
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2019

Automatic generation of non-intrusive updates for third-party Automatic generation of non-intrusive updates for third-party

libraries in android applications libraries in android applications

Yue DUAN
Singapore Management University, yueduan@smu.edu.sg

Lian GAO

Jie HU

Heng YIN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
DUAN, Yue; GAO, Lian; HU, Jie; and YIN, Heng. Automatic generation of non-intrusive updates for third-
party libraries in android applications. (2019). Proceedings of the 22nd International Symposium on
Research on Attacks, Intrusions and Defenses, Beijing, China, Sep 23-25.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8140

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8140&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8140&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Automatic Generation of Non-intrusive Updates for Third-Party Libraries in
Android Applications

Yue Duan∗1, Lian Gao2, Jie Hu2, and Heng Yin2

1Cornell University 2University of California, Riverside
1yd375@cornell.edu 2{lgao027, jhu066}@ucr.edu 2heng@cs.ucr.edu

Abstract
Third-Party libraries, which are ubiquitous in Android apps,
have exposed great security threats to end users as they rarely
get timely updates from the app developers, leaving many
security vulnerabilities unpatched. This issue is due to the
fact that manually updating libraries can be technically non-
trivial and time-consuming for app developers. In this paper,
we propose a technique that performs automatic generation
of non-intrusive updates for third-party libraries in Android
apps. Given an Android app with an outdated library and a
newer version of the library, we automatically update the old
library in a way that is guaranteed to be fully backward com-
patible and imposes zero impact to the library’s interactions
with other components. To understand the potential impact of
code changes, we propose a novel Value-sensitive Differen-
tial Slicing algorithm that leverages the diffing information
between two versions of a library. The new slicing algorithm
greatly reduces the over-conservativeness of the traditional
slicing while still preserving the soundness with respect to
update generation. We have implemented a prototype called
LIBBANDAID. We further evaluated its efficacy on 9 popular
libraries with 173 security commits across 83 different ver-
sions and 100 real-world open-source apps. The experimental
results show that LIBBANDAID can achieve a high average
successful updating rate of 80.6% for security vulnerabilities
and an even higher rate of 94.07% when further combined
with potentially patchable vulnerabilities.

1 Introduction
Third-party libraries (TPL) have been used extensively in An-
droid to provide rich complementary functionalities for An-
droid apps and ease the app development. This trend becomes
more obvious as Android apps get increasingly complicated.
Prior research has shown that every app contains 8.6 distinct
TPLs on average [59], and 42.9% of apps even have more
code in TPLs than in their real logic [31].

∗This work was conducted while Yue Duan was a PhD student at Univer-
sity of California, Riverside, advised by Prof. Heng Yin.

Despite the benefits, TPLs can bring serious security prob-
lems for Android app. It has been revealed [15] that 70.40%
of Android apps include at least one outdated TPL and 77%
of the app developers only update at most a strict subset of
their included TPLs, leaving many known and easy-to-exploit
security vulnerabilities unpatched. In fact, updating TPLs
in Android apps can be so time-consuming and tedious that
developers are often forced to leave them outdated. First,
updating libraries to the latest version is likely to involve con-
siderable manual efforts to solve backward incompatibility
issues [23]. Second, although 97.8% of actively used library
versions with a known vulnerability could be fixed via a drop-
in replacement with a specific version [23], it is impractical
for app developers to manually find suitable versions for every
TPL.

Existing Research. Prior efforts have been made to study and
mitigate the problems with TPLs in Android apps. A variety of
library detection techniques are proposed [15,21,23,31,32,38,
50,59] to detect TPLs in apps and conduct measurement study.
Further, techniques are proposed to isolate TPLs from the
Android app. TPLs can be transformed into new processes [47,
56], new apps [27, 49], or new services [41]. Other works
enforce in-app privilege separations [46, 51] in order to keep
the apps’ privileges from TPLs. However, these techniques do
not fix security issues per se but merely limit the harmfulness
of potential problems in TPLs from the apps.

To alleviate the issues, Android patching techniques are
proposed to prevent component hijacking attacks [54], detect
information leakage [36, 55], fix cryptographic-misuses [37]
and detect runtime crashes [14]. Nonetheless, these techniques
only aim to fix specific types of security issues and do not deal
with the outdatedness problem on TPLs. Hence, no existing
patching techniques on Android can keep TPLs updated and
fix security issues in a generic fashion.

Our Approach. To solve the problem, we aim to automati-
cally generate updates for TPLs in Android apps such that
it does not require any code modification on the app side
and more importantly, introduces no impact to the library

USENIX Association 22nd International Symposium on Research in Attacks, Intrusions and Defenses 277

interactions with other components locally and remotely as
we call it non-intrusive. The advantages of non-intrusiveness
are two-fold: 1). it requires zero change to the code for the
given Android app so that the full backward compatibility and
maintainability of the apps are ensured; 2). the internal state
consistency of the app is secured since the updates guarantee
no impact to the program logic of the updated library.

To achieve this goal, we need to understand the impact of
the code changes between the outdated libraries and the latest
versions. LIBBANDAID utilizes forward program slicing algo-
rithm to perform Impact Analysis [18]. Traditional slicing al-
gorithm [52] is extremely conservative and often generates un-
wieldy slices [17,45]. In our case, these slices will very likely
to violate the non-intrusiveness. Techniques [44, 48, 58] have
been proposed to prune the slices. However, they either con-
sider only data-flow [48] or calculate relevance scores [44,58]
and remove the less relevant codes. Obviously, none of them
can meet our need of soundness. As a result, we propose
a novel slicing algorithm called Value-sensitive Differential
Slicing that fully leverages the diffing information between
the two versions and eliminates the over-conservativeness of
the traditional slicing by keeping track of value set changes
for all variables. Then, we are able to produce much smaller
slices while still preserving the soundness for the purpose of
updates generation.

We implement a prototype called LIBBANDAID. Our sys-
tem first extracts the outdated libraries from a given Android
app, compares each outdated library with its latest version
counterpart and generates diffing information that precisely
characterizes the code changes at code statement level. Then
it uses our new slicing algorithm to analyze the impact of each
code change and group related changes together to form a set
of candidate updates based on control and data dependencies.
Finally, our system carries out a selective updating process to
apply only the non-intrusive updates to the Android app.

We then conduct a comprehensive evaluation on LIB-
BANDAID by collecting 9 popular TPLs with 173 security
related commits across 83 versions and 100 real world apps.
The results show that LIBBANDAID can effectively patch the
security vulnerabilities with a high success rate.

Contributions. In summary, this paper has made the follow-
ing contributions:

• We propose an automatic non-intrusive patch generation
technique and implement a prototype system called LIB-
BANDAID, which is the first of its kind to solve the out-
datedness problem for TPLs in Android apps.
• A novel slicing algorithm called Value-sensitive Differen-

tial Slicing is proposed to utilize the diffing information
between old and new versions of the code and reduce the
over-conservativeness of the traditional forward slicing
while still preserving the soundness.
• We evaluate LIBBANDAID with 9 popular TPLs with 173

security related commits across 83 different versions and

100 real world apps. The experimental results show that
LIBBANDAID can effectively fix security vulnerabilities
with an average success rate of 80.6% and even higher
rate of 94.07% when combined with potentially patchable
vulnerabilities. We demonstrate the correctness of the
updated apps with automatic program testing.

2 Problem Statement

Deployment Model. Our proposed technique is anticipated
to be deployed as a service for Android app developers (other
than app markets or end users). Developers can feed their app
that contains an outdated TPL as well as the latest version of
that TPL into LIBBANDAID. It will automatically generate
and apply non-intrusive updates to the TPL within the sub-
mitted app without any modification to the app’s code. Our
approach is designed to be conservative to guarantee a maxi-
mal updating in a non-intrusive manner. As a result, security
related updates as well as other updates (e.g., new features
and optimizations) can be applied to the outdated library.

It is noteworthy that the trade-off for non-intrusiveness is
the completeness. LIBBANDAID avoids applying updates
that could change the interactions among the TPL and other
components. As a result, our approach makes a reasonable
underlying assumption so that LIBBANDAID is designed to
cover most of the security related updates.

Assumption. LIBBANDAID updates the outdated TPLs as
much as possible with a high coverage for security related
updates without violating the non-intrusiveness. The under-
lying assumption is that a security patch (e.g., insert a new
condition check) is unlikely to introduce backward incom-
patibility or change how the TPL interacts with other com-
ponents locally (e.g., with the app) and remotely (e.g., with
TPL server). Hence, most of the security related issues can be
fixed by our technique as they are very unlikely to be filtered
out by the pre-defined rules that are designed to ensure the
non-intrusiveness. This assumption is demonstrated by our
evaluation with 9 most popular TPLs in Section 7.

Design Goals. LIBBANDAID achieves the following goals:

• No source code required. Our technique does not require
any source code from Android app or the included TPLs.
This is important because TPLs can be closed-source.
• High coverage for security patches. LIBBANDAID

aims for a high coverage in updating security related is-
sues in outdated TPLs.
• Non-intrusiveness. The generated updates do not change

how the original app interacts with other components nor
do they break the correctness of the app.

3 System Overview
In this section, we present a running example and use it to ex-
plain the work-flow of LIBBANDAID. Note that our approach

278 22nd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

works at byte-code level, source code is presented here only
for ease of understanding.

3.1 Running Example
The example is based on Dropbox library [3], one of the most
popular third-party libraries. Assuming that a given Android
app is using Dropbox library version 3.0.3 (released in May
2017). There exist 50 commits from version 3.0.3 to the
latest version 3.0.6 (released in Jan 2018), including 16 code
commits 1. Listing 1 displays two commits. Lines with colors
show the code changes: lime indicates code insertions while
pink and yellow specify code modifications.

The first commit is a new security feature that adds a field
accountId in the class DbxAuthFinish to identify Dropbox
users instead of using userId in older versions. The sec-
ond commit is a vulnerability fix that adds a body field and
calls close() function of the body in a callback function
onFailure(). When Internet access is cut off, the callback
function onFailure() will be invoked to close body so that
potential system hang is avoided.

3.2 Overview of LIBBANDAID

Figure 1 delineates the overview of LIBBANDAID. There
are four major components in LIBBANDAID: preprocessing,
diffing analysis, update generation and selective updating.

Preprocessing. This step is to filter out the unchanged func-
tions and generate function pairs that are modified across the
two versions. Preprocessing component takes as inputs an app
with outdated library and a latest version of the library, and
outputs a set of function pairs. More specifically, it extracts
the outdated library within the given app, analyzes all classes
in the two versions of the library and performs function level
byte-by-byte comparisons.

As shown in Figure 2, LIBBANDAID pulls out all the func-
tions in the class and performs byte-by-byte comparisons for
each function in old library with the functions in the new
library as long as they share the same function name. Note
that we use function name other than function signature to
tolerate changes of modifier, parameter or return type. For ex-
ample, DbxAuthFinish() in the old library is compared with
DbxAuthFinish() and DbxAuthFinish(String, String,
Body) in the new library. When the byte-by-byte comparison
fails (two functions are not identical), we put them in the
potential function mapping list and send it to diffing analysis
for further analysis. This list signifies the functions in which
the code changes between old and new versions reside.

Diffing Analysis. Diffing analysis in LIBBANDAID is to per-
form function level matching with a granularity of code state-
ment so as to comprehend the exact code changes between
old and new versions of a given library. To achieve this goal,
we leverage the Tracelet Execution [22] and use 3-tracelet

1Other non-code commits include changes in README, build file, tuto-
rial and tests.

to perform code matching at code statement level. Given the
output of preprocessing, 3-tracelets are generated to capture
partial flow information by breaking down the control-flow
graphs for each function pair. Then, the distance between
tracelets are calculated to match code statements.

Listing 1: Running example
1 public class DbxAuthFinish implements CallBack {
2 private String userId;

3 + private String accountId ;

4 + private PipedRequestBody body ;
5
6 - public DbxAuthFinish(String uid) {

7 + public DbxAuthFinish(String uid,String aid,Body body) {
8 this.userId = uid;

9 + this.accountId = aid;

10 + this.body = body;
11 }
12 public DbxAuthFinish(){

13 + this.body = null;

14 + this.accountId = null;
15 this.userId = null;
16 }
17 public void onFailure (IOException ex) {
18 this.error = ex;

19 + if(body) this.body.close();
20 notifyAll();
21 }
22 public DbxAuthFinish read() {

23 + String accountId = null;
24 String userId = null;
25
26 while(getCurrentToken()) {
27 if(n.equals("uid"))
28 userId = readField();

29 + else if(n.equal("accountId"))

30 + accountId = readField();
31
32 + if(accountId == null)

33 + throw JsonReadexception;
34 }

35 - return new DbxAuthFinish(userId) ;

36 + return new DbxAuthFinish(userId, accountId, body) ;
37 }

38 + public String getAccountId() {

39 + return accountId; }
40 }

For LIBBANDAID, we need to further match the func-
tions that have multiple candidates. For example, in Fig-
ure 2, DbxAuthFinish() in the old library can be matched
to either DbxAuthFinish() or DbxAuthFinish(String,
String, Body) in the new library. To understand the real
change, LIBBANDAID leverages the distance information
to further match the functions. Particularly, we consider it
as a linear assignment problem and use Hungarian Algo-
rithm [29] to find the optimal matching. Tracelet technique
has demonstrated a 0.99 accuracy in comparing functions in
binary code [22]. In our case, byte-code matching is easier
than binary code since it is more semantic-rich. Therefore,
we observe no false positive during evaluation.

USENIX Association 22nd International Symposium on Research in Attacks, Intrusions and Defenses 279

App

Latest
library

Preprocessing
Tracelets

& Function
Matching

Updating

function
mapping

list

Diffing Analysis

code
changes

Impact
Analysis

Points-to
Analysis

Grouping

Update Generation

Updates
Filtering

outdated lib
App

updated lib

Selective Updating

Figure 1: Architecture Overview.

old library

new library

DbxAuthFinish()
DbxAuthFinish(String)
read()
onFailure()
…

DbxAuthFinish()
DbxAuthFinish(String, String, Body)
read()
onFailure()
getAccountId()
…

Function Mapping List:
(function in old lib -> function in new lib)

DbxAuthFinish() -> DbxAuthFinish()
DbxAuthFinish() -> DbxAuthFinish(String, String, Body)
DbxAuthFinish(String) -> DbxAuthFinish()
DbxAuthFinish(String) -> DbxAuthFinish(String, String, Body)
read() -> read()
onFailure() -> onFailure()

New Functions:
DbxAuthFnish: getAccountId()

class
DbxAuthFinish

class
DbxAuthFinish

Figure 2: Preprocessing.

DbxAuthFinish() and DbxAuthFinish(String) in the
old library are then matched to DbxAuthFinish() and
DbxAuthFinish(String,String,Body) in the new library
respectively. The output of diffing analysis is the real mapping
of the functions as well as a set of code changes (pairs of code
statements) that precisely characterize the changes between
the old and new versions of the third-party library. For our
running example, the produced code changes are the same as
the colored lines in Listing 1.

Update Generation. Once LIBBANDAID identifies all the
code changes between the old and new versions, it starts the
update generation process. The whole process takes three
inputs: 1). code changes generated by diffing analysis; 2).
the old version of the library; and 3). the new version of the
library, and generates one output (a set of updates). It first
generates system dependence graphs (SDGs) for new and old
library, and then generates a slice for each code change by per-
forming impact analysis. Finally, it performs grouping based
on the alias information gathered from points-to analysis to
produce updates.

The purpose of this indispensable step is two-fold. First,
since many code changes have control and data dependen-
cies with each other, LIBBANDAID should always put them
together and perform updating collectively. For example, in
Listing 1, Ln.10 and 13 assign values to a newly added class
field body (defined in Ln.4). Ln.19 further calls a member
function close() of the field. These code changes should be
put into one group as they are the definition and usages of a
same variable body. Second, to fulfill the non-intrusiveness
design goal as described in Section 2, LIBBANDAID performs
impact analysis, combines code changes with all the poten-
tially affected code and further associates the group into one
update so that our system can apply them as a whole if the

update is indeed non-intrusive. As for our running example,
after this step, the code changes in Listing 1 will be grouped
precisely into two updates, one for each commit. More details
are presented in Section 4 and 5.

Selective Updating. The last component of LIBBANDAID
is selective updating. It takes the updates generated in the
previous step, performs filtering to discard the ones that could
potentially break the non-intrusiveness, and eventually up-
dates the old library to generate a new app with an updated
library. The core part of this step is to systematically de-
vise a set of pre-defined rules for filtering so that the non-
intrusiveness of our generated updates can be preserved. As
for the running example, two updates are generated and fed
into selective updating. The one related to accountId can
potentially be filtered out since it will change an interface
DbxAuthFinish(String) and may cause incompatibility is-
sue. More detailed information is presented in Section 6.

4 Update Generation
In this section, we describe how LIBBANDAID performs
update generation by presenting the three major steps: impact
analysis, points-to analysis and grouping.

4.1 Impact Analysis
Impact Analysis is to understand the impact (affected codes)
of the code changes generated from diffing analysis. Once the
impact of the code changes is known, LIBBANDAID groups
code changes into updates and performs filtering to remove
the ones that violate the non-intrusiveness.

Starting from a subset of a program’s behavior, program
slicing technique reduces the program to a minimal form that
still produces that behavior [53]. If we start slicing from a
specific code change, it will conservatively includes all the

280 22nd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

codes that can potentially be affected by the change. However,
traditional slicing is too conservative to be practical and tends
to generate gigantic slices. The larger a slice is, the more
codes it contains, hence, the bigger chance it will violate the
non-intrusiveness and get filtered out (more in Section 6).
To solve this problem, a new slicing algorithm is desired to
perform a sound impact analysis with respect to our definition
of impact while greatly reducing the over-conservativeness.
We discuss the slicing in detail in Section 5.

4.2 Points-to Analysis and Grouping

After the impact analysis, LIBBANDAID performs points-
to analysis to extract alias information and further groups
code changes into updates. This step is to group slices that
are accessing the same global variables or have overlapping
code statements. We rely on the existing points-to analysis in
Soot [1] to extract alias information.

5 Value-Sensitive Differential Slicing
In this section, we first introduce some important definitions
and then describe how our slicing algorithm works in detail.

5.1 Formal Definitions

We formally define the impact of a code change and then
lay out our definitions on the relationships between program
behaviors and variable value sets, upon which the soundness
of our slicing algorithm is built.

Definition 1. We denote impact of a code change on a code
statement as I(d,c), where

• d represents a code change in the new library;
• c represents a code statement that has not changed from

the old to the new version of the library;

Therefore, I(d,c) 6= /0 means that a code change d has
impact on code statement c. Intuitively, I(d,c) = /0 means that
a code change d has no impact on c. We then define a code
change that has no impact on a code statement as:

Definition 2. I(d,c) = /0⇐⇒ Bd
c ⊆ Bc, where

• Bd
c is a set of behaviors representing all possible program

behaviors of c with d applied;
• Bc is a set of behaviors representing all possible program

behaviors of c without applying d;

Here, the impact of a code change to a certain code state-
ment is represented by the change of program behaviors for
that code statement. If and only if all the possible program be-
haviors of a code statement c with the code change d applied
are still within the original behavior set, we can say d has no
impact on c.

We then have following definition on the relationship be-
tween value set [16] of all the variables within one code
statement and the program behaviors of that code statement:

Definition 3. V Sd(I,c)⊆V S(I,c)⇒ Bd
c ⊆ Bc, where

• V Sd(I,c) denotes the value set of all the variables I
(global and local) and their combinations used in a code
statement c with d applied;
• V S(I,c) denotes the value set of all the variables I (global

and local) and their combinations used in a code statement
c without applying d;

Essentially, this definition shows that if the value sets of all
variables and their combinations used in a code statement are
unchanged or a subset of the original value sets, then the pro-
gram behaviors of that code statement must stay unchanged
or a subset of the original ones. It gives a strong mapping
from value sets of all variables in a code statement to the pro-
gram behaviors of that statement. Together with Definition 2,
we can draw a link between value sets of all variables in a
code statement and the impact of a code change to that code
statement. Specifically, our impact analysis can remove the
over-conservativeness by examining the value set changes of
all variables in a code statement between old and new ver-
sions of the library. If the value sets are unchanged or a subset
of the original set for a statement before and after applying
a code change, that means the code change has no impact
on the statement and our algorithm can safely stop further
slicing.

This may seem to be counter-intuitive at first glance. For
example, if after applying code change d, statement c has only
one behavior in its behavior set while the original behavior set
has 100 behaviors, d would still be considered as having no
impact on c as long as the one behavior is within the original
behavior set. In our case, we can safely stop slicing since
we know the original code c can correctly handle d and its
affected behavior (it is within the original behavior set and
introduces no unexpected behavior).

5.2 Basic Scheme
The core idea is to take into account the value changes of
all variables between old and new versions of the code and
leverage this info to reduce the over-conservativeness of the
traditional slicing.

Intuitively, the basic scheme starts from a code change
and performs whole library-wise context- and flow-sensitive
value-set analysis (VSA) [16] on all variables and their combi-
nations for each code statement that has dependency (control
or data) with the code change. Then it compares the value
sets for the variables within these code statements between
two versions of the library. If there exists no change in the
value sets, which means the code change has no impact on the
current code statement, then our algorithm does not include
that code statement in the slice. Since many values cannot be
statically determined, we compute value formulas in a context-
and flow-sensitive fashion as the value-set for non-constant
variables.

Theoretically, this analysis is sound with respect to the def-
inition of impact and could remove the over-conservativeness
of traditional slicing. However, it clearly introduces a huge

USENIX Association 22nd International Symposium on Research in Attacks, Intrusions and Defenses 281

performance overhead for the whole library-wise context- and
flow-sensitive VSA on all variables and their combinations
on every control or data dependent code statement for a sin-
gle code change (there could be thousands of code changes
between two versions), rendering the algorithm impractical.

Consequently, we present two optimizations to this basic
scheme to improve the runtime performance as well as to
further reduce the over-conservativeness. Again, source code
is listed just for ease of presentation while LIBBANDAID
works on byte-code.

5.3 Slice-wise VSA
To reduce the complexity, we propose an optimization to nar-
row down the search space to the current slice which begins
from the code change.

Listing 2: Slice-wise VSA
1 void postSingleEvent(Obj event) {
2 subscriptions = subscriptionsByEventType.

get();
3 if (subscriptions != null
4 + && !subscriptions.isEmpty()) {
5 for (Subscription sc : subscriptions)

{
6 postToSubscription(sc, event);
7 }
8 subscriptionFound = true;
9 }

10 ...
11 void postToSubscription(Subscription s, Obj

event) {
12 switch (s.threadMode) {
13 case PostThread:
14 invokeSubscriber(s, event);
15 ...

Listing 2 shows a real-world security commit from a
popular library EventBus [4]. At Ln.4, a condition check
!subscriptions.isEmpty() is added in the new version.
The traditional forward slicing will start from the code
change and include every single line from Ln.4 to Ln.23
and even more codes in functions like invokeSubscriber()
since they all have dependency with the code change.
However, by manual investigation, we know the code
change does not acutally introduce any new behavior to
postToSubscription().

For the basic scheme, we compute value sets for all vari-
ables and their combinations in every code statement that is
data-dependent on the code change. For instance, for code
at Ln.6, we calculate value sets for variables sc and event
as well as their combinations (say, sc = 1 only if event ==
0). This calculation can only be done in a whole library-wise
context-sensitive fashion since the value of event is from the
caller function postSingleEvent().

To accelerate the process, we can perform VSA only within
the slice instead of the whole program. This is because our
analysis is to include all code statements that can be af-
fected by the starting of the slice (a code change). That
is, as long as the code change (Ln.4) does not affect the
value sets of sc or event or their combinations, we could

stop VSA and keep our slicing from further propagating into
postToSubscription(). This analysis can be done much
faster within the current slice other than the whole library. As
a result, a much smaller slice (Ln.4-8) will be produced in a
very lightweight fashion.

This optimization is an approximation to the basic scheme
algorithm. It sacrifices precision of the whole library-wise
VSA but greatly improves the performance. Consequently, it
is more conservative than the basic scheme. For example, in a
case where an assignment a = 1 is inserted in a new library,
every code that uses the variable a will be included under our
optimization. However, a library-wise VSA may tell us that a
= 1 is still within the original value-set. Therefore, we do not
need to include the code statements that are data-dependent
on the newly inserted assignment.

5.4 Intra-procedural VSA
As discussed, the first optimization that searches only within
the slice may bring over-conservativeness. As a result, we
propose a second optimization to relax the search scope of
VSA to the beginning of the function that contains the code
change.

Listing 3: Intra-procedural VSA
1 void onResume() {
2 if (hasDropboxApp(officialAuthIntent))
3 startActivity(officialAuthIntent);
4 else
5 startWebAuth(state);
6 }
7 boolean hasDropboxApp() {
8 for (Signature sig : packInfo.sigs) {

9 - for(String dbSig : DROPBOX_SIGS)

10 - if (dbSig.equals(signature))

11 - return true;
12
13 + if (!DROPBOX_SIGS.contains(sig)

14 + return false;
15 }
16 ...

Listing 3 shows another real-world security commit that
fixes Android Fake ID vulnerability from Dropbox library.
Code statements at Ln.9-11 in the old version are updated
to codes at Ln.13-14 in the new version. Statement return
true (Ln.11) has now become return false (Ln.14). Ap-
parently, the value set of variable in the return statement
has changed. According to the first optimization, our slic-
ing algorithm will continue flowing into the call site of
hasDropboxApp() at Ln.2, further propagate to Ln.2-5 and
eventually include almost every line of code in the example.

In fact, a closer look will tell us that the code changes within
hasDropboxApp() does not really expose any impact on its
caller onResume(). Although the return value is modified,
both the old and new versions of the function bear the same
function-wise return value set: {true, false}. In order to
capture this information, our algorithm needs to perform intra-
procedural VSA beyond the scope of a slice but still within

282 22nd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

hasDropboxApp(), which is the function that contains the
code changes. As a result, our algorithm will stop slicing and
generate a much smaller slice.

From the description above, we can see that this opti-
mization sits between the basic scheme (whole library-wise
context- and flow-sensitive analysis) and the first optimization
(pure slice-wise analysis). Therefore, by applying this opti-
mization to all the variables, our slicing will be more accurate
while maintaining the similar performance gain from the first
optimization with negligible overhead.

5.5 Value-sensitive Differential Slicing

We now present the details of our slicing algorithm in Algo-
rithm 1, which is a dependence graph based slicing algorithm
as [26]. It takes three inputs and generates slice for that code
change as output.

Algorithm 1 Value-sensitive Differential Slicing
1: input1: di f f ←{stmto,stmtn}
2: input2: SDGn← {SDG of the new library.}
3: input3: SDGo← {SDG of the old library.}
4: procedure V _Slicing(di f f ,SDGn,SDGo)
5: slice← /0

6: fn← Locate(stmtn,SDGn); fo← Locate(stmto,SDGo)
7: workingSet← workingSet ∪ stmtn
8: slice← slice∪ stmtn
9: while workingSet 6= /0 do

10: stmt← workingSet.remove()
11: Setsuccs← ImmediateSuccessors(stmt,SDGn)
12: for succ ∈ Setsuccs do
13: if succ contains new invocation then
14: slice∪← Forward_Slicing(succ,SDGn)
15: else if succ is another di f f ′ then
16: slice∪←V _Slicing(di f f ′,SDGn,SDGo)
17: else if succ is control-dependent on stmt then
18: slice← slice∪ succ
19: workingSet← workingSet ∪ succ
20: else if succ is return statement then
21: if !(RetV S(fo)⊆ RetV S(fn)) then
22: slice← slice∪ succ
23: workingSet← workingSet ∪ succ
24: end if
25: else if succ is only data-dependent on stmt then
26: v fn←V SA(succ,slice,SDGn)
27: v fo←V SA(succ′,slice,SDGo)
28: if !(v fn ⊆ v fo) then
29: slice← slice∪ succ
30: workingSet← workingSet ∪ succ
31: end if
32: end if
33: end for
34: end while
35: Return slice
36: end procedure

The algorithm first locates the di f f in two SDGs (Ln.6)
and adds stmtn into a workingSet (Ln.7) to start the iterative
process. The algorithm will continue running as long as the
workingSet is not empty (Ln.9). For every statement in the
working set, we extract its immediate successors in SDG
(Ln.11). For every immediate successor succ, the algorithm

checks if it is another code change. There exist two cases
under this scenario. First, if succ is a code change that contains
a new function invocation, our algorithm needs to leverage
traditional slicing by calling Forward_Slicing() to keep track
of the new function call (Ln.13-14) as all its codes are new
codes compared to the old version. Second, if succ is a normal
code change, we consider it as another input to a recursive
function call for V _Slicing() (Ln.15-16).

When succ is not a code change, we add it into the
workingSet as well as the slice if it is only control-dependent
on stmt (Ln.17-19). When succ is a return statement, we
apply the second optimization discussed in Section 5.4 by
performing function-wise VSA for all return statements to im-
prove the accuracy (Ln.20-23). When succ is data-dependent
on stmt, we calculate and compare the value-sets by calling
V SA() to extract value formulas at the scope discussed in the
second optimization for both old and new versions and only
add succ when stmt has impact on it (Ln.25-30). Eventually,
it produces a slice by returning slice (Ln.35).

6 Selective Updating
This component takes the generated updates from the previ-

ous step, performs filtering and applies the updates to eventu-
ally produce an updated TPL, as depicted in Figure 1.

6.1 Filtering

In this step, LIBBANDAID relies on a set of pre-defined rules
to filter out the generated updates that may affect the interac-
tions between the library and other components in order to
achieve the non-intrusiveness goal as explained in Section 2.
These rules are defined to be conservative and can guarantee
that all satisfying updates will not change how the library in-
teracts with other components. To this end, we investigate into
how TPLs work and propose four categories of interactions.

Interaction with the given app. The first category is listed
in the first row in Table 1. It defines the rules for interactions
with the given app. When TPLs get updated by LIBBANDAID,
we guarantee the interactions with the app will not be affected.

Since the interactions are always through library APIs, we
need to make sure the used APIs will stay the same in terms
of function names, return types, parameters and thrown ex-
ceptions. To this end, LIBBANDAID performs static program
analysis to collect the library APIs used within the app and
filters the updates that could change these APIs. Additionally,
LIBBANDAID collects exception information and discards
the updates that introduce new exceptions.

It is noteworthy that the interaction with the given app
is the only category that relies on program analysis due to
two reasons. First, we need to perform program analysis on
the two versions of the library to understand which APIs are
changed. Second, even if some APIs are indeed changed in
the newer version, we may still safely update as long as the
Android app does not directly call them.

USENIX Association 22nd International Symposium on Research in Attacks, Intrusions and Defenses 283

Table 1: Pre-defined Rules for Filtering

Categories Representative Behaviors Rules

Interaction with the given app API changes
public API signature change (return type, parameter, etc) depend on analysis
exception thrown change (new exception type) depend on analysis

Interaction with server protocol changes
incoming message change F
outgoing message change F

Interaction with Android system

new Android API usages
no permission change T
new permission needed F

file manipulation
new file creation T
file access that modifies file pointer F
new file write F

kernel object change thread/process creation T

Interaction with other apps
communication to other components

new intent F
intent modification F

services start/bind/unbind services F

Interaction with server. Another important interaction for a
TPL is to communicate with its server. For example, Drop-
box library communicates with Dropbox server to access
files. Therefore, our system needs to make sure that the pro-
tocol between server and client stays the same. To do so,
LIBBANDAID scans over each update and checks if it con-
tains code that performs network communication (incoming
or outgoing). As long as such code exists, our system will
conservatively choose to ignore this update. For example, if
one update contains API calls such as HttpURLConnection:
getResponseMessage(), LIBBANDAID will filter it out.

Interaction with system. We then consider the interactions
between a TPL and the underlying Android system.

First, our update may interact with the Android framework
by calling a new Android API that was not called in the old
version. We rely on PScout [13] to check if the new An-
droid API requires new Android permission. If it does, LIB-
BANDAID will discard the update. Second, we examine if an
update performs any file manipulation in the Android system.
Particularly, LIBBANDAID checks if the update affects the
current system state, such as creating a new file or writing
into a file. The tricky part is the file read. Our system only
prevents the library from modifying the file pointer while
reading a file (e.g., a call to RandomAccessFile: seek()).
Third, library may create new kernel objects such as thread
and process. LIBBANDAID allows this kind of interactions
since they do not affect the execution of Android apps.

Interaction with other apps. The last category of interaction
is the interaction with other apps in the Android system. Apps
within an Android system could communicate with each other
via Binder. LIBBANDAID disallows any update to change the
communication either by creating a new intent or by changing
any of the existing intent. Also, an update that starts, binds or
unbinds services in the system is discarded.

6.2 Updating

After filtering out the unsatisfying updates based on our rules,
LIBBANDAID applies the satisfying ones to the outdated li-
brary. This step is done at Jimple IR level by using byte-code

rewriting capability in Soot [1]. After the rewriting, we con-
vert the updated Jimple IR into Dalvik byte-code, repackage
the DEX file with other resource files and eventually create a
new Android app (APK file) with updated library.

7 Evaluation

7.1 Dataset and Configuration

We collect 9 popular Android third-party libraries [15] includ-
ing Butterknife [2], Dropbox [3], EventBus [4], Glide [6],
Gson [7], Leakcanary [8], Okhttp [9], Picasso [10] and
Retrofit [11], with a total of 173 security commits over 83
different versions to evaluate our system. Table 2 shows the
library names, total number of security commits as well as
the associated library versions.

We first collect ground truth based on commit information
in Github repositories to gather the vulnerability information
for all the 173 security commits. Vulnerability types proposed
in prior research [35] to these security related commits are
presented in Table 3. As shown, our representative dataset
covers a wide range of different types of vulnerabilities.

Then, we compile libraries into a number of testing versions
with two requirements: 1). each testing version contains at
least one security commit; 2). these testing versions cover all
the security commits and version numbers that are listed in
Table 2. Finally, we develop Android apps that utilize these
testing versions. For each testing version other than the latest
one, we feed the Android apps with these versions along
with the latest version of each library into LIBBANDAID for
evaluation. For instance, Butterknife library has 6 security
commits from version 7.0.1 to 8.0.1. We compile 6 testing
versions v1 to v6 to guarantee each one will contain at least 1
commit. Then we develop 5 Android apps a1 to a5 that use
testing versions v1 to v5 and feed (a1,v6), (a2,v6),..,(a5,v6)
into LIBBANDAID for experiments.

Furthermore, we collect 100 real-world Android apps from
F-Droid [5] to demonstrate LIBBANDAID in practice. On
average, the size of these apps is 4.1MB and they contain 7.1
TPLs per app. We handpick these apps since they all contain

284 22nd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

Table 2: Overview of TPLs in Evaluation

Library # of Security Commits # of Testing Versions Versions
Butterknife 6 6 7.0.1 - 8.0.1
Dropbox 11 10 3.0.0 - 3.0.6
EventBus 15 10 2.1.0 - 3.1.0

Glide 22 10 4.4.0 - 4.6.1
Gson 13 10 2.2.4 - 2.8.2

Leakcanary 42 7 1.3.1- 1.5.4
Okhttp 26 10 3.7.0 - 3.10.0
Picasso 19 10 1.5.3 - 3.0.0
Retrofit 19 10 2.0.0 - 2.4.0

at least one of the 9 libraries described above. Therefore, we
can use the latest versions of these TPLs to update the apps.

7.2 Effectiveness of LIBBANDAID

As discussed, we feed each Android app that contains
an older version library along with the latest version into
LIBBANDAID, and then manually investigate the updated
libraries to see if the commits have been updated.

Security commits can be divided into three categories: 1).
‘patched’; 2). ’fail to patch’; and 3). ’potentially patchable’.
’patched’ means our system can successfully update the li-
brary with the commit. ‘fail to patch’ shows the commits
that are filtered out because of to the violation of our pre-
defined rules. ‘potentially patchable’ indicates the commits
that change the APIs of the library. LIBBANDAID may still
update the ‘potentially patchable’ ones as long as the analyzed
Android apps do not directly invoke the changed APIs.

By Absolute Numbers. Figure 4 gives the results in absolute
numbers for the 9 libraries. The x-axis shows each execution
of LIBBANDAID while y-axis is the absolute number of vul-
nerabilities. For example, the x-axis in Figure 4b gives the
9 executions from (a1,v10) to (a9,v10) for Dropbox library
and the y-axis shows the number of security commits updated
for each run. By looking at the first bar in the figure, we can
see that there are total of 11 vulnerabilities between the old
and new versions of the library. LIBBANDAID is able to fix
7 of them but fails in 2. Moreover, there are 2 security com-
mits that change the APIs, so we mark them as ‘potentially
patchable’.

From the 9 figures, 2 libraries (Butterknife and Picasso)
are shown to have no ‘fail to patch’ commit (no yellow bar)
for all the versions. And for the rest 7 libraries, ‘fail to patch’
commits only take up a small average potion of total numbers
across all executions. (a9,v10) execution in Okhttp (Figure 4g)
is the worst case in our evaluation in which it has 1 ‘fail to
patch’ commit out of 3. Further investigation shows these
commits could potentially lead to protocol changes due to
the fact that Okhttp is an HTTP client and performs consider-
able amount of network communications. A more interesting
observation is that the ‘fail to patch’ commits will disappear
in many libraries when the outdated library becomes more
recent and closer to the latest version. For Gson library in

Figure 4e, starting from (a5,v10), the ‘fail to patch’ commit
is gone.

From the experiments, LIBBANDAID could achieve an
average success rate of 80.6% for updating security commits
and even a higher rate of 94.07% when combining with the
‘potentially patchable’.

By Vulnerability Categories. We then examine the cate-
gories of vulnerabilities that LIBBANDAID fails to update.
The results are exhibited in Table 4. It shows the breakdown
of vulnerabilities and the number of failures for that security
commit if LIBBANDAID fails to update in all executions.

We find that among all kinds of security vulnerabilities,
Info Leak is most likely to fail (1 failed in 3 total commits). In
general, vulnerabilities that are related to IO exceptions and
information processing (e.g., input validation, data handling)
also bear relatively high failure rates. This result is expected
since the updates to these vulnerabilities are most likely to
affect the interactions between the library and the system or
the server. Therefore, the filtering process in LIBBANDAID
is triggered.

Observations. Two observations can be made from the above
experimental results. First, our assumption made in Section 2
(security patches usually do not introduce backward incom-
patibility or change how the TPL interacts with other com-
ponents) holds in practice. Second, LIBBANDAID performs
better in updating relatively newer version of the library. This
is because the newer the library is, the less code changes it has
compared to the latest version. As a result, fewer and smaller
slices will be generated and they are less likely to be filtered
out by LIBBANDAID.

7.3 Correctness of LIBBANDAID

The correctness of LIBBANDAID is demonstrated by per-
forming random testing as well as manual investigation for
the updated apps. To this end, we first use LIBBANDAID to
update TPLs within the 100 real-world apps from F-Droid [5].
Then, we collect apps with updated TPLs for testing.

For random testing, we run Monkey, which is a popular
UI/Application testing tool developed by Google, on every
app with an updated library for 2 hours. Although we did
observe some crashes, we have confirmed that they are bugs
in the original apps. No new crash is introduced by LIB-
BANDAID. The results demonstrate that the updated library
can function normally and pass the random testing success-
fully. Due to the code coverage issue for random testing, we
augment it with manual investigation to try out all the com-
binations of UI components. Combined with Monkey, our
testing achieves an average code coverage of 25.7% for all the
updated libraries. A closer look shows that our testing covers
30.1% of the functions that are actually updated. Admittedly,
the code coverage is still far from complete, however, the
correctness of LIBBANDAID can still be demonstrated to-

USENIX Association 22nd International Symposium on Research in Attacks, Intrusions and Defenses 285

Table 3: Security Fixes Distribution

Vulnerability
Library Butterknife Dropbox EventBus Glide Gson Leakcanary Okhttp Picasso Retrofit

Improper Input Validation 1 3 3 6 5 2 7 6 1
Data Handling Error 4 4 5 3 3 3 7 1 6
Uncaught Exception 1 1 3 4 1 2 7 2 7
Memory Leak 1 1 32 1 3
Info Leak 2 1
Race Condition 3
Improper Access Control 2
Uncontrolled Resource Consumption 1
System Hang 1 1 1 2
Uncheck Return Value 5 2
Illegal Reflective Access 1
Stack Overflow 2 5
Heap Access Error 1 1 1
Missing Initialization 1 1
Integer Overflow 1
Fake ID 1
New Security Feature 1
Total 6 11 15 22 13 42 26 19 19

0 5000 10000 15000 20000

20.00%

40.00%

60.00%

80.00%

100.00%

(a) CDF for number of edges

0 2500 5000 7500 10000 12500

20.00%

40.00%

60.00%

80.00%

100.00%

(b) CDF for number of nodes

Figure 3: Effectiveness of New Slicing Algorithm
gether with our manual investigation showed in the previous
Section 7.2.

7.4 Effectiveness of new slicing
Finally, we evaluate the effectiveness of Value-sensitive Dif-
ferential Slicing by comparing it with the traditional slicing
algorithm. We seek to evaluate the algorithm by answering
the two following questions:

1). How well it performs in terms of over-conservativeness
reduction?

2). Can it help LIBBANDAID achieve better results?

Over-conservativeness Reduction. We evaluate the effec-
tiveness of Value-sensitive Differential Slicing by examining
how much it could reduce the over-conservativeness across
the 9 testing libraries. Figure 3 displays the cumulative distri-
butions of the sizes of generated slices for traditional slicing
as well as the new slicing with respect to the numbers of edges
and nodes. The blue line indicates the new slicing algorithm
while the yellow line represents the traditional slicing.

From the figures, we can see that Value-sensitive Differen-
tial Slicing could effectively reduce the number of edges as
well as nodes by at least one order of magnitude. For example,
100% of the generated slices by Value-sensitive Differential
Slicing have less than 2,500 edges and 2,000 nodes. On the
contrary, traditional slicing generates way larger slices up to
20,000 edges and 12,500 nodes. This information gives us a

clear view for the advantage of our slicing over the traditional
slicing in terms of over-conservativeness reduction.

Updating Improvements. We further evaluate our slicing by
examining the updating results improvements. The results in
Section 7.2 shows LIBBANDAID could achieve a high suc-
cessful updating rate for security commits when leveraging
our new slicing. To evaluate, we run the experiments again
with traditional slicing and compare the differences. The re-
sults show that LIBBANDAID could only achieve an updat-
ing rate of 61.84% with a rate of 74.95% when combined
with the potentially patchable commits. In contrast, with the
help of new slicing, our system could perform much better at
rates of 80.6% and 94.07% when combined with potentially
patchables as reported in Section 7.2. Detailed information is
presented in Figure 6.

8 Discussion

Soundness. The soundness of our approach results from that
of diffing analysis, update generation and patching respec-
tively.

For diffing analysis, we leverage Tracelet Execution [22]
technique, which has demonstrated a 0.99 accuracy in its
evaluation, to compare TPLs at statement level. In our case,
false positive (statements that are not code changes to be
considered as changes) is impossible since we match the
exact strings to confirm. Theoretically, false negatives are
possible. However, we argue that false negative can only lower
the successful patching rate but not bring any correctness or
compatibility issue.

For update generation, the soundness of our impact analysis
inherits from the soundness of traditional slicing. The basic
scheme strictly follows the definition of impact in Section 2.
However, due to the two optimizations, our slicing is still
sound with respect to the definition of impact but may contain
over-conservativeness for performance gain.

286 22nd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

Based on the soundness analysis of our slicing, the correct-
ness of updating is ensured by virtue of two reasons. First,
LIBBANDAID introduces absolutely no code changes other
than the ones from the new library itself. We assume the
library developers have already tested their code before com-
mitting. Second, the completeness of each generated update
is guaranteed by our slicing algorithm.

Correctness. In certain extreme cases, LIBBANDAID may
affect the correctness of the updated apps in practice. For
instance, a TPL function originally returns 0 only on a very
rare failure, but now returns 0 for all kinds of failure after a
patch. The Android app that uses the old version may simply
ignore the case of returning 0 since it is so rare that developers
could never make it happen during testing. However, the app
may break after using LIBBANDAID.

We argue that it is the app developers’ responsibility to
fully test their apps in a complete fashion. But in practice,
LIBBANDAID could use some lightweight sampling process
such as fuzzing [60] to estimate the satisfying space for return
values of a function and choose whether to perform the update.
We leave this as a future work.

Limitations. To begin with, LIBBANDAID can only handle
Java libraries and Java codes, and cannot update native li-
braries in Android apps. Moreover, non-code changes could
also bring issues. For example, a version number may be
stored in a file and used to communicate with server as part
of the protocol. In this case, LIBBANDAID may change the
protocol and introduce incompatibility. To solve the prob-
lem, we need to consider the accesses to the same file as data
dependency. We also leave this as a future work.

Second, our analysis technique cannot handle obfuscated
code. Recently, there is a growing tend for Android apps
to use different obfuscation and packing techniques [24]
to hide real logic. We argue that this is not a big problem
for LIBBANDAID as it is designed for App developers who
should possess unobfuscated code. Also, most of the popular
TPLs [15] in Android apps are not obfuscated.

Third, our slicing relies on an accurate data dependency
analysis that in turn depends on a complete modeling of Java
and Android APIs. We manually write models for more than
500 most popular APIs but they still can be incomplete. This
incompleteness may thwart the soundness of our analysis.

Fourth, we handle the diffing analysis as a code matching
problem and leverage existing research [22] to perform anal-
ysis. We argue that this problem is orthogonal to our major
focus of updating the TPLs in Android apps. We can defi-
nitely make use of the advance in code matching techniques
to improve the performance of LIBBANDAID.

Finally, although LIBBANDAID analyzes the library API
to collect new exception information, the analysis results in
theory can be incomplete. For example, a code change in
a TPL’s API can call other function outside the library that

eventually rises an exception. In this case, we may miss it,
jeopardizing the non-intrusiveness.

9 Related Work

Change Impact Analysis. Change Impact Analysis [18]
studies how code changes in one place could affect codes
in other places of the program. Techniques have been pro-
posed [12, 28, 30, 33, 40, 42–44, 48, 58] to improve the change
impact analysis. Some of them utilize call graph analysis
to study the impact of code change [12, 42, 43]. The limita-
tion is that call graphs by nature can only provide a coarse-
grained information usually at method level. Another set of
research [30, 40] utilizes dynamic analysis to understand the
impact of code changes. However, dynamic analysis often
falls short of code coverage.

Program slicing [52] becomes a promising technique to
grasp a comprehensive understanding of the impact for code
changes. A series of research [28, 33, 34, 44, 48, 58] has been
done towards this direction. TAILER [34] computes a tai-
lored program that comprises the statements in all possi-
ble execution paths passing through a given statement se-
quence. GRACE [28] performs forward slicing to capture all
potentially affected codes. To deal with the conservativeness,
Sridharan et.al. [48] propose a new slicing algorithm called
thin slicing that only considers value-flow. P-slicing [44] and
PRIOSLICE [58] augment the forward slicing with relevance
scores that indicate how likely a code statement can be af-
fected by the change.

Android Program Patching. Automatic Program Patching
in the context of Android falls into two categories: Android
system patching and Android app patching. Many works have
been done [19, 20, 39, 57] to perform patching on Android
system and kernel. PatchDroid [39] uses in-memory patch-
ing techniques to address vulnerabilities. KARMA [20] is
proposed as an adaptive live patching system for Android
kernels by featuring a multi-level adaptive patching model.
Embriodery [57] only targets the binary code in Android
kernels by using binary rewriting techniques. It transplants
official patches of known vulnerabilities to different devices
by adopting heuristic matching strategies. InstaGuard [19]
adopts hot-patching to patch the system programs in Android
by enforcing updatable rules that contain no code to block
exploits of unpatched vulnerabilities.

Android application patching techniques, on the other hand,
are also proposed to mitigate security problems in Android
apps. AppSealer [54], which is the most similar work with
ours, performs automatic patching for preventing component
hijacking attacks in Android apps. Duan et.al. [25] uses An-
droid rewriting technique to perform privacy-preserving of-
floading of Android apps to the public cloud. Capper [55] and
Liu et.al. [36] rewrite the Android apps to keep track of pri-
vate information flow and detect privacy leakage at runtime.
CDRep [37] fixes cryptographic-misuses in Android with

USENIX Association 22nd International Symposium on Research in Attacks, Intrusions and Defenses 287

similar byte-code rewriting technique. Azim et.al. [14] detect
crashes dynamically and use byte-code rewriting technique
to avoid such crashes in the future.

10 Conclusion
In this paper, we developed a novel technique named LIB-
BANDAID to solve the outdatedness problem for TPLs in An-
droid apps by automatically generating non-intrusive updates.
Our system extracts the outdated library within apps, com-
pares it to the latest version of the library and generates diffing
information that precisely characterizes the code changes at
code statement level. Then, it analyzes the impact of each
code change and generates updates. To do so, we propose
a novel slicing algorithm named Value-sensitive Differential
Slicing to reduce the over-conservativeness of the traditional
slicing algorithm while still preserving the soundness. LIB-
BANDAID further performs selective updating by filtering
out the updates that can potentially change the interactions
between the library and other components. Our evaluation on
9 real-world popular third-party libraries and 100 real-world
Android apps demonstrates that LIBBANDAID could effec-
tively patch the security vulnerabilities within libraries with
an average of 80.6% success rate and an even higher 94.07%
when combined with potentially patchable vulnerabilities.

Acknowledgement
We would like to thank the anonymous reviewers for their
helpful comments. This work was supported in part by
DARPA under grant FA8750-16-C-0044.

References
[1] Soot: a Java Optimization Framework.
[2] Butterknife: Bind Android views and callbacks to fields

and methods. https://github.com/JakeWharton/
butterknife, 2018.

[3] Dropbox: A Java library for the Dropbox
Core API. https://github.com/dropbox/
dropbox-sdk-java/, 2018.

[4] EventBus. https://github.com/greenrobot/
EventBus, 2018.

[5] F-Droid - Free and Open Source Android App Reposi-
tory. https://f-droid.org/en/, 2018.

[6] Glide: An image loading and caching library. https:
//github.com/bumptech/glide, 2018.

[7] Gson: Java serialization library. https://github.com/
google/gson, 2018.

[8] Leakcanary: A memory leak detection library for
Android and Java. https://github.com/square/
leakcanary, 2018.

[9] Okhttp: An HTTP+HTTP/2 client for Android and Java
applications. https://github.com/square/okhttp,
2018.

[10] Picasso: A powerful image downloading and caching
library for Android. https://github.com/square/
picasso, 2018.

[11] Retrofit: Type-safe HTTP client. https://github.
com/square/retrofit, 2018.

[12] Taweesup Apiwattanapong, Alessandro Orso, and
Mary Jean Harrold. Efficient and precise dynamic impact
analysis using execute-after sequences. In Proceedings
of the 27th international conference on Software engi-
neering, pages 432–441. ACM, 2005.

[13] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and
David Lie. PScout: Analyzing the Android Permis-
sion Specification. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security
(CCS’12), October 2012.

[14] Md Tanzirul Azim, Iulian Neamtiu, and Lisa M Marvel.
Towards self-healing smartphone software via automated
patching. In Proceedings of the 29th ACM/IEEE inter-
national conference on Automated software engineering,
pages 623–628. ACM, 2014.

[15] Michael Backes, Sven Bugiel, and Erik Derr. Reliable
third-party library detection in android and its security
applications. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
pages 356–367. ACM, 2016.

[16] Gogul Balakrishnan, Radu Gruian, Thomas Reps, and
Tim Teitelbaum. Codesurfer/x86—a platform for ana-
lyzing x86 executables. In International Conference on
Compiler Construction, pages 250–254. Springer, 2005.

[17] David Binkley, Nicolas Gold, and Mark Harman. An
empirical study of static program slice size. ACM
Transactions on Software Engineering and Methodol-
ogy (TOSEM), 16(2):8, 2007.

[18] Shawn Anthony Bohner. A graph traceability approach
for software change impact analysis. 1996.

[19] Yaohui Chen, Yuping Li, Long Lu, Yueh-Hsun Lin,
Hayawardh Vijayakumar, Zhi Wang, and Xinming Ou.
Instaguard: Instantly deployable hot-patches for vulner-
able system programs on android. In 2018 Network
and Distributed System Security Symposium (NDSS’18),
2018.

[20] Yue Chen, Yulong Zhang, Zhi Wang, Liangzhao Xia,
Chenfu Bao, and Tao Wei. Adaptive android kernel live
patching. In Proceedings of the 26th USENIX Security
Symposium (USENIX Security 17), 2017.

[21] Mike Chi. LibDetector: Version Identification of Li-
braries in Android Applications. Rochester Institute of
Technology, 2016.

[22] Yaniv David and Eran Yahav. Tracelet-based code search
in executables. ACM SIGPLAN Notices, 49(6):349–360,
2014.

[23] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and

288 22nd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

https://github.com/JakeWharton/butterknife
https://github.com/JakeWharton/butterknife
https://github.com/dropbox/dropbox-sdk-java/
https://github.com/dropbox/dropbox-sdk-java/
https://github.com/greenrobot/EventBus
https://github.com/greenrobot/EventBus
https://f-droid.org/en/
https://github.com/bumptech/glide
https://github.com/bumptech/glide
https://github.com/google/gson
https://github.com/google/gson
https://github.com/square/leakcanary
https://github.com/square/leakcanary
https://github.com/square/okhttp
https://github.com/square/picasso
https://github.com/square/picasso
https://github.com/square/retrofit
https://github.com/square/retrofit

Michael Backes. Keep me updated: An empirical study
of third-party library updatability on android. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 2187–2200. ACM,
2017.

[24] Yue Duan, Mu Zhang, Abhishek Vasisht Bhaskar, Heng
Yin, Xiaorui Pan, Tongxin Li, Xueqiang Wang, and Xi-
aoFeng Wang. Things you may not know about android
(un) packers: A systematic study based on whole-system
emulation. In NDSS, 2018.

[25] Yue Duan, Mu Zhang, Heng Yin, and Yuzhe Tang.
Privacy-preserving offloading of mobile app to the pub-
lic cloud. In 7th {USENIX} Workshop on Hot Topics in
Cloud Computing (HotCloud 15), 2015.

[26] Susan Horwitz, Thomas Reps, and David Binkley. In-
terprocedural slicing using dependence graphs. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 12(1):26–60, 1990.

[27] Jie Huang, Oliver Schranz, Sven Bugiel, and Michael
Backes. The art of app compartmentalization: Compiler-
based library privilege separation on stock android. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 1037–
1049. ACM, 2017.

[28] Jaakko Korpi and Jussi Koskinen. Supporting impact
analysis by program dependence graph based forward
slicing. In Advances and innovations in systems, comput-
ing sciences and software engineering, pages 197–202.
Springer, 2007.

[29] Harold W Kuhn. The hungarian method for the assign-
ment problem. Naval Research Logistics (NRL), 2(1-
2):83–97, 1955.

[30] James Law and Gregg Rothermel. Whole program path-
based dynamic impact analysis. In Proceedings of the
25th International Conference on Software Engineering,
pages 308–318. IEEE Computer Society, 2003.

[31] Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves
Le Traon. An investigation into the use of common li-
braries in android apps. In Software Analysis, Evolution,
and Reengineering (SANER), 2016 IEEE 23rd Interna-
tional Conference on, volume 1, pages 403–414. IEEE,
2016.

[32] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Ding-
hao Wu, Jian Liu, Rui Xue, and Wei Huo. Libd: Scalable
and precise third-party library detection in android mar-
kets. In Software Engineering (ICSE), 2017 IEEE/ACM
39th International Conference on, pages 335–346. IEEE,
2017.

[33] Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik.
Semantic slicing of software version histories. IEEE
Transactions on Software Engineering, 44(2):182–201,
2018.

[34] Yue Li, Tian Tan, Yifei Zhang, and Jingling Xue. Pro-
gram tailoring: Slicing by sequential criteria. In 30th
European Conference on Object-Oriented Programming
(ECOOP 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2016.

[35] Mario Linares-Vásquez, Gabriele Bavota, and Camilo
Escobar-Velásquez. An empirical study on android-
related vulnerabilities. In Mining Software Repositories
(MSR), 2017 IEEE/ACM 14th International Conference
on, pages 2–13. IEEE, 2017.

[36] Jierui Liu, Tianyong Wu, Jun Yan, and Jian Zhang. Fix-
ing resource leaks in android apps with light-weight
static analysis and low-overhead instrumentation. In
Software Reliability Engineering (ISSRE), 2016 IEEE
27th International Symposium on, pages 342–352. IEEE,
2016.

[37] Siqi Ma, David Lo, Teng Li, and Robert H Deng. Cdrep:
Automatic repair of cryptographic misuses in android
applications. In Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security,
pages 711–722. ACM, 2016.

[38] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen.
Libradar: fast and accurate detection of third-party li-
braries in android apps. In Proceedings of the 38th
International Conference on Software Engineering Com-
panion, pages 653–656. ACM, 2016.

[39] Collin Mulliner, Jon Oberheide, William Robertson, and
Engin Kirda. Patchdroid: Scalable third-party secu-
rity patches for android devices. In Proceedings of the
29th Annual Computer Security Applications Confer-
ence, pages 259–268. ACM, 2013.

[40] Alessandro Orso, Taweesup Apiwattanapong, and
Mary Jean Harrold. Leveraging field data for impact
analysis and regression testing. In ACM SIGSOFT Soft-
ware Engineering Notes, volume 28, pages 128–137.
ACM, 2003.

[41] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and
David Wagner. Addroid: Privilege separation for appli-
cations and advertisers in android. In Proceedings of
the 7th ACM Symposium on Information, Computer and
Communications Security, pages 71–72. Acm, 2012.

[42] Xiaoxia Ren, Barbara G Ryder, Maximilian Stoerzer, and
Frank Tip. Chianti: a change impact analysis tool for java
programs. In Proceedings of the 27th international con-
ference on Software engineering, pages 664–665. ACM,
2005.

[43] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G Ryder,
and Ophelia Chesley. Chianti: a tool for change impact
analysis of java programs. In ACM Sigplan Notices,
volume 39, pages 432–448. ACM, 2004.

[44] Raul Santelices and Mary Jean Harrold. Probabilistic
slicing for predictive impact analysis. Technical report,

USENIX Association 22nd International Symposium on Research in Attacks, Intrusions and Defenses 289

Georgia Institute of Technology, 2010.
[45] Raul Santelices, Mary Jean Harrold, and Alessandro

Orso. Precisely detecting runtime change interactions for
evolving software. In Software Testing, Verification and
Validation (ICST), 2010 Third International Conference
on, pages 429–438. IEEE, 2010.

[46] Jaebaek Seo, Daehyeok Kim, Donghyun Cho, Insik Shin,
and Taesoo Kim. Flexdroid: Enforcing in-app privilege
separation in android. In NDSS, 2016.

[47] Shashi Shekhar, Michael Dietz, and Dan S Wallach. Ad-
split: Separating smartphone advertising from applica-
tions. In USENIX Security Symposium, volume 2012,
2012.

[48] Manu Sridharan, Stephen J Fink, and Rastislav Bodik.
Thin slicing. In ACM SIGPLAN Notices, volume 42,
pages 112–122. ACM, 2007.

[49] Mengtao Sun and Gang Tan. Nativeguard: Protecting
android applications from third-party native libraries. In
Proceedings of the 2014 ACM conference on Security
and privacy in wireless & mobile networks, pages 165–
176. ACM, 2014.

[50] Haoyu Wang and Yao Guo. Understanding third-party li-
braries in mobile app analysis. In Software Engineering
Companion (ICSE-C), 2017 IEEE/ACM 39th Interna-
tional Conference on, pages 515–516. IEEE, 2017.

[51] Yifei Wang, Srinivas Hariharan, Chenxi Zhao, Jiaming
Liu, and Wenliang Du. Compac: Enforce component-
level access control in android. In Proceedings of the
4th ACM Conference on Data and Application Security
and Privacy, pages 25–36. ACM, 2014.

[52] Mark Weiser. Program slicing. In Proceedings of the
5th International Conference on Software Engineering,
1981.

[53] Mark Weiser. Program slicing. In Proceedings of the 5th
international conference on Software engineering, pages
439–449. IEEE Press, 1981.

[54] Mu Zhang and Heng Yin. AppSealer: Automatic Gen-
eration of Vulnerability-Specific Patches for Preventing
Component Hijacking Attacks in Android Applications.
In Proceedings of the 21th Annual Network and Dis-
tributed System Security Symposium (NDSS’14), San
Diego, CA, February 2014.

[55] Mu Zhang and Heng Yin. Efficient, Context-aware Pri-
vacy Leakage Confinement for Android Applications
Without Firmware Modding. In Proceedings of the 9th
ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS’14), 2014.

[56] Xiao Zhang, Amit Ahlawat, and Wenliang Du. Aframe:
Isolating advertisements from mobile applications in
android. In Proceedings of the 29th Annual Computer
Security Applications Conference, pages 9–18. ACM,
2013.

[57] Xuewen Zhang, Yuanyuan Zhang, Juanru Li, Yikun Hu,
Huayi Li, and Dawu Gu. Embroidery: Patching vulner-
able binary code of fragmentized android devices. In
Software Maintenance and Evolution (ICSME), 2017
IEEE International Conference on, pages 47–57. IEEE,
2017.

[58] Yiji Zhang and Raul Santelices. Prioritized static slic-
ing for effective fault localization in the absence of run-
time information. Technical report, Technical Report TR
2013-06, CSE, U. of Notre Dame, 2013.

[59] Yuan Zhang, Jiarun Dai, Xiaohan Zhang, Sirong Huang,
Zhemin Yang, Min Yang, and Hao Chen. Detecting
third-party libraries in android applications with high
precision and recall. In 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pages 141–152. IEEE, 2018.

[60] Lei Zhao, Yue Duan, Heng Yin, and Jifeng Xuan. Send
hardest problems my way: Probabilistic path prioritiza-
tion for hybrid fuzzing. In NDSS, 2019.

290 22nd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

Table 4: Effectiveness Results By Vulnerability Category

Vulnerabilities Total Failures Failure Rate
Race Condition 3 0 0%
Improper Access Control 2 0 0%
Uncontrolled Resource Consumption 1 0 0%
System Hang 5 0 0%
Illegal Reflective Access 1 0 0%
Stack Overflow 7 0 0%
Heap Access Error 3 0 0%
Missing Initialization 2 0 0%
Integer Overflow 1 0 0%
Fake ID 1 0 0%
New Security Feature 1 0 0%
Memory Leak 38 1 2.63%
Uncaught Exception 28 2 7.14%
Data Handling Error 36 3 8.33%
Uncheck Return Value 7 1 14.28%
Improper Input Validation 34 5 14.7%
Info Leak 3 1 33.33%

0

2

4

6

(a1,v6) (a2,v6) (a3,v6) (a4,v6) (a5,v6)

Patched Fail to patch Potentially patchable

(a) Butterknife

0

2

4

6

8

10

12

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10) (a8,v10) (a9,v10)

Patched Fail to patch Potentially patchable

(b) Dropbox

0

2

4

6

8

10

12

14

16

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10) (a8,v10) (a9,v10)

Patched Fail to patch Potentially patchable

(c) EventBus

0

4

8

12

16

20

24

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10) (a8,v10) (a9,v10)

Patched Fail to patch Potentially patchable

(d) Glide

0

2

4

6

8

10

12

14

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10) (a8,v10) (a9,v10)

Patched Fail to patch Potentially patchable

(e) Gson

0

5

10

15

20

25

30

35

40

45

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10)

Patched Fail to patch Potentially Patchable

(f) Leakcanary

0

4

8

12

16

20

24

28

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10) (a8,v10) (a9,v10)

Patched Fail to patch Potentially Patchable

(g) Okhttp

0

2

4

6

8

10

12

14

16

18

20

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10) (a8,v10) (a9,v10)

Patched Fail to patch Potentially Patchable

(h) Picasso

0

2

4

6

8

10

12

14

16

18

20

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10) (a8,v10) (a9,v10)

Patched Fail to patch Potentially Patchable

(i) Retrofit

Figure 4: Effectiveness Results By Numbers

USENIX Association 22nd International Symposium on Research in Attacks, Intrusions and Defenses 291

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

(a1,v6) (a2,v6) (a3,v6) (a4,v6) (a5,v6)

Patched Potentially patchable

(a) Butterknife

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10) (a8,v10) (a9,v10)

Patched Potentially patchable

(b) Dropbox

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10) (a8,v10) (a9,v10)

Patched Potentially patchable

(c) EventBus

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10) (a8,v10)

Patched Potentially patchable

(d) Glide

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10) (a8,v10) (a9,v10)

Patched Potentially patchable

(e) Gson

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10)

Patched Potentially Patchable

(f) Leakcanary

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10) (a8,v10) (a9,v10)

Patched Potentially Patchable

(g) Okhttp

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10) (a8,v10) (a9,v10)

Patched Potentially Patchable

(h) Picasso

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10) (a8,v10) (a9,v10)

Patched Potentially Patchable

(i) Retrofit

Figure 5: Effectiveness Results by Percentage

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

(a1,v6) (a2,v6) (a3,v6) (a4,v6) (a5,v6)

Patched Potentially patchable

(a) Butterknife

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10) (a8,v10) (a9,v10)

Patched Potentially patchable

(b) Dropbox

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10) (a8,v10) (a9,v10)

Patched Potentially patchable

(c) EventBus

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10) (a8,v10)

Patched Potentially patchable

(d) Glide

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10) (a8,v10) (a9,v10)

Patched Potentially patchable

(e) Gson

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10)

Patched Potentially Patchable

(f) Leakcanary

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10) (a8,v10) (a9,v10)

Patched Potentially Patchable

(g) Okhttp

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10) (a8,v10) (a9,v10)

Patched Potentially Patchable

(h) Picasso

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10) (a8,v10) (a9,v10)

Patched Potentially Patchable

(i) Retrofit

Figure 6: Effectiveness Results with Traditional Slicing

292 22nd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

	Automatic generation of non-intrusive updates for third-party libraries in android applications
	Citation

	tmp.1694679643.pdf.pvKvU

