Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

11-2022

Towards automated safety vetting of smart contracts in
decentralized applications

Yue DUAN
Singapore Management University, yueduan@smu.edu.sg

Xin ZHAO
Yu PAN
Shucheng LI

Minghao LI

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

Cf Part of the Information Security Commons

Citation

DUAN, Yue; ZHAQ, Xin; PAN, Yu; LI, Shucheng; LI, Minghao; XU, Fengyuan; and ZHANG, Mu. Towards
automated safety vetting of smart contracts in decentralized applications. (2022). Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security, Los Angeles, USA, Nov 7-11.
921-935.

Available at: https://ink.library.smu.edu.sg/sis_research/8139

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8139&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author
Yue DUAN, Xin ZHAO, Yu PAN, Shucheng LI, Minghao LI, Fengyuan XU, and Mu ZHANG

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/8139

https://ink.library.smu.edu.sg/sis_research/8139

Towards Automated Safety Vetting of Smart
Contracts in Decentralized Applications

Yue Duan” Xin Zhao Yu Pan
Mlinois Institute of Technology & Nanjing University University of Utah
University of Utah Nanjing, China Salt Lake City, UT, USA
Chicago, IL, USA zhao_xin@smail.nju.edu.cn yupan97@cs.utah.edu
yduan12@iit.edu
Shucheng Li Minghao Li Fengyuan Xu

Nanjing University
Nanjing, China
shuchengli@smail.nju.edu.cn

Harvard University
Boston, MA, USA
minghaoli@g.harvard.edu

National Key Lab for Novel Software
Technology, Nanjing University
Nanjing, China
fengyuan.xu@nju.edu.cn

Mu Zhang
University of Utah
Salt Lake City, UT, USA
muzhang@cs.utah.edu

ABSTRACT

We propose VETSC, a novel Ul-driven, program analysis guided
model checking technique that can automatically extract contract
semantics in DApps so as to enable targeted safety vetting. To facili-
tate model checking, we extract business model graphs from contract
code that capture its intrinsic business and safety logic. To automat-
ically determine what safety specifications to check, we retrieve
textual semantics from DApp user interfaces. To exclude untrusted
UI text, we also validate the Ul-logic consistency and detect any
discrepancies. We have implemented VETSC and applied it to 34
real-world DApps. Experiments have demonstrated that VETSC can
accurately interpret smart contract code, enable autonomous safety
vetting, and discover safety risks in real-world Dapps. Using our
tool, we have successfully discovered 19 new safety risks in the
wild, such as expired lottery tickets and double voting.

CCS CONCEPTS

« Security and privacy — Software and application security.

KEYWORDS

decentralized apps; smart contracts; safety verification; semantics

ACM Reference Format:

Yue Duan, Xin Zhao, Yu Pan, Shucheng Li, Minghao Li, Fengyuan Xu,
and Mu Zhang. 2022. Towards Automated Safety Vetting of Smart Con-
tracts in Decentralized Applications. In Proceedings of the 2022 ACM SIGSAC

“This work was conducted when the first author was a postdoc at the University of
Utah under the supervision of Mu Zhang. Yue Duan, Fengyuan Xu and Mu Zhang are
corresponding authors.

® This work is licensed under a Creative Commons Attribution
BY International 4.0 License.

CCS 22, November 7-11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9450-5/22/11.
https://doi.org/10.1145/3548606.3559384

Conference on Computer and Communications Security (CCS ’22), Novem-
ber 7-11, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3548606.3559384

1 INTRODUCTION

A decentralized application (DApp) is an application running on a
decentralized network. It combines a smart contract — a program
atop blockchains — and a front-end user interface. Compared to
raw smart contracts, which require professional skills to interact
with [21], DApps hit a sweet spot between trustworthy transactions
and user-friendly interfaces. Hence, DApps have gained increasing
popularity — 4,000 DApps of 18 categories have been created in
the past three years, and hundreds of new apps are being released
monthly [42]. Zethyr Exchange [62], one of the most active DApps,
can have 77K daily users and a total of 3.4 million unique users.
Nonetheless, the embrace of decentralized apps has also brought
safety risks to the rapidly growing audience. Unsafe DApps may
cause severe financial losses [17] due to incorrect [45] or unfair [33]
smart contract logic. For instance, the integrity of a “no-reserve”
auction, where the item for sale must be sold regardless of price, will
be ruined if it allows the seller to bid. Many previous studies [23, 26,
33, 34, 38, 39, 45, 50, 53, 56, 58] have sought to verify the correctness
and safety of smart contracts to address these problems.
Unfortunately, the prior work requires tedious manual efforts
and heuristics to understand the semantics of contracts and further
create contract-specific safety specifications. In particular, to apply
high-level safety specs (e.g., “sellers must not bid”) to corresponding
low-level smart contract code, a safety verifier must (a) uncover
the business logic-level actions of individual contract functions,
such as placing a bid, and (b) associate transactional concepts (e.g.,
bidder, seller, bid price) to specific variables in functions, and then
manually create contract-specific formal specs from the high-level
specs. Prior work depends solely on developer-created function
symbols and variable names in the source code to obtain these
crucial semantics. However, these symbols are untrustworthy and

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3548606.3559384
https://doi.org/10.1145/3548606.3559384
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3548606.3559384&domain=pdf&date_stamp=2022-11-07

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

sometimes unavailable due to the lack of source code or intentional
obfuscation. In addition, repetitive manual efforts to interpret con-
tract source code must be made for every single contract function.
Consequently, prior work cannot automatically apply high-level
safety specifications to even the same type of contracts, as their im-
plementation will likely use different functions or variable names.

To address this limitation, we automatically bridge the semantic
gap to facilitate the DApp vetting. Automated and robust semantics
recovery has been well studied in many areas, including virtual
machine introspection [18, 25, 31], memory forensics [13, 16, 19,
36, 37], binary code analysis [15, 35] and mobile and IoT app analy-
sis [44, 48, 57]. Yet none can solve the unique problem in the smart
contract domain. VMI and binary analysis techniques can only
recover OS-level data structures and primitive types, and do not
speak to application-level semantics; mobile and IoT app analyzers
interpret program behaviors based upon semantics-rich framework
APIs (e.g., sendTextMessage(), lock.unlock()) which, however, are
absent from smart contract programming languages.

In contrast, applying model checking to recovering high-level
semantics is promising. Prior work [40] has utilized model checking
to automatically match semantic-level industrial process specifica-
tions with low-level controller code. Nevertheless, this technique
cannot be adopted in our problem for two reasons: (1) it has relied
on an assumption that analysts have high-level yet precise knowl-
edge of target industrial processes, and therefore can craft the exact
specifications. However, this assumption does not hold when ana-
lyzing diverse DApps developed by unknown parties. (2) Compared
to controller logic that strictly expresses core dependencies among
limited control variables, smart contract code is less rigid and often
includes variables and their relations that are irrelevant to its core
logic. Introducing a large amount of non-essential code may cause
excessive complexity and imprecision for model checking.

To solve these problems, we propose a novel Ul-driven, program
analysis guided model checking technique that can automatically
extract contract semantics in decentralized apps to enable targeted
safety vetting. To exclude irrelevant code and reduce search space
for model checkers, we perform static program analysis to extract
business model graphs from contract functions that can capture
intrinsic business logic across critical transaction properties. To
automatically select specifications for safety vetting, we leverage
textual information collected from DApp user interfaces, describing
high-level underlying contract logic behaviors.

Note that, however, while our observation is that UI informa-
tion from benign developers is largely faithful and thus can assist
us in understanding contract semantics, we do not assume that
all DApp UI texts are correct or complete. In a similar vein, prior
work [44, 48] has discovered an inconsistency between internal pro-
gram logic and external textual descriptions. Hence, to use caution
when incorporating Ul information, we take a proof-of-contradiction-
based approach. Particularly, we first consider the business logic
explained by UI texts to be correct, which allows us to avoid an
exhaustive search for corresponding specifications and thus will
enable us to check a smart contract function against only the de-
scribed logic. Then, if the internal logic, in fact, deviates from the
DApp descriptions (e.g., Ul shows a DApp is a gambling app but its
internal smart contract code implements an auction logic), an alert
will arise. Only if the contract logic matches the Ul semantics, we

922

Yue Duan et al.

then further check whether the contract complies with the de facto
safety rules for the described business logic, such as the policies for
participating in a bidding process [33] or canceling an auction [20].

We have developed a system, VETSC, to achieve our goal. Given
a DApp, we (A) first extract the business model of every smart
contract function. In particular, we identify key transaction-level
properties in each function. Starting from these properties, we per-
form static control-flow and dataflow analyses to build business
model graphs that represent the function’s semantic model. (B) Next,
we recover the semantics of distilled graphs via Ul-guided model
checking. More concretely, we analyze the DApp’s web code to
correlate each contract function to a front-end widget that triggers
this function. We then apply natural language processing tech-
niques to the texts on the widget, to infer the business logic the
widget describes. Guided by the textual semantics extracted from
the UI component, we can thus select the corresponding business
logic specification from our predefined business models. We hence
conduct model checking that verifies the business model graphs
against this specification. We will report this issue and terminate
our analysis if a major inconsistency is detected. (C)If the extracted
graphs are consistent with the described semantics, we can then
determine the business logic of the contract function. Thus, we can
automatically apply corresponding safety rules to the vetting of
this function to detect any violations. Note that manually crafting
business logic and safety specifications is a one-time effort for each
semantic category .

We have implemented VETSC in 3500 lines of Python code and
applied it to 34 real-world DApps, containing 494 Solidity func-
tions. To the best of our knowledge, this is the largest experimental
dataset for detecting logic errors in dapps. Experimental results
have demonstrated that VETSC outperforms the state-of-the-art
technique and can effectively discover the safety risks in real-world
DApps, where source code is either absent or heavily obfuscated.

In summary, this paper makes the following contributions:

We develop a new technique that uniquely combines program
analysis, model checking and Ul interpretation to solve a novel
and important problem - automated semantic-level safety analy-
sis — in the new context of smart contracts.

Our static analysis selectively extracts Solidity bytecode instruc-
tions that represent program semantics, as it is hard (if not impos-
sible) for humans to precisely capture such core logic from many
irrelevant instructions, obfuscated or closed-source programs.
Our model checker maps high-level concepts to concrete vari-
ables, and thus automatically concretizes abstract safety policies
for individual contracts using their variable names. On the con-
trary, prior work must manually create concrete specs for every
contract.

We identify auxiliary semantic information from DApp UI, which
reduces the efforts to find possibly matching specifications.
VETSC has discovered 19 new safety bugs in real-world apps,
which cannot be automatically detected by the state-of-the-art
techniques.

To facilitate further research, we have made the source code
publicly available!.

!https://github.com/vetsc/VetSC

Towards Automated Safety Vetting of Smart Contracts in Decentralized Applications

Auction Dapp.

Auction Details

B test bid

s remaining

CANCEL AUCTION

Figure 1: Bid and Cancel Auction

2 PROBLEM & APPROACH

We demonstrate the problem using a real-world Ethereum decen-
tralized app, Auction DApp. Figure 1 illustrates its user interface
with three buttons. Specifically, a user can click the “BID NOW”
button to participate in an existing auction created by a merchan-
dise owner. An auction may also be cancelled by its owner, if she
presses the specific button “CANCEL AUCTION” on the same page.
These two buttons are internally associated with two smart contract
functions bidonAction() and cancelAuction(), respectively.

2.1

Smart Contract Functions. Figure 2 depicts the two smart
contract functions implemented using Solidity [54], the dedicated
programming language for Ethereum contracts. Notice that we
show the program in source code for the sake of readability while
our analysis is performed directly on bytecode.

bidOnAction() exercises the bidding process. It acquires the bid
price from the transaction property msg.value (Ln.2), which rep-
resents the amount sent by the function caller (i.e., bidder). Then,
it performs two checks to ensure the owner cannot bid and the
auction has not expired. If both checks are passed, the function
compares the bid price with the current highest bid 1astBid. amount
or the default price startPrice depending on the existence of any
prior bid, and thus determines if the new price is higher (Ln.11-21).
If so, it will accept the new highest bidder by pushing it as a Bid
object into the list (Ln.24-27).

cancelAuction() uses a modifier isOwner (Ln.31) to ensure that
only the merchandise owner can call the function. When executed,
the function first retrieves the Auction object myAuction and the
array of previously accepted bids accepted[_id] based upon the
given _id (Ln.32-33). Next, it refunds the last bidder in this array,
which is essentially the current highest bidder, provided that there
exist prior bids (Ln.36-39). In the end, this auction becomes inactive
and a log will be generated via emit statement (Ln.40-41).

Safety Risk. A safety problem in cancelAuction() can be trig-
gered when the button “CANCEL AUCTION”is clicked. Two safety
rules must be enforced when canceling an auction [20]: (1) only the
owner can cancel her auction; and (2) no valid bid has been received.
The second one guarantees the fairness of this auction as it ensures
that an auction cannot be arbitrarily terminated when participants
have already placed valid bids, regardless of the owner’s intention

Motivating Example

923

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA
1 function bidOnAuction(uint _id) public payable {
2 uint256 ethAmountSent = msg.value;
3
4 // owner cannot bid on his/her own merchandise
5 Auction memory myAuction = auctions[_id];
6
7
8

if (myAuction.owner == msg.sender) revert();

// check whether auction has expired
9 if(block.timestamp > myAuction.deadline) revert();

// check whether previous bids exist

12 uint bidsLength = accepted[_id].length;

13 uint256 tempAmount = myAuction.startPrice;

14 Bid memory lastBid;

15 if(bidsLength > 0) {

16 lastBid = accepted[_id][bidsLength-11];

17 tempAmount = lastBid.amount;

18 }

19

20 // check if bid price is greater than the current highest
21 if(ethAmountSent < tempAmount) revert();

22

23 // add the new bid to auction state

24 Bid memory newBid;

25 newBid.from = msg.sender;

26 newBid.amount = ethAmountSent;

27 accepted[_id].push(newBid);

28 emit BidSuccess(msg.sender, _id);

29 3}

30

31 function cancelAuction(uint _id) public isOwner(_id) {
32 Auction memory myAuction = auctions[_id];

33 uint bidsLen = accepted[_id].length;

34

35 // refund the last bid, if prior bids exist

36 if(bidsLen > @) {

37 Bid memory lastBid = accepted[_id][bidsLen - 1];
38 if(!lastBid.from.send(lastBid.amount)) revert();
39 }

40 auctions[_id].active = false;

41 emit AuctionCanceled(msg.sender, _id);

42 3

Figure 2: Smart Contract Functions in Auction DApp

(e.g., the owner is not satisfied with existing bidding prices). How-
ever, cancelAuction() does not enforce this policy and hence allows
owner to cancel an auction at any stage.

Problem and Challenge. 1t is in fact a challenging problem
to automatically apply the exact safety specifications to a smart
contract function, since it requires a safety verifier to recognize
the semantics of this function and its variables. For instance, to
detect the safety problem in the motivating example, a verifier
must be able to understand that the cancelAuction() function is
used to “terminate a bidding process”, and correlate the variables
auctions[_id] and accepted[_id] to “this auction”and “prior bids
accepted in this auction”, respectively. Only then can the verifier
discover the violation of the aforementioned fairness policy, since
the function allows to deactivate an auction (auctions[_id].active
= false) when a valid bid exists (bidsLength != 0).

Prior work that verifies contract safety (e.g, VerX [45]) infers
these semantics via manually reading symbols such as function
and variable names from source code. However, this approach is
neither effective nor robust. To address this issue, we propose to
automatically recover semantics of smart contract functions and
key variables. Particularly, in our case, we aim to automatically
(1) discover the high-level logic of the two functions and therefore
correctly apply bidding policies to bidonAuction() and canceling

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Table 1: Variable Semantics to be Recovered

Variable ‘ Domain ‘ Semantics
msg.value bidOnAuction | bid price
msg.sender bidOnAuction | bidder
tempAmount bidOnAuction | last bid price

auctions[_id] contract-wide | this auction

auctions[_id].active

contract-wide | this auction’s state (true or false)

myAuction.deadline contract-wide
myAuction.owner

accepted[_id]

timestamp
a special participant

contract-wide

contract-wide | previously accepted bids in this auction

rules to the other; (2) associate both function-wide and contract-
wide variables to auction-specific concepts as shown in Table 1.

2.2 Threat Model & Approach Overview

Threat Model. Our trusted computing base consists of (a) blockchains,
(b) smart contract runtime, (c) web servers running DApp services,
(d) client-side browsers, and (e) communications between services
and browsers. We consider blockchain algorithms and infrastruc-
ture to be trustworthy. Any attacks that aim to exploit vulnera-
bilities in consensus mechanism [24], mining [22] or peer-to-peer
network [27] are beyond the scope of this work. We do not consider
lower-level software attacks, that affect the integrity of operating
systems, smart contract runtime or user browsers; we do not con-
sider network-level attacks that attempt to interrupt or intercept
traffic. We consider application-level vulnerabilities, which lie in
the implementation of back-end smart contracts, the presentation of
front-end interfaces and the interaction between them. First, smart
contract code may be incorrect, insecure, unsafe or unfair due to
mistakes made by developers. These mistakes can be exploited by
malicious users to deliberately misuse benign contracts and cause
financial losses to other users or contract owners. Second, DApp
web interfaces can be benign yet incomplete or inaccurate. There
may exist a gap between descriptive texts on GUI components and
internal logic in corresponding contract functions.

Approach Overview. Based upon the threat model, we have
developed a system, VETSC, that can automatically perform safety
vetting of smart contract in DApps via autonomously interpreting
contract semantics and precisely applying corresponding safety
specifications. Figure 3 depicts the architecture of VETSC, which
consists of three steps. The inputs of VETSC are DApps and a set of
manually-crafted high-level business-logic and safety specifications;
the outputs are risk reports. A one-time manual effort is needed
to create these specs for each app category. We thus expect the
specs of VETSC to be written by domain experts, who have good
understanding of business logics and safety problems.

(1) Model Extraction. Given a DApp, we first extract the business
model of every contract function. In particular, starting from
key transaction properties in each function, we perform static
control-flow and dataflow analyses to build business model graphs
that represent the function’s semantic model.

Semantics Recovery. Next, we recover the semantics via Ul-
guided model checking. More concretely, we analyze the DApp’s
web code to correlate each contract function to a front-end wid-
get that triggers this function. We then apply natural language
processing techniques to the texts on the widget, in order to infer
the business logic the widget describes. Guided by the extracted
textual semantics, we can thus selectively check business model
graphs against only relevant logic specs in the input specification

924

®)

Yue Duan et al.

Building Business Ul-Guided Model Concretizing
Model Graphs Checking Safety Rules
Model Extraction Semantic Recovery Safety Vetting

High-level Spec

Figure 3: Architecture Overview of VETSC

set. If a major inconsistency is detected, we will report this issue
and terminate our analysis.

Safety Vetting. If the extracted graphs are consistent with the
described semantics, we can then determine the business logic of
the function. Because our model checking has correlated abstract
concepts in specs to concrete variable names in specific smart
contract implementations, we can leverage this mapping to au-
tomatically concretize high-level safety rules and check target
functions against custom safety policies.

3 MODEL EXTRACTION

3.1 Smart Contract Semantics Model

We first define a semantics model that represents high-level busi-
ness logic of smart contracts. This model must abstract away ir-
relevant low-level implementation details, such as auxiliary data
structures, variable declarations or assignments, while capturing
intrinsic contract properties and their dependencies.

Key Factors. To this end, we consider the following key factors:

e Transaction Property. Transaction-level properties, such as
sender of the transaction message (msg.sender), are essential
metadata to all external smart contract functions. Furthermore,
these properties can carry high-level semantics that are tied with
unique business logics. For instance, msg.sender represents a bid-
der in an auction bidding process but a voter in an election. A
full list of transaction properties is defined in Solidity documen-
tation [7].

e Global Variables. The state of a smart contract is stored as
global variables in a special storage region. These global vari-
ables can be used to maintain persistent and crucial states across
all transactions, and any actions taken on them correspond to
significant changes to contract status.

o Dataflow. The data dependencies between these invariant con-
tract states and transaction-level properties reliably indicate
behavior-level operations (e.g., deposit, withdraw).

e Condition Check. Similarly, the condition checks that compare
these special properties with certain local variables also reflect
critical business logic. Our motivating example has demonstrated
such a case where a new bid price must be checked to see if it is
higher than the current highest bid, before it can be accepted.

e Cryptocurrency/Token Transfer. Smart contracts enforce contract-
like business logic, which often involves critical funds transfers.

Formal Definition. We then formally define a semantics model
as a Business Model Graph (BMG). In general, A BMG depicts the
causal (data or control) dependencies among the essential statements,
where “essential statements” either directly contain transaction
properties or global variables, or have data or control dependence
on other essential statements.

Towards Automated Safety Vetting of Smart Contracts in Decentralized Applications

= msg.value

2:[PV]lastBid = accepted[_id] [bidsLength-1]
3: [CS,TP]if (ethAmountSent < tempAmount)

Figure 4: BMG of the bidonAuction() Function

Definition 1. A Business Model Graph is a directed graph G = (V,
E, a, p) over a set of statements X and a set of relations R, where:

o The set of vertices V corresponds to the statements in X;

o The set of edges E C V X V corresponds to the causal depen-
dencies between statements.

o The labeling function « : V' — ¥ associates nodes with the
labels of corresponding statements. Each label consists of three
elements: an ID, a set of attributes, and a smart contract statement.
There exist eight types of attributes: 1) transaction property [TP],
2) global variable [GV], 3) conditional statement [CS], 4) variables
in predicates [PV], 5) conditional clause [CC], 6) external call [EC],
7) call parameter [CP] and 8) exception handling [EH]. Types of
attributes are identified via opcodes. For instance, [TP] msg.sender
can be recognized by opcode 0x33 (CALLER).

o The labeling function f : E — R associates edges with the
labels of corresponding relations, which can be 1) data dependency,
2) “true” branch and 3) “false” branch.

BMG of Motivating Example. Figure 4 demonstrates the BMG
of the bidonAuction() function. Here, statements are presented in
source code for readability. The implementation details of bytecode-
level analysis will be elaborated later in this section.

In this graph, we have captured four “USE” statements (Vertex
#1,6,8,9) of three transaction properties, msg.value, msg.sender and
block.timestamp. msg.value represents the new bid price, which is
saved to a local variable ethAmountSent and further checked against
tempAmount (Vertex #3). In a legitimate bidding process, such a com-
parison validates the bid price. Thus, tempAmount should be corre-
sponding to the current highest bid. Tracing back, we understand
that the variable tempAmount in the predicate originates from the
last element of an array accepted[_id] (Vertex #2), and may infer
that this array maintains the record of previous bids. All these data
dependencies are depicted using solid lines, where arrows point to
the destinations. If the given bid price ethAmountSent is not higher,
the function will raise an exception and revert to the state prior to
its invocation (Vertex #5). Otherwise, a write operation on the stor-
age will eventually happen (Vertex #11). The control dependencies
between the IF statement and the two clauses are depicted as a dot-
ted line, while the green line means the true branch, and then red
line indicates the false one. The other two conditional statements
we have captured (Vertex #6,8) ensure the auction has not expired
and bidder is not the merchandise owner, respectively. Similarly,
their conditional clauses lead to either a storage write or a revert().
Their variables, which are compared against these properties in

925

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

the predicates, originate from an Auction instance (Vertex #4). Our
graph also illustrates the dataflow from msg.value to newBid, as well
as the data dependencies between msg.sender and newBid. from. At
last, a valid newBid instance is pushed to the array accepted[_id]
(Vertex #11), which is stored in the storage region and can thus be
accessed by other contract functions such as cancelAuction().

3.2 Model Construction

Algorithm. VETSC creates one BMG for each external function called
by the front-end, via context-sensitive, flow-sensitive interproce-
dural static analysis. Algorithm 1 depicts how we build a BMG. The
algorithm takes as input a smart contract function SC, and produces
the corresponding BMG. To facilitate subsequent dataflow analysis,
our algorithm begins with a custom points-to analysis on memory
operations that access global variables (details will be discussed
later). Then, it collects an initial set INIT of essential statements
(statements with transaction properties or global variables) in SC.

For every definition statement stmt in this set, we first conduct
context-sensitive, flow-sensitive inter-procedural dataflow analysis
to find its SINK set; for each sink, if < stmt,sink > is a new
edge, we add it into the graph. Next, we check the type of every
sink to see whether the statement is a condition check (Ln.10), a
cryptocurrency/token transfer (Ln.17) or a global variable write
operation (Ln.19). Depending on its type, we obtain (a) predicate
variables in a condition statement, (b) address and value variables
in a transfer, or (c¢) offset and value variables in a global memory
access, and save them into SVAR. Then, we perform a backward
dataflow analysis on these variables to identify their sources, and
add new edge < src, svar > to BMG.

In addition to data dependencies, we also compute control depen-
dencies (Ln.10). In particular, we perform inter-procedural control-
flow analysis to locate all the statements in the branches BRANCH
that are dependent on the conditions. Within BRANCH, we specif-
ically search for state-changing operations (Ln.13), including global
variable accesses and exception routines (i.e., revert()). Our algo-
rithm discovers such operations as well as their triggering condi-
tions (“true” or “false”) and stores each pair (op, cond) into a set OP.
A control-flow edge between sink and op under condition cond
will be inserted into the graph.

Implementation and Special Considerations. Our analysis is
performed directly on Ethereum virtual machine (EVM) bytecode.
We have implemented our graph construction algorithm on top of
a static analyzer Octopus [3], which provides basic analysis capa-
bilities, such as function identification, control-flow analysis and
static single assignment (SSA) format transformation. Particularly,
our dataflow analysis is conservative and does not differentiate
array elements. Our inter-procedural analysis considers a depth of
2. Note that, the improvement of program analysis is orthogonal
to our focus, which is to interpret program semantics. VETSC can
potentially leverage any advanced static analysis tools to improve
precision. Nevertheless, our current analysis can already extract
relatively precise and complete graphs.

Transaction Properties Identification. To locate the initial sources
for our dataflow analysis, we must automatically identify transac-
tion properties in smart contract bytecode. To this end, we have
studied the EVM documentation [5] and found that the usages of
transaction properties are implemented as special instructions. For

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Algorithm 1 Graph Construction

1: procedure BurLpBMG(SC)

2 BMG «— @

3 POINTSTOANALYSISFORGLOBALVARIABLES (SC)

4 INIT « INITIALESSENTIALSTMT (SC)

5: for Vstmt € INIT do

6 SINK «— FORWARDDATAFLOWANALYSIS(stmt)
7 for Vsink € SINK do

8: BMG <« BMG U < stmt, sink >

9: SVAR « @

10: if sink is ConditionCheck then

11: SVAR « GETPREDVARS(sink)

12: BRANCH « CoNTROLDEPANALYSIS(Sink)

13: OP « FINDSTORAGEOPSOREXCEPTIONS (BRANCH)
14: for (op, cond) € OP do

15: BMG «— BMG U < sink, op >cond

16: end for

17: else if sink is Transfer then

18: SVAR « GETADDR(sink) U GETVALUE(sink)
19: else if sink is GlobalVariableWrite then

20: SVAR « GETOFFseT(sink) U GETVALUE(sink)
21: end if

22: for Vsvar € SVAR do

23: Src « BACKWARDDATAFLOWANALYSIS(svar)

24: BMG < BMG U < src, svar >

25: end for

26: end for

27: end for

28: return BMG

29: end procedure

example, msg.sender can only be accessed by an EVM instruction
CALLER, and the CALLVALUE instruction is used to retrieve msg.value.
Since there are only limited numbers of transaction properties and
the instructions are fixed, we can thus maintain a pre-defined in-
struction list to discover these properties in bytecode programs.

Memory Aliasing. The unique memory model of EVM is a major
obstacle for precise dataflow analysis. EVM implements two types
of global memory regions memory and storage. The former is com-
monly used to hold temporary data during a transaction, and the
latter is designed to maintain persistent contract states. Frequent
data exchanges through memory and storage via subsequent stores
and loads make dataflow obscure. For instance, Figure 2 first writes
msg.sender to a memory variable newBid (Ln.25), and then reads
from this memory region and stores the obtained data to the global
storage accepted[_id] (Ln.27). This is a typical alias problem, as we
need to figure out that the memory address being written to is iden-
tical to the one later being read. However, finding memory aliases
can be nontrivial because EVM implements an offset addressing
mode, and such an offset is often computed using complex arith-
metic or even hash functions - e.g., at the bytecode level, a storage
operation, such as SLOAD or SSTORE, can access data at a computed
offset (x+30) or a hashed one SHA3(0,40).

To address this challenge, we develop a custom points-to analysis
for store and load so as to explicitly connect corresponding opera-
tions. At a high level, we use the structure of computation trees as
a signature to represent a memory offset. Particularly, we first scan
the whole DApp to identify memory and storage access instructions.
Then, we perform backward dataflow analysis on each memory
offset to generate an arithmetic formula, such as (SHA3(0,20)+x)/y,
in the form of a tree. Such a tree denotes the calculation process of
this offset. Hence, we can match a memory store with a load based
upon the graph edit distance between their offset calculation trees.
An exact match indicates a dataflow from the store to the load. To

926

Yue Duan et al.

Table 2: Mined Keywords for Smart Contract Functions
Contract-level Keywords ‘ Function-level Keywords ‘

Voting vote

Auction bid, cancel, finalize
Wallet deposit, withdraw, transfer
Gambling play, buy, refund, draw
Trading buy, sell

Crowdsale buy/invest, close, refund

further improve accuracy, we perform simple arithmetic optimiza-
tion to correlate expressions (e.g., “3+5”) with values (e.g., “8”). For
instance, in the motivating example, a MSTORE stores msg.sender to
memory newBid at offset “0” (Ln.25) and a SHA3 (an opcode for load)
later loads data from the same offset (Ln.27). Thus, we can establish
the data dependency between these two operations.

Notice that our matching technique can potentially lead to false
negatives in theory. However, because an entire contract is compiled
using only one version of Solidity compiler, which calculates offsets
for the same memory location in the same manner, we did not
observe inaccuracy in practice.

4 SEMANTIC RECOVERY & SAFETY CHECK

To automatically discover the semantics of our extracted graph
model, we develop a Ul-guided model checking technique. Specifi-
cally, we collect UI information relevant to each individual smart
contract function, and then use model checking to match the busi-
ness logic inferred from the user interface with the BMG of the
corresponding function. A successful match reveals semantics of a
contract function and its key variables. Hence, we can further auto-
matically select relevant safety policies to examine this function.

4.1 UI Semantic Inference

Identifying Contract Function related UI Text. To find relevant
Ul information, we use fuzzing to iteratively explore each DApp
widget while monitoring the smart contract function it invokes,
to identify Ul components corresponding to each back-end con-
tract function. To gracefully trigger widgets consecutively without
unexpected termination, we leverage the smart input generation
technique proposed by SMV-Hunter [55], which uses input valida-
tion code to determine the valid input types of editable widgets.
Our implementation is based upon the MetaMask [2] browser ex-
tension. We hook the creation point of a “payment page”, which
is rendered immediately prior to any eth_call — the JSON RPC
that eventually makes smart contract calls. We can thus retrieve
the contract address and the target function from each eth_call,
and therefore build the connection between front-end widgets and
internal functions.

Then, we collect descriptive texts from these widgets. In our
motivating example, we can directly obtain “Bid Now”and “Cancel
Auction” from the two buttons. Nevertheless, the texts on widgets
alone may not be sufficient to infer widget semantics; the context
of widgets also matters. For example, the button “Buy Now”in an
auction app indicates the action to place a bid, while a button with
the same text in a gambling app means “to place a bet”.

To collect contextual texts of a widget, we follow a prior work [11]
that inspects application user interfaces. Particularly, we leverage
an automatic testing tool Selenium [9] to extract and serialize a
DOM tree and use the neighboring textual elements within a fixed
window size to represent context (empirically set to 5).

Towards Automated Safety Vetting of Smart Contracts in Decentralized Applications

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Table 3: Specifications for Motivating Example

Function | Spec Type Formal Spec Explanation
Essential#l | O(current_bid > highest_bid — ¢ (highest_bid := current_bid A highest_bidder := current_bidder)) | Accept only higher new bid

Bidding Safety#1 O(current_time > deadline — ¢(execution_state := revert)) No bidding on expired auction
Safety#2 O(auction.active == false — O(execution_state := revert)) No bidding on inactive auction

. Safety#3 Ocurrent_bidder == auction.owner — & (execution_state := revert)) Auction owner cannot bid
Auction - - - - - -

Essential#1 auction.active = false Auction state becomes inactive

Cancel Safety#1 O(requester = auction.owner — O(execution_state := revert)) Only owner can cancel an auction
Safety#2 O(highest_bidder = null — ¢(execution_state := revert)) Cannot cancel when a valid bid exist

Inferring UI Semantics via NLP. Once Ul texts with their
contexts are collected, we can infer their semantics via NLP. If two
‘Buy Now’ buttons process different logics, we can still handle them
correctly as long as the two logics are well-defined in the business
model, and the contexts of the two buttons are different. The insight
is that the texts and contexts of the buttons should contain enough
information for end users (and our NLP) to differentiate.

To handle fragmented widget texts, we infer UI semantics based
on words rather than sentences; to build semantic templates for
Dapps, we mine high frequency words that are used in popular
DApps from real-world markets. Particularly, we have established
two levels of templates: contract-level and function-level. We have
identified 6 contract-level keywords and 16 function-level keywords
as shown in Table 2. More concretely, we first clean the obtained
texts via removing less significant components (e.g., preposition,
numeric words) using POS Tagger [4]. Then, we adopt a two-layer
matching process to identify the best match between the extracted
widget text and our identified keywords for (1) contracts and (2)
functions. To do so, we embed each keyword into a representation
vector S = [s1, 52, ..., Sg] using a pre-trained model GloVe [30], to
avoid any overfitting problem. For each Ul widget, we generate
two semantic representations S;ex; and Sconrex: for its text and
context respectively. Layer 1: We infer the business logic of the
whole DApp by calculating the distance between S¢ontexs and the
embeddings of all business categories, and consider the closest one
as the inferred business logic. Layer 2: Once the business logic is
determined, we perform the second matching to compare S¢ex; with
the embeddings of function keywords that belong to the matched
category to determine the function-level semantics of the UI widget.
Notice that if no comparison yields a score higher than our 50%
threshold, the widget will not belong to any of the six categories.

In the motivating example, the contexts of “BID NOW” and
“CANCEL AUCTION?” are a set of words: {auction name, auction
creator, starting price, current bid, bidder number, last bidder, expire,
auction statej. Our Ul semantics inference identifies the business
logic Auction with a similarity score of 93%, and further correlates
“BID NOW” to bidOnAuction and “CANCEL AUCTION” to cance-
[Auction with similarity scores of 86% and 97%, respectively.

4.2 Model Checking

Once we have extracted textual semantics from widget text, we
then check whether the UI described business logic matches that
of the contract code. If so, we can further recover the semantics
of individual contract functions and variables. Otherwise, we will
report the Ul-logic inconsistency. To enable such a model checking,
we have modeled the semantics of contract code using our derived
BMGs, and we will next craft business logic and safety specifications
for the semantics inferred from text.

Specification. We first formally define our specifications for
model checking, which are expressed using LTL. Note that while

927

we perform business model checking and safety vetting separately,
the same formalization of specifications are applied to both.

Definition 2. Let P be a set of atomic logical proposition sym-
bols about the system {p1, p2, ...p| 4}, e.g., the bidder is the owner
of product, and let % = 24 be a finite alphabet composed of these
propositions. Then, a set of LTL-based Specifications is induc-
tively defined by the grammar:

1)

,where - and A denote negation and logical AND operators; ¢1 U @2
indicates that ¢ remains true until ¢ becomes true; O¢ means ¢
is true in the next step. In addition, we also use the following redun-
dant notations: @1 V @2 instead of =(=¢@1 A —¢2), p1 — ¢ instead
of =(¢1 A —¢2), the eventually operator ¢¢ instead of (true U ¢),
and the always operator O¢ instead of —0—¢.

We have crafted two types of specifications based on LTL: 1)
Essential Logic ¢g, which specifies the basic - yet unique and
intrinsic — workflow of business logics, and 2) Safety Rule ¢g that
further specifies the safety constraints for particular business logics.

Table 3 exemplifies the specifications we have defined for the
motivating example. For the Bidding function, our essential rule
captures the key logic of bidding process, which is a comparison
between a given bid price current_bid and the current highest bid
highest_bid. Only when the former is greater, this bid becomes the
new highest_bid and the bidder current_bidder becomes the high-
est_bidder. In the meantime, our first safety rules dictates that the
bidding transaction should happen before the auction deadline. The
second rule requires that the auction be still active. These two rules
guarantee the liveness of an auction. The third rule enforces the
legal policy for “without reserve” auction, which prevents own-
ers of auctioned merchandises from bidding their own products,
avoiding potential price manipulations. Similarly, our essential rule
for the CancelAuction function specifies that if the current auction
exits normally (i.e., no revert), the auction will eventually be deac-
tivated. Our safety rules require that when canceling an auction, 1)
the requester must be the Auction owner; 2) no valid bid has been
received and the highest bid is still null. Notice that we do not claim
our specifications can cover all applications. Generating a complete
set of logic and safety specifications is a challenging task on its own
and also orthogonal to the focus of this work. We expect impactful
and comprehensive specs to be created by domain experts.

A Model Checking Problem. We formalize semantic recov-
ery and safety verification as a model checking problem. Specif-
ically, we follow SABOT’s approach [40] to check extracted con-
tract models against essential logic specifications. If a match is
identified, high-level transaction concepts in the specifications
(e.g., current_bidder) will then be mapped to the concrete vari-
ables in contract code (e.g., msg. sender), revealing their semantics.
With such a mapping, we then automatically apply a high-level
safety specification (e.g., Ocurrent_bidder auction.owner —

pu=true|lploi A2 =@ | O¢le1U o2

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

¢(execution_state = revert)) to verifying the low-level code where
current_bidder is represented as msg.sender. At a high level, we
aim to establish a mapping between key variables in BMG and the
atomic propositions in our predefined specifications.

Definition 3. Our goal to find a unique mapping p is defined by:

=Py, — GV such that Meu = yt/ ¢, where : (2)

e Py, is a set containing all the variables p used in propositions
in essential specifications @f;

e GV is a set containing all the global variables in BMG;

® Mgy is the transition system that directly presents BMG;

e Mgy = 1/ ¢E means that the specification ¢g holds over the
transition system Mpug under the unique mapping p, when the
variables Py are mapped to global variables GV.

Note that, an entire business logic may actually consist of mul-
tiple individual functions. For instance, an auction logic has both
bidOnAuction() and cancelAuction functions. Consequently, our
model checking must find a global mapping between all function
models in a DApp and all the corresponding specifications.

4.3 Semantic Recovery and Safety Vetting

Transforming BMGs to NuSMV Models. Our implementation is
based upon a state-of-the-art model checker NuSMV [6]. We convert
BMGs to identifiers and transitions in the NuSMV model.

In Figure 4, we consider three transaction properties msg.value,
block.timestamp and msg.sender, as well as three global variables

newBid. from, newBid.amount and accepted[_id]- [bidsLength-1].amount

to be identifiers. We initialize them with random values. In addition,
we also define two other identifiers that represent execution context
and state: function and execution_state. The former indicates the
name of the contract function being executed. Here, it is either
bidOnAuction or cancelAuction. The latter preserves the status and
can be either normal or exception.

Next, we define transitions for each identifier. A transition in-
dicates the condition, in which an identifier can change, and the
resulting value due to such a change. Thus, TP identifiers are not
associated with transitions because their values do not depend on
any inner conditions. In contrast, the precondition of a GV-related
transition is its hosting function plus its immediate conditional
statement, and the value is updated by corresponding store opera-
tions. In Figure 4, the transition in Vertex #11 happens when the
conditions in Vertex #3, #6 and #8 are all satisfied, and the resulting
values originate from Vertex #1 and #9 respectively.

Recovering Function and Variable Semantics. Once we have
generated the NuSMV models, we use model checking to recover
function and variable semantics. Particularly, starting with one
function model and its corresponding essential specification ¢,
we first create a random mapping between the global variables in
this model and the high-level concepts in ¢. Then, we update ¢f
using these global variables, and use NuSMV to check if the updated
specification p/¢g still holds for the model. If so, we further check
the next function model. Otherwise, we create another random
mapping and continue the test in an iterative manner. Only when we
can find a mapping for each individual function model, we conclude
that smart contract logic is consistent with described semantics. For
the motivating example, our model checker believes the described
logic (i.e., auction) matches the smart contract implementation.
Table 4 shows our discovered global mapping between contract

928

Yue Duan et al.

Table 4: Mapped Key Variables for Motivating Example

Function/Domain | Smart Contract Variable Spec Concept
bidOnAction msg.value current_bid
bidOnAction msg. sender current_bidder
bidOnAction newBid.amount highest_bid
bidOnAction newBid. from highest_bidder
cancelAction msg.sender requester
contract-wide accepted[_id][bidsLength-1].amount | highest_bid
contract-wide accepted[_id][bidsLength-1].from highest_bidder
contract-wide accepted[_id].active auction.active

| BMG of cancelAuction () |

Semantic Recovery
Function Semantics

“Cancel Auction”

O(requesteri=-auction.owner- O ion_state = revert))
O(highest_bidderd=-n & (execution_state = revert))

Variable Semantics

msg.sender

accepted|[_id] [bidsLength-1] .amount
pted[id] [bidsLength-1].from

accepted[_id].active

requester
highest_bid
highest_bidder
auction.active

Customized Safety Specifications |

O (msg.sender !=auction.owner — < (execution_state = revert))
O(accepted|_id] [bidsLength-1].from != null —> {(execution_state = revert))

Figure 5: Generating Customized Specs

variables and high-level concepts. If we cannot find such a mapping,
we will raise an alarm to indicate the detected inconsistency.

Detecting Safety Violations. When smart contract code con-
forms to textual semantics of corresponding widgets, we further
check its function models against our safety rules. The goal is to
automatically generate and apply safety specifications that are cus-
tomized to a target smart contract function. As depicted in Figure 5,
the prior semantic recovery generates two levels of information
that can facilitate automated safety checking: (1) function seman-
tics and (2) variable semantics. The former informs us which set
of safety policies need to be applied to a specific function; the lat-
ter tells us how to customize them. For instance, because we have
successfully matched the function model of cancelAuction() with
our logic specification for “Cancel Auction”, two safety rules in this
category will then be checked. Also, since we have associated the
requester of auction termination to msg. sender of cancelAuction(),
and have correlated highest_bidder with the field of a global item
accepted[_id][bidsLength-1]. from, we can rewrite the safety poli-
cies by replacing the high-level concepts with concrete variables.

Once we have produced these customized safety rules, we can
then verify the BMG of cancelAuction() against these rules. The ver-
ification is done automatically via standard model checking using
the generated model and safety specs. In our example, the verifica-
tion detects the violation of the second policy, which requires an
auction not to be canceled if a valid bid exists.

5 EVALUATION

We evaluate the effectiveness of our automated safety vetting, UI
analysis and semantic recovery (particularly for large DApps and
emerging DeFi apps), as well as runtime efficiency.

5.1 Experimental Setup

Dataset Construction. To discover real-world problems while
evaluating VETSC with ground-truth data, we collect open-source

Towards Automated Safety Vetting of Smart Contracts in Decentralized Applications

DApps projects from GitHub. We need to exclude many token
exchange apps (e.g., 69/100 top apps in dapp.com) because their
business and safety logic are usually not implemented in smart
contracts but at a custom application level. Nevertheless, collecting
“complete” open-source apps for experiments is still a daunting task.

We consider “complete” apps to be self-contained projects. Even
top Github projects may only contain codebases pertaining to their
own development (e.g., new contract code snippets, added Node.js
modules, or individual app components), and may not include com-
plete or correct metadata, dependencies or configurations that are
necessary for compiling, loading or executing. To our study, a large
portion of top GitHub DApps fails to run due to three major reasons:

(a) Back-end smart contract code cannot be built or deployed
because of incompatible compiler versions (e.g., compiler features
or checks specified by pragma in DApps such as BigBoardzDapp
and dapp-traceability) or missing deployment specs (e.g., truffle
migration files needed for FoodVoter or Decentralized-Voting-DApp).

(b) Front-end UI code only contains individual core components
but does not include important or up-to-date dependencies or entry
points. For instance, deprecated Node packages source-map-resolve
and source-map-url are being used (in e.g., dVoting and ether-loto);
precise npm versions are unknown for many projects (e.g., solidity-
auction, ethereum-lottery-app); some apps (e.g., truffle-vote) do not
provide key HTML interfaces including index.html.

(c) Even if both back-end functions and front-end widgets are
complete, their connections can be misconfigured. For example,
in the projects CoinFlipper-DApp and Bank-DApp, back-end logic
cannot be successfully triggered by front-end GUI events.

As a result, these apps are considered incomplete from our eval-
uation perspective, because VETSC needs to perform dynamic anal-
ysis to correlate front-end HTML text and JavaScript code with
back-end contract calls at runtime.

Data Collection. Nevertheless, we still manage to collect 34
workable DApps. To the best of our knowledge, this is the largest
dataset to date for safety vetting of DApps. To collect them, we
leveraged GitHub engine to search for “best match[ing]” open-
source, non-token projects using the keyword “DApp + <Business
Model Category>" and retrieved top 100 apps from each of our 6
categories. We then identified 144/600 apps with UL We further
excluded incomplete apps that cannot be set up and eventually
obtained 30 workable apps. We also added 2 closed-source apps
whose bytecode semantics we can manually understand, and used
2 VerX’s crowdsale apps via adding synthesized textual semantics.

Impact of Collected Apps and Homogeneity of DApps. Our
samples are representative due to their high impacts and the homo-
geneity of current DApps. Out of the 34 test apps, we can manually
verify (via metadata, website information, simple code match) that
11 of them have been deployed on Ethereum Mainnet. We then
find the transaction history for the addresses of the correspond-
ing contracts. Our study shows that we have covered several very
high-profile DApps. For instance, ~5 million transactions have been
processed for the CryptoKitties app; 780K transactions have been
made for the etheroll app. Overall, a majority (over 70%) of our test
apps have many active users, leading to at least 2K transactions.

Besides, our study also reveals that there exist many duplicates
of the 34 apps and their core functions (e.g., bidding, trading, etc.)
both on the Ethereum blockchain and in GitHub projects. Using a

929

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

simple string matching, we can already discover 1,396 duplicates
(507 from blockchain, 889 from GitHub) whose contract code is
identical to that of our apps. In fact, prior studies OYENTE [39] and
ZEus [33] have also made the similar observations where only 19%
and 6.7% apps in their datasets, respectively, are unique. Current
DApps are highly homogeneous possibly due to the limited types
of financial applications (e.g, bidding, trading), and some de facto
standard implementations of their core logic.

Environment. Our experiments have been conducted on a ma-
chine equipped with Intel i7 CPU @ 3.20GHz and 16GB of physical
memory. The OS is Ubuntu 18.04 LTS (64bit).

5.2 Detection Results

We apply VETSC to the automated safety vetting of these 34 DApps,
and Table 5 presents our overall detection results. In general, we
have identified 19 unsafe functions. These unsafe functions violate
our predefined policies and may incorrectly allow dangerous or
unfair actions such as double voting or buying an expired lottery
ticket. We have also measured the correctness of our semantic
recovery and safety vetting, discussed at the end of this section.

Safety Violations. We have discovered unsafe functions in a va-
riety of financial applications including 2 lottery (gambling) games,
2 auction apps, 9 voting platforms and 1 crowdsale applications.

For instance, #10 all-for-one.club, a lottery game that draws on a
daily basis, has two unsafe functions draw and buy. While lottery
games are extremely time sensitive, this app fails to set a deadline
and check whether a game has already expired when a drawing
starts or when players purchase tickets for a specific game. As a
result, these two functions violate our safety rules Lottery-Draw-S2
and Lottery-Buy-S1, respectively. Similarly, another lottery app #16
Lottery-DApp shares the same safety issues.

Time also matters for a safe and fair implementation of auction
applications. Unfortunately, #11 openberry-ac does not carefully
take time into account and thus incorrectly allows bidding for an
already expired auction. In addition to the timing factor, auction
games have strict requirements on restricting sellers to arbitrarily
cancel an auction with valid bids, as indicated by auction rule [20].
However, the auction app #17 mastering-ethereum-auction-dapp
does not actually enforce this policy Auction-Cancel-S2 and thus
may cause an unfair consequence.

Likewise, most of the unsafe election apps we have detected
also suffer from missing time checks. Furthermore, #12 create-react-
dapp, a Github project that demonstrates how to establish a voting
platform, may even cause a serious double voting problem because
it does not check if a voter has already submitted a ballot.

VETSC detects safety risks in crowdsale apps as well. For exam-
ple, #33 Overview contains a problem that mistakenly accepts new
investment when a crowdsale has expired and has already refunded
existing investors. This vulnerability has also been confirmed by
the state-of-the-art VerX [45] tool. However, it is worth noting that
although VerX can achieve the same detection results for crowdsale
apps #33 and #34 where source code is available, it requires signif-
icant manual efforts to create custom safety policies for different
implementations of same logic. We show in Section 5.3 that how
VETSC can automate this process to facilitate safety verification.

UI-Logic Consistency. Table 5 also shows the textual descrip-
tions on the widgets that are associated with the unsafe contract

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Yue Duan et al.

Table 5: Detection Overview

‘ # ‘ Name Unsafe Func Name Code Logic ‘ Major Widget Text/Context ‘ UI == Logic? ‘ Safety Issue in Smart Contracts | Violated Policy Source Analyzability
1 | cryptoatoms.org - - - Yes - - Yes
2 | proofoflove.digital | - - - Yes - - Yes
3 | snailking - - - Yes - - Yes
4 | cryptominingwar | - - - Yes - - Yes
5 | market.start.solar | - - - Yes - - No (Missing Source)
6 | etheroll - - - Yes - - No (Inlined Bytecode)
7 | cryptokitties bid() Auction-Bid “buy” Ambiguity | N/A N/A Yes
8 | hyperdragons - - - Yes - - No (Missing Source)
9 | dice2.win - - - Yes - - No (Inlined Bytecode)
10 | all-for-one.club drawNow() Lottery-Draw | “Draw” Yes Drawing for an expired lottery | Lottery-Draw-S2 No (Inlined Bytecode)
play() Lottery-Buy “pay 1ETH” Yes Buying an expired ticket Lottery-Buy-S1 No (Inlined Bytecode)
placeBid() Auction-Bid “place BID” Yes Bidding for an expired auction Auction-Bid-S1 Yes
11 | openberry-ac finalizeAuction() Auction-Close | ‘“handle Finalize” Yes Clos%ng a non-.expired‘auction Auct%on-Close-Sl Yes
Closing an active auction Auction-Close-S2
12 | create-react-dapp | voteForCandidate() Voting-Vote “vote Rama/Nick/Jose” Yes g?)t:‘rl:lgefs(r);:gexplred election zzzgéxz:::; Yes
13 | ethereum-voting vote() Voting-Vote “Vote” Yes Voting for an expired election Voting-Vote-S1 Yes
14 | ethereum-wallet - - - Yes - - Yes
15 | heiswap.exchange | - - - Yes - - No (Inlined Bytecode)
16 | Lottery-DApp makeGuess () Lottery-Buy “Buy”, “Lottery” Yes Buying an expired ticket Lottery-Buy-S1 Yes
closeGame () Lottery-Draw | “Close Game”, “Lottery” Yes Drawing for an expired lottery | Lottery-Draw-S2 Yes
17 | mastering-e-a-d cancelAuction() Auction-Cancel | “CANCEL AUCTION” Yes Seller cancel after bidding starts | Auction-Cancel-S2 | Yes
18 | multisender.app - - - Yes - - Yes
19 | note_dapp - - - Yes - - Yes
20 | metacoin - - - Yes - - Yes
21 | simple-vote vote() N/A “Start a vote” No Impl. N/A N/A Yes
22 | truffle-voting vote() Voting-Vote “Approve/Against/Abstain” Yes Voting for an expired election Voting-Vote-S1 Yes
23 | Gnosis Safe - - - Yes - - Yes
24 | vote-dapp - - - Yes - - Yes
25 | EVotingDApp - - - Yes - - Yes
26 | Election vote() Voting-Vote “Vote” Yes Voting for an expired election Voting-Vote-S1 Yes
27 | Election-DAPP vote() Voting-Vote “Approve/Against/Abstence” Yes Voting for an expired election Voting-Vote-S1 Yes
28 | Vote vote() Voting-Vote “Submit” Yes Voting for an expired election Voting-Vote-S1 Yes
29 | VotingDapp vote() Voting-Vote “Vote” Yes Voting for an expired election Voting-Vote-S1 Yes
30 | VoteDapp vote() Voting-Vote “Vote” Yes Voting for an expired election Voting-Vote-S1 Yes
31 | voting-DApp vote() Voting-Vote “Vote” Yes Voting for an expired election Voting-Vote-S1 Yes
32 | VoteMe - - - Yes - - Yes
33 | Overview invest() CS-Invest “Buy tokens”, “Crowdsale” Yes Invest an expired crowdsale CS-Invest-S2 Yes
34 | Crowdsale - - - Yes - - Yes
functions. In fact, a large majority of the widget texts can faithfully 1 function appendInt(buffer memory buf, uint data, uint len)
. . 2 internal constant returns(buffer memory) {
reflect the underlying code logic and therefore can help us pre- 3 o
cisely identify the function-level semantics of corresponding smart 4 assembly {
contracts. This overall consistency between DApp UI and backend Z i:t E:ii’:; = :i:::g::?")
logic justifies the feasibility of our proposed approach, which, to our 7 let dest := add (add(bufztr " buflen), len)
knowledge, is the first attempt to apply such auxiliary information 8 mstore(dest, or(and(mload(dest), not(mask)), data))
to the automated interpretation of low-level, obscure contract code. 1; , mstore(bufptr, add(buflen, len))
Nevertheless, we do observe inconsistencies in two DApps #7 1 return buf;
12)

cryptokitties and #21 simple-vote. In the famous game #7 cryptokit-
ties, a widget which is described by its text and context as “buy” -
and thus interpreted as “trading” by VETSC - is actually associated
with a contract function that, however, exercises a bidding process.
This could cause an ambiguity to human readers, although maybe
at a moderate level. #21 simple-vote contains a more obvious mis-
match where its described “vote”logic is not actually implemented
in the corresponding contract code.

Again, due to the actual presence of inconsistent UI texts, we do
not assume the faithfulness of descriptive texts when interpreting
relevant contract logic. Instead, VETSC can directly report such a
discrepancy via our model checking. VETSC will proceed to safety
verification only when the Ul-logic consistency is verified.

Source Code-Level Analyzability. Quite a few DApps under
study do not have clear source code. Manual semantic interpreta-
tion, used by previous work such as VerX [45] and Zeus [33], thus
cannot apply. Specifically, some proprietary contract programs have

930

Figure 6: Inlined Bytecode in all-in-one.club Contract Code

already been deployed as bytecode to the blockchain and source
code is completely withheld by their developers. Additionally, the
source code of other contracts, although disclosed to the public,
has been “obfuscated” through inlined Ethereum bytecode. Figure 6
depicts such an example. In the source code of all-in-one.club lottery
app, a helper function invoked by draw() to generate random num-
bers uses bytecode instruction mload, mstore to directly access data
from specified addresses, probably for the sake of runtime efficiency.
However, this can further affect the readability of smart contract
code and may make manual analysis in prior work extremely hard.

Correctness. While VETSC in general can correctly discover
aforementioned safety issues, we do observe false positives in both
our semantic recovery (2/49 functions associated with UI texts) and
safety check (3/38 safety related functions). In particular, VETSC
mistakenly detects semantic inconsistencies in #8 hyperdragons and

Towards Automated Safety Vetting of Smart Contracts in Decentralized Applications

Table 6: VETSC vs. VerX

VETSC VerX

One-Time Manual Effort | None

Automated (UI-Guided) | Manual Effort for Each Func
Automated Manual Effort for Each Func
Automated

Analysis Step

(a) High-level Specs

(b) Semantic Recovery
(c) Specs Customization
(d) Safety Verification

Automated

#20 metacoin, in terms of our policies Trading-Buy-Essential#1 and
Wallet-Withdraw-Essential#2, respectively. These false alarms are
caused due to the indirect “fund flows”. While the contracts in fact
conform to our essential rules and send funds to a payee, they do
not implement such a transaction directly using the send() APL
Instead, they will first add funds into payees’ virtual accounts, and
transfer the funds while reducing virtual balances later. Our static
analysis does not track such fund flows that perform arithmetic on
virtual balances, and thus miss the indirect fund transfer.

VETSC has also caused three false positives for apps #10, #15 and
#22, when checking the Lottery-Draw-Safety#2 policy (no drawing
before deadline), Wallet-Withdraw-Safety#1 rule (balance check),
and Voting-Vote-Safety#2 (no double-voting), respectively. DApp
#10 actually checks the end time of a lottery game but in an implicit
manner. In lieu of testing the current time against a final deadline,
the contract checks it against each end time of an individual “round”.
VETSC does not correlate these “sub-deadlines” with the final one
and thus does not recognize such a time check.

Apps #15 and #22 both contain very complex arithmetic expres-
sions in their memory addressing and thus lead to expensive graph
matching. VETSC, in practice, places a limit on the graph size to
avoid overly expensive graph edit distance calculation, and does not
find a match in these cases, and thus results in a broken dataflow.

5.3 Comparison with VerX

Despite the fact that manual semantics interpretation used in pre-
vious safety verification tools cannot work on apps whose source
code is missing or obfuscated, they can still be applied to DApps
where contract source code is available. As a result, we would also
like to understand the advantage of applying VETSC to these apps,
via directly comparing it with a representative verifier, VerX [45].

Ideally, we hope to submit our detected unsafe apps to the VerX
service via its public APIs [14]. However, we were not able to
successfully launch the tool on these new samples. Consequently,
we instead apply VETSC to two publicly available crowdsale apps
in VerX paper, Overview and Crowdsale, to show how VETSC can
solve the same problems in a more automated fashion.

Table 6 illustrates the difference between VETSC and VerX. In
general, VETSC can automate several key steps that require tedious
manual efforts in VerX.

5.4 Effectiveness of Ul Semantic Inference

UI Analysis on Random Widgets. We evaluate our Ul semantic
inference on 185 manually labeled micro-benchmark widgets, ob-
tained from 37 DApps (14 Trading, 9 Voting, 4 Wallet, 5 Auction
and 5 Gambling) and 54 web pages.

150 out of the 185 widgets can trigger smart contract functions.
We manually verify that we can correctly infer the semantics for
82.5% of the 150 widgets. In contrast, for the 34 widgets that do
not lead to contract calls, such as “Show More”, “Need Help?”, our
experiments show that a large portion (65%) has actually been

931

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

incorrectly classified as one of these business logics. Note that, this
in fact demonstrates the advantage of our approach, which, instead
of applying NLP to all widgets (relevant and irrelevant) blindly,
focuses particularly on those that can trigger contract functions
and thus can improve the inference accuracy.

Further study indicates that our context retrieval is helpful to
understanding widget semantics. For instance, Gambling DApps
etheroll.com and dice2.win each have a button to place a bet. While
the former names the button “roll”, the latter calls it “bet”. Although
the two buttons contain different texts, we can correctly associate
them to the same semantics, due to the interpretation of their con-
texts. Similarly, a Trading app proofoflove.digital charges users cryp-
tocurrency, through a button “Prove Love”, in exchange for per-
manently “engraving” a relationship on an immutable blockchain.
Although the widget text is very uncommon comparing to the nor-
mal vocabulary of trading, we can still capture its real meaning
based on its context. Nevertheless, we notice that our semantic
inference is still constrained by the common limitation of NLP
and therefore may cause incorrect classification. The major barrier
originates from rhetoric and metaphor. For example, the auction
DApp King of the Ether Throne [1] has a button “Claim the Throne”
which in fact places a bid but cannot be correctly identified because
the phrase highly deviates from common texts used in bidding
processes. Notice, however, while such rhetoric cannot be easily
interpreted by NLP, it may also cause misunderstanding for human
readers and thus lead to the discrepancy between UI description
and internal smart contract implementation.

UI Analysis on Large Apps. We would further like to under-
stand if VETSC can successfully extract textual semantics from
large DApps with complex user interfaces. To this end, we apply
our UI analysis to marketplace apps that contain non-trivial web UI
for auction, trading and wallet functionalities. Particularly, we have
evaluated VETSC on 30 randomly selected widgets in 18 webpages
from 13 top marketplace DApps at dapp.com, such as LooksRare,
OpenSea and X2Y2, which cause the highest volumes of transactions
in 24 hours (up to $176M). Our manual verification shows that we
can correctly interpret 90% of the widgets. To our study, we can
achieve this relatively high accuracy fundamentally because the
interfaces of popular DApps have been designed in a user-friendly
manner and thus can convey messages in a very clear way. For
instance, widgets for placing bids often contain straightforward
phrases such as “place a bid” or “make an offer”. We do observe
misclassifications, which are caused by vague widget text (e.g.,
“Create”) plus overly broad contexts (e.g., “bid”, “Highest”, etc.).

Discussion and Limitation. NLP alone cannot easily extract
textual semantics, but our UI analysis is viable because: (a) most
widgets of well-intentioned, usable DApps bear straightforward and
distinguishable meanings — the fact that a majority of our randomly
selected widgets can be correctly interpreted has confirmed the
expressiveness of widget text; (b) our UI text analysis is a guided
process — we use domain knowledge, such as DOM-tree layout,
mined function/contract-level keywords, as guidance to selectively
obtain UI text and infer its semantics in a targeted way.

Nevertheless, Ul analysis and text mining are known to be chal-
lenging in the areas of information retrieval and software engi-
neering. To capture precise contextual information, researchers
have attempted to use many heuristics such as website layout [43],

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

1:[TP,CS]if(now >= expirationTime)

. <
,/ S 3:[TP,CS]if (listingTime > now
2:[CC,EH]revert () Sao P “—~\\

N el 1:[CC,EH]revert ()
5:[CS,TP,CC]diff = (extra*(naw—listingl‘ime)/(expiration@

6:[PV]buyPrice = basePrice
8:[CS,CC]if (buyPrice >= sellPrice)

9:[CC,EH] revert () e

10: [EC, CC]ERC20 (token) . transferFrom(buy.maker, sell.maker, price)

7:[PV,CC]sellPrice = basePrice - diff

Figure 7: BMG of Dutch auction in OpenSea

distance between widgets [32] or text quality [12] but have not
presented any general solution; web pages and contents can be
dynamically generated and thus cannot be observed unless certain
JS code is triggered. In addition to the limitation of vanilla Ul anal-
ysis, our custom method may also be limited by our design choices.
First, while most of widget texts are short phrases, there indeed
exist widgets with lengthy texts. Thus, it would be necessary (but
non-trivial) to identify core semantic entities at a sentence level
rather than directly applying word-level interpretation. Second, the
exploitation of domain knowledge may fundamentally constrain
our ability to explore a broader range of textual semantics. Further-
more, our Ul analysis is based upon text interpretation and thus
cannot handle cases where Ul components do not contain any text
but use icons to convey information. It may require more advanced
techniques [61] to learn icon semantics and address this limitation.

5.5 Handling Large Apps

We evaluate VETSC with a top NFT marketplace app: OpenSea [8] to
showcase the scalability. The analysis begins from the web interface
of OpenSea, and can identify the textual semantics of “Place bid” to
be “bidding in an auction”, and correctly correlate this button to
its backend Dutch auction function atomicMatch(). Next, we build
the BMG (Figure 7) for this function starting from its transaction
properties (e.g., timestamp and buyer/seller). Our graph captures
the Dutch auction logic: it calculates the current selling price by
subtracting a timing-related diff amount from the starting price,
and eventually transfers funds from the buy[er] to the sell[er] using
an ERC20 API - transferFrom(from, to, amount).In the meantime,
it also enforces safety checks for expiration time and bid prices.
The essential logic and safety checks follow our predefined rules
for Dutch auctions in Table 7.

Our semantic inference works for large apps because the core
logic of even complex apps may still be dense — the core auction
logic in the OpenSea contains only ~20 LOC (out of 1836). Neverthe-
less, these 20 lines of code span multiple functions and are hidden
in a large volume of less relevant code. It would be non-trivial for
humans to precisely and completely discover even such succinct
core logic. Admittedly, if core logic becomes overly complex, it may
also affect the precision and efficiency of our model checking.

5.6 DeFi Apps & Impact of Cross-Contract Calls

To demonstrate the generalizability of our method for modeling
contract semantics, we further explore the possibility of applying
VETSC to decentralized finance (DeFi) apps.

932

Yue Duan et al.

Effectiveness of Semantic Modeling. Emerging DeFi apps
enable intricate financial services on blockchains using intensive
cross-contract transactions. In contrast, our evaluation shows that
their core business logic can still be captured by our business model
graphs. We have evaluated our method using a popular DeFi app
UniswapV2 [10]. Figure 8 illustrates the graph we compute from the
swap ether for token logic in the UniswapV2.

Specifically, this swap logic can exchange a user’s ether for spe-
cific tokens through possibly a series of intermediate token ex-
changes, and transfer the tokens to a user specified address. It is im-
plemented in two essential functions across two separate contracts:
swapExactETHForTokens() in the Periphery Contract and swap() in
the Core Contract, and some other helper functions. The former
calculates the token amounts, performs security checks, and makes
a cross-contract call to the latter, which then interacts with domain-
specific token contracts and enables the swap. To generate this
graph, we start from two transaction properties msg.value (the
amount of ether, V#2) and msg.data (containing the target address,
V#8), as well as a global token exchange pool factory (V#1). The
Periphery Contract receives the user’s ether (V#2), transfers it to the
Uniswap token (WETH) contract (V#4), and updates the exchange
pool (V#3). It then computes the amounts of tokens it needs to
pay the user (V#6), and eventually calls the swap() function in the
Core Contract in order to transfer tokens to the user’s account “to”
(V#8). The Core validates the required token amounts (V#10,12,13),
and then performs consecutive exchanges between pairs of tokens,
and finally transfers the requested tokens to the specified address
(V#14,15). While the two contracts contain 647 lines of code, the
core logic in our graph involves only ~30 LOC.

The logic in the graph can be captured by our Uniswap spec
in Table 7. Particularly, we specify that a token swap operation
must implement four essential activities: (E1) a user sends ether to
the exchange pool; (E2) the Uniswap contract transfers tokens to a
destination Ethereum address; (E3) the amount of tokens depends
on the amount of the given ether; (E4) the destination address is
specified by the user. The constraints E1 and E2 are satisfied by V#4
and V#15, while E3 and E4 are fulfilled by the data dependencies
between V#2 and V#15, and between V#8 and V#15, respectively.
Our safety vetting verifies if certain checks for token amounts exist.

Cross-Contract Calls. Despite the fact that VETSC can capture
DeFilogic in theory, it cannot handle DApp logic that spans multiple
contracts — which is present in the aforementioned example and
commonly observed in DeFi apps [60]. Essentially, this is because
VETSC adopts the same Effectively External Callback Free (EECF)
model used in VerX [45], and thus considers external calls as NOPs.

However, our evaluation on the top 600 GitHub DApp projects
has shown that the impact of cross-contract calls is currently limited.
Among the top projects we have collected from the six app cate-
gories, only a small portion (7.7%) has actually made calls to other
contracts. Moreover, very few of essential business logics (3.9%) are
implemented across multiple contracts using inter-contract calls.
Indeed, some voting or trading contracts (e.g., aragon-parliament)
authenticate users (voters, buyers) in one contract and finalize busi-
ness logic (increase votes, close sales) in another. Nevertheless, such
two-step logic is actually implemented easily using solely local calls
in most of the apps, and thus can still be largely captured by VETSC.

Towards Automated Safety Vetting of Smart Contracts in Decentralized Applications

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Table 7: Partial Specifications for Dutch Auction and UniswapV2

Function Spec Type | Formal Spec Explanation
d
Essential#1 | O(—current_time data, O(—current_sell_price)) Current sell price is data-dependent on current time
. s Essential#2 | O(current_bid >= current_sell_price — ¢(auction.owner.send(current_sell_price))) | Send current sell price to the owner when a successful bid exists

Dutch Auction | Bidding S - - - = - -
Safety#1 O(current_time >= deadline — 0(execution_state := revert)) No bidding on expired auction
Safety#2 O(current_bid < current_sell_price — (execution_state := revert)) Current bid must be higher than the current sell price
Essential#1 | Opool.send(ether_amount) Send Ethers to the pool
Essential#2 | Otransfer(pool, dest, token_amount) Transfer the tokens from the pool to the destination

UniSwapV2 Swap Ether w/ token | Essential#3 | O(—ether_amount data, 0(—token_amount)) The amount of token is data-dependent on the sent Ethers

dat

Essential#4 | O(-calldata = O(—dest)) The destination is designated by user
Safety#1 O(token_amount < 0 — ¢(execution_state := revert)) The amount of token needs to be non-negative
Safety#2 O(token_amount > reserve — ¢(execution_state := revert)) The amount of token needs to be smaller than what pool possesses

|
V] (_reserve0, reservel) = getReserves(l —>

UniswapV'2 Core Contract

1
1
1
: B,GV.CS, CC]lf(amount(]Out>- reservel && amountlOut>= rese;
1
1 11: [cc EH] revert() TP, GV, CC]if(amountODuc>
1
1
1

1
1
1
1
1
1

TP, GV, CC]xE(amounthu I

<T4:ITP,GV,EC,CCl to. (tokeno H
@c] to. :ransfer(tokem !

Figure 8: BMG of swap logic in UniswapV2
5.7 Runtime Efficiency

Our model construction uses dynamic analysis to find smart con-
tract calls in DApps and static analysis to build models. The dynamic
analysis is constrained by the response time of DApps and on av-
erage takes 5 minutes to process an app; static analysis takes on
average 280 seconds to build a model. Our model checking process
is very time consuming due to its iterative nature, and its runtime is
roughly proportional to the amount of specifications. In our current
setting, VETSC takes on average 470 seconds to check one app.

6 RELATED WORK

Verifying the Safety of Smart Contracts. Efforts [23, 26, 33, 34,
39, 45, 50, 52, 53, 58, 59] have been made to automatically verify
the safety of smart contract code. While early work aimed to dis-
cover syntax based low-level errors [23, 26, 34, 39, 50], more recent
studies [33, 45, 53, 58] have started to investigate the semantic-
level defects in smart contracts that can cause fairness issues. For
instance, ZEUS [33] claimed that a fair “without-reserve” auction
must not allow the seller to bid; VerX [45] stated that a crowdsale is
safe only if refunds are offered to investors once the sale has failed.
Recovering Semantics for Program Analyses. Automated se-
mantics recovery has been well studied in multiple domains in-
cluding virtual machine introspection [18, 25, 31], memory foren-
sics [13, 16, 19, 37] and low-level code interpretation [35, 40]. The
contribution of our work lies in the fact that we adopt this technique
in the new context of smart contracts. Thus, we need to invent a
novel algorithm to distill contracts and transaction -specific prop-
erties that can reflect their semantics. In addition, we take a step
further to recover business logic level semantics.

Correlating Descriptive Text to Program Behaviors. Efforts
have also been made to correlate texts to sensitive API semantics

933

in Android [29, 44, 48] and IoT apps [57]. WHYPER [44] used NLP
technique to identify sentences that describe the need for a given
permission. AutoCog [48] developed a learning-based algorithm to
automatically derive a model that correlates textual descriptions
with Android permissions; AsDroid [29] further inferred the se-
mantics of the text on those widgets that are associated with the
top level functions. SmartAuth [57] combined NLP and program
analysis to distill the contextual semantics of IoT apps, and com-
pared them with the textual semantics in source code and code
annotations.

Using GUI for Security Purposes. Many techniques [46, 47, 49,
51] have been proposed to perform access control for device sensors
via GUI events. Particularly, efforts have been made in the domain of
mobile applications to identify sensitive user inputs from GUI based
on descriptive texts [11, 28, 41] and icons [61]. UIRef [11] used adja-
cent five components in Ul layout as context to infer semantics and
address ambiguity. SUPOR [28], UIPicker [41] and IconIntent [61]
considered context to be texts on the single view hosting the target
widget. In contrast to traditional Ul-based apps, the frontend Ul
and backend code of DApps are only loosely connected, and thus
require a holistic approach to analyze their correlations.

7 CONCLUSION

We propose VETSC, a novel Ul-driven, program analysis guided
model checking technique that can automatically extract contract
semantics in decentralized apps so as to enable targeted safety
vetting. We build business model graphs to model core business
logic behaviors; we retrieve textual semantics from DApp UI to
assist in automatically customizing safety specifications. VETSC
has been applied to 34 real-world DApps and has discovered 19
novel safety issues.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their con-
structive comments. We would also like to thank Yihua Xu, William
Bodell, Sajad Meisami, and Taiji Li, for their help during the eval-
uation data collection process. This work was supported in part
by NSF OAC-2115167, NSF DGE-2041960, DARPA HR00112120009
Cooperative Agreement, NSFC-61872180, and a USHE Deep Tech-
nology Initiative Grant. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the funding agencies.

REFERENCES

[1] 2020. King of the Ether Throne. https://github.com/kieranelby/KingOf TheEtherThrone/.

(2020).

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA Yue Duan et al.

[2] 2020. MetaMask: Brings Ethereum to your browser. https://metamask.io/. (2020). ACM SIGIR conference on Research and Development in Information Retrieval. 90—
[3] 2020. Octopus: Security Analysis tool for Blockchain Smart Contracts. https: 96.
//github.com/quoscient/octopus/. (2020). [33] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
[4] 2020. Stanford Log-linear Part-Of-Speech Tagger. https://nlp.stanford.edu/ Analyzing Safety of Smart Contracts. In Proceedings of the 2018 Network and
software/tagger.shtml. (2020). Distributed System Security Symposium.
] 2021. Ethereum Virtual Machine Opcodes. https://ethervm.io/. (2021). [34] Johannes Krupp and Christian Rossow. 2018. TEETHER: Gnawing at Ethereum
[6] 2021. NuSMV: a new symbolic model checker. http://nusmv.fbk.eu/. (2021). to Automatically Exploit Smart Contracts. In Proceedings of the 27th USENIX
] 2022. Block and Transaction Properties. https://docs.soliditylang.org/en/v0.8.11/ Conference on Security Symposium (USENIX Security’18).
units-and-global-variables.html#block-and- transaction-properties/. (2022). [35] JongHyup Lee, Thanassis Avgerinos, and David Brumley. 2011. TIE: Principled
[8] 2022. Discover, collect, and sell extraordinary NFTs. https://opensea.io/. (2022). Reverse Engineering of Types in Binary Programs.. In Proceedings of the 18th
[9] 2022. selenium. https://www.selenium.dev/. (2022). Annual Network and Distributed System Security Symposium (NDSS’11).
[10] 2022. Uniswap Docs. https://docs.uniswap.org/protocol/V2/concepts/protocol- [36] Zhiqiang Lin, Junghwan Rhee, Chao Wu, Xiangyu Zhang, and Dongyan Xu. 2012.
overview/smart-contracts/. (2022). Dimsum: Discovering Semantic Data of Interest from Un-mappable Memory
[11] Benjamin Andow, Akhil Acharya, Dengfeng Li, William Enck, Kapil Singh, and with Confidence. In Proceedings of NDSS Symposium 2012.
Tao Xie. 2017. UiRef: Analysis of Sensitive User Inputs in Android Applications. [37] Zhiqiang Lin, Junghwan Rhee, Xiangyu Zhang, Dongyan Xu, and Xuxian Jiang.

In Proceedings of the 10th ACM Conference on Security and Privacy in Wireless and
Mobile Networks. 23-34.

Michael Bendersky, W Bruce Croft, and Yanlei Diao. 2011. Quality-Biased Ranking
of Web Documents. In Proceedings of the fourth ACM international conference on
Web search and Data Mining. 95-104.

Martim Carbone, Weidong Cui, Long Lu, Wenke Lee, Marcus Peinado, and Xuxian
Jiang. 2009. Mapping Kernel Objects to Enable Systematic Integrity Checking.
In Proceedings of the 16th ACM Conference on Computer and Communications
Security (CCS’09).

ChainSecurity. 2021. VerX APL (2021). http://verx.ch/docs/api.html

Mihai Christodorescu, Somesh Jha, Sanjit A Seshia, Dawn Song, and Randal E
Bryant. 2005. Semantics-Aware Malware Detection. In 2005 IEEE Symposium on
Security and Privacy (S&P’05). IEEE, 32-46.

Weidong Cui, Marcus Peinado, Zhilei Xu, and Ellick Chan. 2012. Tracking Rootkit
Footprints with a Practical Memory Analysis System. In Proceedings of the 21st
USENIX Conference on Security Symposium (USENIX Security’12).

Michael del Castillo. 2016. The DAO Attacked: Code Issue Leads to $60 Mil-
lion Ether Theft. https://www.coindesk.com/dao-attacked-code-issue-leads-60-
million-ether-theft. (2016).

B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee. 2011. Virtuoso:
Narrowing the Semantic Gap in Virtual Machine Introspection. In 2011 IEEE
Symposium on Security and Privacy.

Brendan Dolan-Gavitt, Abhinav Srivastava, Patrick Traynor, and Jonathon Giffin.
2009. Robust Signatures for Kernel Data Structures. In Proceedings of the 16th
ACM Conference on Computer and Communications Security (CCS’09).

Ebay. 2022. Ebay: Ending a listing. https://www.ebay.com/help/selling/listings/
creating-managing-listings/cancelling-listing?id=4146/. (2022).

Ethereum. 2021. INTRODUCTION TO DAPPS. https://ethereum.org/en/
developers/docs/dapps/. (2021).

Ittay Eyal and Emin Giin Sirer. 2014. Majority is Not Enough: Bitcoin Mining
is Vulnerable. In International Conference on Financial Cryptography and Data
Security. Springer, 436-454.

Joel Frank, Cornelius Aschermann, and Thorsten Holz. 2020. {ETHBMC}: A
Bounded Model Checker for Smart Contracts. In 29th USENIX Security Symposium
(USENIX Security 20).

Jake Frankenfield. 2019. 51% Attack. https://www.investopedia.com/terms/1/51-
attack.asp. (2019).

Tal Garfinkel, Mendel Rosenblum, et al. 2003. A Virtual Machine Introspection
based Architecture for Intrusion Detection.. In NDSS. 191-206.

Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam
Rinetzky, Mooly Sagiv, and Yoni Zohar. 2018. Online Detection of Effectively
Callback Free Objects with Applications to Smart Contracts. In Procceedings of
The 45th ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL 2018).

Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. 2015. Eclipse
Attacks on Bitcoin’s Peer-to-Peer Network. In 24th USENIX Security Symposium
(USENIX Security 15). 129-144.

Jianjun Huang, Zhichun Li, Xusheng Xiao, Zhenyu Wu, Kangjie Lu, Xiangyu
Zhang, and Guofei Jiang. 2015. {SUPOR}: Precise and Scalable Sensitive User
Input Detection for Android Apps. In 24th USENIX Security Symposium (USENIX
Security 15). 977-992.

Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang. 2014. As-
Droid: Detecting Stealthy Behaviors in Android Applications by User Interface
and Program Behavior Contradiction (ICSE 2014).

Christopher D. Manning Jeffrey Pennington, Richard Socher. 2020. GloVe: Global
Vectors for Word Representation. https://nlp.stanford.edu/projects/glove/. (2020).
Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. 2007. Stealthy Malware De-
tection Through Vmm-based "Out-of-the-box" Semantic View Reconstruction.
In Proceedings of the 14th ACM Conference on Computer and Communications
Security (CCS’07).

Hongyan Jing and Evelyne Tzoukermann. 1999. Information Retrieval Based on
Context Distance and Morphology. In Proceedings of the 22nd annual international

2011. SigGraph: Brute Force Scanning of Kernel Data Structure Instances Using
Graph-based Signatures. In Proceedings of the 18th Annual Network and Distributed
System Security Symposium (NDSS’11).

Ye Liu, Yi Li, Shang-Wei Lin, and Rong Zhao. 2020. Towards Automated Verifica-
tion of Smart Contract Fairness. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 666-677.

Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS’16).

Stephen McLaughlin and Patrick McDaniel. 2012. SABOT: Specification-based
Payload Generation for Programmable Logic Controllers. In Proceedings of the
2012 ACM Conference on Computer and Communications Security (CCS’12).
Yuhong Nan, Min Yang, Zhemin Yang, Shunfan Zhou, Guofei Gu, and XiaoFeng
Wang. 2015. Uipicker: User-input Privacy Identification in Mobile Applications.
In 24th USENIX Security Symposium (USENIX Security 15). 993-1008.

State of the DApps. 2022. DApp Statistics. https://www.stateofthedapps.com/stats.
(2022).

Harrie Oosterhuis and Maarten de Rijke. 2018. Ranking for Relevance and Display
Preferences in Complex Presentation Layouts. In The 41st International ACM
SIGIR Conference on Research & Development in Information Retrieval (SIGIR ’18).
Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. 2013. WHY-
PER: Towards Automating Risk Assessment of Mobile Applications. In Proceedings
of the 22nd USENIX Conference on Security (USENIX Security 13).

Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and
Martin Vechev. 2020. VerX: Safety Verification of Smart Contracts. In 2020 IEEE
Symposium on Security and Privacy (Oakland).

Giuseppe Petracca, Ahmad-Atamli Reineh, Yugiong Sun, Jens Grossklags, and
Trent Jaeger. 2017. Aware: Preventing Abuse of Privacy-Sensitive Sensors via
Operation Bindings. In 26th USENIX Security Symposium (USENIX Security 17).
379-396.

Giuseppe Petracca, Yugiong Sun, Ahmad-Atamli Reineh, Patrick McDaniel, Jens
Grossklags, and Trent Jaeger. 2019. Entrust: Regulating Sensor Access by Coop-
erating Programs via Delegation Graphs. In 28th USENIX Security Symposium
(USENIX Security 19). 567-584.

Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu, and
Zhong Chen. 2014. AutoCog: Measuring the Description-to-Permission Fidelity
in Android Applications. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’14).

Talia Ringer, Dan Grossman, and Franziska Roesner. 2016. Audacious: User-
driven Access Control With Unmodified Operating Systems. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security.
204-216.

Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi. 2019. Sereum:
Protecting Existing Smart Contracts Against Re-Entrancy Attacks. In Proceedings
of the 2019 Network and Distributed System Security Symposium.

Franziska Roesner, Tadayoshi Kohno, Alexander Moshchuk, Bryan Parno, He-
len J Wang, and Crispin Cowan. 2012. User-driven Access Control: Rethinking
Permission Granting in Modern Operating Systems. In 2012 IEEE Symposium on
Security and Privacy. IEEE, 224-238.

Evgeniy Shishkin. 2019. Debugging Smart Contract’s Business Logic Using
Symbolic Model Checking. Programming and Computer Software 45, 8 (2019),
590-599.

Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh. 2020. VERIS-
MART: A Highly Precise Safety Verifier for Ethereum Smart Contracts. In 2020
IEEE Symposium on Security and Privacy (Oakland).

Solidity. 2020. Solidity. https://solidity.readthedocs.io/en/v0.6.1/. (2020).

David Sounthiraraj, Justin Sahs, Garret Greenwood, Zhigiang Lin, and Latifur
Khan. 2014. SMV-Hunter: Large Scale, Automated Detection of SSL/TLS Man-in-
the-Middle Vulnerabilities in Android Apps.. In NDSS.

Jon Stephens, Kostas Ferles, Benjamin Mariano, Shuvendu Lahiri, and Isil Dil-
lig. 2021. SmartPulse: Automated Checking of Temporal Properties in Smart
Contracts. In IEEE S&P.

https://metamask.io/
https://github.com/quoscient/octopus/
https://github.com/quoscient/octopus/
https://nlp.stanford.edu/software/tagger.shtml
https://nlp.stanford.edu/software/tagger.shtml
https://ethervm.io/
http://nusmv.fbk.eu/
https://docs.soliditylang.org/en/v0.8.11/units-and-global-variables.html#block-and-transaction-properties/
https://docs.soliditylang.org/en/v0.8.11/units-and-global-variables.html#block-and-transaction-properties/
https://opensea.io/
https://www.selenium.dev/
http://verx.ch/docs/api.html
https://www.ebay.com/help/selling/listings/creating-managing-listings/cancelling-listing?id=4146/
https://www.ebay.com/help/selling/listings/creating-managing-listings/cancelling-listing?id=4146/
https://ethereum.org/en/developers/docs/dapps/
https://ethereum.org/en/developers/docs/dapps/
https://nlp.stanford.edu/projects/glove/
https://www.stateofthedapps.com/stats
https://solidity.readthedocs.io/en/v0.6.1/

Towards Automated Safety Vetting of Smart Contracts in Decentralized Applications

[57] Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang, Blase Ur, XianZheng
Guo, and Patrick Tague. 2017. Smartauth: User-Centered Authorization for the
Internet of Things. In Proceedings of the 26th USENIX Conference on Security
Symposium (USENIX Security 17).

[58] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Biinzli, and Martin Vechev. 2018. Securify: Practical Security Analysis of Smart
Contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS’18).

[59] Yuepeng Wang, Shuvendu K Lahiri, Shuo Chen, Rong Pan, Isil Dillig, Cody Born,

and Immad Naseer. 2018. Formal Specification and Verification of Smart Contracts

935

[60

(61

[62

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

for Azure Blockchain. arXiv preprint arXiv:1812.08829 (2018).

Siwei Wu, Dabao Wang, Jianting He, Yajin Zhou, Lei Wu, Xingliang Yuan, Qin-
ming He, and Kui Ren. 2021. DeFiRanger: Detecting Price Manipulation Attacks
on DeFi Applications. arXiv preprint arXiv:2104.15068 (2021).

Xusheng Xiao, Xiaoyin Wang, Zhihao Cao, Hanlin Wang, and Peng Gao. 2019.
Iconintent: Automatic Identification of Sensitive Ul Widgets Based on Icon Clas-
sification for Android Apps. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 257-268.

Zethyr. 2021. Zethyr Exchange. https://www.dapp.com/app/zethyr-exchange/.
(2021).

https://www.dapp.com/app/zethyr-exchange/

	Towards automated safety vetting of smart contracts in decentralized applications
	Citation
	Author

	Abstract
	1 Introduction
	2 Problem & Approach
	2.1 Motivating Example
	2.2 Threat Model & Approach Overview

	3 Model Extraction
	3.1 Smart Contract Semantics Model
	3.2 Model Construction

	4 Semantic Recovery & Safety Check
	4.1 UI Semantic Inference
	4.2 Model Checking
	4.3 Semantic Recovery and Safety Vetting

	5 Evaluation
	5.1 Experimental Setup
	5.2 Detection Results
	5.3 Comparison with VerX
	5.4 Effectiveness of UI Semantic Inference
	5.5 Handling Large Apps
	5.6 DeFi Apps & Impact of Cross-Contract Calls
	5.7 Runtime Efficiency

	6 Related Work
	7 Conclusion
	References

