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ABSTRACT

Text classification is a fundamental problem in information re-

trieval with many real-world applications, such as predicting the

topics of online articles and the categories of e-commerce prod-

uct descriptions. However, low-resource text classification, with

few or no labeled samples, poses a serious concern for supervised

learning. Meanwhile, many text data are inherently grounded on a

network structure, such as a hyperlink/citation network for online

articles, and a user-item purchase network for e-commerce prod-

ucts. These graph structures capture rich semantic relationships,

which can potentially augment low-resource text classification.

In this paper, we propose a novel model called Graph-Grounded

Pre-training and Prompting (G2P2) to address low-resource text

classification in a two-pronged approach. During pre-training, we

propose three graph interaction-based contrastive strategies to

jointly pre-train a graph-text model; during downstream classifi-

cation, we explore prompting for the jointly pre-trained model to

achieve low-resource classification. Extensive experiments on four

real-world datasets demonstrate the strength of G2P2 in zero- and

few-shot low-resource text classification tasks.

CCS CONCEPTS

• Information systems→ Content analysis and feature selec-

tion; Clustering and classification.

KEYWORDS

Text classification, graph neural networks, low-resource learning,

pre-training, prompt-tuning
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1 INTRODUCTION

Text classification is a fundamental research problem with many

important applications in information retrieval. For example, pre-

dicting the topics of online articles can help readers easily search

and navigate within the website or portal [29], and classifying the

category of e-commerce item descriptions enables businesses to

structure their inventory efficiently and improve users’ search ex-

perience [60]. Advances in supervised deep learning in the last

decade have achieved remarkable success for text classification,

especially when there are large-scale and high-quality labeled data.

However, data labeling is often costly and time-consuming, making

low-resource classification, in which no or few labeled samples are

available, an appealing alternative.

To address low-resource text classification, one approach is to

utilize pre-trained language models (PLMs) [16, 37], many of which

are based on the transformer architecture [48] due to its powerful

ability of encoding texts. A PLM can be adapted to different tasks by

fine-tuning the model parameters to task-specific objectives. While

the “pre-train, fine-tune” paradigm requires fewer labeled data than

traditional supervised learning, it suffers from two drawbacks. First,

state-of-the-art PLMs typically have a huge model size, e.g., GPT-3
has 175 billion parameters [3], making fine-tuning prohibitively

expensive [19]. Second, fine-tuning still needs a reasonable amount

of labeled data due to the gap between pre-training and fine-tuning

objectives, and thus struggles with low-resource scenarios including

zero- and few-shot classification. To overcome the problem of pre-

training and fine-tuning, prompting [3] has been proposed. It uses

a natural language instruction or “prompt” to give a hint of the

downstream task, whilst freezing the parameters of a large PLM.

In other words, no fine-tuning or additional training is required at

all for a new task. However, discrete natural language prompts can

be difficult to design and may result in suboptimal performance

compared to fine-tuning [18]. More recently, prompt tuning [18, 24]
formulates a continuous prompt as a learnable embedding, which

is optimized during task adaptation without updating the PLM.

Meanwhile, text data are frequently grounded on network struc-

tures, such as hyperlink or citation networks for online articles,

and user-item interaction graphs for e-commerce. These graph

structures expose valuable relationships between articles or items,

which can be used to augment low-resource text classification.

While existing PLMs and prompting do not exploit these relation-

ships, graph neural networks (GNNs) [58] are designed to learn

from graph structures based on a message-passing architecture.

However, traditional end-to-end training of GNNs heavily relies

on abundant task-specific labels, which motivates self-supervised

GNNs [57] that employ well-designed pretext tasks on a label-free

graph [14, 15, 50]. Unfortunately, the treatment of text features in

https://doi.org/10.1145/3539618.3591641
https://doi.org/10.1145/3539618.3591641
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GNNs remains rudimentary. Typically, a simple bag-of-words rep-

resentation [62] or aggregation of shallow word embedding vectors

[30] is fed into GNNs as the initial node features, which are further

propagated along graph structures. Hence, the modeling of texts in

GNNs is coarse-grained, unable to fully capture the subtle semantic

differences and similarities within texts.

Challenges and present work. To overcome the limitations of

existing text- and graph-based solutions, we must address two open

questions as follows.

Firstly, how do we capture fine-grained textual semantics, while
leveraging graph structure information jointly? A naïve approach is

to use a languagemodel to generate features from raw texts as input,

and then train a GNN. However, in this way, the texts and graph

are only loosely coupled, lacking an explicit pairing to complement

each other. In this paper, we propose graph-grounded contrastive

pre-training, to maximize the alignment between text and graph

representations based on three types of graph interaction, namely,

text-node, text-summary, and node-summary interactions.

Secondly, how do we augment low-resource text classification given
a jointly pre-trained graph-text model? We propose a novel approach

of “prompting” a jointly pre-trained graph-text model instead of

fine-tuning it. This allows us to leverage the most relevant struc-

tural and semantic information from the pre-trained model, making

the process friendlier to low-resource scenarios. More specifically,

we use handcrafted discrete prompts for zero-shot classification,

and continuous prompts for few-shot settings based on automatic

prompt-tuning. Due to the significantly fewer parameters involved,

prompt-tuning is more label- and computation-efficient than fine-

tuning the pre-trained model. Furthermore, we propose a context-

based initialization for prompt-tuning that considers graph struc-

tures between texts to provide a more informative starting point.

Contributions. To summarize, we make the following contribu-

tions in this work. (1) This is the first attempt to pre-train text and

graph encoders jointly for low-resource text classification. (2) We

propose a novel model called Graph-Grounded Pre-training and

Prompting (G2P2), with three graph interaction-based constrastive

strategies in pre-training, and a prompting approach for the jointly

pre-trained graph-text model in downstream tasks. (3) We conduct

extensive experiments on four real-world datasets to demonstrate

the strength of G2P2 in zero- and few-shot text classification.

2 RELATEDWORK

Graph neural networks. Inspired by the success of convolutional

networks in computer vision, GNNs have emerged to handle non-

Euclidean relational data [58], ranging from early semi-supervised

models such as GCN [17], GAT [49] and GIN [61], to themore recent

self-supervised pre-training paradigm [14, 15, 27, 50]. Besides their

widespread success in graph tasks, they have also been leveraged

to improve text-based tasks through knowledge graphs [4] and

heterogeneous graphs [20], or multi-modal learning [26]. However,

these approaches either employ coarse-grained text treatment, or

have decoupled graph and text encoders without fully exploiting

the intrinsic relationship between them. Although a more recent

approach called GLEM [68] integrates both the text and graph

structure information by fusing language models and GNNs, it is

not designed for low-resource learning.

Language pre-training and prompting. Pre-trained language

models [10] have become the most popular backbone in natural lan-

gauge processing (NLP).While earlier PLMs such as GPT [37], BERT

[16], XLNet [63] and RoBERTa [25] still have affordable model size,

recent introductions such as T5 [38] and GPT-3 [3] produce mas-

sive models with billions of parameters. To avoid the high cost of

fine-tuning on these large models, prompting [22] starts to receive

more attention in the community. A prompt is a special template

to pad the task input, with the goal of extracting useful knowl-

edge from PLMs to flexibly adapt to downstream tasks. Fueled by

the success of GPT-3, numerous prompting methods including dis-

crete natural language prompt [8, 40, 42] and continuous prompt

[18, 19, 24, 35, 69] have emerged. The strength of prompting has

been validated in a wide range of NLP applications, including text

classification [11, 13, 31, 45, 66], machine translation [46] and re-

lation extraction [6, 39]. More recently, prompting has also been

applied to GNNs for node classification [44].

Zero- or few-shot paradigms. Broadly speaking, our setting is

also related to other learning paradigms. For example, in semi-

supervised learning [5, 32, 59], each class may only have a few

examples, but all classes must be seen in training and they can-

not handle any novel class during testing. Meta-learning [1, 2, 7,

12, 52, 54, 55, 65, 70] is another popular paradigm that supports

few-shot learning. However, large-scale labeled data are still re-

quired in a so-called “meta-training” phase, to support the few-shot

learning of novel classes during “meta-testing”. In contrast, we

only need label-free data for pre-training, without requiring any

meta-training phase that would consume large-scale labeled data.

Separately, there also exists joint consideration of image and text

data using a contrastive pre-training strategy for zero- or few-shot

classification [36]. In our work, graph data are significantly different

from images, which provide various types of interaction between

texts. On graphs, zero-shot node classification has also been done

[53]. It relies heavily on the availability of Wikipedia pages or other

side information to generate class prototype embeddings. However,

it is very labor intensive to find and curate the right side informa-

tion, especially when there are a large number of classes and/or

novel classes emerge frequently.

3 PROPOSED APPROACH

In this section, we introduce our approach G2P2 for low-resource

text classification.We start with some preliminaries and an overview,

and then present the details of the proposed approach.

3.1 Preliminaries

Graph-grounded text corpus. Consider a set of documents D,

which is grounded on a graph G = (D, E,X) such that each docu-

ment 𝑑𝑖 ∈ D is a node 𝑣𝑖 in the graph. The documents are linked

via edges in E, which are formed based on the application (e.g., if
each document represents an article, the edges could be citations

between articles). Each node 𝑣𝑖 is also associated with a feature

vector x𝑖 , given by the input feature matrix X. Finally, each docu-

ment/node
1
has a class label (e.g., the topic of the article).

1
We will use “node” and “document” interchangeably given their one-one correspon-

dence in our context.
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Figure 1: Overall framework of G2P2. (a) During pre-training, it jointly trains a text and a graph encoder through three

contrastive strategies. (b) During testing, it performs prompt-assisted zero- or few-shot classification (the figure only shows

prompt-tuning for few-shot classification, while zero-shot inference adopts a simplified scheme).

Low-resource classification. A low-resource task consists of a

support set S and a query set Q. The support set S contains 𝑁

classes, and each class has 𝐾 labeled examples where 𝐾 is a small

number (e.g., 1 or 5), known as 𝑁 -way 𝐾-shot classification. The

query set Q contains one or more unlabeled instances belonging to

the 𝑁 classes in the support set. Our goal is to classify the instances

in the query set based on the labeled examples in the support set.

Unlike episodic few-shot meta-learning [7] which has both training

tasks and testing tasks, we only have testing tasks; in the training

stage, we perform self-supervised pre-training on label-free data

only. As a special case, tasks with 𝐾 = 0 are known as zero-shot

classification, which means that there is no labeled example at all

and we can only rely on class metadata (e.g., class label text).

3.2 Overview of G2P2

As shown in Fig. 1, our model consists of two stages: (a) graph-

grounded constrastive pre-training, and (b) graph-grounded prompt-

tuning for low-resource classification.

During pre-training, we learn a dual-modal embedding space

by jointly training a text encoder and graph encoder in a self-

supervised fashion, since a document also exists as a node on the

graph. More specifically, we use a transformer-based text encoder

and a GNN-based graph encoder. The transformer takes the text on

each node (i.e., document) as the input, and outputs a text embed-

ding vector t𝑖 for node 𝑣𝑖 . On the other hand, the GNN takes the

graph and node features as input, and generates a node embedding

vector z𝑖 for node 𝑣𝑖 . Subsequently, in the dual-modal embedding

space, we align the text and graph representations on the same or re-

lated nodes through three contrastive strategies based on different

types of interaction on the graph.

In downstream testing, we employ prompting on our jointly

pre-trained graph-text model for zero- or few-shot classification.

For zero-shot classification, we use handcrafted discrete prompts

together with the label text. For few-shot classification, we use

continuous prompts to pad the label text. In particular, for prompt-

tuning, we initialize the continuous prompt embeddings based on

graph contexts.

3.3 Graph-grounded contrastive pre-training

The graph-grounded pre-training learns a dual-modal embedding

space by jointly training a text encoder and a graph encoder, based

on three types of interaction on the underlying graph.

Dual encoders. The text encoder is a transformer [48], which we

denote Φ𝑇 . Given a document 𝑑𝑖 , the text encoder
2
outputs the

𝑑-dimensional embedding vector of 𝑑𝑖 , denoted t𝑖 ∈ R𝑑 :
t𝑖 = Φ𝑇 (𝑑𝑖 ;𝜃𝑇 ), (1)

where 𝜃𝑇 represents the parameter set of the transformer. Corre-

spondingly, let T ∈ R |D |×𝑑 represent the text embedding matrix

for all documents.

At the same time, a document𝑑𝑖 is also a node 𝑣𝑖 in the graph.We

choose a classic GNN called graph convolutional network (GCN)

[17] as the graph encoder, denoted Φ𝑍 . It similarly outputs an

embedding vector z𝑖 ∈ R𝑑 for a given node 𝑣𝑖 :

z𝑖 = Φ𝑍 (𝑣𝑖 ;𝜃𝐺 ), (2)

where 𝜃𝐺 represents the parameter set of the GCN. Likewise, let

Z ∈ R |D |×𝑑 represent the graph embedding matrix for all nodes.

Text-node interaction. Our graph-grounded texts naturally im-

plies a bijection between nodes and texts, where each document

𝑑𝑖 corresponds to the node 𝑣𝑖 in the graph. Inspired by the pairing

of image and its caption text [36] and the mapping of content and

node sequences [21], we design a pre-training strategy to predict

which text document matches which node in the graph.

Specifically, given 𝑛 documents and the corresponding 𝑛 nodes,

there are 𝑛2 possible document-node pairs {(𝑑𝑖 , 𝑣 𝑗 ) | 𝑖, 𝑗 = 1, . . . , 𝑛}.
2
Technically, the input to the text encoder is a sequence of continuous embeddings;

the tokens in a document are first converted to word embeddings.
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Among them, only 𝑛 pairs with 𝑖 = 𝑗 are true matching, whereas the

remaining 𝑛2 − 𝑛 pairs are false matching. As our first contrastive

strategy, we exploit the bijective interaction between texts and

nodes on the graph, to maximize the cosine similarity of the 𝑛

matching pairs, while minimizing the cosine similarity of the 𝑛2 −
𝑛 unmatching pairs. To compute the cosine similarity for the 𝑛2

pairs, we first perform a row-wise L2 normalization on embedding

matrices T and Z to obtain
˜T and Z̃, respectively. We then compute

a node-text similarity matrix Λ1 ∈ R𝑛×𝑛 to capture pairwise cosine

similarity, as follows.

Λ1 =

(
Z̃ ˜T⊤

)
· exp(𝜏), (3)

where 𝜏 ∈ R is a trainable temperature parameter to scale the

similarity values [36].

Remark. Although Λ1 ∈ R𝑛×𝑛 is a dense matrix, it is con-

structed batchwise for practical implementation. That is, 𝑛 is not

the total number of documents, but the relatively small batch size,

and thus the overhead is negligible. Λ2 and Λ3 will be introduced

later following the same treatment. □
To formulate the contrastive loss based on the text-node bijec-

tive interaction, we adapt the multi-class N-pair loss [43, 67], by
considering both the row-wise and column-wise cross entropy loss

w.r.t. the row or column index. For example, the 𝑖-th row of Λ1 rep-

resents the similarity scores between node 𝑣𝑖 and every document,

in which the row index 𝑖 indicates the ground truth document 𝑑𝑖
that matches 𝑣𝑖 .

L1 =
1

2

(
CE(Λ1, y) + CE(Λ⊤

1
, y)

)
, (4)

where y = (1, 2, . . . , 𝑛)⊤ is the label vector for contrastive training,

and CE denotes the cross entropy loss applied to the input matrix

Λ1 or Λ⊤
1
in a row-wise manner.

Text-summary interaction. Apart from the bijective text-node in-

teraction, we further exploit higher-order interactions on the graph.

In particular, each document has a set of neighboring documents

defined by graph topology. The neighboring documents can be un-

derstood as a summary of the target document given the semantic

relatedness between them. For example, on an e-commerce network,

the products purchased by a user naturally portray a summary of

the user and vice versa. Without loss of generality, we employ a

simple mean pooling to generate the summary embedding s𝑖 ∈ R𝑑
as follows.

s𝑖 = 1

|N𝑖 |
∑

𝑗∈N𝑖
t𝑗 . (5)

For efficiency, we only sample a fixed number of neighboring doc-

uments to generate the summary. Then, let S ∈ R𝑛×𝑑 denote the

summary text embedding matrix for all documents.

Hence, as our second contrastive strategy, we seek to align

the text embedding of each document and its corresponding sum-

mary text embedding, based on the text-summary interaction de-

rived from graph neighborhood. In other words, we maximize

the cosine similarity of the 𝑛 matching pairs of document and

its neighborhood-based summary, while minimizing the cosine sim-

ilarity of the 𝑛2 − 𝑛 unmatching pairs. Specifically, we first follow

Eq. (3) to construct a text-summary similarity matrix Λ2 ∈ R𝑛×𝑛 :

Λ2 =

(
˜TS̃⊤

)
· exp(𝜏) . (6)

Algorithm 1 Pre-training Procedure of G2P2

Require: A graph-grounded text corpus G = (D, E,X) .
Ensure: Pre-trained weights of text encoder 𝜃 0

𝑇
, graph encoder 𝜃 0

𝐺
.

1: 𝜃 0
𝑇
, 𝜃 0

𝐺
← parameters initialization;

2: while not converged do

3: sample batches of documents from D;

4: for each batch do

5: for each node 𝑣𝑖 /document 𝑑𝑖 in the batch do

6: calculate 𝑑𝑖 ’s text embedding t𝑖 ; ⊲ Eq. (1)

7: calculate 𝑣𝑖 ’s node embedding z𝑖 ; ⊲ Eq. (2)

8: calculate 𝑣𝑖 ’s summary embedding s𝑖 ; ⊲ Eq. (5)

9: end for

10: calculate the similatity matrices Λ1,Λ2,Λ3; ⊲ Eqs. (3), (6), (8)

11: calculate the contrastive losses L1, L2, L3; ⊲ Eqs. (4), (7), (9)

12: update the overall loss L; ⊲ Eq. (10)

13: 𝜃 0
𝑇
, 𝜃 0

𝐺
← update via backpropagation

14: end for

15: end while

16: return 𝜃 0
𝑇
, 𝜃 0

𝐺
.

Subsequently, we apply the same contrastive loss following Eq. (4),

as follows.

L2 =
1

2

(
CE(Λ2, y) + CE(Λ⊤

2
, y)

)
(7)

Node-summary interaction. The neighborhood-based summary

for document 𝑑𝑖 also serves as a semantic description of node 𝑣𝑖 .

Mirroring the text-summary interaction, as our third contrastive

strategy, we seek to align the node embedding and its neighborhood-

based summary text embedding. In the following, we similarly com-

pute a node-summary similarity matrix Λ3 ∈ R𝑛×𝑛 , and formulate

the corresponding contrastive loss L3.

Λ3 =

(
Z̃S̃⊤

)
· exp(𝜏), (8)

L3 =
1

2

(
CE(Λ3, y) + CE(Λ⊤

3
, y)

)
. (9)

Overall pre-training objective. Finally, we integrate the three

contrastive losses based on the text-node, text-summary and node-

summary interactions. We obtain a pre-trained model 𝜃0 = (𝜃0
𝑇
, 𝜃0

𝐺
)

consisting of the parameters of the dual encoders, given by

𝜃0 = arg min

𝜃𝑇 ,𝜃𝐺
L1 + 𝜆(L2 + L3), (10)

where 𝜆 ∈ R+ is a hyperparameter to balance the contribution from

summary-based interactions.

The pre-training procedure is outlined in Algorithm 1, which

has the following complexity per epoch. Let |D| be the number of

documents, 𝜂 be the number of neighbors sampled to generate the

summary embedding in Eq. (5), and 𝛽 be the batch size. First, the

cost of generating the three types of embeddings (lines 5–8) per

epoch is 𝑂 ( |D|𝜂), given that calculating the summary embedding

needs go through 𝜂 neighbors. Second, the cost of calculating the

three similarity matrices in each batch is 𝑂 (𝛽2), and the total cost

per epoch is 𝑂

(
|D |
𝛽
𝛽2
)
= 𝑂 ( |D|𝛽) given |D |

𝛽
batches in an epoch.

Thus, the overall complexity is 𝑂 ( |D|(𝜂 + 𝛽)), which is linear in

the number of documents, since 𝜂 and 𝛽 are small constants. In our

implementation, we set 𝜂 = 3 and 𝛽 = 64.
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Figure 2: Schematic diagram for zero-shot classification. The

pre-trained models 𝜃0
𝐺
and 𝜃0

𝑇
are obtained from Fig. 1(a).

3.4 Prompting joint graph-text model

After pre-training our graph-text model, it is non-trivial to ap-

ply it to low-resource classification. To narrow the gap between

pre-training and downstream tasks, the traditional “pre-train, fine-

tune” paradigm typically introduces a new projection head for the

downstream task, which will be fine-tuned together with the whole

pre-trained model. However, in a low-resource setting, it is neither

effective nor efficient to update the entire model with a huge num-

ber of parameters. Without updating massive PLMs, prompting

has recently emerged as a powerful alternative to fine-tuning in

NLP [22]. However, prompting has not been explored for graph-

text models, where structural and textual information have been

jointly pre-trained. In the following, we elaborate on our prompting

strategies for zero- and few-shot classification.

Zero-shot classification. In the zero-shot setting, we can only

use handcrafted discrete prompts, as the absence of labeled data in

zero-shot tasks cannot support learnable prompts.

In 𝑁 -way zero-shot classification, out of 𝑁 classes, we predict

the class which has the highest similarity to the given node. As

illustrated by the diagram in Fig. 2, the classification weights can

be generated by the text encoder based on the class label texts [51],

without requiring any labeled sample for the classification task.

Specifically, the weight vector w𝑦 for class 𝑦 ∈ {1, 2, . . . , 𝑁 } is the
output of the pre-trained text encoder, i.e.,

w𝑦 = 𝜙𝑇 (“prompt [CLASS]”;𝜃0
𝑇
) . (11)

Here “prompt [CLASS]” is a prompt template, where [CLASS]
refers to the label text of the target class 𝑦 (e.g., “NLP” for paper
area classification), and prompt is a manually engineered sequence

of natural language tokens to signal the relevance of the label text

(e.g., “paper of NLP” helps focus on the topic of the paper). In

the simplest case, “prompt” can be an empty string so that we

only rely on the label text. Then, the class distribution given node

representation z𝑖 is predicted as

𝑝 (𝑦 | z𝑖 ) =
exp

(
⟨z𝑖 ,w𝑦⟩

)∑𝑁
𝑦=1 exp

(
⟨z𝑖 ,w𝑦⟩

) , (12)

where ⟨·, ·⟩ is the cosine similarity.

Few-shot classification. The problem with discrete prompts is

that they are difficult to optimize, given that PLMs are intrinsically

continuous. Substituting discrete natural language prompts with

learnable continuous prompts, prompt tuning [18, 23, 24] can au-

tomate the optimization of prompts when some labeled data are

available. Hence, in the few-shot setting, we explore prompt tuning

to cue in the relevant structural and semantic information from our

jointly pre-trained graph-text model.

Specicifally, instead of a sequence of discrete tokens, we take

a sequence of continuous embeddings [h1, · · · , h𝑀 , hCLASS] as the
prompt, where 𝑀 is a hyperparameter indicating the number of

context tokens, each h𝑚 (𝑚 ≤ 𝑀) is a trainable vector, and hCLASS
is the word embedding sequence of the target class label. The con-

tinuous prompt is fed as input to the text encoder to generate the

classification weights for each class 𝑦:

w𝑦 = 𝜙𝑇 ( [h1, · · · , h𝑀 , hCLASS];𝜃0𝑇 ), (13)

where each h𝑚 (𝑚 ≤ 𝑀) has the same dimension as the input word

embeddings to the text encoder.

Using the same softmax layer in Eq. (12), we further update the

continuous prompt embeddings using the labeled support set of the

few-shot task by minimizing a cross entropy loss, whilst freezing

the parameters of the dual encoders. This prompt tuning process is

both data- and computation-efficient, given the small number of

learnable parameters in the prompt.

Furthermore, existing prompt tuning methods either initialize

the prompt embeddings randomly [18, 23] or using the word em-

beddings of handcrafted discrete prompts [71]. While random ini-

tialization is non-informative and more prone to local optimum, it

is still difficult to pick the right discrete prompts for initialization.

Therefore, we take the advantage of graph structures to initialize

the prompt embeddings.

Specifically, given a node 𝑣𝑖 , we define its graph contexts as
its neighbor set {𝑣 𝑗 | 𝑗 ∈ N𝑖 }. Due to the underlying semantic

relatedness, the graph contexts of the few-shot examples carry

strong signals about the task, which can be exploited to improve

the initialization. For each document/node 𝑣𝑖 in the task support set,

we sample 𝜂 nodes from its graph contexts. For 𝑣𝑖 itself and each

context node sampled, we truncate its corresponding document

to 𝑀 words, and convert it to a sequence of 𝑀 word embedding

vectors, each having the same dimension as the vector h𝑚 (𝑚 ≤ 𝑀)

in our continuous prompt. Hence, for each support node, we would

obtain 𝜂+1 such sequences; in an𝑁 -way𝐾-shot task, there is a total

of 𝑁𝐾 (𝜂 + 1) sequences. We take the average of these embedding

sequences to initialize the learnable prompt vectors h1, . . . , h𝑀 ,

which is derived from graph contexts and thus could provide a

more informative starting point than random initialization.

4 EXPERIMENTS

We conduct extensive experiments to evaluate our proposed ap-

proach G2P2, with comparison to state-of-the-art baselines and

model analyses.

4.1 Experimental setup

Datasets. Four public graph-grounded text corpora are used, as

summarized in Tab. 1.

• Cora: Known as the “Cora Research Paper Classification” dataset

[28], it is a collection of research papers that are linked to each
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Table 1: Statistics of datasets.

Dataset Cora Art Industrial M.I.

# Documents 25,120 1,615,902 1,260,053 905,453

# Links 182,280 4,898,218 3,101,670 2,692,734

# Avg. doc length 141.26 54.23 52.15 84.66

# Avg. node deg 7.26 3.03 2.46 2.97

# Total classes 70 3,347 2,462 1,191

other through citations. The abstract of a paper is deemed a text

document. The papers are classified into a topic hierarchy with

73 leaves. After removing papers with no content or label, the

resulting hierarchy has 70 leaf topics. Note that we are using a

more comprehensive version of the Cora dataset, which is larger

and has more classes than the version used elsewhere [17].

• Art, Industrial andMusic Instruments (M.I.) are three Ama-

zon review datasets [33], respectively from three broad areas,

namely, arts, crafts and sewing (Art), industrial and scientific (In-

dustrial), and musical instruments (M.I.). The description of each

product is deemed a text document, whereas the reviews of a user

are combined into one document to reflect the user’s preferences.

If a user has reviewed a product, a link is constructed between

them. The product subcategories within a broad area represent

the classes, which are fine-grained and may involve thousands

of classes with subtle differences. The classification is only per-

formed on product descriptions, whereas the user reviews only

serve to enrich the text semantics.

For all datasets, we employ the word2vec algorithm [30] to obtain

the 128-dimensional word embeddings of each word in the text

documents. Then, for each node, we average the word embedding

vectors of all the words in its document, and the averaged vector is

used as the node’s input features for the GNN-based methods.

Task construction.We perform zero- or few-shot text classifica-

tion. We adopt a 5-way setting, i.e., we sample five classes from

all the classes to construct a task. In each task, we construct a 𝐾-

shot support set by further sampling 𝐾 examples from each class

for 𝐾 ∈ {0, 1, . . . , 5}, and a validation set of the same size as the

support set. The remaining examples form the query set. Note that

the support set is labeled and serves as task training data, whereas

the query set is unlabeled and used for evaluation. Note that in

our experiments, all the classes are used—it is only that each task

involves five classes, and we have multiple tasks during testing to

cover all the classes. This is a typical task setup [7], which allows

for a comprehensive evaluation under different class combinations.

The reported results are averaged over all the tasks on each dataset.

Baselines for few-shot classification.We consider competitive

baselines from four categories.

(1) End-to-end GNNs, which are graph neural networks trained

in a supervised, end-to-end manner from random initialization.

• GCN [17]: an extension of the convolutional neural network that

operates on the graph.

• SAGEsup [9]: the supervised version of GraphSAGE, an inductive

GNN that generates node embeddings by sampling and aggre-

gating features from a node’s local neighborhood.

• TextGCN [64]: a GCN-based model on a text graph constructed

from word co-occurrence and document-word relations, which

jointly learns the embeddings of both words and documents.

(2) Pre-trained/self-supervised GNNs, these GNNs are pre-trained
using pretext tasks without labeled data, followed by fine-tuning or

fitting a classification head while freezing the model parameters.

• GPT-GNN [15]: a GNN pre-training approach by a self-supervised

graph generation task, including node attribute generation and

edge generation. It follows the “pre-train, fine-tune" paradigm.

• DGI [50]: a GNN pre-training approach that maximizes the mu-

tual information between local and global representations. As

an unsupervised method, it also freezes the model parameters

and fits a simple logistic regression model for the downstream

few-shot classification, after pre-training.

• SAGE
self

[9]: the self-supervised version of GraphSAGE, encour-

aging similar embeddings for neighboring nodes and distinct

embeddings for non-adjacent nodes. After pre-training, it follows

the same approach of DGI for the downstream classification.

(3) Pre-trained transformers, which are pre-trained using masked

language modeling [16], and then fine-tuned together with a ran-

domly initialized classification head (e.g., a fully connected layer),

for the downstream few-shot classification task.

• BERT [16]: a bidirectionally trained transformer using masked

language modeling, which learns from unlabeled text by being

jointly conditioned on both left and right contexts in all layers.

• RoBERTa [25]: a replication of BERT that carefully measures

the impact of many key hyperparameters and training data size

during training.

• BERT
∗
and RoBERTa

∗
: variants of BERT and RoBERTa, which

are obtained by fine-tuning the pre-trained BERT and RoBERTa,

respectively, using masked language modeling on our datasets,

to mitigate the domain gap between our datasets and the datasets

used for pre-training BERT and RoBERTa.

(4) Prompt tuning: P-Tuning v2 [23], is a version of prefix-tuning [19]
optimized and adapted for natural language. It uses deep prompt

tuning, which applies continuous prompts for every layer of the

pre-trained language model.

Note that our setting is different from few-shot learning under

the meta-learning paradigm [7], since there are no few-shot tasks

for the meta-training phase. Hence, we cannot use state-of-the-art

meta-learning models for comparison. Besides, two of the baselines

we compared, DGI and SAGE
self

, have adopted a form of linear

probe which is known to be a strong few-shot learner [47].

Baselines for zero-shot classification.We only compare with

PLMs, as all other methods require at least one shot to work. For

each method, we use the discrete prompt [CLASS] (i.e., the label text
alone). We also evaluate handcrafted prompts “prompt [CLASS]”,
where prompt is a sequence of tokens found by prompt engineering,

and annotate the model name with “+d”. Essentially, we compute

the similarity between the target document and the label text of

each class (with or without additional tokens), and predict the most

similar class following Fig. 2.

Settings of G2P2 and baselines. For G2P2, the text encoder is

a transformer [48]. Following CLIP [36], we use a 63M-parameter,

12-layer 512-wide model with 8 attention heads. It operates on a
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Table 2: Five-shot classification performance (percent) with 95% confidence intervals.

In each column, the best result among all methods is bolded and the best among the baselines is underlined. Improvement by G2P2 is calculated

relative to the best baseline.
∗
indicates that our model significantly outperforms the best baseline based on the two-tail 𝑡 -test (𝑝 < 0.05) .

Cora Art Industrial M.I.

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

GCN 41.15±2.41 34.50±2.23 22.47±1.78 15.45±1.14 21.08±0.45 15.23±0.29 22.54±0.82 16.26±0.72
SAGEsup 41.42±2.90 35.14±2.14 22.60±0.56 16.01±0.28 20.74±0.91 15.31±0.37 22.14±0.80 16.69±0.62
TextGCN 59.78±1.88 55.85±1.50 43.47±1.02 32.20±1.30 53.60±0.70 45.97±0.49 46.26±0.91 38.75±0.78

GPT-GNN 76.72±2.02 72.23±1.17 65.15±1.37 52.79±0.83 62.13±0.65 54.47±0.67 67.97±2.49 59.89±2.51
DGI 78.42±1.39 74.58±1.24 65.41±0.86 53.57±0.75 52.29±0.66 45.26±0.51 68.06±0.73 60.64±0.61

SAGE
self

77.59±1.71 73.47±1.53 76.13±0.94 65.25±0.31 71.87±0.61 65.09±0.47 77.70±0.48 70.87±0.59

BERT 37.86±5.31 32.78±5.01 46.39±1.05 37.07± 0.68 54.00±0.20 47.57±0.50 50.14±0.68 42.96±1.02
BERT

∗
27.22±1.22 23.34±1.11 45.31±0.96 36.28±0.71 49.60±0.27 43.36±0.27 40.19±0.74 33.69±0.72

RoBERTa 62.10±2.77 57.21±2.51 72.95±1.75 62.25±1.33 76.35±0.65 70.49±0.59 70.67±0.87 63.50±1.11
RoBERTa

∗
67.42±4.35 62.72±3.02 74.47±1.00 63.35±1.09 77.08±1.02 71.44±0.87 74.61±1.08 67.78±0.95

P-Tuning v2 71.00±2.03 66.76±1.95 76.86±0.59 66.89±1.14 79.65±0.38 74.33±0.37 72.08±0.51 65.44±0.63

G2P2-p 79.16±1.23 74.99±1.35 79.59±0.31 68.26±0.43 80.86±0.40 74.44±0.29 81.26±0.36 74.82±0.45
G2P2 80.08

∗±1.33 75.91
∗±1.39 81.03

∗±0.43 69.86
∗±0.67 82.46

∗±0.29 76.36
∗±0.25 82.77

∗±0.32 76.48
∗±0.52

(improv.) (+2.12%) (+1.78%) (+5.43%) (+4.44%) (+3.53%) (+2.7%) (+6.53%) (+7.92%)

lower-cased byte pair encoding (BPE) representation of the texts

with a 49,152 vocabulary size [41]. The maximum sequence length

is capped at 128. The graph encoder employs a GCN [17], using two

layers [9] with LeakyReLU activation, each with 128 dimensions

[34]. The pre-training of our model starts from scratch without

initializing the graph and text encoders with previously pre-trained

weights. 𝜆 in Eq. (10) is set to 0.1 on Cora, and set to 10 on the three

Amazon review datasets, which were chosen from {0.01, 0.1, 1, 10,

100} according to the accuracy on the validation data. The number

of learnable prompt tokens, 𝑀 in Eq. (13), is set to 4, which was

chosen from {2, 4, 8, 16, 32} based on the validation data. We use

the Adam optimizer with the learning rate 2 × 10−5 with 2 training

epochs, and a batch size of 64 in pre-training, referring to Hugging

Face’s [56] example settings. The text embedding size is 128, the

same as the output of the graph encoder. To generate the summary

embedding and the context-based prompt initialization, the number

of neighboring nodes sampled is 3. For prompt tuning, we set the

learning rate as 0.01, which was chosen from {0.0001,0.001,0.01,0.1}

according to the accuracy on validation data.

For all the GNNmethods, including the GNN component in G2P2,

we use the 128-dimensional word2vec embeddings [30] averaged

over the words in the raw texts as the input node features. We

use a two-layer architecture, and set the hidden dimension to be

128, except for GCN and SAGEsup whose hidden dimension is set

to 32 [17] which gives better empirical performance. For all GNN

pre-training baselines, we use 0.01 as the learning rate. For BERT,

RoBERTa and G2P2, we adopt 0.00002 as the learning rate. Our

implementations of BERT, RoBERTa and their masked language

modeling are based on Hugging Face’s transformers [56]. For both

BERT and RoBERTa, we use their base versions, given that our

model G2P2 uses just a small 63M-parameter model, following

previous work [36]. For P-Tuning v2, we use the original code on

the RoBERTa backbone, and take the recommended 0.005 as the

learning rate for prompt tuning. For G2P2, the learning rate for

prompt tuning is set to 0.01.

We conduct all experiments on a server with 4 units of GeForce

RTX 3090 GPU. Pre-training G2P2 takes about 0.5/6/9/10 hours

on Cora/M.I./Industrial/Art, respectively, on a single GPU. The

inference (with prompt-tuning) is carried out with five different

splits generated from five random seeds {1, 2, 4, 8, 16}.

4.2 Performance of low-resource classification

We evaluate the classification performance under various shots.

Five shots. In Tab. 2, we first compare the performance of G2P2

with baselines under the 5-shot setting. G2P2 emerges as the winner

consistently, outperforming the best baseline by around 2–8% with

statistical significance.

We also make a few more observations. Firstly, among the GNNs,

pre-trained/self-supervised models tend to perform better than

the end-to-end approaches, since the latter heavily rely on labeled

data. Among the former, DGI and SAGE
self

perform better as they

are a form of linear probe, known to be a strong few-shot learner

[47]. Note that, instead of using word2vec embeddings [30] of raw

texts as node features, we also tired using the pre-trained RoBERTa

[25] to generate the node features for DGI and SAGE
self

. How-

ever, doing so does not bring any improvement, showing that it

is ineffective to simply combine a language model and GNN in a

decoupled manner. In contrast, our proposed model jointly learns

the text and graph encoders through three graph-grounded con-

trastive strategies. Secondly, PLMs are generally superior to GNNs,

illustrating the importance of leveraging texts in a fine-grained way.

Additionally, RoBERTa outperforms BERT owing to an improved

pre-training procedure [25]. However, further fine-tuning PLMs on

our text data gives mixed results: RoBERTa
∗
slightly outperforms

RoBERTa but BERT
∗
is much worse than BERT. In other words,

it is not straightforward to mitigate the domain gap by simply
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Figure 3: Performance on different shots.

fine-tuning with the domain texts. Thirdly, the continuous prompt

approach P-Tuning v2 achieves competitive results compared to

fine-tuning, while having the advantage of being much cheaper

than fine-tuning. However, our model G2P2 still significantly out-

performs it. Furthermore, G2P2-p without prompt tuning is inferior

to G2P2, showing the benefit of continuous prompts.

Fewer shots. In addition to the 5-shot setting, in Fig. 3 we also

study the impact of fewer shots on G2P2 and several representative

baselines. G2P2 generally performs the best across different shots. In

general, the performance of all approaches decreases as the number

of shots is reduced. However, the baselines suffer significantly under

extreme low-resource (e.g., 1- or 2-shot) settings. In contrast, G2P2

remains robust, reporting a relatively small decrease in performance

even with just 1 or 2 shots.

The results demonstrate the practical value of our proposed

model especially when labeled data are difficult or costly to obtain

in time. On the other hand, traditional approaches constantly face

the challenge of the inability to keep up with the rapid growth

of emerging classes in dynamic and open environments [53]. For

example, labeling a large volume of texts for novel topics in on-

line articles, or new product categories in open-ended e-commerce

platforms, can suffer a substantial time lag.

Zero shot. Finally, we report the zero-shot performance in Tab. 3,

where our models G2P2 and G2P2+d significantly outperform the

baselines. The results particularly demonstrate the effectiveness

of our graph-grounded contrastive pre-training in the absence of

labeled data, which is crucial to handling evolving classes with-

out any labeled sample in many real-world scenarios. Moreover,

handcrafted discrete prompts (i.e., BERT∗+d and G2P2+d) can be

superior to using label text only (i.e., BERT∗ and G2P2), showing

the effectiveness of additional prompt tokens.

However, finding the optimal discrete prompts often requires

significant engineering work. Specifically, for the three approaches

with discrete prompts, namely, RoBERTa
∗
+d, BERT

∗
+d and G2P2+d,

we explored more than 10 handcrafted prompt templates on each

dataset, which are typically relevant to the corresponding dataset

and require some domain knowledge to devise. While discrete

Table 3: Zero-shot classification accuracy (percent).

See Table 2 for explanations on entry styles.

Cora Art Industrial M.I.

RoBERTa 30.46±2.01 42.80±0.94 42.89±0.97 36.40±1.20
RoBERTa

∗
39.58±1.26 34.77±0.65 37.78±0.32 32.17±0.68

RoBERTa
∗
+d 45.53±1.33 36.11±0.66 39.40±1.22 37.65±0.33

BERT 23.58±1.88 35.88±1.44 37.32±0.85 37.42±0.80
BERT

∗
23.38±1.96 54.27±1.85 56.02±1.22 50.19±0.72

BERT
∗
+d 26.65±1.71 56.61±1.76 55.93±0.96 52.13±0.88

G2P2 63.52±2.89 76.52±0.59 76.66±0.31 74.60±0.62
G2P2+d 65.28

∗±3.12 76.99
∗±0.60 77.43

∗±0.27 75.86
∗±0.69

(improv.) (+45.38%) (+36.00%) (+38.22%) (+45.52%)

prompts are generally helpful to zero-shot classification, their effec-

tiveness varies. In Tab. 3, we simply report the performance of the

best handcrafted template for each approach and each dataset. It is

also worth noting that the same prompt can sometimes generate

opposite results on different models. For instance, in Cora dataset,

while “a model of [CLASS]" is the best prompt for RoBERTa
∗
+d,

it is a bad choice for G2P2+d. Moreover, some prompts without any

semantic meaning, like “a [CLASS]", can be the best choice some-

times. The observations imply that prompt engineering involves

labor-intensive work, and the outcomes contain much uncertainty

on what the optimal discrete prompt would be. Therefore, using

only the label text is still a reasonably good choice.

4.3 Model analyses

We conduct more in-depth studies on G2P2. Unless otherwise stated,

we report the classification accuracy under the 5-shot setting.

Ablation study.We first evaluate the contribution from each of the

three graph interaction-based contrastive strategies, by employing

different combinations of the proposed loss terms L1,L2 and L3.

As shown in Tab. 4, strategies without L1 have performed quite

poorly, demonstrating that the bijective text-node interaction is

the fundamental component of our pre-training. That being said,

when further adding L2 or L3 to L1, we still observe a noticeable

performance improvement, showing the benefit of incorporating

additional graph-based interactions for text data. Lastly, G2P2 with

all three loss terms outperforms all 1- or 2-combinations of the

losses, demonstrating that the three contrastive strategies are all

useful and they are well integrated. Overall, the results reveal that

graph information is vital to low-resource text classification, since

graph structures reveal rich relationships between documents.

Next, we evaluate the contribution from our prompt-tuning ap-

proach. Specifically, we compare G2P2 with two ablated variants:

using label text only without trainable prompt vectors, and ran-

domly initializing the prompt vectors. As reported in Tab. 4, only

using label text clearly degrades classification performance, im-

plying the importance of learning continuous prompts through

prompt-tuning. Furthermore, our approach G2P2 with context-

based initialization for prompt vectors shows a small but consistent

advantage over random initialization, which implies the usefulness

of considering graph structures in prompt-tuning.

Hyperparameter study. We first investigate the impact of the

interaction coefficient 𝜆 in Fig. 4(a), which balances the high-order
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Table 4: Ablation study.

Cora Art Industrial M.I.

Only L3 74.66±1.80 52.56±1.09 45.97±0.81 49.05±0.54
Only L2 77.01±1.30 58.90±0.55 52.99±0.46 59.41±0.85
Only L1 79.50±1.19 77.37±0.72 78.10±0.34 79.70±0.56
L2+L3 70.04±2.89 49.91±1.57 50.07±0.50 56.14±1.01
L1+L3 79.73±0.89 78.60±0.40 79.97±0.43 80.42±0.45
L1+L2 79.42±1.04 80.55±0.52 81.06±0.33 82.39±0.41

Only label text 79.16±1.23 79.59±0.31 80.86±0.40 81.26±0.36
Random init. 80.03±0.99 80.85±0.43 82.43±0.33 82.64±0.21

G2P2 80.08±1.33 81.03±0.43 82.46±0.35 82.77±0.32
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Figure 4: Hyperparameter study.

contrastive losses (L2,L3). The performance is generally better

and stable when 𝜆 is slightly bigger (e.g., ≥ 10), indicating the

significance of the high-order text-summary and node-summary

interactions. Next, we study the prompt length𝑀 in Fig. 4(b), which

refers to the number of trainable prompt vectors in Sect. 3.4. The

performance is relatively unaffected by the prompt length, and thus

it is robust to choose a small𝑀 (e.g., 4) for efficiency.

Efficiency of prompt tuning. In ourwork, the continuous prompts

are optimized by prompt tuning [23, 71] without updating the pre-

trained model. In this experiment, we investigate the efficiency of

prompt-tuning in G2P2 compared to the efficiency of traditional

fine-tuning. As G2P2 has a transformer component, we compare it

with four transformer based models, all of which follow the classical

“pre-train, fine-tune” paradigm [16].

As shown in Tab. 5, “Tuning time per task" refers to the average

time required per task for prompt-tuning in G2P2 or fine-tuning in

the baselines, while “Param. size" refers to the number of parameters

that require updating. The results demonstrate that prompt tuning

in G2P2 is much more efficient than fine-tuning in the baselines,

achieving 2.1∼18.8x speedups. The reason is that prompt tuning

updates far fewer parameters. In G2P2, we used 4 trainable 512-

dimensional prompt vectors, totaling 2048 parameters only, while

fine-tuning in the baselines needs to update the whole pre-trained

model with more than 100M parameters. Note that the speedup

is not linear w.r.t. the parameter size, due to the overhead in the

data loader and the optimizer. Overall, our prompt tuning is not

only effective under low-resource settings, but also parameter- and

computation-efficient.

Generalization study. Our previous experiments can be consid-

ered “transductive” as both the pre-training of the text encoder

Table 5: Tuning time and parameter size.

Tuning time per task (in seconds) Param.

Cora Art Industrial M.I. size

RoBERTa 45.47±2.38 64.22±3.62 43.46±2.99 44.99±2.58 123 M

RoBERTa
∗

39.38±2.01 59.56±3.55 35.10±2.75 38.84±2.39 123 M

BERT 32.23±1.71 51.77±2.00 31.72±1.77 33.55±2.39 110 M

BERT
∗

34.82±1.68 55.16±2.32 31.11±1.74 29.00±2.23 110 M

G2P2 2.42±0.41 22.03±1.39 14.63±1.26 12.72±1.17 2048

Table 6: Inductive performance on text classification.

Art Industrial M.I.

BERT
∗

43.66±0.90 48.35±0.25 39.24±0.88
RoBERTa

∗
69.55±1.14 73.65±0.86 71.96±1.44

G2P2 79.81±0.22 81.29±0.32 81.85±0.33

and the downstream classification are conducted on the whole cor-

pus. To further evaluate the generalization ability of our model,

we adopt an “inductive” setting, whereby we pre-train the text

encoder only on a subset of the corpus and perform downstream

classification on a disjoint subset. Particularly, in the three Amazon

datasets, since user texts have no labels and item texts have labels,

it is natural for us to pre-train with only user texts and classify only

item texts downstream. We also employ masked language modeling

on only the user texts for BERT and RoBERTa, to get BERT
∗
and

RoBERTa
∗
. As shown in Tab. 6, G2P2 still performs very well in the

inductive setting, illustrating the strong generalization ability of

our pre-trained model.

5 CONCLUSION

In this paper, we studied the problem of low-resource text clas-

sification. Given that many text documents are related through

an underlying network, we proposed a novel model called Graph-

Grounded Pre-training and Prompting (G2P2). It consists of three

graph interaction-based contrastive strategies in pre-training, and a

prompting mechanism for the jointly pre-trained graph-text model

in downstream classification. We conducted extensive experiments

and showed the advantages of G2P2 in zero- and few-shot text

classification.

A limitation of this work is the need of a graph to complement

the texts. Although graphs are ubiquitous in information retrieval

applications, in the case that an organic graph is unavailable, a

potential solution is to construct synthetic graphs based on word

co-occurrences or other relations, e.g., linking up news articles in

close time periods and locations. We leave further explorations to

future work.
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