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TestSGD: Interpretable Testing of Neural Networks against

Subtle Group Discrimination
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Discrimination has been shown in many machine learning applications, which calls for sufficient fairness

testing before their deployment in ethic-relevant domains. One widely concerning type of discrimination,

testing against group discrimination, mostly hidden, is much less studied, compared with identifying individ-

ual discrimination. In this work, we propose TestSGD, an interpretable testing approach that systematically

identifies and measures hidden (which we call “subtle”) group discrimination of a neural network character-

ized by conditions over combinations of the sensitive attributes. Specifically, given a neural network, TestSGD

first automatically generates an interpretable rule set that categorizes the input space into two groups. Along-

side, TestSGD also provides an estimated group discrimination score based on sampling the input space to

measure the degree of the identified subtle group discrimination, which is guaranteed to be accurate up to an

error bound. We evaluate TestSGD on multiple neural network models trained on popular datasets including

both structured data and text data. The experiment results show that TestSGD is effective and efficient in

identifying and measuring such subtle group discrimination that has never been revealed before. Furthermore,

we show that the testing results of TestSGD can be used to mitigate such discrimination through retraining

with negligible accuracy drop.
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1 INTRODUCTION

Machine learning models, especially neural networks, are becoming ubiquitous in various real-
life applications. For example, they are used in medical diagnosis [26], self-driving cars [9], and
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criminal sentencing [5]. Meanwhile, more attention has been paid to the fairness issues of these
machine learning models [4, 11, 16, 17, 36, 37, 42, 49, 50], as discrimination has been discovered in
many applications [18, 36, 41, 47]. For instance, machine learning models were used to predict re-
cidivism risk for suspected criminals by computing the likelihood of committing a future crime [5].
Analysis results show that the prediction model was more likely to mislabel black defendants as
high recidivism risk and mislabel white defendants as low risk. To minimize such ethical risks, it is
crucial to systematically test the fairness of machine learning models, especially neural networks
where such issues are typically “hidden” due to the lack of interpretability [32, 39].

Recently, multiple efforts have been made in the testing community to first search for (and
then guide mitigating) discrimination of machine learning models spanning from traditional ones
to neural networks [16, 41, 47, 49, 50]. For instance, state-of-the-art fairness testing work uti-
lizes gradient information of the input sample to accelerate search/generation of discriminative
samples [49, 50]. Despite being effective, existing research has mostly focused on individual dis-
crimination, i.e., identifying or generating individual discriminatory instances of a machine learn-
ing model [16, 41, 47, 49, 50]. Group discrimination, which characterizes a model’s discrimination
against a certain group (whose sensitive attributes1 satisfy certain conditions), is another concern-
ing type of discrimination, which has been widely studied [16, 25, 40, 47]. However, testing against
group discrimination has been much less studied so far. Compared to testing of individual discrim-
ination, testing a machine learning model against group discrimination imposes new challenges.
First, it is highly non-trivial to effectively enumerate all combinations of sensitive attributes (es-
pecially when the sensitive attributes have multiple or even continuous values). Second, group
discrimination can be hidden, i.e., there might be “subtle” group discrimination against those groups
whose sensitive attributes satisfy certain unknown conditions, e.g., male-white of certain age group.
While a prior work [24] similarly addresses discrimination against subgroups defined over conjunc-
tions of protected attributes in the learning phase, we propose an automatic testing approach to
systematically identify such subgroups using interpretable rules and measure such discrimination
before model deployment.

Specifically, in this work, we develop an effective method to systematically test a given machine
learning model against such hidden subtle group discrimination, namely, TestSGD. An overview
of TestSGD is shown in Figure 1, which consists of three main phases: (1) candidate rule set genera-
tion, (2) group fairness identification, and (3) discrimination mitigation. In the first phase, TestSGD
will automatically generate a candidate set of rules concerning multiple sensitive attributes. Note
that we only consider frequent rule set with sufficient support (which characterize a sufficiently
large group). In the second phase, the rule set R effectively partitions the samples into two groups,
i.e., samplesr , which satisfies the rules, and samples¬r , which does not. The key intuition behind is
to develop effective criteria to automatically mine interpretable rules that are practical and relevant
in the real-world applications. Then, we measure if the model suffers from group discrimination
(against the groups partitioned by the rule set) by measuring the group discrimination score. Note
that solely relying on the training samples might not be enough to accurately measure such a score.
We thus propose to apply a standard data augmentation method, i.e., imposing minor perturbation
on the available seed samples to generate new samples, and obtain an accurate estimation of the
group discrimination score (with bounded errors). The testing results of the first two phases are
thus the identified subtle group discrimination (characterized by the rules) and their correspond-
ing group discrimination score (with bounded errors). For example, we test the model trained
on the Crime [33] dataset, which predicts whether the violent crimes per population in a spe-
cific community is high. The interpretable rule set found by TestSGD shows that it discriminates

1We use “feature”/“attribute” interchangeably.
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Fig. 1. An overview of TestSGD.

against communities in which the percentage of Caucasian population is lower than 80% and the
percentage of females who are divorced is higher than 40%, with a 60.7% group discrimination
score, i.e., it is 60.7% more likely to predict high crime rate for such a community. In the last
phase (optional, depending on whether the identified discrimination is considered to be harmful),
TestSGD leverages the testing results to mitigate the identified subtle group discrimination. That
is, to improve group fairness, we generate new samples according to the condition under which
discrimination exists and retrain the original model.

TestSGD is implemented as an open-source software [48]. We evaluate our TestSGD on eight
models trained on widely adopted datasets including both structured data and text data. The exper-
imental results show TestSGD is effective in identifying and measuring subtle group discrimina-
tion. The results also show that subtle group discrimination does exist in all of these eight models and
sometimes to a surprising level that has never been revealed before. For instance, the model trained
on the COMPAS [5] dataset is much less likely to predict Hispanic males older than 40 years old
as criminals with high recidivism risk. Furthermore, our experiments show that the testing-guided
discrimination mitigation is useful. That is, we can mitigate identified subtle group discrimination
for all models without sacrificing the accuracy.

In a nutshell, we summarize our main contributions as follows:

• We propose a method to automatically generate an interpretable rule set to identify subtle
group discrimination in neural networks, applicable for both structured and text data;
• We develop a theoretical bound for accurately sampling and estimating the group discrimi-

nation score against two groups.
• We show that we can generate samples systematically based on the interpretable rule set to

mitigate subtle group discrimination.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 6, Article 137. Pub. date: September 2023.
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2 BACKGROUND

Our goal is to develop a black-box method to identify subtle group discrimination in a user-
provided neural network model. Our method supports neural networks trained on two different
kinds of data, i.e., structure data and text data. Our method does not require the inner details of
the neural network. That is, the neural network is viewed as a function M : Rp → Rq that maps an
input x ∈ Rp to an output y ∈ Rq . Furthermore, we focus on deep feed-forward neural networks
and recurrent neural networks.

2.1 Input Type

First, we define two different data, i.e., structure data, text data, and their corresponding sensitive
attributes that are used to evaluate the discrimination of the neural networks.

A sample of structured dataset is composed of a set of features, i.e., a feature vector. A feature
can be categorical (i.e., with a fixed set of values) or continuous (i.e., with a certain value range).
We define the structure data and the corresponding sensitive attributes as follows:

Definition 2.1 (Structured Data). A structured data x contains N features {x1,x2, . . . ,xN }, where
∀xi ,xi ∈ Li , where Li is a set of feature values. We write S = {s1, s2, . . . , sn } to denote the set of
sensitive attributes in x , where n < N .

The text data is composed of a set of terms. We define the sensitive attribute of text data based
on the presence of sensitive terms. Note that there could be different categories of sensitive terms,
e.g., terms referring to race, religion, or ethnicity. We define the text data and the corresponding
sensitive attributes as follows:

Definition 2.2 (Text Data). A text data x contains a sequence of terms {x1,x2, . . . ,xN }. We write
S = {s1, s2, . . . , sn } to denote a set of categories of sensitive terms, where n < N and writeT denote
a set of sensitive terms {t1, t2, . . . , tk }, where tj ∈ si for some i , for all j ∈ [1,k] and tj ∈ x .

2.2 Fairness Definitions

To define our problem, we define fairness and the concept of group discrimination score. There
are multiple definitions of fairness [12, 14, 16, 23, 25, 47]. Here, we briefly review two well-studied
fairness definitions, i.e., individual fairness and group fairness. We adopt the term “discrimination
score” to quantify the group fairness from existing studies [16]. Note that the higher the discrim-
ination score is, the more serious the discrimination is. Individual fairness focuses on specific
pairs of individuals. Intuitively, individual discrimination (unfairness) occurs when two individu-
als that differ by only certain sensitive attribute (such as gender or race) are treated differently, i.e.,
with a different predicted label. This notion is widely used to search discriminatory instances that
differ only in those sensitive characteristics [41, 49, 50]. There are also plenty of works on learning
models that are more likely to avoid individual discrimination [36].
Group fairness, also known as statistical fairness, focuses on sensitive groups such as ethnic
minority and the parity across different groups based on some statistical measurements [7, 16,
25, 40, 47]. A classifier satisfies this metric if the samples in the sensitive group have a positive
classification probability or true positive probability that is similar with or equal to that of the
insensitive group.

In this work, we focus on group fairness for its relevance in many neural network applications.
It is also a fairness notion that is easy to interpret. In the following, we provide a formal definition
of group fairness based on positive classification rate measurement.

Definition 2.3. LetM be a neural network model; l be a (favorable) prediction; and ξ be a positive
constant. Let G be a group identified by certain condition ϕ on sensitive attributes S . G can be

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 6, Article 137. Pub. date: September 2023.
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defined as a set of samples {x |x � ϕ}, where x � ϕ means x satisfies condition ϕ. We say M satisfies
group fairness, with respect to ξ and G, if and only if

| P (M (x ) = l | x ∈ G ) − P (M (x ) = l | x � G ) | ≤ ξ . (1)

Note that, in some cases, the model may be fair overall but unfair under some specific “sub-
tle” conditions. For example, the model is fair considering gender attribute if it approves half of
the loans from female or male applicants. However, when we consider both gender and race, the
model may show discrimination. For example, it approves loans for far less a percentage of His-
panic female individuals, compared to the remaining group. In this setting, we say that the model
discriminates against Hispanic females (if we show that the testing results have sufficient statistical
confidence).

3 PROBLEM DEFINITION AND RESEARCH METHOD

In the following, we define our research problem and briefly discuss how we aim to solve the
problem and evaluate our approach.

Our problem is to develop a systematic method for identifying subtle group discrimination. That
is, given a neural network model M , as well as a constant threshold ξ , we aim to generate a condi-
tion ϕ such that M is unfair with respect to the group identified by ϕ. The condition ϕ must satisfy
the following conditions:

• It must be constituted by variables representing sensitive attributes.
• It must be human-interpretable, so our analysis result can be presented for human decision-

making.
• It must identify a group of non-trivial size.

In addition, our method must support both structured data as well as text data. Furthermore, we
would like our method to generate results with certain correctness guarantee, e.g., the chance of
reporting non-existing discrimination is low.

Inspired by rule-based models, which are widely used to learn interpretable models [28, 34], we
aim to solve the above problem by generating ϕ in the form of rules (a.k.a. constraints) that are
understandable by human beings and also concrete enough to show model prediction differences
between different groups. The rules should be constituted by the input features, without relying on
any latent variables or representations. We defineϕ to be the conjunction of one or more rules, each
of which is constituted by only one sensitive attribute. Furthermore, to limit the search space as
well as to make sure the generated rules are interpretable, we limit each rule on continuous features
to be of the form of a linear inequality, e.g., aдe ≥ 30 is a possible rule but aдe is multiples o f 7
is not. Last, to identify a discriminatory subgroup of non-trivial size, we use a support value to
calculate the frequency of samples that satisfy the condition described by ϕ.

To test whether each generated rule set ϕ identifies certain group discrimination, we split the
whole input space into two subgroups according to ϕ, i.e., samples satisfying ϕ and the rest. We
evaluate the discrimination by calculating the discrimination score defined according to Defini-
tion 2.3. To make sure that the discrimination we discover is highly likely in the actual system, we
propose a sampling-based approach to estimate the probability of predicting a certain label within
a given group. That is, we sample inputs with a distribution that is similar to the data distribution
of the training dataset. Such a method allows us to generate an estimation with certain level of sta-
tistical confidence, i.e., with a bound on the error. Note that it is not as simple as adopting existing
techniques such as hypothesis testing [43, 44]. This is because the group discrimination score is
the difference between two estimations (i.e., one for the individual in the group and the other for
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137:6 M. Zhang et al.

those not in the group). We solve this problem by establishing a conservative error bound on the
difference based on the error bounds for the two estimations.

Our method is evaluated in multiple aspects. First, we aim to evaluate how effective our approach
is in terms of identifying subtle group discrimination, measured using the identified discriminatory
subgroups and their respective discrimination scores. Second, we aim to evaluate the efficiency of
our approach by measuring the execution time. Third, since identifying subtle group discrimina-
tion is often not the end of the story in practice, we aim to evaluate whether our testing results
can be used to mitigate the identified discrimination. That is, by generating additional samples to
retrain the model, we evaluate whether we can mitigate the identified subtle discrimination by
measuring the discrimination score and accuracy changes before and after the retraining.

4 THE STEPS OF TESTSGD

In this section, we describe how TestSGD works. There are three main steps, i.e., learning a rule
set, identifying group discrimination based on the learned rule set, and discrimination mitigation.
The first step is discussed in Section 4.1, while the second step is covered in Sections 4.2 and 4.3.
Finally, the last step is discussed in Section 4.4. The inputs for our method include a machine
learning model M , its training set D, and a set of sensitive attributes S . The output is the subtle
group discrimination represented as a rule set characterizing the discriminated group and the
corresponding group discrimination score. Last, based on identified subtle group discrimination,
we adopt a data-augmentation-based approach to retrain the model to improve the fairness.

4.1 Generating Frequent Rule Sets

To identify discrimination against certain groups, we first need a way of characterizing a group.
In this work, we characterize the groups based on a set of rules, each of which constrains one
sensitive attribute. In the following, we present how we generate rules for sensitive attributes of
both structured data and text data:

In terms of categorical features xi in structured data such as gender or race, in general, a rule can
be defined as a subset of the possible feature values Li . For instance, given the sensitive attribute of
race that has five values, i.e., Caucasian, Black, Hispanic, Asian, and other-race, a rule can be any
set containing one to four of these five values. In total, we have 30 rules. For continuous features xi

in structure data such as age or percentage, there may be too many possible values to enumerate,
i.e., the domain of Li is too large. Thus, we apply techniques such as binning to turn continuous
features into categorical features. Here, we divide the original value range into K intervals with
equal width. We set K as 10 in our experiments. For example, we divide age attribute ranging from
0 to 99 into 10 equal intervals. Then, we consider each interval as a single value (e.g., 20–29 is
considered the same value) and consider a set containing adjacent values as a rule, e.g., the two
values representing 10 ≤ aдe < 20 and 20 ≤ aдe < 29 become 10 ≤ aдe < 29.

For textual dataset, defining rules is not that straightforward. In this work, we define the rules
based on the presence of identity terms T , a.k.a. sensitive terms (refer to Definition 2.2) that refer
to people with specific demographic characteristics. For each sensitive category s , we define a
rule that intuitively means that the text sample contains a term t , where t ∈ s . In this work, we
use a set of 48 terms created in Reference [13] as the sensitive terms that can be classified into
four categories, i.e., gender, race, religion, and age. The sensitive terms are shown in Table 1. For
example, when we consider the gender feature for text dataset, there are 14 sensitive terms and
thus 14 rules are generated. Only when sensitive terms exist in the textual data do we consider
that it has the corresponding sensitive attributes. Note that, similar to Reference [13], we consider
gender-related terms and sexual orientation-related terms as one category and define all these
terms as gender attribute for text dataset.
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Table 1. Identity Sensitive Terms

Sensitive Attributes Identity Terms

gender
bisexual, female, gay, heterosexual, homosexual, lesbian, lgbt,
lgbtq, male, nonbinary, queer, straight, trans, transgender

race
african, african american, american, asian, black, canadian,
chinese, european, hispanic, indian, japanese, latina, latino,
latinx, mexican, middle eastern, white

religion
atheist, buddhist, catholic, christian, jewish, muslim, protestant,
sikh, taoist

age elderly, middle aged, millennial, old, older, teenage, young, younger

Once a set of rules is identified, we then characterize a group based on a rule set. Each element
of a rule set is a rule constraining one sensitive attribute. Intuitively, a rule set partitions the input
space ofM into two disjoint groups, i.e., those who satisfy all the rules in the rule set and the rest. If
these two groups have a significant different probability of being predicted favorably by the model
M , then we successfully identify a subtle discrimination.

Note that a naive approach is to enumerate all possible rules based on one sensitive attribute
and combine them arbitrarily. Such an approach is both infeasible and undesirable. First, there can
be enormous combinations of the rules. Second, not all rule sets are interesting. For instance, a
rule set may be {aдe ≥ 100,дender = Male}. A discrimination found against the group identified
by this rule set is likely to be due to the limited data.

We thus only consider frequent rule sets among all possible combinations of rules. A frequent
rule set is a set of rules that is satisfied by a group with a size more than certain threshold. Formally,
given a rule set R, the support for R is the frequency of the number of samples that satisfy all rules
in rule set R. Given a support threshold θ (i.e., a percentage), we say that R is frequent if its support is
no less than θ . In the following, we present how to identify a set of frequent rule sets for structured
and text data:

For each sensitive attribute s , let Rs be the set of rules concerning s . A rule set R is composed of
rules for each sensitive attribute, i.e., R = {r s1 , r s2 , . . . , r sn } where r si ∈ {Rsi ∪ ∅} and R � ∅. R is
frequent if and only if support (R) ≥ θ where support (R) is defined as follows:

support(R) =
#{d ∈ D |∀r ∈ R. d � r }

#D
, (2)

where #X of a set X is the number of elements in X ; and d � r means that d satisfies r .

Example. Consider the structured dataset Census Income [35]. It has three sensitive attributes,
i.e., gender, race, and age. Each feature has a set of values. The following constitutes a rule set:

{дender = Male, race =White, 40 ≤ aдe < 60}.

Rule sets for text data are defined differently. Recall that each rule is a proposition on whether the
text contains certain sensitive term. Formally, given the set of the categories of sensitive terms S , a
rule set R is then a set of sensitive terms {r1, r2, . . . , rm }, where rk ∈ si for some i , for all k ∈ [1,m]
andm ≤ n. The support of R is defined as follows:

support(R) =
#{d ∈ D |∀r ∈ R. contains (d, sr )}

#D
, (3)

where sr is the sensitive category referring to r and contains (d, sr ) is a proposition that is true if
and only if d contains at least one term in the category sr .
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ALGORITHM 1: FrequentRuleSets (D, S, sup_thr ) where D is the training set, S is the sensitive
attributes, θ is the support threshold

1: sinдle_rules ← {}, rule_sets ← ∅
2: for each s in S do

3: rules ← {r1, r2, . . .}
4: sinдle_rule[s] = rules
5: end for

6: all_sinдle_rules ← {sinдle_rule[s] ∪ ∅} for all s ∈ S
7: rule_sets ← combinations (all_sinдle_rules )
8: all_rule_sets ← {R f or R in rule_sets i f support (D,R) ≥ θ }
9: return all_rule_sets

Example. Consider the text dataset Wikipedia Talk Pages [45]. We have two categories of
sensitive terms, e.g., gender and race. For each category, we have a set of corresponding sensitive
terms as shown in Table 1. The following constitutes a rule set:

{“bisexual”, “Caucasian”}

Algorithm 1 shows the exact steps in generating all possible rule sets. At line 1, we first initialize a
dictionary sinдle_rules and an empty set rules_sets . During the loop from line 2 to 5, we generate
all possible 1-feature rules for each sensitive attribute as discussed above. The set sinдle_rule[s]
contains all single rules r generated in line 3 for sensitive attribute s . At line 6, we generate a set of
all 1-feature rules. Then, we generate all possible rule sets at line 7. Note that rule_sets generated in
line 7 is restricted to contain only one single rule describing each feature from set all_sinдle_rules .
Last, at line 8, we only keep those rule sets that have a support value no less than θ .

In general, given a dataset with K sensitive attributes and at most N rules for each sensitive
attribute, the number of rule sets is NK in the worse case. For example, we have 2 gender-related
single rules, 5 race-related 1-feature rules, and 10 age-related 1-feature rules, there are 17 rule sets
when considering one sensitive attribute, 80 rule sets when considering two sensitive attributes,
and 100 rule sets when considering all sensitive attributes. So, in total, there are 197 possible rule
sets.

4.2 Identifying Group Fairness

For each group identified by a rule set, we then measure the discrimination against the group. That
is, we aim to compute the probability of predicting certain label byM on those samples in the group,
and that on those samples not in the group, and measure the difference. The score is the group dis-
crimination score, which varies from 0 (i.e., no difference) to 1 (i.e., completely different). Formally,

Definition 4.1 (Group Discrimination Score). Let R be a rule set. Let l be a (favorable) label. The
group discrimination score with respect to R and l is |prob (R, l ) − prob (¬R, l ) |, where prob (R, l ) is
the probability of predicting l given samples satisfying R, ¬R identifies samples not satisfying R.

We remark that this definition is similar to the CV score [12] and multivariate group discrim-
ination score [16]. However, the former is limited to binary input types and the latter is limited
to categorical input types. In comparison, our discrimination score supports both structured data
and text data.

Example. Take a model trained on the (structured) Census Income dataset as an example. The
model predicts whether the income of an adult is above $50,000 annually, i.e., “True” means above
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Interpretable Testing of Neural Networks against Subtle Group Discrimination 137:9

the threshold and “False” means otherwise. Assume the rule set is

{дender = Male, race =White, 40 ≤ aдe < 60}.
Assume that the model predicts 28% of individuals in this group with “True” and 10% of the re-
maining population with “True.” The model’s group discrimination score, with respect to the rule
set and the prediction, is 18%.

Given a rule set, measuring the group discrimination score requires us to measure prob (R, l ) and
prob (¬R, l ), which is non-trivial, since exhaustively enumerating all samples is infeasible due to
the enormous input space. However, measuring it based on a limited number of samples may
yield inaccurate results. In the following, we propose an approach to compute group discrim-
ination scores with a statistical confidence guarantee. Formally, we would like to measure the
group discrimination score f within a margin of error ϵ under a certain confidence δ , such that

prob ( | f − f̂ | > ϵ ) < 1−δ , where f̂ is the real group discrimination score over all possible samples.
Algorithm 2 shows how we measure the group discrimination score. We maintain two sets

of samples, i.e., samplesr , which contains samples satisfying R, and samples¬r , which contains
samples not satisfying R. At line 1, we set both samplesr and samples¬r to be empty, error margin
ϵ to be infinity, and the number of generated samples as 0. During the loop from line 2 to 16, we
keep generating samples and calculating group discrimination score until the error margin ϵ is no
more than the given error threshold error_thr . From line 3 to line 6, we generate new samples
for samplesr and samples¬r , respectively, using a function Sample . We remark that the generated
samples should follow the original data distribution (i.e., that of the training dataset). We present
details on how we sample on structured and text dataset in the next subsection.

At line 7, we increase num by 1. After generating a sufficient number of samples, we check the
error margin ϵ from line 9 to 15. We first calculate the probability of predicting l at line 9 and 10 for
two sets of samples. Then, at line 11, we calculate the error margin ϵ on the group discrimination
score. We explain why it is calculated this way below. If ϵ is less than or equal to error_thr , then
the stopping criteria is satisfied (as in lines 12 and 13). Last, at line 17, we return the absolute
difference between ϕr and ϕ¬r as the group discrimination score.

In the above algorithm, we estimate the error margin of the group discrimination score based on
an estimation ofprob (R, l ) andprob (¬R, l ). The complication is that bothprob (R, l ) andprob (¬R, l )
carry certain error margin, which may magnify the error margin for the group discrimination score.
In the following, we prove that line 11 in the above algorithm allows us to conservatively estimate
the error margin of the group discrimination score:

Theorem 4.2. Assume that ϕr satisfies the following:

prob ( |ϕr − ϕ̂r | > ϵr ) < 1 − δr , (4)

where ϵr and δr are constants. Similarly, ϕ¬r satisfies the following:

prob ( |ϕ¬r − ϕ̂¬r | > ϵ¬r ) < 1 − δ¬r . (5)

Then the following is satisfied:

prob ( | f − f̂ | > ϵr + ϵ¬r ) < 1 − δrδ¬r . (6)

Proof. Since prob ( |ϕr − ϕ̂r | > ϵr ) < 1 − δr and prob ( |ϕ¬r − ˆϕ¬r | > ϵ¬r ) < 1 − δ¬r , we have:

prob ( |ϕr − ϕ̂r | ≤ ϵr ) ≥ δr

prob ( |ϕ¬r − ϕ̂¬r | ≤ ϵ¬r ) ≥ δ¬r .
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ALGORITHM 2: GroupFairnessScore (D,M,R, sample_thr , error_thr ) where D is the training
dataset; M is the machine learning model; R is a rule set, sample_thr is the number of generated
inputs threshold; error_thr is error margin threshold

1: samplesr ← ∅, samples¬r ← ∅, ϵ ← +∞, num ← 0
2: while ϵ > error_thr do

3: x ← Sample (D,R)
4: x ′ ← Sample (D,¬R)
5: samplesr ← samplesr ∪ x
6: samples¬r ← samples¬r ∪ x ′
7: num ← num + 1
8: if num > sample_thr then

9: ϕr ← #{i ∈ samplesr |M (i ) = l }/num
10: ϕ¬r ← #{i ∈ samples¬r |M (i ) = l }/num
11: ϵ ← z ×

√
ϕr (1−ϕr )

num
+ z ×

√
ϕ¬r (1−ϕ¬r )

num

12: if ϵ ≤ error_thr then

13: break
14: end if

15: end if

16: end while

17: return f ← |ϕr − ϕ¬r |

Hence,

prob ( |(ϕr − ϕ̂r ) − (ϕ¬r − ϕ̂¬r ) | ≤ ϵr + ϵ¬r ) ≥

prob ( |ϕr −ϕ̂r | ≤ϵr ) · prob ( |ϕ¬r −ϕ̂¬r | ≤ϵ¬r ) ≥ δrδ¬r

and

prob ( |(ϕr − ϕ̂r ) − (ϕ¬r − ˆϕ¬r ) | > ϵr + ϵ¬r ) < 1 − δrδ¬r

prob ( |(ϕr − ϕ¬r ) − (ϕ̂r − ϕ̂¬r ) | > ϵr + ϵ¬r ) < 1 − δrδ¬r .

According to Definition 4.1, group discrimination score f = ϕr − ϕ¬r . Thus,

prob ( | f − f̂ | > ϵr + ϵ¬r ) < 1 − δrδ¬r . �

The above theorem provides a theoretical guarantee on the statistical confidence for the group
discrimination score estimation. That is, based on the Equation (6), the fairness level for discrimi-
nation score f is δrδ¬r and the margin of error is the sum of two margin of errors as ϵr +ϵ¬r . Each
ϵ is calculated by:

ϵ = z ×
√

ϕ (1 − ϕ)

num
, (7)

where z is the value from the standard normal distribution for a certain confidence level δ (e.g., for
a 95% confidence level, z = 1.96). So, the final margin of error for discrimination score f is shown
in line 11 of Algorithm 2. Based on the result, we derive the stopping criteria, as shown in lines 12
and 13 of Algorithm 2.

The above shows how we compute the group discrimination score for one rule set. Given
multiple rule sets, we systematically compute the discrimination score for each rule set with
Algorithm 2 and then rank the rule sets according to the resultant group discrimination score. If
the group discrimination score of certain rule set is more than a given tolerable threshold, then
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we report that discrimination is identified.

Example. Take a model trained on the (structured) Census Income dataset as an example. We
fixed the confidence level to 95% and the corresponding z-value is 1.96. We set the sampling thresh-
old sample_thr as 1,000 and the error of margin threshold error_thr as 0.05. We are given a rule
set

{дender = Male, race =White, 40 ≤ aдe < 60}.

First, we sample 1,000 inputs as samplesr using Sample function that represents white males who
are older than 40 but younger than 60. Then, we sample another 1,000 inputs as samples¬r using
Sample function that represents the rest individuals. We observe that 283 samples in samplesr

are labeled as “True,” while only 91 samples in samples¬r are labeled as “True.” So, ϕr is 28.3%
and ϕ¬r is 9.1%. According to Algorithm 2, ϵr is 0.028 and ϵ¬r is 0.018. So, the margin of error ϵ
for discrimination score is 0.046. Since ϵ is less than 0.05, we stop sampling. Finally, the group
discrimination score is computed as 19.2% with 90.25% confidence.

4.3 Input Sampling

As discussed above, Algorithm 2 requires us to sample inputs with a distribution that is similar to
the data distribution of the training dataset. As shown in Reference [19], modern machine learning
models mostly rely on the i.i.d. assumptions. That is, the training and test set are assumed to
be generated independently from an identical distribution. It is more likely for machine learning
models to predict identically distributed data correctly.

While it is impossible to know the actual data distribution, we aim to generate additional sam-
ples from a distribution as close as possible to the distribution of the training set. For structured
data, instead of generating feature vectors randomly, we generate new samples by adding tiny
perturbations on original samples uniformly. The perturbation is added to one randomly selected
non-sensitive attribute with randomly selected perturbation direction, and the perturbation size is
1 for integer variables or 0.01 for decimal variables. Formally, given the rule set R, we first search
a seed instance from the dataset D as seed = {x1,x2, . . . ,xN }, where ∀r ∈ R. seed � r . Then, we
randomly select a non-sensitive attribute xk , where xk � S . We perturb xk as x ′

k
= xk +dir ·s_pert ,

where dir ∈ [−1, 1] and s_pert is the perturbation size.
For text data, we generate new samples by replacing sensitive terms with a different term in the

same sensitive term category. For example, when we test the machine learning model trained on
the Wikipedia Talk Pages dataset, given a rule set {“дay”}, we need to generate additional com-
ments containing the term “gay.” First, we search all comments containing gender-related sensitive
terms such as “lesbian” and “bisexual,” as defined in Table 1. Then, we replace these terms in the
original comments with the term “gay” to generate new comments. That is, we can generate “I am
a gay” from an original comment “I am a lesbian.” The reason why we use text replacement instead
of text perturbation, as in the case of structured data, is that perturbing texts with synonyms (as
proposed in Reference [38] for adversarial attacks) is ineffective to generate the texts in the desired
group, since these models are much more complicated. We further remark that, for structured data,
perturbing sensitive attributes risks shifting the original data distribution, especially for data with
a small number of features. This is less a concern for text data that contains many features. Our
text generation method also has the benefit of mitigating the influence of data imbalance that may
cause unintended bias [13]. Formally, given the rule set R = {r1, r2, . . . , rm }, we first search a seed
instance from the dataset D as seed = {x1,x2, . . . ,xN }, where ∀r ∈ R. contains (seed, sr ), where sr

is the sensitive category referring to r and contains (d, sr ) is a proposition that is true if and only
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if d contains at least one term in the category sr . Then, we replace the term xi to term r j , for all
r j ∈ R and xi ∈ sr j

.

4.4 Discrimination Mitigation

After identifying group discrimination, we can mitigate the subtle group discrimination (repre-
sented by the given rule sets) through retraining. Here, we proposed a data-augmentation approach
to improve fairness merely as an example to show the usefulness of our approach. We remark that
there are alternative approaches that target reducing algorithmic bias as well, which are often
referred to as in-processing methods [24, 37]. In fact, it is perceivable that our results can be inte-
grated with those approaches as well, e.g., by training with additional loss functions based on the
rule sets identified using our method.

In particular, we generate additional instances satisfying the rule set with the sampling approach
described in Section 4.3. We only select those generated instances with the opposite label as the
additional data for retraining. For example, the model trained on COMPAS is more likely to pre-
dict elderly males who are Hispanic or other race with “False” label. We thus apply the Sample
function to generate instances satisfying the condition that are labeled as “True” according to the
original model. Afterward, we retrain the original model with these additional instances. Note that
we gradually increase the number of additional instances from 50 to 10% of original dataset size to
achieve the lowest discrimination score without decreasing the accuracy of the retrained model.
We evaluate the effectiveness of our discrimination mitigation approach by testing the subtle dis-
crimination with respect to the same rule set to see the discrimination score improvement and
accuracy changes.

5 IMPLEMENTATION AND EVALUATION

We have implemented TestSGD as a self-contained software toolkit based on Tensorflow [1] with
about 6k lines of Python code. Our implementation is available at Reference [48].

5.1 Experiment Subjects

Our experiments are based on eight models trained with the following benchmark datasets. These
datasets have been widely used as evaluation subjects in multiple previous studies on fairness [13,
16, 29, 36, 49, 50].

• Census Income [35]: The dataset contains more than 30,000 samples and is used to predict
whether the income of an adult is above $50,000 annually. The attributes дender , race , and
aдe are sensitive attributes.
• Bank Marketing [31]: The dataset contains 45,000+ samples and is used to train models

for predicting whether the client would subscribe a term deposit. Its sensitive attribute is
aдe .
• German Credit [21]: This is a small dataset with 600 samples. The task is to assess an

individual’s credit. The sensitive attributes are дender and aдe .
• COMPAS [5]: This dataset contains 7,000+ samples. The task is to predict whether the re-

cidivism risk score for an individual is high. The sensitive attributes are дender , race , and
aдe .
• Crime [33]: This dataset contains almost 2,000 data for communities within the US. The task

is to predict whether the violent crimes per population in a specific community is high. Since
this dataset records population statistics, their sensitive attributes are shown in multiple
attributes with percentage values. Here, we extract all gender/race/age-related attributes to
learn rule sets.
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Table 2. Parameters of the Experiments

Parameters Value Description

θ 5% support threshold

sample_thr 1,000 sampling threshold

δ 95% confidence level

error_thr 0.05 error margin threshold

z 1.96 z value

s_pert 1 perturbation size for integer variables

s_pert 0.01 perturbation size for decimal variables

Table 3. Dataset and Models of Experiments

Dataset Model Accuracy Favorable Prediction

Census Income Six-layer Fully connected NN 86.13% Income is above 50,000

Bank Marketing Six-layer Fully connected NN 91.62% Subscribe a Term Deposit

German Credit Six-layer Fully connected NN 100% Good Credit

COMPAS Six-layer Fully connected NN 78.99% High Recidivism Score

Law School Six-layer Fully connected NN 95.19% Pass Exam

Crime Six-layer Fully connected NN 92.52% High Crime Rate

Wikipedia Talk Pages CNN Long Short-term memory network 93.89% Toxic Comment

IMDB CNN Long Short-term memory network 86.68% Good Review

• Law School [6]: This dataset has more than 20,000 application records and is used to pre-
dict whether a student passes the bar exam. The attributes race and дender are sensitive
attributes.
• Wiki Talk Pages [45]: This is a textual dataset containing more than 100,000 Wikipedia

TalkPage comments. The task is to predict whether a given comment is toxic. Note that the
sensitive attributes are defined in Table 1.
• IMDB [30]: IMDB dataset contains 50,000 movie reviews. The task is to predict whether a

given sentence is a positive review. The sensitive attributes are defined in Table 1.

For the first six structured datasets, we train a six-layer feed-forward neural network using
the exact same configuration as reported in the previous studies [49, 50]. For the last two textual
datasets, we train a convolutional neural network (CNN) combined with long short-term

memory (LSTM). Table 2 shows the value of parameters used in our experiment to run TestSGD.
The details of trained models are shown in Table 3. The accuracy of the trained models is expectedly
similar to what is reported in the previous studies. All experiments are conducted on a server
running Ubuntu 1804 with one Intel Core 3.10 GHz CPU, 32 GB memory, and two NVIDIA GV102
GPUs. To mitigate the effect of randomness, all the results are the average of three runs.

5.2 Research Questions

Then, we evaluate the performance and utility of TestSGD in identifying subtle group discrimina-
tion on neural networks trained on the above datasets. Specifically, we ask the following research
questions:

• RQ1: Effectiveness of Identifying Discrimination: Is our method effective in identifying
subtle group discrimination of a given machine learning model?
• RQ2: Efficiency of Identifying Discrimination: Is our method efficient?
• RQ3: Effectiveness of Mitigating Discrimination: Can we mitigate subtle discrimination

using our testing results?
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Table 4. Rule Sets and Discrimination Scores for Neural Networks

Dataset
top 1 top 2 top 3

Rule Set
Discrimination Score

Rule Set
Discrimination Score

Rule Set
Discrimination Score

(ϕr , ϕ¬r ) (ϕr , ϕ¬r ) (ϕr , ϕ¬r )

Census Income
gender = male, 40 ≤ age < 80, 20.2% gender = male, 40 ≤ age < 70, 19.4% gender = male, 40 ≤ age < 80, race = White, 18.4%

race = White or Asian-Pac-Islander (29.9%, 9.7%) race = White or Amer-Indian-Eskimo (28.9%, 9.5%) Asian-Pac-Islander or Amer-Indian-Eskimo (26.9%, 8.5%)

Bank Marketing 10 ≤ age < 90
38.2%

10 ≤ age < 70
22.8%

10 ≤ age < 60
20.5%

(3.3%, 41.5%) (26.6%, 3.8%) (4.7%, 25.2%)

German Credit gender = female, 60 ≤ age < 70
21.9%

gender = female, 60 ≤ age < 80
21.8%

gender = male, 40 ≤ age < 80
15.5%

(72.5%, 50.6%) (70.5%, 48.7%) (52.6%, 47.1%)

COMPAS
gender = male, age ≥ 40, 62.4% gender = male, 40 ≤ age < 60, 62.3% gender = male, 50 ≤ age < 60, 62.3%

race = Hispanic or other race (20.7%, 83.1%) race = Hispanic or other race (20.3%, 82.6%) race = Hispanic (19.5%, 81.8%)

Law School gender = male, race = Asian or Black
15.0%

gender = female, race = Asian or Black
11.1%

gender = female, race = Black
10.2%

(84.5%, 99.5%) (88.8%, 99.9%) (89.7%, 99.9%)

Crime FemalePctDiv ≥ 0.4, racePctWhite ≤ 0.8
60.7%

FemalePctDiv ≥ 0.5, racePctWhite ≤ 0.8
59.6%

FemalePctDiv ≥ 0.5, racePctWhite ≤ 0.6
59.5%

(83.8%, 23.2%) (87.0%, 27.4%) (94.6%, 35.1%)

Wiki Talk Pages “gay,” “taoist”
6.5%

“gay,” “protestant”
5.4%

“gay,” “african american”
5.1%

(13.0%, 6.5%) (12.9%, 7.5%) (12.5%, 7.4%)

IMDB “european,” “young”
6.6%

“white,” “older”
6.6%

“lgbtq”
6.5%

(56.0%, 49.4%) (59.1%, 52.6%) (7.5%, 14.0%)

RQ1: Is our method effective in identifying subtle group discrimination of a given machine
learning model?

To answer the question, we systematically apply our approach to the above-mentioned models
and measure the results. The results are summarized in Table 4. It shows results on the six models
trained on structured data and results on the two models trained on text data. These four columns
show datasets, rule sets, group discrimination scores and model accuracies, respectively. The fa-
vorable label is “True,” the meanings of which are shown in Table 3. More details can be found in
the above introduction on the corresponding dataset. Note that for each model, we rank the identi-
fied subtle discrimination according to the group discrimination score and we report the top three
worst discrimination only. Similar to the example shown in Section 4.2, all results are computed
with the same confidence (i.e., 90.25%) and error of bound (i.e., less than 0.05).

We can observe that subtle discrimination does exist in these models, which were never revealed
in the previous studies [13, 16, 29, 49, 50]. For instance, the model trained on the Bank Marketing

dataset predicts only 3.3% of the clients who are older than 10 but younger than 90 would subscribe
a term deposit, while predicting 41.5% of clients older than 90 would subscribe a term deposit. All
of the top three testing results show the model discriminates against young clients. We remark
that although this is unfair according to the definition, it may have its underlying reasons and it
is still up to human experts to decide whether it is actual discrimination.

For the models trained on the Census Income dataset, German Credit dataset, and the Law

School dataset, they show relatively mild discrimination. In contrast, the model trained on the
COMPAS dataset shows severe discrimination, with a discrimination score of 62.4%. That is, for
Hispanic or other race male individuals who are older than 40, the model is much less likely to
predict the recidivism risk as high. For the remaining individuals, the model predicts 83.1% of
them have high recidivism risk. Top two and top three test results also show severe discrimination
against older Hispanic or other race male individuals. Similarly, the model trained on the Crime

dataset also shows high discrimination. Different from the first five structured datasets, samples
in this dataset have 10 different sensitive attributes, each of which is a decimal ranging from 0.0 to
1.0 representing the percentage of certain population. As shown in the top 1 testing result, when
the percentage of divorced females is above 40% and the percentage of Caucasians is below 80%,
the model is much more likely to predict that the violent crimes per population in this commu-
nity is high. All testing results on the model trained on Crime dataset suggest that the model
discriminates against communities with high percentage of divorced females and low percentage
of Caucasians.

In Table 4, the last two rows show the results on models trained on the text data. In general,
we observe that the models trained on text dataset show less discrimination. The maximum dis-
crimination score for the model trained on the Wikipedia Talk Pages dataset is 6.5%. That is,
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Table 5. Time Taken to Identify the Subtle Discrimination

Dataset Time (seconds) #rule set

Census Income 869.35 880

Bank Marketing 141.52 34

German Credit 104.85 53

COMPAS 908.5 1,590

Law School 18.46 17

Crime 29,150.01 13,282

Wiki Talk Pages 34,982.28 732

IMDB 69,125.16 876

the model predicts 13.0% of comments containing both “gay” and “taoist” as toxic. For other com-
ments (i.e., those without one of these two terms or both), the model predicts only 6.5% of them as
toxic. Top two and top three testing results show that the model discriminates against comments
containing both “gay” and “protestant” and comments containing both “gay” and “african ameri-
can,” respectively. The model trained on the IMDB dataset shows a similar level of discrimination.
It is more likely to predict reviewers containing “european” and “young” and reviews containing
“white” and “older” as positive. It also shows discrimination against reviews containing “lgbtq.”
Our conjecture on why the level of discrimination is considerably lower on these models is that
each sample in these text datasets often has many features and, as a result, the influence of each
term (including sensitive terms) is distributed.

Answer to RQ1: TestSGD is effective in identifying subtle group discrimination in neural
networks.

RQ2: Is our method efficient?

To answer this question, we measure the amount of time required to identify the subtle discrim-
ination for each model. The total execution time and the numbers of tested rule sets are shown
in Table 5. For all models, the time required to identify the subtle discrimination is less than 20
hours. Furthermore, models trained on structured dataset take considerably less time than those
trained on text dataset. That is, models trained on the Census Income, Bank Marketing, Ger-

man Credit, COMPAS, and Law School take less than 16 minutes. One exception is the model
trained on the Crime dataset, which takes more than 8 hours. The main reason is that it has a
large number of rule sets, due to a large number of sensitive attributes (i.e., 10), all of which are
continuous features. In contrast, both models trained on text dataset take more than 9 hours to
finish. The main reason is that generating additional samples for such dataset takes much more
time in general. We remark that the sampling procedure can be easily parallelized and, thus, we
could significantly reduce the time if it is an issue.

Note that the support threshold θ is set to be 5% in all the above experiments. Intuitively, it
means that each rule must be relevant to 5% of the population (although the rule set, which is a
conjunction of multiple rules, may impact a smaller population). This hyper-parameter largely de-
termines how many rule sets that we must examine and thus may have an impact on the execution
time. We thus conduct additional experiments with different θ values, ranging from 1% to 50%, to
evaluate the effect of θ on the execution time and the results. The results on two models, i.e., the
model on Law School and the model on COMPAS, are detailed in Table 6.
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Table 6. Effect of Different θ

Dataset θ
Time

#rule sets Rule Set
Discrimination

(seconds) Score

Law School

1% 46.71 59
gender = male,

16.3%
race = Black

5% 18.46 17
gender = male,

15.0%
race = Asian or Black

10% 17.83 16
gender = male,

1.0%
race = Asian or White

20% 17.83 16
gender = male,

0.9%
race = Asian or White

50% 6.28 2
gender = male,

0.3%
race = other race

COMPAS

1% 1,175.79 2,063
gender = male, age ≥ 40

62.4%
race = Hispanic or other race

5% 908.50 1,590
gender = male, age ≥ 40

62.4%
race = Hispanic or other race

10% 676.74 1,180
gender = male, age ≥ 20

43.9%
race = Hispanic or other race

20% 0 0 NULL NULL

50% 0 0 NULL NULL

The table shows the execution time, the number of rule sets, and the worst group discrimination
score. We can observe that, the larger a θ we set, the fewer rule sets, the less execution time, and
the smaller group discrimination score in general. If the threshold θ is too low, e.g., 1%, then we
spend a lot of time testing a huge number of rule sets, which may not be interesting (one such
example is {дender = Male,aдe ≥ 100}). In contrast, if the threshold θ is too high, e.g., 20% or 50%,
then there may only exist few or even none rule set (as in the case of the model trained on the
COMPAS dataset).

We note that different θ may result in different discrimination being identified. For the model
trained on Law School, the rule set shows that the model discriminates against black or Asian
males the most when θ is 5%. However, when we set θ to be 1%, the model is shown to discrimi-
nate against black male individuals the most. For the model trained on the COMPAS dataset, the
model discriminates against Hispanic or other race males who are older than 40 years old most
when we set θ to be 5%. However, when we set θ higher (i.e., 10%), the age range is expanded to
be over 20 years in the identified rule set. Such a result is expected, as a large θ requires us to
find discrimination against a large group. What is considered to be a reasonable value for θ is a
complicated question, which should probably be answered by lawmakers.

Answer to RQ2: TestSGD is reasonably efficient.

RQ3: Can we mitigate subtle discrimination using our testing results?

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 6, Article 137. Pub. date: September 2023.



Interpretable Testing of Neural Networks against Subtle Group Discrimination 137:17

Table 7. Discrimination Mitigation for Neural Networks

Dataset Rule Set
Before After

Accuracy
Discrimination Score

Accuracy
Discrimination Score

(ϕr ,ϕ¬r ) (ϕr ,ϕ¬r )

Census Income
gender = male, 40 ≤ age < 80,

86.1%
20.2%

86.2%
10.1%

race = White or Asian-Pac-Islander (29.9%, 9.7%) (18.9%, 8.8%)

Bank Marketing 10 ≤ age < 90 91.6%
38.2%

90.6%
5.4%

(3.3%, 41.5%) (6.9%, 12.3%)

German Credit gender = female, 60 ≤ age < 70 100%
21.9%

100%
7.3%

(72.3%, 50.6%) (45.9%, 53.2%)

COMPAS
gender = male, age ≥ 40,

79.0%
62.4%

78.5%
4.2%

race = Hispanic or other race (20.7%, 83.1%) (80.9%, 85.1%)

Law School gender = male, race = Black 95.2%
15.0%

95.1%
7.5%

(84.5%, 99.5%) (92.3%, 99.8%)

Crime FemalePctDiv ≥ 0.4, racePctWhite ≤ 0.8 92.5%
60.7%

98.1%
51.4%

(83.8%, 23.2%) (90.6%, 39.2%)

Wiki Talk Pages “gay,” “taoist” 93.9%
6.5%

95.5%
0.4%

(13.0%, 6.5%) (8.4%, 8.0%)

IMDB “european,” “young” 86.7%
6.6%

84.0%
3.3%

(56.0%, 49.4%) (43.7%, 40.4%)

To further show the usefulness of our approach, we evaluate whether we can mitigate the iden-
tified subtle discrimination using our testing results. The idea is to mitigate the discrimination by
retraining, which is described in Section 4.4.

We only consider the top one worst rule sets to mitigate the discrimination. The results are
shown in Table 7 for six models trained on additional structured data and two models retrained
on additional textual data. We can observe that all models show reduced subtle discrimination and
almost the same accuracy. The discrimination scores for retrained models on Census Income,
German Credit, and Law School decrease by about half. For the most improvement, the model
retrained on the COMPAS dataset shows much less subtle discrimination, as the discrimination
score decreases by more than 10 times, i.e., from 57.7% to 4.2%. The discrimination score of the
model trained on the Crime dataset decreases from 60.7% to 51.4%. Relatively, the fairness im-
provement is not obvious. We believe that it is due to its many continuous sensitive attributes and
the large number of features (i.e., each input contains more than 100 attributes). That is, it would
require a lot more additional data to improve fairness. In terms of CNN models, the discrimination
score decreases from from 6.5% to 0.4% for the model retrained on Wikipedia Talk Pages and
decreases from 6.6% to 3.3% for the model retrained on IMDB.

Answer to RQ3: TestSGD is useful in mitigating the identified subtle group discrimina-
tion through retraining.

5.3 Comparison with Baselines

In this section, we compare the effectiveness of TestSGD to the state-of-the-art group discrimina-
tion identification approaches, i.e., THEMIS [16] and FairFictPlay [24].

We identify the following two baselines from literature that can potentially identify similar
group discrimination as our work: (1) THEMIS [16] calculates group discrimination scores over
combinations of multiple features (subgroups) by measuring the difference between the maximum
and minimum frequencies of two subgroups on randomly generated samples. Those subgroups
can then be regarded as identified discrimination if the score is higher than a threshold. (2) Fair-

FictPlay [24] proposed an in-processing algorithm aiming to improve subgroup fairness. The
subgroups are identified with user-provided constraints in the form of conjunctions of Boolean
attributes, linear threshold functions, or bounded degree polynomial threshold functions over
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Table 8. Comparisons between TestSGD, THEMIS, and FairFictPlay

Dataset
TestSGD THEMIS FairFictPlay

Rule Set
Discrimination

Sensitive Attributes’ values for Max/Min Proportion
Discrimination

Linear Threshold Function
Discrimination

Score Score Score

Census Income
Gender = male, 40 ≤ age < 80,

20.2%
[gender = Female, 60 ≤ age < 70, race = Asian-Pac_islander] -

26.6% Linear Threshold Function 13.9%
race = White or Asian-Pac_islander [gender = Male, 10 ≤ age < 20, race = White]

Bank Marketing 10 ≤ age < 90 38.2% [60 ≤ age < 70] - [10 ≤ age < 20] 8.4% Linear Threshold Function 7.6%

German Credit gender = female, 60 ≤ age < 70 21.9%
[gender = Female, 80 ≤ age < 90] -

17.1% Linear Threshold Function 7.0%
[gender = Male, 10 ≤ age < 20]

COMPAS
gender = male, age ≥ 40,

62.4%
[gender = Female, 10 ≤ age < 20, race = Native American] -

67.3% Linear Threshold Function 22.4%
race = Hispanic or other race [gender = Male, 60 ≤ age < 70, race = other race]

Law School gender = male, race = Asian or Black 15.0%
[gender = Male, race = White] -

13.5% Linear Threshold Function 3.7%
[gender = Female, race = Black]

Crime FemalePctDiv ≥ 0.4, racePctWhite ≤ 0.8 60.7% - - Linear Threshold Function 38.8%

“-” means timeout.

multiple protected features. It supports multiple fairness metrics, i.e., false positive subgroup fair-
ness, false negative subgroup fairness, and statistical parity subgroup fairness. Here, we consider
statistical parity subgroup fairness, as it shares the same equality classification rates as our group
fairness metrics.

In Table 8, we show the identified group discrimination with TestSGD, THEMIS, and FairFict-
Play, respectively, along with the discrimination scores, on the same models trained on structured
data (similarly to Table 3). All discrimination scores measure the frequency difference between
two groups. We set the timeout as 24 hours.

In the following, we compare our method TestSGD with the alternative approaches from two
aspects: First, we compare the effectiveness of the approaches in terms of the identified discrimi-
natory subgroups. Note that THEMIS and FairFictPlay do not aim to identify discrimination sub-
groups in an interpretable way. Thus, we extract the discriminatory group based on their fair-
ness definitions and the testing results. For example, based on the discrimination score defined
in THEMIS, it split the whole input space based on all possible values of each sensitive attribute.
Then it calculates the fraction of inputs that are predicted with favorable label in each subgroup.
The discrimination score is then calculated as the difference between subgroup with the maxi-
mum and that with the minimum fraction. The sensitive attributes’ values of the subgroup with
the max/min fraction thus represent the discriminatory subgroup. FairFictPlay uses complex lin-
ear functions constituted by all the protected features to define discriminatory subgroups. Since
these functions are complicated and hard to interpret, we do not show them in the table. Second,
we compare the discrimination scores with the baselines. The higher the value is, the more serious
the discrimination is.

We have the following observations: (1) TestSGD’s testing results represented by rule sets are
more interpretable. Similar to TestSGD, THEMIS is able to identify discriminatory subgroups au-
tomatically. However, THEMIS identifies two subgroups that are maximally different (in terms
of being predicted favorably), while TestSGD identifies subgroups that are predicted differently
from the rest. These two approaches thus produce results that are complementary to each other.
However, FairFictPlay has no ability to identify discriminatory subgroups in an interpretable way.
Note that both THEMIS and FairFictPlay do not support text data. (2) Compared to FairFictPlay,
TestSGD identifies discrimination with higher scores (more discriminating). Moreover, TestSGD
automatically identifies the discriminated subgroups without any prior knowledge. A further prob-
lem with FairFictPlay is that the linear threshold functions may split the whole input space into
two extremely imbalanced subgroups, and thus the identified discrimination may be caused by
data imbalance [13]. (3) In a close investigation, THEMIS may consume much more time for some
specific cases, e.g., the Crime dataset. As THEMIS considers combinations of all possible values of
sensitive attributes, it becomes inefficient and even infeasible with regard to datasets containing
sensitive attributes with continuous values. For example, when testing against the model trained
on the Crime dataset, THEMIS considers over 40,000,000 combinations.
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Table 9. Discrimination Mitigation Comparisons between TestSGD and FairFictPlay

Dataset Base Accuracy
TestSGD FairFictPlay

Accuracy Discrimination Score Accuracy Discrimination Score
(Acc Change) (Score Change) (Acc Change) (Score Change)

Census income 86.1%
86.2% 10.1% 79.1% 2.9%

(0.1%↑) (10.1%↓) (7%↓) (11%↓)
Bank Marketing 91.6%

90.6% 5.4% 89.5% 0.2%
(1.0%↓) (32.8%↓) (2.1%↓) (7.4%↓)

German Credit 100%
100% 7.3% 71.0% 4.1%
0% (14.6%↓) (29%↓) (2.9%↓)

COMPAS 79.0%
78.5% 4.2% 73.3% 10.9%

(0.5%↓) (58.2%↓) (5.7%↓) (11.5%↓)
Law School 95.2%

95.1% 7.5% 94.9% 0.02%
(0.1%↓) (7.5%↓) (0.3%↓) (3.7%↓)

Crime 92.5%
98.1% 51.4% 85.2% 20.5%

(5.6%↑) (9.3%↓) (7.3%↓) (18.3%↓)
“↑” means value increased, “↓” means value decreased.

Regarding discrimination mitigation, FairFictPlay proposes an in-processing method to mitigate
subgroup discrimination, while THEMIS did not propose any discrimination mitigation approach.
Here, we compare the effect of discrimination mitigation between TestSGD and FairFictPlay. We
adopt TestSGD’s and FairFictPlay’s discrimination mitigation approaches based on the same mod-
els trained on six structured datasets. Note that FairFictPlay does not support models trained on
textual data. The results are shown in Table 9. In detail, we first show the original accuracy and
then show the accuracy changes and discrimination score changes after adopting the discrimina-
tion mitigation approach. While both TestSGD and FairFictPlay are effective in mitigating sub-
group discrimination, we observe that TestSGD improves subgroup fairness with less accuracy
drop. For all models, the accuracy drops after processing by FairFictPlay. In some cases, FairFict-
Play sacrifices accuracy significantly. For example, FairFictPlay improves the discrimination score
by 2.9% but decreases the accuracy by 29% with the model trained on German Credit dataset.

5.4 Discussions

In the following, we discuss some insights coming from our testing results in two aspects:
First, based on the experimental results, we observe that many models indeed suffer from subtle

discrimination. In some cases, discrimination may be found on unexpected subgroups. Also, those
subgroups that are expected to be discriminated against may be treated as privileged groups in-
stead. For example, different from prior conjecture, the model trained on the COMPAS dataset is
more likely to predict Hispanic males as low risk of recidivism. These results thus suggest that we
should have dedicated methods and tools to identify and mitigate subtle discrimination.

Second, the results of identifying subtle discrimination largely depend on multiple hyper-
parameters, such as the discrimination score threshold and the threshold for the support. These
thresholds are used to filter out discrimination that might not be relevant. For example, setting
a small support threshold would result in identifying discrimination against small subgroups.
Whether such discrimination is interesting is debatable and likely application-dependent. It calls
for regulators to clearly define what fairness and subgroup support are relevant. It also calls for
flexible methods and tools that allow us to identify relevant subtle discrimination, respectively.
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6 THREATS TO VALIDITY

Despite our efforts to design and conduct this research, there are several potential threats to the
validity. In this section, we discuss potential threats to our study design and methodology, as well
as other factors that may impact the validity of our evaluation results.

Distributional shift in the data: We mentioned that our error bounds rely on the i.i.d. as-
sumption. In this work, since the prior distribution of the original datasets is not available, we
approximate the original dataset’s distribution by adding perturbation on one attribute systemati-
cally, which is the same approach adopted in References [41, 49] and many other machine learning
literature [38]. It is still an open problem on how to guarantee that the i.i.d. assumption is satisfied
in practice. To alleviate this threat, one practical method is to split the whole dataset randomly into
training set and test set and do sampling from the test set. However, in practice, the size of some
datasets might be too small to generate an estimation with a certain level of statistical confidence.

Selection of the datasets: We evaluate our method with six structured datasets and two textual
datasets that are identified by systematically searching through relevant publications in recent
years. Although they are the most common public benchmarks used in the fairness testing liter-
ature, it is not clear whether similar group discrimination can be identified on other datasets. To
mitigate this threat, TestSGD is designed to be easily extendable to additional tabular or textual
datasets. Furthermore, it is possible to extend our method to image data by further defining the
sensitive attributes and frequent rule sets for images.

Limited model structures: We evaluate our method with feed-forward neural networks (for
structured data) and CNN with LSTM (for textual data). As our method does not require the inner
details of the neural network, TestSGD also supports other deep learning architectures such as
RNN, and transformer-based models (for textual data), although its performance should be further
evaluated accordingly.

Limited fairness metrics: We evaluate our results according to the group discrimination score by
measuring the probabilities of predicting certain favorable label by the given model and measuring
the difference. This group discrimination score is similar with the Statistical Parity Difference
metric, which is one of the popular fairness metrics in the literature. Our work could also work
for other group fairness metrics, e.g., false positive rate differences. Whether TestSGD works as
effectively remains to be evaluated in future work.

Selection of the baseline: We have limited baselines to compare with. Our approach focuses on
explaining under what conditions the discrimination exists in a human-understandable way. Our
goal is thus different from that of the baselines such as THEMIS [16] and FairFictPlay [24]. To
alleviate this threat, we extract their results in an interpretable way. In particular, THEMIS [16]

is not designed to test against subtle discrimination and, thus, we extract the discrimination con-
ditions of THEMIS based on the testing results; as for FairFictPlay [24], we omit the linear
threshold functions it generates, since they are too complicated to interpret in general. To compre-
hensively evaluate the performance of our method, we also compare with baselines from different
aspects, including detection effectiveness, efficiency, and discrimination mitigation effect.

7 RELATED WORK

Many existing works attempted to test discrimination according to different fairness definitions
and measurements [12, 14]. In Reference [15], Feldman et al. provide a fairness definition that is
measured according to demographic parity of model predictions. It measures how well the sensi-
tive class can be predicted based on classification accuracy. In Reference [20], Hardt et al. present
an alternative definition of fairness based on demographic parity. It requires a decision to be in-
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dependent of the sensitive attribute. In Reference [27], Kusner et al. define counterfactual discrim-
ination, which focuses on single decisions towards an individual. A prediction is counterfactual
fair if it is the same in the actual group and a different demographic group. In Reference [16],
Galhotra et al. propose causal discrimination to measure the fraction of inputs for which model
causally discriminates. This definition is similar to counterfactual fairness, but it takes instances of
discrimination into account. In Reference [24], Kearns et al. proposed an in-processing algorithm
aiming to improve the fairness of given subgroups, where subgroups are defined as conjunctions of
attributes, linear threshold functions, or bounded degree polynomial threshold functions over mul-
tiple protected features. Most existing works [7, 16, 25] use positive classification rate as fairness
measurement.

Subsequently, many works focus on individual discrimination to generate individual discrim-
inatory instances [3, 22, 49, 50]. They tried to generated instances that are classified differently
after changing sensitive attributes. In Reference [3], Agarwal et al. present an automated testing
approach to generate test inputs to find individual discrimination. In Reference [36], Ruoss et al.
propose a fairness representation framework to generalize individual fairness to multiple notions.
It learns a mapping from similar individuals to latent representations. However, the testing on
individual discrimination cannot provide a statistical measurement of fairness.

Some other existing works attempted to test model discrimination with discrimination score
measurements. In Reference [40], Tramer et al. propose an unwarranted associations framework
to detect unfair, discriminatory, or offensive user treatment in data-driven applications. It identi-
fies discrimination according to multiple metrics including the CV score, related ratio, and associa-
tions between outputs and sensitive attributes. In Reference [25], Kleinberg et al. also test multiple
discrimination scores and compare different fairness metrics. In Reference [16], Galhotra et al. pro-
pose a tool called THEMIS to measure software discrimination. It tests discrimination with two
fairness definitions, i.e., group discrimination score and causal discrimination score. In Reference
[2], Adebayo et al. try to determine the relative significance of a model’s inputs in determining the
outcomes and use it to assess the discriminatory extent of the model.

Some prior work has been done on fairness for text classification tasks as well. In Reference [8],
Blodgett et al. discuss the impact of unfair natural language in NLP and show how statistical dis-
crimination arises in processing applications. In Reference [10], Bolukbasi et al. show gender bias
in the word embedding and provide a methodology for modifying an embedding to remove gender
bias. In Reference [13], Dixon et al. measure discrimination using a set of common demographic
identity terms and propose a method to mitigate the unintended bias by balancing the training data.

Compared with all the above-mentioned existing works, we provide further fairness testing. In-
stead of measuring the overall discrimination, our approach systematically identifies and measures
subtle discrimination. That is, we not only measure statistical discrimination with a confidence
guarantee but also offer interpretable rule sets to represent subtle discrimination.

This work is remotely related to works on applying rule-based models for model explanation.
In Reference [46], Yang et al. present an algorithm for building probabilistic rule lists with logical IF-
THEN structure. In Reference [28], Lakkaraju et al. propose interpretable decision sets to interpret
model predictions with high accuracy and high interpretation. Our work leverages such rule-based
interpretable structure to present subtle discrimination in models.

8 CONCLUSION

In this work, we focus on testing neural network models against subtle group discrimination and
propose a framework to systematically identify interpretable subtle group discrimination based
on group fairness measurement with a certain confidence. Our extensive evaluation demonstrates
that subtle group discrimination in neural networks is common to a surprising level. We also show
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that it is possible to mitigate such discrimination by utilizing our testing results to generate more
data for retraining.
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