore, in 2018. He was a Research Fellow in
the Singtel Cognitive and Artificial Intelligence Lab
for Enterprises (SCALE@NTU). He is currently an
Associate Research Fellow with the Institute of Ma-
rine Science and Technology, Shandong University,
China. His current research interests include artificial

intelligence, planning and scheduling, multi-agent systems, and operations
research.

Kaizhou Gao received the B.Sc. and masters de-
grees from Liaocheng University and Yangzhou
University, China, in 2005 and 2008, respectively,
and the Ph.D. degree from Nanyang Technological
University (NTU), Singapore, in 2016. From 2008
to 2012, he was with the School of Computer,
Liaocheng University, China. From 2012 to 2013,
he was a Research Associate with the School of
Electronic and Electrical Engineering, NTU, where
he has been a Research Fellow from 2015 to 2018.
He is currently an assistant professor with the Macau

Institute of Systems Engineering, Macau University of Science and Tech-
nology. His research interests include intelligent computation, optimization,
scheduling, and intelligent transportation. He has published over 60 refereed
papers.

Zhenghua Chen received the B.Eng. degree in
mechatronics engineering from University of Elec-
tronic Science and Technology of China (UESTC)
in 2011, and the Ph.D. degree from the School
of Electrical and Electronic Engineering, Nanyang
Technological University, Singapore. He was a re-
search fellow in Nanyang Technological University,
Singapore. He is currently a scientist with the Insti-
tute for Infocomm Research (I2R), Singapore. His
research interests include occupant sensing, indoor
localization, and human activity recognition.

Le Zhang is currently a scientist with the Insti-
tute for Infocomm Research (I2R), Singapore. He
was a researcher at the Advanced Digital Sciences
Center (ADSC), the Singapore-based research center
of the University of Illinois at Urbana-Champaign
(UIUC). He received his Ph.D degree in school of
EEE , Nanyang Technological University (NTU) in
2016. He also received his B.E. from University
of Electronic Science and Technology Of China
(UESTC) in 2011 and M.SC from NTU in 2012. His
current research interests include machine learning,

computer vision and pattern recognition.

Xuexi Zhang received the Ph.D degree from School
of Automation, Guangdong University of Technol-
ogy, China, 2009. He received the B.Eng. degree in
Electric & Automations from Zhengzhou Engineer-
ing Institute, China, in 2000 and the M.Eng. degree
in Control Theory and Engineering from Guang-
dongs University of Technology, China, in 2003,
respectively. He is currently an Associate Professor
with School of Automation, Guangdong University
of Technology, China. His current research interests
include machine learning and operations research.

	Using reinforcement learning to minimize the probability of delay occurrence in transportation
	Citation
	Author

	Introduction
	SSP Problem and Arriving on Time
	Adaptive and Heuristic Solutions to SSP Problem
	Our Contribution

	Q-learning for Discrete Deadlines
	Analytic Formula of Probability Tail Model
	MDP Expression and the Q-learning Approach
	Q-Value Representation and Path Planning
	Convergence Proof

	Q-learning for Continuous Deadlines
	Dynamic Neural Network for Value Function
	Feature Selection and Algorithm Training

	Experimentation for Artificial Network and Discrete Deadlines
	Experimentation for Real Networks and Continuous Deadlines
	Accuracy
	Computation Time
	Time Dependent Performance
	Average Travel Time

	Conclusion and Future Work
	Acknowledgement
	References
	Biographies
	Zhiguang Cao
	Hongliang Guo
	Wen Song
	Kaizhou Gao
	Zhenghua Chen
	Le Zhang
	Xuexi Zhang

