
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2021

Step-wise deep learning models for solving routing problems Step-wise deep learning models for solving routing problems

Liang XIN

Wen SONG

Zhiguang CAO
Singapore Management University, zgcao@smu.edu.sg

Jie ZHANG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Numerical Analysis and Scientific Computing Commons, Operations Research, Systems

Engineering and Industrial Engineering Commons, and the Transportation Commons

Citation Citation
XIN, Liang; SONG, Wen; CAO, Zhiguang; and ZHANG, Jie. Step-wise deep learning models for solving
routing problems. (2021). IEEE Transactions on Industrial Informatics. 17, (7), 4861-4871.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8155

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1068?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8155&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Step-Wise Deep Learning Models
for Solving Routing Problems

Liang Xin , Wen Song , Zhiguang Cao , and Jie Zhang

Abstract—Routing problems are very important in in-
telligent transportation systems. Recently, a number of
deep learning-based methods are proposed to automati-
cally learn construction heuristics for solving routing prob-
lems. However, these methods do not completely follow
Bellman’s Principle of Optimality since the visited nodes
during construction are still included in the following sub-
tasks, resulting in suboptimal policies. In this article, we
propose a novel step-wise scheme which explicitly removes
the visited nodes in each node selection step. We apply
this scheme to two representative deep models for rout-
ing problems, pointer network and transformer attention
model (TAM), and significantly improve the performance of
the original models. To reduce computational complexity,
we further propose the approximate step-wise TAM model
by modifying one layer of attention. It enables training on
larger instances compared to step-wise TAM, and outper-
forms state-of-the-art deep models with greedy decoding
strategy.

Index Terms—Deep learning, deep reinforcement learn-
ing, intelligent transportation system, routing problems.

I. INTRODUCTION

INTELLIGENT transportation system (ITS) has received
great attention recently. By combining advanced informa-

tion technology such as Internet of Things [1], cyber-physical
systems [2], and deep learning [3], ITS offers a promising way
to improve the safety, efficiency, and sustainability of modern
transportation systems [4]. As one of the most fundamental

Manuscript received August 15, 2020; revised October 7, 2020; ac-
cepted October 12, 2020. Date of publication October 15, 2020; date
of current version April 2, 2021. This work was supported in part by
the ST Engineering-NTU Corporate Lab and in part by the Singtel-NTU
Cognitive & Artificial Intelligence Joint Lab through the NRF corpo-
rate lab@university scheme. The work of Wen Song was supported in
part by the Young Scholar Future Plan of Shandong University under
Grant 62420089964188. The work of Zhinguang Cao was supported in
part by the National Natural Science Foundation of China under Grant
61803104 and in part by the Singapore National Research Foundation
under Grant NRF-RSS2016004. Paper no. TII-20-3924. (Corresponding
author: Wen Song.)

Liang Xin and Jie Zhang are with the School of Computer Science
and Engineering, Nanyang Technological University, Singapore 639798
(e-mail: XINL0003@e.ntu.edu.sg; ZhangJ@ntu.edu.sg).

Wen Song is with the Institute of Marine Science and Technology,
Shandong University, Jinan 266237, China (e-mail: wensong@email.
sdu.edu.cn).

Zhiguang Cao is with the Department of Industrial Systems Engi-
neering and Management, National University of Singapore, Singapore
119077 (e-mail: zhiguangcao@outlook.com).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2020.3031409

problems in ITS, routing problems aim at planning the paths
for one or multiple vehicles so that certain objective (e.g. to-
tal travel distance) is optimized. Traveling salesman problem
(TSP) and capacitated vehicle routing problem (CVRP) are two
typical routing problems, and are of great importance to many
real-world applications of ITS [5]. However, routing problems
are generally NP-hard combinatorial optimization problems [6].
While exact methods such as branch and bound [7] offer nice
theoretical guarantees on the optimality, they suffer from the
scalability issue due to their exponential (worst-case) com-
plexity. In contrast, heuristic algorithms often yield suboptimal
solutions with much shorter computational time, and hence
are more preferred for solving large-scale routing problems
in reality. However, traditional heuristic approaches rely on
hand-crafted decision rules to guide the solving process, which
require substantial domain knowledge and engineering effort to
design, and may lead to poor solutions [8].

Recently, researchers have been focusing on using deep learn-
ing methods to automatically learn the heuristics for solving
routing problems in an end-to-end fashion, without the need of
using domain knowledge to design hand-crafted rules [8]–[12].
Most of these methods follow the encoder–decoder paradigm,
where the encoder maps the information of locations in the
routing problems (e.g., coordinates, demands) into feature em-
beddings, and the decoder is responsible for incrementally
creating the solutions. Among these methods, pointer network
(PtrNet) [9] and transformer attention model (TAM) [12] are two
representative methods. PtrNet uses long short-term memory
(LSTM) [13] as encoder and decoder, and is the first modern
deep learning model for combinatorial optimization problems.
Motivated by the recent success of transformer [14] in natural
language processing, TAM adopts the self-attention-based en-
coder and decoder, and outperforms a wide range of (traditional
or learning-based) algorithms on a series of routing problems.

Essentially, the above methods focus on learning construction
heuristics, which extend an empty solution by repeatedly adding
locations (or nodes) into the current partial routes until comple-
tion. This process can be viewed as a sequence of node-adding
decisions [11], since there is no backtracking procedure to mod-
ify previous decisions. Therefore, it should follow the Bellman’s
Principle of Optimality [15] that the optimal policy should only
consist of optimal subpolicies. Taking TSP as an example, the
salesman sequentially visits cities without repetitions by starting
from one city and returning to the same city. The whole problem
can be divided into a sequence of subproblems in each of which
one city is to be visited. Moreover, given the starting city and the

1551-3203 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7449-2453
https://orcid.org/0000-0001-7624-1861
https://orcid.org/0000-0002-4499-759X
mailto:XINL0003@e.ntu.edu.sg
mailto:ZhangJ@ntu.edu.sg
mailto:wensong@email.sdu.edu.cn
mailto:zhiguangcao@outlook.com
https://ieeexplore.ieee.org
ppyeo
Typewritten Text
Published in IEEE Transactions on Industrial Informatics (2021) 17 (7), 4861-4871. DOI: 10.1109/TII.2020.3031409

ppyeo
Typewritten Text

ppyeo
Typewritten Text

ppyeo
Typewritten Text

location of the salesman, the visited cities are no longer relevant
to the future subproblems. Inspired by the Bellman’s Principle
of Optimality, we do not need and should not incorporate any
information about the visited cities when solving a (future)
sub-problem of TSP. Similarly, these properties also apply to
CVRP.

Though existing deep models such as PtrNet and TAM per-
form well in solving routing problems, they do not completely
follow the Bellman’s Principle of Optimality. This is because
in each decoding step, i.e., for each subproblem, the same node
embeddings are used and the irrelevant nodes are not removed.
In other words, they are not solving the correct subproblems,
and, therefore, may result in suboptimal policies. To address
this issue, in this article, we propose step-wise deep learning
models to solve routing problems. The core idea is that, at
each decoding step, we explicitly eliminate the visited and
irrelevant nodes in the graph, and extract feature embeddings
from the same encoder with different graphs obtained after the
elimination operations. We apply this scheme to PtrNet and
TAM to demonstrate its effectiveness. Specifically, we propose
the step-wise PtrNet (SW-PtrNet) with supervised learning for
TSP, and the step-wise TAM (SW-TAM) with reinforcement
learning for both TSP and CVRP. However, the step-wise op-
eration is computationally expensive, especially for SW-TAM,
since it performs complete reembeddings at each decoding step.
To make it more efficient, we propose approximate SW-TAM
(ASW-TAM) with reasonable computational overhead, where
the top attention layer in the encoder serves as part of the decoder
and learns features directly for solving the correct subproblems
with irrelevant nodes removed.

We perform extensive experiments to evaluate our methods.
Results show that both SW-PtrNet and SW-TAM significantly
outperform their respective original models on small problems.
Moreover, ASW-TAM enables training on larger instances, and
outperforms state-of-the-art deep models with greedy decoding
strategy. Note that our aim here is not to compete with highly
optimized and specialized solvers (e.g., Concorde for TSP) on a
specific problem. Instead, we propose an effective scheme that
can improve existing deep models toward automatically learning
stronger heuristics, which could exploit the rich data generated
in ITS applications and be of great practical value especially
when facing new problems with little domain knowledge.

The rest of the article is organized as follows.
Section II briefly reviews existing works. Section III introduces
the routing problems and the baseline models. Section IV
presents our step-wise models in great detail. Section V
provides the computational experiments and analysis. Finally,
Section VI concludes this article.

II. RELATED WORK

Motivated by the recent advances of deep learning, re-
searchers have been exploiting the idea of applying deep neural
networks to solve challenging combinatorial optimization prob-
lems [16], using both supervised and reinforcement learning.
Typical deep learning models usually have a fixed output dic-
tionary. However, combinatorial optimization problems such as

TSP and CVRP often have varying sizes, and, therefore, seeking
a deep model for solving these problems is tricky. The first
deep architecture that satisfies this requirement is PtrNet [9],
which resolves the issue of varying output dictionary size by
introducing a pointer structure for deep learning models. It
considers a combinatorial problem instance as a sequence of
input nodes, and uses an LSTM network to encode the sequence
and another LSTM to decode the solution.

While PtrNet is trained by supervised learning in [9], Bello
et al. [10] train PtrNet in the reinforcement learning setting using
the policy gradient algorithm. They show that reinforcement
learning is effective for training TSP solvers on larger problem
sizes with better results. Nazari et al. [11] notice that the model
should be invariant to the sequence of the input nodes, and
replace the LSTM in the encoder of PtrNet with point-wise
projection. They train this model also with policy gradient, and
present promising results on CVRP.

Different from PtrNet and its variants in [9]–[11] that use
LSTM-based sequence-to-sequence models, Kool et al. [12]
adopt the self-attention mechanism in the recently proposed
transformer model [14] for encoding nodes. They train this
elegant model (TAM) also with reinforcement learning, using
policy gradient with a greedy rollout baseline. On a variety
of routing problems including TSP and CVRP, TAM outper-
forms the methods in [9]–[11] and a wide range of traditional
nonlearning-based methods, and is the state-of-the-art deep
learning model for routing problems.

With a different scheme, Khalil et al. [8] use Struc-
ture2Vec [17], a graph-embedding framework to embed the
nodes based on the connectivity of the underlying graph. By
training with deep Q-network, this model works quite well on
some graph combinatorial problems. However, as empirically
shown in [12], it does not perform satisfactorily for problems
such as TSP and CVRP that are defined on fully connected
graphs.

Except [8], all models discussed above fall into the encoder–
decoder paradigm, where the encoder processes the nodes in
the graph once to get the node embeddings, and the decoder
selects one node at each step sequentially to get the solution.
However, as we have mentioned, they do not consider the
issue of removing the visited nodes that are irrelevant to the
remaining subproblems, and therefore, may result in suboptimal
policies and relatively large optimality gaps. In contrast, we
explicitly eliminate the irrelevant nodes using the step-wise
scheme. Even though the computational complexity raises, with
elegant approximation, this scheme can yield better perfor-
mance over the original models with reasonable computational
overhead.

Note that it is not clear whether supervised or reinforcement
learning is better for combinatorial optimization problems. On
the one hand, supervised learning is more well-studied and usu-
ally converges faster. On the other hand, reinforcement learning
has the advantage of not requiring true labels (i.e., optimal
solutions), which could be extremely expensive to obtain for
large-scale combinatorial problems. Nevertheless, as will be
shown later, our step-wise scheme works well in both supervised
and reinforcement learning settings.

More recently, NeuRewriter [18] uses a deep learning model
to learn how to choose the region and rule for iteratively chang-
ing existing solutions. Similarly, Wu et al. [19] learn the im-
provement heuristic, specifically without the heavy dependence
on hand-designed features for 2-opts. However, this type of
model needs to iterate for a much longer time compared to
construction heuristics models as ours. In another work, L2I [20]
learns which different local move space to search over. At each
step, it picks one type of local move and greedy searching
exhaustively, which results in better solutions but a prohibitively
longer time. Different from the sequential prediction task as
construction or improvement heuristics, Joshi et al. [21] learn
the edge prediction in a nonauto-regressive manner with graph
convolutional networks. However, it depends on supervision,
and, therefore, can only be trained for TSP. The optimal solutions
for other routing problems such as CVRP cannot be obtained
in a reasonably long time. And it has to depend on sampling
thousands of solutions to get good performance, which results
in a very long solving time.

In the same time, other than routing problems, some works
([22]–[24]) use different kinds of graph neural networks to learn
with various training schemes for combinatorial optimization
problems like satisfiability.

III. PRELIMINARIES

A. Routing Problems

Given a set of nodes X = {x1, . . ., xn} and the distances
between each pair of nodes D(xi, xj), the routing problem is
defined as finding the optimal solution Y = y1, . . ., ym which is
a sequence of nodes with yi ∈ X . Usually the optimal solution
is the one with the least total distance with respect to some
constraints. Among all the routing problems, we consider the
two most important types, i.e., TSP and CVRP.

For TSP, n = m and each yi is a distinct element in X .
The goal is to minimize the tour distance, S = Σn

i=1D(yi, yi+1)
where yn+1 = y1, i.e., the tour should return to the starting node.
CVRP is a variant of TSP with an additional node called depot
x0, and every other node has a demand b(xi) to be served by
the vehicles. Multiple (M) routes could be planed, each of
which (indexed by j) is a tour of a vehicle that starts from
x0, visits a subset of nj nodes, and returns to x0. The total
demands in a route j, i.e.,x0, yj1 ,..., yjnj

,x0 should not exceed the

vehicle capacity c, i.e., Σnj

i=1b(y
j
i) ≤ c. Each xi ∈ X should be

covered by exactly one route except x0. The goal is to minimize
the total tour distance, i.e., S = ΣM

j=1Σ
nj

i=0D(yji , y
j
i+1), where

yj0 = yjnj+1 = x0.

B. PtrNet

Given input sequence X = x1, . . ., xn, the basic sequence-
to-sequence model [25] with trainable parameters θ uses two
recurrent neural networks as the encoder and decoder, respec-
tively, to compute the conditional probability of the output
sequence Y = y1, . . ., ym of length m given X based on the
probability chain rule. Here we adopt the convention in [9] using
the following equation to demonstrate the inference process of

Fig. 1. PtrNet.

sequence-to-sequence models:

p(Y |X; θ) =

m∏
t=1

pθ(yt|y1, . . .yt−1, X; θ). (1)

To solve TSP, PtrNet employs an LSTM encoder to sequen-
tially map the linearly projected coordinates of xi into the
hidden state of encoder LSTM he

i as node embeddings. The
decoder of PtrNet is another LSTM with the memory state passed
from the encoder (the hidden state after encoding all nodes). It
sequentially takes the last selected node yt−1 as input to get
decoder hidden state hd

t at step t and outputs the conditional
distribution over the next node at step t as the pointer attention:

ut
i = vT tanh(W1 h

e
i +W2 h

d
t), i ∈ Ut (2)

pθ(yt|y1, . . .yt−1, X; θ) = softmax(ut) (3)

where v, W1, and W2 are learnable parameters, and Ut is the
set of unvisited nodes, i.e., the feasible selections at step t.
Here, ut

i is the ith element of vector ut with dimension |Ut|,
which is further processed by a softmax function in (3). The
process of PtrNet solving a TSP instance with five nodes is
depicted in Fig. 1. The encoder LSTM (green boxes) encodes
five nodes sequentially. And with the starting node y1 always
being the first node x1 in the sequence, the decoder LSTM (gray
boxes) decodes three steps to select x5, x3, and x2. Since the
only unvisited node is x4, a solution is found, i.e., the route
x1 → x5 → x3 → x2 → x4 → x1.

C. TAM

Different from the sequence-to-sequence models, the
TAM [12] ignores the recurrence structure and is designed
solely based on the dot-product attention. For TSP, the input
to TAM is the 2-D coordinates of nodes, while an additional
dimension demand is included for CVRP. The encoder follows
the architecture of transformer [14], which is a linear projection
Xp

i = Wpxi followed by multiple (L) layers of self-attention
blocks. The core of self-attention block is a multihead attention
layer

Qh
i = Wh

QX
p
i ,K

h
i = Wh

KXp
i , V

h
i = Wh

V X
p
i (4)

Ah = softmax(QhKhT /
√
dk)V

h, for h = 1, 2, . . ., H (5)

Fig. 2. TAM.

Multihead(Q,K, V) = Concat(A1, A2, . . ., AH)WO (6)

where Xp is the input to this layer, i is the node index, h is the
head index, and H is the number of heads. Wh

Q,W
h
K ,Wh

V ∈
Rd×dk , and WO ∈ Rd×d are trainable parameters, and d is
the feature dimension, dk = d/H . Here, Q,K, V are linear
projections of node embeddings and represent the Query, Key,
Value vector according to the rationale of self-attention [14].
The self-attention block works as follows:

f̂i = BN(Xi + Multiheadi(Q,K, V)) (7)

fi = SelfAttentioni(X
p) = BN(f̂i + FF(f̂i)) (8)

where f is output of the self-attention block, and FF is two
feed-forward layers with ReLu activation. Both (7) and (8) have
a skip-connection [27] and a Batch Normalization layer [28].

The decoder models P (yt|X, y1, . . ., yt−1) use an attention
mechanism as follows:

fc = Concat(Mean(f), fy0 , fyt−1) (9)

fg
c = Multihead(W g

Qfc,W
g
Kf t,W g

V f
t) (10)

q = WQf
g
c , ki = WKfi (11)

oi = C tanh(qT ki/
√
d), i ∈ Ut (12)

P (yt|X, y1, . . ., yt−1) = softmax(o) (13)

where f t is node embeddings and d is feature dimension. Here,
o is similar to ut in (3). In (9), for the first step, fy0 and fyt−1

are replaced by trainable parameters. And (10) is similar to the
glimpse in [29] with a mulithead attention to get a new context.
C = 10 is used to clip oi to [−10,10] for better exploration [10].
The structure of TAM is shown in Fig. 2, where the purple and
green boxes are the operations running only once and at every
decoding step, respectively.

IV. MODELS

In this section, we describe our approach in detail. We first
show how to apply the step-wise scheme to PtrNet and TAM.
Then, we present the approximate SW-TAM which can reduce
the computational overhead of the step-wise TAM.

A. Step-Wise PtrNet

Clearly in PtrNet, pθ(yt|y1, . . .yt−1, X; θ) is a function of all
nodes in the inputX . In other words, while selecting one node to
visit, the node embeddings depend on the whole graph including
the already visited nodes. However, the previous decisions in
the solution construction process cannot be altered and should
not affect the future decisions. Therefore, with the irrelevant
information of the visited nodes for the embeddings, the model
may not produce an optimal policy for the subproblems at each
step. Inspired by the Bellman’s Principle of Optimality, we
correct this by explicitly eliminating the visited and irrelevant
nodes in the graph at each step. More specifically, after one node
is selected and visited at step t, the encoder LSTM reembeds
the remaining nodes with this visited node eliminated from the
sequence to get new embeddings eti, instead of simply using
the original embeddings ei. Note that we do not remove the
default starting node x1, since the salesman needs to return to
x1 eventually. We call this model step-wise PtrNet (SW-PtrNet).

Here we demonstrate the inference process of SW-PtrNet, i.e.,
how to reembed the node information and select the next node.
In each decoding step t, the encoder LSTM first embeds each
unvisited nodexi sequentially. The resulting embedding forxi is
the ith hidden state in the encoder eti = he

i = LSTMe(xi, h
e
i−1).

After that, the decoder computes its hidden state as hd
t =

LSTMd(yt−1, h
m
t), where yt−1 is the node selected in step t− 1

and hm
t is the memory state from the encoder in step t (note that

the encoder and decoder do not share parameters). Then, the
conditional distribution over the next node yt can be obtained as
follows:

ut
i = vT tanh(W1e

t
i +W2 h

d
t), i ∈ Ut (14)

pθ(yt|yt−1, y1, Vt; θ) = softmax(ut). (15)

While solving TSP, the model keeps track of the visited nodes
and masks them out for the probability of selecting yt, i.e., only
the nodes i ∈ Ut (the set of unvisited nodes) can be selected
at step t. Therefore, the constraint for not visiting the same
nodes twice is satisfied. After selecting yt based on the above
distribution, SW-PtrNet moves to the next step. The visited node
yt is removed from the input sequence and the encoder LSTM is
used to reembed the sequence to get et+1

i for the decoder at step
t+ 1. Therefore, different from he

i in (2), the node embeddings
eti in (14) is reembedded at each step. As a result, the conditional
probability in (15) no longer conditions on the previous visited
nodes, unlike (3). Since the decoder only decodes one node
during each step t, there is no need to maintain its memory
state. The process is repeated until only one node is unvisited.
Then, a tour is obtained by appending the unvisited node and the
starting node to the sequence, such that the constraints of TSP

Fig. 3. SW-PtrNet.

Algorithm 1: Inferring a Solution Using SW-PtrNet.
Data: Set of nodes X
Result: The solution sequence Y
1 Embedding sequence with all the nodes using the

encoder LSTM;
2 while not all nodes are visited do
3 Select the node to visit using the decoder LSTM with

(14) and (15);
4 Eliminate the selected node and reembed the unvisited

nodes using the encoder LSTM.

are satisfied. The process of SW-PtrNet solving a TSP instance
with five nodes is shown in Fig. 3.

The algorithm for solving one TSP instance using SW-PtrNet
is shown in Algorithm 1. With LSTM reembedding the nodes at
each step, the computational complexity of the encoder at infer-
ence time raises one order up from O(nd2) to O(n2 d2), where
d is the feature dimension and n is the number of nodes. This is
due to Line 4 in Algorithm 1 which has worst case computation
complexity of O(nd2) for each of the n runs. Intuitively, for
each step t, the encoder needs to eliminate yt−1 and reembed
all the remaining unvisited nodes. However, we can save some
computation by reusing some of the previous embeddings. In
fact, the encoder LSTM just needs to truncate right before
xs = yt−1 in the input sequence of step t− 1, and embed the
nodes afterxs. To achieve this, we keep the first s− 1 embedding
steps in the encoder and skip the selected node xs. After that, we
embed node xs+1 as ets+1 = he

s+1 = LSTMe(xs+1, h
e
s−1), and

other unvisited ones similarly. We illustrate this process in Fig. 3,
where the dashed boxes are the embeddings that can be reused.
Since a significant amount of computation could be saved, we
do not seek an approximation for SW-PtrNet.

B. Step-Wise TAM

The original TAM model also suffers from the same issue
as PtrNet, i.e., the encoder embeds all nodes only once, and
the same embeddings are used throughout decoding, without
removing previously visited nodes that are irrelevant to future
decisions. Therefore, the embeddings calculated at the beginning
are no longer accurate after a couple of steps, resulting in subop-
timal policies. Although the glimpse mechanism in (10) tries to
correct the context for the query vector q, the node embeddings to

form this query vector and the key vectors ki still correlate with
the irrelevant information from the visited nodes. To fix this,
we apply the step-wise scheme to TAM, and explicitly make
the embeddings independent of the irrelevant nodes. To this
end, at each step, the transformer encoder reembeds the whole
graph with the irrelevant nodes eliminated. More specifically, we
project the nodes linearly with Xp

i = Wpxi and run the whole
L layers of self-attention block as (8) in the encoder at each step
t with the irrelevant nodes masked

f t
i = SelfAttentiont

i(X
p). (16)

In the multihead attention of (16), to mask the irrelevant nodes,
we compute the attention compatibility Ah using the following
equation instead of (5):

wh
ij(Q

h
i ,K

h
j) =

{
Qh

i K
h
j
T
/
√
dk, j ∈ Ut

−∞, otherwise
(17)

Ah = softmax(wh)V h. (18)

Here, wh
ij is the jth element of the ith vector of the matrix wh

with dimensionn× n and the softmax in (18) is along the second
dimension. As shown in Algorithm 2, after selecting one node
to visit at step t (line 3), the encoder reembeds the new set of
feasible nodes i ∈ Ut with (16)–(18), and the decoder takes the
new embeddings for step t+ 1 (line 4). Note that for TSP, the
set of feasible nodes Ut consists of the unvisited nodes; while
for CVRP, Ut consists of unvisited nodes which also satisfy the
capacity constraints. The model keeps track of the history of
selected nodes to get the set of feasible nodes Ut for each step
t. And the decoder decodes the probability of selecting next
nodes based on the new node embeddings where the probability
is masked out for the infeasible nodes i /∈ Ut. Therefore, after
all nodes are visited, a feasible solution that satisfies all the con-
straints for the routing problems (TSP or CVRP) can be obtained.

We call the above model SW-TAM, which is no longer
a model for the whole problem but for each subproblem of
selecting one node to visit. Its structure is illustrated in Fig. 4
following the same style of Fig. 2. Both TAM and SW-TAM
are trained in the reinforcement learning setting, where the
model parameters are optimized to maximize the cumulative
reward that corresponds to minimizing the total tour length.
Following [12], we use standard REINFORCE algorithms with
a greedy roll-out baseline. Specifically, the baseline policy is
the periodically saved best-performing model parameters. After

Algorithm 2: Inferring a Solution Using SW-TAM.
1 Embedding the set of nodes using the transformer
encoder with (4)–(8);

2 while not all nodes are visited do
3 Select the node to visit using the Attention Decoder

with (9)–(13);
4 Eliminate the infeasible nodes and reembed the nodes

with (16)–(18).

Fig. 4. SW-TAM.

evaluating a held-out dataset at the end of each epoch, the best set
of parameters is kept to greedily infer the result as the baseline.

In Algorithm 2, similar to SW-PtrNet, the reebedding opera-
tion (Line 4) also introduces additional overhead to SW-TAM.
This is due to the fact that the problem with n nodes breaks into
subproblems in each step, where the encoder needs to encode
the nodesn times. The computation complexity of the multihead
self-attention block (16) is O(nd2 + dn2) if we consider the
number of heads as constant [14]. Due to (16) running for n
times, the computational complexity of the encoder in SW-TAM
is O(n2 d2 + dn3), which is cubic of the number of nodes and
hard to scale up to larger graphs. In the next subsection, we de-
sign an approximation of SW-TAM that is more computationally
efficient.

C. Approximate SW-TAM

It is well-known that in convolutional neural network for face
recognition, the lower convolutional layer extracts more general
features such as lines in different degrees. On the contrary, the
upper layer extracts specific features that are more direct for
performing the task such as detecting different types of eyes or
noses [30]. Based on this intuition, we hypothesize a similar
feature extraction paradigm for the attention model, which we

Fig. 5. ASW-TAM.

will validate in the experiments. Below we employ it to achieve
better computational efficiency.

More specifically, we propose a new model which approxi-
mately performs the reembedding process in SW-TAM by fixing
the lower attention layer at each step, and change only the top
layer by masking out the attention weights of irrelevant nodes
in the multihead attention mechanism. In this new model with L
multihead attention blocks, the firstL− 1 is the same as standard
building blocks, which can be viewed as the encoder. On the
other hand, the top attention layer is part of the decoder, where
at each step, the attention mechanism in this layer masks out
the irrelevant nodes and gets new embeddings. This design is
illustrated in Fig. 5, where the purple boxes are the encoder
running only once for embeddings, and the green boxes are
the decoder running at each step. The yellow box (multihead
attention layer in the last attention block) is also part of the
decoder with the attention weights precomputed for once and
masked at every step. The first part (precomputation) of the
yellow box is defined mathematically as (4) and the following
equation:

wh(Qh,Kh) = QhKhT /
√
dk. (19)

The second part of the yellow box runs at each step t, and is to
set wh

·,Ct−1
= −∞ and perform the following computation and

(6)

Ah = softmax(wh)V h. (20)

Then, the node embeddings are computed using (7) and (8).
Based on the new embeddings, the rest part of the decoder selects
a new node and gets a new mask. The model will then move to
step t+ 1 and runs the second part in the yellow box with the
new mask. We call this model ASW-TAM. The inferring process
for ASW-TAM is shown in Algorithm 3. The constraints can be
satisfied using the same procedure as that for SW-TAM.

In this new proposed layer in ASW-TAM, (4) and (19) only
need to run once and have the computational complexity of
O(nd2) and O(dn2), respectively. Equations (4) and (19) and
the first L− 1 attention layers run in Line 1 in Algorithm 3.
Equations (6)–(8) need to run every decoding step as Line 4 in
Algorithm 3 resulting in O(n2 d2) computational complexity in
total. Note that straightforward implementation of (20), which

Algorithm 3: Inferring a Solution Using ASW-TAM.
1 Embedding the set of nodes using the transformer
encoder with (4)–(8);

2 while not all nodes are visited do
3 Select the node to visit using the attention decoder with

(9)–(13);
4 Eliminate the infeasible nodes and reembed the nodes

approximately with (20) and (6).

will be performed n times, results in the complexity of O(n3 d).
However, with elegant engineering, we managed to achieve
O(n2 d) for calculation of (20) as shown in the following.

We omit the head index h for simplicity, and (20) can be
explicitly rewritten into element-wise form as follows:

ŵi,j = exp (wi,j), for all i and j (21)

Ai,j =

∑
k ŵi,kVk,j∑

k ŵi,k
, for all i and j. (22)

And we define

swi(t = 1) =
∑
k

ŵi,k, for all i (23)

swVi,j(t = 1) =
∑
k

ŵi,kVk,j , for all i and j. (24)

Equations (21), (23), and (24) are precomputed once and have
the computation complexity of O(n2 d). At step t = 1, none
of the nodes is masked and each element of A is calculated as
follows:

Ai,j =
swVi,j(1)
swi(1)

, for all i and j. (25)

Then, at step t− 1 after decoding, the node with index l is visited
and should be removed. Accordingly, each element of A at step
t is calculated as follows:

swi(t) = swi(t− 1)− ŵi,l, for all i (26)

swVi,j(t) = swVi,j(t− 1)− ŵi,lVl,j , for all i and j (27)

Ai,j =
swVi,j(t)

swi(t)
, for all i and j. (28)

For each element, the computational complexity with respect to
each of (25)–(28) is O(1) and the total number of elements is
O(nd). Therefore, the computational complexity for each step
isO(nd), and for all the steps isO(n2 d). Consequently, the total
computational complexity of the top attention layer is considered
as O(n2 d2). Note that the equations are written in the element-
wise form only for illustration purpose.

Compared to TAM, ASW-TAM raises the computation com-
plexity from O(nd2 + dn2) to O(n2 d2). However, it is still
quadratic in the number of nodes. Even d could be large as 128,
and we only need to do this in the top layer, which turns out to
be acceptable as demonstrated in the experiments.

V. EXPERIMENTS

In this section, we conduct experiments to verify the effec-
tiveness of our step-wise deep learning models on two types of
routing problems, i.e., TSP and CVRP.

Following [11], [12], here the locations of TSP and CVRP
instances are generated independently from a two-dimensional
uniform distribution ranging from 0 to 1 for both dimensions.
We generate instances with 20, 50, and 100 nodes for TSP and
CVRP. For convenience, we refer them as TSP20, CVRP20, etc.
For CVRP, the demands of each node are sampled uniformly
from discrete numbers {1...9} while the vehicle capacities are
fixed as 30, 40, and 50 for CVRP20, CVRP50, and CVRP100,
respectively. For testing, we generate 10,000 samples from
the same distribution and keep it fixed for all models. For
training and evaluation, we use the highly optimized solver
Concorde [31] to get the optimal solutions for TSP. For CVRP,
since it is much harder to be solved optimally, we use the state-
of-the-art solver LKH3 [32] to get the benchmark solutions.

A. SW-PtrNet

In this subsection, we compare SW-PtrNet with the original
PtrNet. For a fair comparison, we adopt a similar training scheme
and problem settings as in [9], i.e., using supervised training on
TSP problems. We use the TSP20 instances for training and
testing, as it is the largest training size in [9]. Moreover, with
larger problem sizes, the availability of the optimal solutions
as training samples is at great expense due to the exponential
computational complexity of the exact algorithms. Therefore,
we generate 1 600 000 TSP20 instances, and solve them using
Concorde to get the optimal solutions for training. On the other
hand, the exact algorithm for CVRP is far less efficient than that
for TSP, and it is prohibitively time-consuming to generate suf-
ficient optimal solutions as training samples. Therefore, we do
not consider CVRP for PtrNet or SW-PtrNet in this subsection.

The models are trained with the Adam optimizer [33] where
the learning rate is initially 0.001 and decayed by 0.96 every
5000 steps. We train both models for 1 000 000 iterations with
batch size of 128 and clip the gradient by 2.0 of L2 norm. The
coordinates of nodes are projected into a 256 dimension space
before being fed into the decoder. The hidden dimension for both
the encoder and decoder is 256. The parameters are initialized
with uniform distributions in the range of [−0.08, 0.08]. For
TSP, since the route is a loop, the selection of the first node does
not matter and is assumed to be known. Thus, for each sampled
instance, only 18 selections need to be predicted. During the
training for both models, we mask out the output for infeasible
selections as shown in (14).

Here we use four measures for evaluation, including the
average solution distance, optimality gap, and total inference
time on the 10 000 testing instances, as well as training accuracy.
We use accuracy here because both models are trained by super-
vised learning to imitate the construction of optimal (training)
solutions. In such setting, accuracy can directly reflect the ability
of a model in terms of imitation. We only report training accuracy

Fig. 6. PtrNet vs SW-PtrNet during training.

TABLE I
PTRNET VS. SW-PTRNET

The bold entities are the better ones in the comparison (better objective values,
smaller optimal gaps, faster inference time).

because it is more informative. Since there exist at least two
optimal routes for each TSP instance, testing accuracy could
be very low for one of the optimal routes as it can easily be
different from the true label. This mismatch is much less severe
for training accuracy due to the fixed inputs to the decoder.

In Fig. 6, we plot the performance of PtrNet and SW-PtrNet
during training, measured by the testing distance and training
accuracy after every 1000 training steps. We can observe from
Fig. 6 that SW-PtrNet almost consistently outperforms PtrNet
during training in terms of both measures. Training accuracy in-
deed indicates good performance here, since SW-PtrNet, which
is more accurate, consistently produces lower solution distance.
We further list the convergence performance in Table I, along
with the average optimality gap and the total inference time
for the 10 000 testing instances. SW-PtrNet clearly outperforms
PtrNet in terms of solution quality. Regarding the optimal gap,
the relative improvement for SW-PtrNet over PtrNet is 21.88%.
The inference time of SW-PtrNet is longer than PtrNet, which is
not surprising since it has higher computational complexity as
we have analyzed in Section IV. Nevertheless, both models are
very fast since they solve 10 000 instances within 15 s.

To summarize, our step-wise scheme can effectively improve
the performance of the original PtrNet in solving TSP.

B. SW-TAM

In this subsection, we show the effectiveness of SW-TAM
by comparing with the original TAM. As mentioned, SW-TAM
is computationally expensive; therefore, we use small routing
problems here, i.e., TSP20 and CVRP20. For a fair comparison,

Fig. 7. TAM vs. SW-TAM for TSP 20.

Fig. 8. TAM vs. SW-TAM for CVRP 20.

we use the same setting and hyperparameters as those in the
original TAM, and train it using REINFORCE with the greedy
rollout baseline for 100 epochs [12]. Each epoch has 1 280 000
instances generated on the fly.

We plot the training curves of greedy decoding TAM and
SW-TAM on TSP20 and CVRP20 in Figs. 7 and 8, respectively.
As can be observed, SW-TAM is significantly better than the
original TAM on both problems. In terms of optimality gap for
TSP and CVRP, SW-TAM reduces those of original TAM from
0.29% to 0.19% and 4.46% to 4.15%, respectively. Moreover, it
takes only 48 and 54 epochs for SW-TAM to reach the results
of TAM after 100 epochs.

However, the computational complexity of reembedding after
each step in SW-TAM is one order higher than that of the original
model. Regarding TSP and CVRP, it takes 52 and 66 min to train
an epoch for SW-TAM, while TAM only needs 6 and 9 min,
respectively. Hence, it is hard to scale up to large problems with
50 or 100 nodes due to the memory and time constraints. This
motivates us to design the approximate SW-TAM model, which
will be evaluated in the next subsection.

Fig. 9. Histograms of attention weights in TAM and ASW-TAM for TSP20 and CVRP20; the coordinates of x-axis and y-axis for each bin are the
values of attention weights and the percentage frequencies divided by the bin width, respectively. (a) TSP, TAM, bottom. (b) TSP, ASW-TAM, bottom.
(c) CVRP, TAM, bottom. (d) CVRP, ASW-TAM, bottom. (e) TSP, TAM, top. (f) TSP, ASW-TAM, top. (g) CVRP, TAM, top. (h) CVRP, ASW-TAM, top .

TABLE II
ASW-TAM RESULTS VS. TAM RESULTS. VALUES IN THE PARENTHESES ARE
THE TOTAL INFERENCE TIME FOR SOLVING THE 10 000 TESTING INSTANCES

The bold entities are the better ones in the comparison (better objective values, smaller
optimal gaps, faster inference time).

C. Approximate SW-TAM

In this subsection, we compare the performance of ASW-
TAM with the original TAM on TSP and CVRP instances with
20, 50, and 100 nodes. The training settings are the same as those
in the previous subsections.

The results are summarized in Table II. Note that similar
to Figs. 7 and 8, these results are based on greedily decoding
the model, which is sufficient to prove the effectiveness of our
proposed step-wise scheme. However, the solution quality of
our model can also be further improved if additional techniques
such as sampling or beam search are applied. As can be observed,
ASW-TAM consistently outperforms the original TAM model
in terms of distance and optimality gap on all instances. The
relative improvement is significant for most of these problems.
Moreover, the improvement on the optimality gap tends to
be larger on harder instances with more nodes. Though the
inference time of ASW-TAM is longer than TAM due to the com-
putational overhead of reembedding the nodes approximately, it
is still very fast and acceptable as it takes less than 1 min to
solve 10 000 instances with 100 nodes. Compared to traditional

nonlearning solvers based on complicated search algorithms, the
inference time is still very short and even negligible. For exam-
ple, Lin–Kernighan–Helsgaun (LKH) [34] takes 13 h to solve
10 000 instances of CVRP100 with 32 parallel threads as shown
in [12].

In terms of training efficiency, on TSP20, it takes only 12 min
for ASW-TAM to train an epoch, which is significantly less than
the 52 min of SW-TAM, and is acceptable compared to the 6 min
for the original TAM. This drastic improvement enables us to
train ASW-TAM on larger instances with 50 and 100 nodes. For
TSP20, the optimality gap of ASW-TAM is 0.23%, which is a
bit larger than that of SW-TAM (0.19%). This shows that ASW-
TAM trades off performance for better computational efficiency,
which validates the effectiveness of our design.

To better understand the rationale of how ASW-TAM works,
we plot the weights of the bottom and top attention layers of
both TAM and ASW-TAM in solving TSP20 and CVRP20
using histograms in Fig. 9, respectively. We can observe that
the pattern of attention weights distribution is clearly different
across different layers. More specifically, weight distribution in
the bottom layer (layer 1) is flatter in the sense that the attention
weights are mostly around 0.05, which is the average weight for
20 nodes, and almost all of the attention weights are within 0.3. In
contrast, the distribution of the weights in the top layer (layer 3)
is more uneven where 30 percent of the weights are less than 0.02
and the attentions with larger weights are much more than the
corresponding proportion of the bottom layer. This observation
validates our intuition in Section IV-C. In particular, the lower
attention layer extracts more fundamental features of the input
instance. On the other hand, the upper layer extracts features
that are more directly helpful for solving the problem based on
the uneven weight distribution, and is much more aggressive in
the sense that it will pay more attention to the informative nodes
and barely any attention to irrelevant nodes. Therefore, we keep

TABLE III
ASW-TAM RESULTS VS. TAM RESULTS ON TSPLIB. NUMBER IN THE

INSTANCE NAME IS ITS SIZE

The bold entities are the better ones in the comparison (better objective values, smaller
optimal gaps, faster inference time).

the embeddings from lower layers unchanged in ASW-TAM, and
only perform reembedding in the top layer at each decoding step
to obtain features that are more related to solving the problems
by masking out the visited nodes.

Following [8], we further compare the performance of our
model ASW-TAM and the original TAM on 38 instances from
a widely used benchmark TSPLIB [35], ranging from 51 to 318
cities. We directly perform inference on these instances using
the models trained for TSP100. To get a better generalization
performance on these instances with different sizes, the statistics
for the batch normalization layer in both models come from
instances with the same number of nodes as the one being
inferred, which can be computed in advance and introduces
no additional computational overhead. Results show that ASW-
TAM outperforms TAM with an optimal gap of 12.20% against
14.75%, and finds better solutions for over 76% (29 out of 38)
instances. Table III shows the results of 10 selected instances
due to limited space. We can observe that ASW-TAM performs
well across various problem sizes. The total inference time of
the 38 instances for TAM and SW-TAM are 0.56 and 0.89 s,
respectively.

TAM, SW-TAM and ASW-TAM are all based on the archi-
tecture of transformer. However, it is known that training trans-
former model could be expensive and may take a significantly
long time, even with supervised learning [14]. This has more
impacts on the reinforcement learning setting, since the training
might converge slowly. Consequently, the 100 training epochs
we adopted from [12] previously to train these three models may
not yield the best performance. Hence, we train these models
for a longer time and notice that they can converge to better
results. However, ASW-TAM still shows consistently better per-
formance than the original TAM. Specially, we demonstrate this
using TSP20 and TSP50. In TSP20, after 600 training epochs,
TAM converges to an average distance of 3.838 with optimality
gap of 0.14%, and ASW-TAM converges to 3.837 with opti-
mality gap of 0.10%. For TSP50, TAM takes 1000 epochs to
converge to an average distance of 5.739 with optimality gap
of 0.82%, while ASW-TAM converges after 800 epochs to an
average distance of 5.722 with optimality gap of 0.52%. The
relative improvements on the optimality gap are 27% and 37%,

respectively, which are roughly the same as the result for 100
epochs in Table II. All our experiment codes are available1.

VI. CONCLUSION

In this article, we proposed a step-wise scheme for the
deep models that learn construction heuristics to solve routing
problems. In this scheme, the nodes that were visited in the
construction process were explicitly eliminated, such that the
following subproblems were correctly represented. We then
applied this scheme to PtrNet and TAM, two representative
deep models, and obtained significant improvements in terms
of optimality. To ameliorate the expensive computation caused
by the reembedding operations in SW-TAM, we further pro-
posed the ASW-TAM by modifying the last attention layer,
which significantly reduced the complexity and retained good
empirical performance. For future work, we would like to apply
this step-wise scheme to other models and on other problems.
Also, we hope that this idea would inspire further researches on
designing network architectures considering the recursive nature
of sequential decision-making problems.

REFERENCES

[1] K.-H. N. Bui and J. J. Jung, “Aco-based dynamic decision making for
connected vehicles in IoT system,” IEEE Trans. Ind. Informat., vol. 15,
no. 10, pp. 5648–5655, Oct. 2019.

[2] Y. Feng, B. Hu, H. Hao, Y. Gao, Z. Li, and J. Tan, “Design of distributed
cyber–physical systems for connected and automated vehicles with im-
plementing methodologies,” IEEE Trans. Ind. Informat., vol. 14, no. 9,
pp. 4200–4211, Sep. 2018.

[3] M. Veres and M. Moussa, “Deep learning for intelligent transportation
systems: A survey of emerging trends,” IEEE Trans. Intell. Transp. Syst.,
vol. 21, no. 8, pp. 3152–3168, Aug. 2020.

[4] D. Li, L. Deng, Z. Cai, B. Franks, and X. Yao, “Intelligent transportation
system in Macao based on deep self-coding learning,” IEEE Trans. Ind.
Informat., vol. 14, no. 7, pp. 3253–3260, Jul. 2018.

[5] X. Wang, T.-M. Choi, H. Liu, and X. Yue, “Novel ant colony optimization
methods for simplifying solution construction in vehicle routing prob-
lems,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 11, pp. 3132–3141,
Nov. 2016.

[6] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The Traveling
Salesman Problem: A Computational Study. Princeton, NJ, USA: Prince-
ton Univ. Press, 2006.

[7] M. Fischetti, P. Toth, and D. Vigo, “A branch-and-bound algorithm for
the capacitated vehicle routing problem on directed graphs,” Oper. Res.,
vol. 42, no. 5, pp. 846–859, 1994.

[8] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning combi-
natorial optimization algorithms over graphs,” in Proc. Adv. Neural Inf.
Processing Syst., Red Hook, NY, USA, 2017, pp. 6348–6358.

[9] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Proc. Adv.
Neural Inf. Process. Syst., Cambridge, MA, USA, 2015, pp. 2692–2700.

[10] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural combi-
natorial optimization with reinforcement learning,” in Proc. 5th Int. Conf.
Learn. Representations, Toulon, France, 2016.

[11] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takác, “Reinforcement
learning for solving the vehicle routing problem,” in Proc. Adv. Neural
Inf. Process. Syst., Red Hook, NY, USA, 2018, pp. 9839–9849.

[12] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve routing
problems!” in Proc. 7th Int. Conf. Learn. Representations, New Orleans,
LA, USA, 2018.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[14] A. Vaswani et al. “Attention is all you need,” in Proc. Adv. in Neural Inf.
Process. Syst., Red Hook, NY, USA, 2017, pp. 5998–6008.

[15] R. E. Bellman, “Dynamic programming treatment of the traveling sales-
man problem,” J. ACM, vol. 9, no. 1, pp. 61–63, 1961.

1[Online]. Available: https://github.com/liangxinedu/stepwise

[Online]. ignorespaces Available: ignorespaces https://github.com/liangxinedu/stepwise

[16] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial
optimization: A methodological tour d’horizon,” Eur. J. Oper. Res., to be
published, doi: 10.1016/j.ejor.2020.07.063.

[17] H. Dai, B. Dai, and L. Song, “Discriminative embeddings of latent variable
models for structured data,” in Int. Conf. Mach. Learn., 2016, pp. 2702–
2711.

[18] X. Chen and Y. Tian, “Learning to perform local rewriting for combi-
natorial optimization,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 6281–6292.

[19] Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim, “Learning improvement
heuristics for solving routing problems,” Dec. 2019, arXiv:1912.05784.

[20] S. Y. Hao Lu and X. Zhang, “A learning-based iterative method for solving
vehicle routing problems,” in Proc. 8th Int. Conf. Learn. Representations,
2020.

[21] C. K. Joshi, T. Laurent, and X. Bresson, “An efficient graph con-
volutional network technique for the travelling salesman problem,”
arXiv:1906.01227, 2019.

[22] D. Selsam et al., “Learning a sat solver from single-bit supervision,” in
Proc. Int. Conf. Learn. Representations, 2018.

[23] Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph
convolutional networks and guided tree search,” in Proc. Adv. Neural Inf.
Process. Syst., 2018, pp. 539–548.

[24] P.-W. Wang, P. L. Donti, B. Wilder, and Z. Kolter, “SATNet: Bridging deep
learning and logical reasoning using a differentiable satisfiability solver,”
in Proc. Int. Conf. Learn. Representations, 2019, pp. 6545–6554.

[25] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with
neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 3104–
3112.

[26] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in Proc. 3rd Int. Conf. Learn.
Representations, San Diego, CA, USA, 2015.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[28] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. Int. Conf. Learn.
Representations, 2015, pp. 448–456.

[29] O. Vinyals, S. Bengio, and M. Kudlur, “Order matters: Sequence to
sequence for sets,” in Proc. 3rd Int. Conf. Learn. Representations, San
Diego, CA, USA, 2015.

[30] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embed-
ding for face recognition and clustering,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2015, pp. 815–823.

[31] D. Applegate, R. Bixby, V. Chvatal, and W. Cook, “Concorde TSP solver,”
2006. Online: Available: http://www.math.uwaterloo.ca/tsp/concorde

[32] K. Helsgaun, An Extension of the Lin–Kernighan–Helsgaun TSP Solver for
Constrained Traveling Salesman and Vehicle Routing Problems. Roskilde:
Roskilde University, 2017.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
Proc. 3rd Int. Conf. Learn. Representations, San Diego, CA, USA, 2014.

[34] K. Helsgaun, “An effective implementation of the Lin–Kernighan traveling
salesman heuristic,” Eur. J. Oper. Res., vol. 126, no. 1, pp. 106–130, 2000.

[35] G. Reinelt, “TSPLIB – A traveling salesman problem library,” ORSA J.
Comput., vol. 3, no. 4, pp. 376–384, 1991.

Liang Xin received the bachelor’s degree in civil
engineering from Tongji University, Shanghai,
China and the master’s degree in civil and en-
vironmental engineering from Carnegie Mellon
University, Pittsburgh, PA, USA. He is currently
working toward the Ph.D. degree in computer
science at the School of Computer Science and
Engineering, Nanyang Technological University,
Singapore.

His research interests include deep learning
for combinatorial optimization problems.

Wen Song received the B.S. degree in au-
tomation and the M.S. degree in control sci-
ence and engineering from Shandong Univer-
sity, China, in 2011 and 2014, respectively, and
the Ph.D. degree in computer science from
Nanyang Technological University, Singapore,
in 2018.

He was a Research Fellow with the Singtel
Cognitive and Artificial Intelligence Lab for En-
terprises (SCALE@NTU), Singapore. He is cur-
rently an Associate Professor with the Institute

of Marine Science and Technology, Shandong University, China. His
research interests include artificial intelligence, machine learning, plan-
ning and scheduling, multiagent systems, and operations research.

Zhiguang Cao received the B.Eng. degree
in automation from the Guangdong University
of Technology, Guangzhou, China, in 2009,
the M.Sc. degree in signal processing from
Nanyang Technological University, Singapore,
in 2012, and the Ph.D degree in computer sci-
ence from Interdisciplinary Graduate School,
Nanyang Technological University, Singapore,
in 2017.

He worked as a Research Fellow with Future
Mobility Research Lab, and Energy Research

Institute @ NTU (ERI@N), Singapore. He is currently a Research As-
sistant Professor with the Department of Industrial Systems Engineering
and Management, National University of Singapore, Singapore. His re-
search interests include AI and combinatorial optimization problems.

Jie Zhang received the Ph.D. degree in com-
puter science from the Cheriton School of Com-
puter Science, University of Waterloo, Canada,
in 2009.

He is an Associate Professor with the
School of Computer Science and Engineering,
Nanyang Technological University, Singapore.
During his Ph.D. study, he received the presti-
gious NSERC Alexander Graham Bell Canada
Graduate Scholarship for top Ph.D. students
across Canada. His research interests include

the design of effective and robust intelligent software agents, through
the modeling (trustworthiness, preferences) and simulation of different
agents in a wide range of environments, using AI techniques (data
mining, machine learning, and probabilistic reasoning) and multiagent
technologies.

https://dx.doi.org/10.1016/j.ejor.2020.07.063
http://www.math.uwaterloo.ca/tsp/concorde

	Step-wise deep learning models for solving routing problems
	Citation

	Step-Wise Deep Learning Models for Solving Routing Problems

