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ABSTRACT
Estimating the time of arrival is a crucial task in intelligent trans-
portation systems. Although considerable efforts have been made
to solve this problem, most of them decompose a trajectory into
several segments and then compute the travel time by integrat-
ing the attributes from all segments. The segment view, though
being able to depict the local traffic conditions straightforwardly,
is insufficient to embody the intrinsic structure of trajectories on
the road network. To overcome the limitation, this study proposes
multi-view trajectory representation that comprehensively inter-
prets a trajectory from the segment-, link-, and intersection-views.
To fulfill the purpose, we design a hierarchical self-attention net-
work (HierETA) that accurately models the local traffic conditions
and the underlying trajectory structure. Specifically, a segment en-
coder is developed to capture the spatio-temporal dependencies at
a fine granularity, within which an adaptive self-attention module
is designed to boost performance. Further, a joint link-intersection
encoder is developed to characterize the natural trajectory structure
consisting of alternatively arranged links and intersections. After-
ward, a hierarchy-aware attention decoder is designed to realize
a tradeoff between the multi-view spatio-temporal features. The
hierarchical encoders and the attentive decoder are simultaneously
learned to achieve an overall optimality. Experiments on two large-
scale practical datasets show the superiority of HierETA over the
state-of-the-arts.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems; • Com-
puting methodologies → Neural networks.

†Corresponding Authors.
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1 INTRODUCTION
The task of estimating the time of arrival (ETA) for a trip plays an
important role in intelligent transportation systems. It is widely
used in fields of route planning, navigation, online ride-hailing, and
congestion control, etc [4, 11, 20, 24, 29, 32, 45, 50]. Nevertheless, the
accurate estimation of travel time remains a challenge as a diverse
spectrum of events can significantly affect travel demand such as the
spatial and temporal dependencies of the trajectories, the weather
condition, and rush hours or peak-off hours [3, 6, 8, 14, 19, 25, 27,
33, 35, 42]. To accurately model the local traffic factors, traditional
ETA algorithms mainly employ the divide-and-conquer strategy by
representing a trajectory as a segment sequence and then summing
up the local predictions [5]. The local prediction errors, however,
may rapidly accumulate using the segment-view representation.
Recently, deep learning methods alleviate this problem by explicitly
modeling the spatio-temporal characteristics of trajectories on the
road network in an integrated manner [7, 38, 42].

Although many progresses have been reported, most deep learn-
ing based models empirically adopt a single-view representation,
i.e., the segment view, and thus suffer the representation deficiency.
As shown in Figure 1, the segment-view representation is artificially
produced to capture the fined-grained local traffic conditions, which
is however not comprehensive in characterizing the natural struc-
ture of the road network. More specifically, a trajectory naturally
consists of alternatively arranged links and intersections. The links
usually preserve static road characteristics, such as pavement type,
road width and road functional level [18], while the intersections
could provide valued information such as the waiting time, the
number of traffic lights, and the historical traffic volume. The link-,
intersection-, and segment-views work together to jointly depict
the underlying characteristics of the trajectory via a hierarchical
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Figure 1: A trajectory in the ETA application is commonly
represented by a segment sequence. In this work, we propose
to interpret trajectories jointly from the segment-, link-, and
intersection-views. The three views work together to provide
a comprehensive exploration of trajectories.

structure. That is, the link- and intersection-views characterize the
trajectory attributes from a coarse perspective; a link can be further
decomposed into several segments, and hence the segment-view
representation models the spatial dependencies at a fine granularity.

It is a nontrivial task to integrate the above three views effec-
tively and efficiently. On the one hand, an intuitive way is to roughly
approximate the link-view traffic factors using the segment-view
representation directly instead of developing a higher-level repre-
sentation specifically [9, 26, 42]. However, without explicitly model-
ing the link-view characteristics, existing studies can hardly model
the coherent consistency across segments within the same links.
On the other hand, in real scenarios, the numbers and attribute
types of segments and intersections are naturally inconsistent. As
such, it is hard to jointly model these two views in a single-module
network, and the intersection information is therefore largely ig-
nored [7, 18, 42] or oversimplified [21, 23, 40]. This may lead to
serious representation deficiency since the travel time is strictly
influenced by the intersection conditions in practice. For example,
the waiting time may accumulate quickly on urban roads where
intersections are densely distributed [47].

To fix the above-mentioned problems, it is highly motivated to
simultaneously utilize the segment-, link-, and intersection-views
in an organic manner for efficiently interpreting the trajectories. We
thus propose aHierarchical Self-Attention Network for Estimating
the Time of Arrival (HierETA). Specifically, the segment-view
representation enables the flexibility in modeling the local traffic
conditions. Then, as some inherent trajectory attributes are pre-
served within a link, we use the link-view representation to share
these common attributes. Meanwhile, the intersections are used to
elegantly model the indirect factors, e.g., the waiting time caused
by complex factors. In contrast to simply integrating the link and
intersection features by pending them on the traditional segment-
view representation, HierETA exploits the hierarchical relationship
among the three views to portray the underlying road structure.
The main contributions of HierETA are summarized as follows:

• As far as we know, this is the first work that explicitly
represents trajectories on the road network using multi-
view representation learning. The proposed hierarchical

self-attention network organizes the segment-, link-, and
intersection-views efficiently according to their natural rela-
tionships.

• We design an adaptive self-attention network to jointly lever-
age the global and local patterns for spatio-temporal de-
pendency modeling within the multi-view representation
framework.

• A hierarchy-aware attention decoder is devised to estimate
the travel time using the learned context features from dif-
ferent granularities, being capable of balancing the segment,
link, and intersection features.

• We evaluate the performance of HierETA on two large-scale
datasets fromDidi Chuxing with over tenmillion trajectories.
Experimental results demonstrate the superiority of HierETA
over the state-of-the-arts.

The rest of the paper is organized as follows. Section 2 reviews
the related works. Section 3 outlines the preliminary concepts and
formulates the ETA problem. Section 4 details the structure of
the proposed HierETA. The experimental results and analysis are
presented in Section 5. Finally, Section 6 concludes the paper.

2 RELATEDWORKS
2.1 Trajectory Data Mining
Trajectory data is a fundamental component of the intelligent trans-
portation systems, and is commonly seen in many traffic-related
applications, such as traffic flow prediction [5, 20, 25], travel time es-
timation [38, 42], trajectory recovery and inference [15, 34, 36, 44].
Generally, the trajectory data shows rich spatial-moving patterns
and explicitly provides structural constraints and traffic seman-
tics of road networks [51]. Recently, the graph-structured data has
been extensively investigated as well [3, 7, 19, 50]. For instance,
GMAN [50] employs a graphmulti-attention structure to extract the
spatial and temporal relationships. However, graph representation
learning generally suffers from the negative impact from irrelevant
spatial neighboring regions, resulting in error propagation espe-
cially when the involved area grows larger [28]. This way, graph
modeling is limited to process only narrow neighboring regions
and falls short on developing large-scale urban-wise systems [7].

2.2 Estimating the Time of Arrival
The task of estimating the time of arrival has been studied for
decades. Existing ETA models chiefly fall into two categories: the
origin-destination methods and route-based methods.

The origin-destination methods make predictions based on ex-
isting trips with similar origins and destinations. As examples,
TEMP [41] calculates the weighted average of neighboring trips to
estimate the travel time of a query trip; T-drive [48] captures the
dynamic traffic patterns by a time-dependent land-mark graph, and
then estimates the distribution of travel time between two land-
marks by clustering; the work in [1] introduces a dynamic Bayesian
network to model traffic congestion state of various road segments
and searches for optimal concatenation of these segments to predict
the travel time. However, algorithms in this category usually ignore
the informative route attributes and hence are inadequate to model
the complex spatio-temporal features.
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The route-based methods further comprise the segment aggrega-
tion methods and deep learning methods. Among them, the former
separately consider the travel time of segments and intersections.
To be specific, SMA [21] models the correlation across road seg-
ments with a spatial-moving average structure, while the model
in [43] uses the support vector regression to predict the travel time.
The relationship between road segments is considered in [46] and
a spatio-temporal Hidden Markov model is introduced to obtain
the correlations among adjacent segments. Though intuitive, these
methods may encounter the serious error accumulation problem
without modeling the spatio-temporal correlation of the segments.

The deep learning methods have received particular attention
and achieved considerable improvements in recent years. They gen-
erally focus on modeling the spatial and temporal dependencies
of the road network so as to improve the modeling accuracy. For
instance, DeepTTE [40] transforms trajectories into raw GPS se-
quences and utilizes geo-convolutional network and LSTM to learn
the spatio-temporal dependencies; WDR [42] and its variant [38]
adopt a wide-deep-recurrent network to capture the contextual in-
formation of route attributes; ConSTGAT [7] and CompactETA [9]
explore the joint relations of spatial and temporal information using
the graph attention network; the work in [23] proposes a CNN to
integrate the trajectory data with the information of morphologi-
cal layout images, providing rich information on the surrounding
environments; DeepGTT [26] uses a deep generative model for
learning the distribution of travel time; HetETA [18] learns the rep-
resentation of spatio-temporal information using a multi-relational
network; TTPNet [37] extracts the travel speed and representa-
tion of road network from historical trajectories based on tensor
decomposition and graph embedding.

Howerver, none of existing methods take into account the multi-
view representation of the trajectory, and hence suffer the repre-
sentation deficiency.

2.3 Self-Attention Network
The recent development of the self-attention network [39] has estab-
lished the state-of-the-art benchmarks and attracted lots of interests,
owning to its high efficiency in modeling long-term dependencies
and the ability in parallel computation. Self-attention deals with
the inner-dependencies within a sequence, and thus is able to learn
the sequential patterns and internal correlations. Specifically, an
input sequence 𝐻 = {𝐻1, ..., 𝐻𝑛} is treated as a bag-of-word tokens.
Formally,𝐻 is first projected into three matrices: queries𝑄 ∈ R𝑛×𝑑 ,
keys 𝐾 ∈ R𝑛×𝑑 , and values 𝑉 ∈ R𝑛×𝑑 by

𝑄,𝐾,𝑉 = 𝐻𝑊𝑄 , 𝐻𝑊𝐾 , 𝐻𝑊𝑉 , (1)

where {𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 } ∈ R𝑑×𝑑 are trainable parameters. Then, the
output states are calculated by attending to any two tokens as

𝐻̂ = softmax(𝑄𝐾
𝑇

√
𝑑

)𝑉 , (2)

where
√
𝑑 is the scaling factor.

In this work, we design an adaptive self-attention network to
explicitly capture the spatio-temporal dependencies of the trajec-
tory using multi-view sequences. With carefully designed network

structures, our model is able to adaptively capture the dependencies
over the segment-, link-, and intersection-views.

3 PROBLEM DEFINITIONS
In this section, we first introduce the multi-view representation of
trajectories and then formally formulate the ETA task.

Multi-View Trajectory Representation. In this study, a tra-
jectory 𝑇 is characterized by three views: the segment view 𝑇𝑆 =

{𝑠𝑖 𝑗 }𝑚,𝑛𝑖=1, 𝑗=1, the link view 𝑇𝐿 = {𝑙𝑖 }𝑚𝑖=1, and the intersection view
𝑇𝐼 = {𝑐𝑖 }𝑚𝑖=1, where 𝑛 is the number of segments within a link
and𝑚 denotes the number of links and intersections. Each view
is packed with a set of view-specific attributes, such as the length,
width of the segment view, and the historical traffic volume of the
intersection view. Besides, a trajectory also contains some external
factors such as the day of week, the start timeslot, the driving style
and the total travel distance. The external factors are also involved
in our task.

Estimating the Time of Arrival. In this study, the goal of ETA
is to estimate the duration time of a query trajectory 𝑇𝑞 by jointly
modeling the spatio-temporal dependencies of the road network.
We assume that the query trajectory is specified by the user or
generated by the route planing applications.

4 MODEL ARCHITECTURE
In this section, we describe the architecture of HierETA. As shown
in Figure 2, we introduce a hierarchical self-attention network
for multi-view trajectory representation. The learned multi-view
trajectory features work together to comprehensively model the un-
derlying structure of trajectories on the road network for travel time
estimation. More specifically, an attribute feature extractor is de-
signed as a pre-requisite component for subsequent modules. Then,
we use a segment encoder to describe the local traffic conditions at
a fine-scale, while the joint link-intersection encoder captures the
trajectory attributes from a coarse perspective. Finally, a hierarchy-
aware attention decoder is introduced to generate context features
for travel time estimation. We will elaborate the modules of Hi-
erETA as follows.

4.1 Attribute Feature Extractor
We first introduce an attribute feature extractor to learn the multi-
view contextual features, i.e., the segment, link, and intersection
attributes. The attributes in all views are either continuous or cate-
gorical. We apply the Z-score method to the continuous attributes
for data normalization and utilize the embedding strategy [10] to
learn the features of categorical ones, and then concatenate the
associated vectors as the view-specific feature embedding. Here,
the features of the segment-, link- and intersection-views are repre-
sented as {𝑥𝑠

𝑖 𝑗
}𝑚,𝑛
𝑖=1, 𝑗=1, {𝑥

𝑙
𝑖
}𝑚
𝑖=1 and {𝑥

𝑐
𝑖
}𝑚
𝑖=1, respectively. Physically,

the segment-view feature models the spatial dependencies at a fine
granularity, while the link- and intersection-views characterize the
trajectory attributes from a coarse perspective. Besides, the exter-
nal impact factors are shared across the whole trajectory and are
represented as 𝑥𝑟 .

In the following subsections, attributes from three views are
fully exploited for trajectory representation.
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Figure 2: The framework of HierETA. The proposed model
is divided into three submodules: an attribute feature ex-
tractor, a hierarchical self-attention network comprising a
segment encoder and a joint link-intersection encoder, and a
hierarchy-aware attention decoder.

4.2 Hierarchical Self-Attention Network for
Multi-View Trajectory Representation

To effectively interpret the underlying structure of the trajectories
frommultiple views, we design a hierarchical self-attention network
comprising a segment encoder and a joint link-intersection encoder.

Segment Encoder. Given the attribute feature 𝑥𝑠
𝑖 𝑗
of segment

𝑠𝑖 𝑗 , we first stick 𝑥𝑟 to 𝑥𝑠𝑖 𝑗 so as to take the external impact factors
into consideration. Then, we employ a BiLSTM [17] to sequentially
encode the 𝑗-th concatenated feature vectors1 [𝑥𝑠

𝑗
|𝑥𝑟 ] and is repre-

sented as 𝐻𝑠
𝑗
by concatenating the forward and backward hidden

states.
As previously mentioned, the accurate estimation of travel time

requires the information from complex spatio-temporal dependen-
cies of the road network. To enhance the capability in modeling the
spatial dependencies, we design an adaptive self-attention network
to capture the dependencies over different segments by jointly lever-
aging the global structural and local semantic of traffic patterns.
Given a matrix whose rows correspond to a sequence of segment-
view LSTM states, denoted by 𝐻𝑠 = [𝐻𝑠1 , . . . , 𝐻

𝑠
𝑛] ∈ R𝑛×𝑑𝑠 , we

first project it into three matrices: queries 𝑄 , keys 𝐾 , and values 𝑉
according to Eq. (1). The representations of segments are learned
by explicitly attending to all segments within the same link. Thus,
the segment encoder naturally follows a global structural pattern
over the entire link. Specifically, we define 𝐺𝑃 𝑗 ∈ R𝑛 to represent
the similarity between the 𝑗-th segment and all segments in the
same link as

𝐺𝑃 𝑗 =
𝑄 𝑗𝐾

𝑇

√
𝑑𝑠

, (3)

where
√
𝑑𝑠 is the scaling factor.

1In the following of this subsection, we omit the link-view subscript 𝑖 for concise
description.

However, the global structural pattern may endure problems in
practical tasks. For example, the congestion propagation after traffic
accidents may significantly affect the road conditions and cause
similar congestion levels to the adjacent segments. To accurately
evaluate the effect from neighboring segments, we then introduce
a local semantic pattern 𝐿𝑃 𝑗 as

𝐿𝑃 𝑗 (𝑘) =
{
𝐺𝑃 𝑗 (𝑘), | 𝑗 − 𝑘 | ≤ 𝜔
−∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (4)

where 𝜔 is the single-sided window scale of neighboring segments,
and thus the receptive field of the local segment pattern is 𝜑 =

2𝜔+1; 𝐿𝑃 𝑗 (𝑘) and𝐺𝑃 𝑗 (𝑘) represent the local and global similarities
between the 𝑗-th and 𝑘-th segments. Conceptually, the strength of
local pattern is set to the same as the global pattern when the 𝑘-th
segment locates within the receptive field of the 𝑗-th segment, and
is ignored otherwise. Using this strategy, both the upstream and
downstream spatial dependencies can be captured.

By jointly considering the global and local patterns, the segment
encoder is able to deal with the complex real-world traffic conditions
within each link. To leverage both the global structural and local
semantic patterns, we adopt a gating mechanism that adaptively
aggregates them as

𝐹𝑠𝑗 = (1 − 𝑧 𝑗 ) ⊙ 𝐴𝑡𝑡 (𝐺𝑃 𝑗 ) + 𝑧 𝑗 ⊙ 𝐴𝑡𝑡 (𝐿𝑃 𝑗 ), (5)

where ⊙ represents the element-wise product;𝐴𝑡𝑡 (𝐺𝑃 𝑗 ) and𝐴𝑡𝑡 (𝐿𝑃 𝑗 )
respectively represent the global and local segment attentions;
𝐴𝑡𝑡 (·) denotes the operation of softmax(·)𝑉 according to Eq. (2).
The gating scalar 𝑧 𝑗 , conditioned on 𝐻𝑠𝑗 , 𝐴𝑡𝑡 (𝐺𝑃 𝑗 ) and 𝐴𝑡𝑡 (𝐿𝑃 𝑗 ), is
learned via

𝑧 𝑗 = 𝜎 (𝑊ℎ𝐻𝑠𝑗 +𝑊𝑔𝐴𝑡𝑡 (𝐺𝑃 𝑗 ) +𝑊𝑙𝐴𝑡𝑡 (𝐿𝑃 𝑗 ) + 𝑏𝑧), (6)

where𝑊ℎ ,𝑊𝑔,𝑊𝑙 and 𝑏𝑧 are learnable parameters; 𝜎 (·) denotes
the sigmoid activation. Then we employ a residual connection [16]
and a layer normalization [2] to produce the segment-view context
features {ℎ𝑠

𝑗
}𝑛
𝑗=1. By efficiently exploiting the global structural and

local semantic patterns, the learned context features canwell exhibit
the rich information from the segment-view.

Note that the goal of segment encoder is to capture the spatio-
temporal dependencies of segments in the same link and it is reason-
able to expect that all links are endowed with a similar dependency
structure. Therefore, the learnable parameters of the segment en-
coder are shared across all links and trained in parallel, which
not only dramatically reduces the amount of parameters but also
improves the computation efficiency of our HierETA model.

Joint Link-Intersection Encoder. Although the segment-view
representation is widely used in existing works, it fails to model
the consistency shared within the same link and hence the link-
view consistency is discarded. Our hierarchical network solves
this problem by introducing a coarse-scale representation as the
complement of the segment-view representation. Besides, as links
and intersections appear alternatively, we introduce a joint link-
intersection encoder to seamlessly integrate these two views.

Let the learned context features of segments from the 𝑖-th link
be {ℎ𝑠

𝑖 𝑗
}𝑛
𝑗=1, we apply the vanilla attention to represent the link-

view feature as 𝑥𝑙
𝑖
=

∑𝑛
𝑗=1 𝛾𝑖 𝑗ℎ

𝑠
𝑖 𝑗
. Physically, it compresses the

segment-view feature into a compact representation by exploring
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the importance of different segments. The weight coefficient 𝛾𝑖 𝑗 is
calculated as 𝛾𝑖 𝑗 = softmax𝑗 (𝑊𝛾ℎ𝑠𝑖 𝑗 +𝑏𝛾 ), where𝑊𝛾 and 𝑏𝛾 are the
linear transformation matrix and bias term respectively.

Let the features of links and intersections be {𝑥𝑙
𝑖
}𝑚
𝑖=1 and {𝑥

𝑐
𝑖
}𝑚
𝑖=1

respectively. Following the strategy in designing the segment en-
coder, we first employ two BiLSTMs to respectively encode the links
and intersections, and represent the 𝑖-th hidden states of BiLSTMs
as 𝐻 𝑙

𝑖
and 𝐻𝑐

𝑖
respectively. Afterward, we combine these two fea-

tures as 𝐻̂ 𝑙
𝑖
= [𝐻 𝑙

𝑖
|𝐻𝑐
𝑖
]. The integrated representation 𝐻̂ 𝑙

𝑖
therefore

naturally reveals the intrinsic structure of trajectory on the road
network where the link and intersection appear alternatively. To
capture the spatio-temporal dependencies across different links and
intersections, the joint link-intersection encoder also includes a
self-attention layer, a residual connection and a layer normalization
to obtain the joint context features {ℎ𝑙

𝑖
}𝑚
𝑖=1. Note that we eliminate

the local pattern in the joint link-intersection encoder, as the traffic
impacts between adjacent links are much weaker and sparser, and
hence the model may be prone to overfitting.

Thanks to the novel hierarchical self-attention network, our
HierETA model is able to simultaneously obtain the segment-view
context feature that captures the local traffic conditions and the
joint link-intersection context feature that preserves the common
road attributes. The learned context features from three views work
together to comprehensively model the underlying structure of
trajectories on the road network such that the trajectories are well
explored for travel time estimation.

4.3 Hierarchy-Aware Attention Decoder
In real scenarios, the spatio-temporal dependencies across different
sub-routes are highly dynamic and correlated, and the uncertainty
of travel time estimation is closely related to the critical compo-
nents. For example, if a trajectory contains busy intersections or
crowded segments, it is justified that more attention should be paid
to these components. As such, treating the features of all sub-routes
equally is unfair in practice. We hence propose a hierarchy-aware
attention decoder to jointly leverage the multi-view context fea-
tures. Formally, the final representation of a route R is defined as a
combination of the context features as

R = (1 − 𝜆)
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝛼𝑖 𝑗ℎ
𝑠
𝑖 𝑗 + 𝜆

𝑚∑︁
𝑖=1

𝛽𝑖ℎ
𝑙
𝑖 , (7)

where ℎ𝑠
𝑖 𝑗
and ℎ𝑙

𝑖
respectively represent the context feature of seg-

ment 𝑠𝑖 𝑗 and joint link-intersection 𝑙𝑖 ; 𝛼𝑖 𝑗 and 𝛽𝑖 denote the scalar
weights of the corresponding attentions; 𝜆 is the weighting pa-
rameter that linearly balances the fine- and coarse-scale features.
Moreover, the driving conditions of a link during a limited period
are often consistent owning to the relatively unchanged static road
attributes. Thus, separately processing each segment without con-
sidering the link-view correlation is problematic as it lacks the
feedback from the link-view consistency. To solve this issue, we de-
sign an attention guidance that adopts the link-view consistency to
further adjust the segment-view attention. First, the scalar weight
𝛽𝑖 of the link-view attention is set to

𝛽𝑖 = softmax
𝑖

(𝑓 𝑙 (ℎ𝑙𝑖 , 𝑥
𝑟 )), (8)

where 𝑓 𝑙 (·) incorporates both the link-view spatio-temporal fea-
tures ℎ𝑙

𝑖
and external impact factors 𝑥𝑟 . It is formulated as

𝑓 𝑙 (ℎ𝑙𝑖 , 𝑥
𝑟 ) = 𝑣𝑇 tanh(𝑤1ℎ

𝑙
𝑖 +𝑤2𝑥

𝑟 + 𝑏), (9)

where 𝑣 ,𝑤1,𝑤2 and 𝑏 are the trainable parameters. Then, the scalar
weight 𝛼𝑖 𝑗 of the segment-view attention guided by link-view con-
sistency is updated as

𝛼𝑖 𝑗 = softmax
(𝑖, 𝑗)

(𝛽𝑖 𝑓 𝑠 (ℎ𝑠𝑖 𝑗 , 𝑥
𝑟 )). (10)

Conceptually, employing the hierarchy-aware attention decoder,
we can adaptively select the most relevant features from differ-
ent representation granularities. Finally, a fully-connected layer
is applied to the representation R for producing the travel time
prediction 𝑌 ∈ R𝑁×1, where 𝑁 denotes the total number of routes.

During training, HierETA is trained end-to-end via back propaga-
tion by minimizing the mean absolute error between the predicted
value 𝑌 and the ground truth 𝑌 as

L(Θ) = 1
𝑁

∑︁𝑁

𝑘=1

��𝑌𝑘 − 𝑌𝑘 �� , (11)

where Θ denotes all learnable parameters in HierETA.

5 EXPERIMENTS
In this section, we examine the performance of HierETA on two
large-scale datasets from Didi Chuxing. The sensitivity of key pa-
rameters and the ablation study are also provided for comprehen-
sive understanding. The source codes are made publicly available.2

5.1 Datasets
We perform experiments on two real-world datasets collected in
Beijing from Aug. 1st to 27th in 2020 and in Guangzhou from Jun.
1st to 30th in 2021. All GPS trajectories are mapped into the road net-
work by utilizing the hidden markov map matching algorithm [30]
to get the route attributes. In both experiments, we transform the
trajectory data into segment sequences. The segments within two
adjacent intersections are further grouped as a link. In our study,
we aggregate the traffic data into 5-minutes intervals, which means
there are 288 timeslots for one day. To avoid the artifacts caused
by the abnormal cases in raw data, we remove the data with very
short travel time (< 60s), extremely high travel speed (> 120km/h),
and the number of segments in each link and the number of links
in a route are restricted to 3-50 and 3-30 to fit the general cases. We
extract the trips occupied by passengers as valid trajectories. Ta-
ble 1 summarizes the description and statistics of the two datasets.
Figure 3 depicts the travel time distributions on probability density
functions (PDFs) and cumulative distribution functions (CDFs) of
these two datasets.

5.2 Competitors
To demonstrate the effectiveness of HierETA, we compare it with
the following competitors:

• Route-ETA simply sums up the historical average travel
time at each road segment and the delay time at each in-
tersection for the overall travel time prediction of a query
trajectory.

2https://github.com/YuejiaoGong/HierETA
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Table 1: The description and statistics of the datasets.

Dataset Beijing Guangzhou
training set 8.1-8.19 (2020) 6.1-6.22 (2021)
validation set 8.20 (2020) 6.23 (2021)
test set 8.21-8.27 (2020) 6.24-6.30 (2021)
number of trips 8, 170, 000 2, 570, 000
# unique drivers 200, 000 76, 000
# timeslots per day 288 288
travel time mean 892.98s 768.61s
travel distance mean 5.50km 5.16km
# avg. links per trip 9.04 8.35
# avg. segments per trip 96.10 94.94
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Figure 3: The distributions of travel time (seconds) on Beijing
and Guangzhou datasets.

• MlpTTE applies a 5-layer perceptron with ReLU activa-
tion [13] to estimate the travel time. We set the input of
MlpTTE to be the same with that of HierETA and embed
the discrete features into the same dimensions as HierETA.
Note that MlpTTE cannot handle variable-length sequences
directly. Here, we uniformly sample each trajectory to a fixed
length of 128 segments.

• DeepTravel [49] captures different dynamics like driving
state features, short-term and long-term traffic features for
estimating the travel time of different grids, and introduces
a dual interval loss, working as an auxiliary supervision,
to fully leverage the temporal information of the trajectory
data.

• DeepTTE [40] transforms trajectories into raw GPS se-
quences and utilizes geo-convolutional networks and recur-
rent neural networks to learn the complex spatio-temporal
dependencies. It applies a multi-task learning component
to estimate the travel time of the entire path and each local
path simultaneously.

• WDR [42] formulates ETA as a regression problem and in-
troduces a wide-deep-recurrent architecture to respectively
handle high dimensional sparse features, the real value fea-
tures and the temporal road segment features. In the ex-
periments, we set the dimensions of hidden states in the
recurrent and deep modules to 128.

• DeepGTT [26] develops a deep generative model for travel
time distribution learning. It employs spatial smoothness
embeddings and amortization to deal with the data sparsity

dilemma. And a convolutional neural network based rep-
resentation learning is utilized to capture real time traffic
conditions.

• ConSTGAT [7] is a spatial-temporal graph neural network
that adopts the graph attention mechanism to exploit the
joint dependencies of spatial and temporal dynamics and
applies convolutions to capture the contextual information
of trajectories.

• CoDriver ETA [38] addresses the driver data sparsity prob-
lem by transferring knowledge from dense drivers to sparse
ones under a multi-task learning framework. It adopts a
triplet loss to measure the similarity between different dri-
vers’ driving preference.

• TTPNet [37] exploits a fast non-negative tensor decom-
position algorithm to restore the missing travel speed and
extracts the long-term ans short-term travel speed features
via a CNN-RNN model. Then it portrays the representation
of road network from historical trajectories based on graph
embedding.

5.3 Experimental Settings
We initialize the weight parameters of HierETA via Xavier [12]
and set the bias to zero. HierETA is trained over 50 epochs until
convergence with a batch size of 256. The Adam optimizer [22]
is utilized with a fixed learning rate of 1e-4 and a weight decay
of 1e-5 as a regularization term to prevent over-fitting. For each
competing method, we use the training set to train the model,
select the model with the best MAPE on the validation set, and
evaluate the performance using the test set. We repeat each experi-
ment for five times except the statistics-based approach Route-ETA
and report the mean and the standard deviation of different runs.
The categorical external factors, i.e., weekID, timeID, driverID, are
embedded into 3-, 5-, 16-dimensional spaces. The embedding di-
mensions of segment-view attributes, segID and laneNum, are 16
and 2. The intersection-view attribute crossID is projected into a
15-dimensional space. The segment number 𝑛 and the link num-
ber 𝑚 are set to 50 and 30 respectively. In the segment encoder,
the dimension of the hidden states in bidirectional LSTM is 128.
And the sizes of LSTM hidden states for encoding links and inter-
sections are 192 and 64, respectively. For both segment- and joint
link-intersection self-attentions, the parameter sizes are fixed to
256. All experiments are implemented in Python using Pytorch
toolbox [31] with a NVIDIA RTX 3090Ti GPU with 24GB RAM.
The platform runs on Ubuntu 16.04 OS with Intel(R) Xeon(R) CPU
E5-2682 v4 @ 2.50GHz.

We utilize four metrics for performance evaluation, including
mean absolute error (MAE), root mean squared error (RMSE), mean
absolute percentage error (MAPE), and satisfaction rate (SR), similar
to existing approaches [23]. Specifically, SR refers to the fraction
of trips with error rates less than 10% and a higher SR indicates
better performance and customer satisfaction. Their definitions are
as follows:
Mean Absolute Error (MAE),

𝑀𝐴𝐸 =
1
𝑁

𝑁∑︁
𝑘=1

|𝑦𝑘 − 𝑦𝑘 |
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Table 2: Overall performance comparison of HierETA and the competitors on Beijing and Guangzhou datasets. All the results
are better with smaller values except the SR metric.

Dataset Beijing Guangzhou
Metrics MAE(s) RMSE(s) MAPE(%) SR(%) MAE(s) RMSE(s) MAPE(%) SR(%)

Route-ETA 159.85 254.39 17.815 37.575 142.74 210.70 17.611 33.101
MlpTTE 134.48±1.67 228.52±6.54 14.678±0.19 44.248±1.03 126.33±0.98 212.62±5.68 15.765±0.74 42.244±1.46

DeepTravel 123.28±1.09 189.09±0.35 14.442±3.99 44.322±0.94 115.20±0.76 181.10±3.97 14.498±0.20 42.937±0.55
DeepTTE 112.77±0.87 172.83±2.12 12.816±0.04 47.644±0.35 102.50±0.60 163.77±1.40 13.688±0.21 47.639±0.27
WDR 107.46±1.13 165.06±1.78 12.549±0.16 49.786±0.48 98.55±0.96 162.80±2.26 12.526±0.19 50.009±0.32

DeepGTT 118.33±1.04 184.69±1.15 13.612±0.42 46.734±0.65 107.68±0.85 170.08±3.27 14.120±0.21 45.908±0.51
ConSTGAT 110.43±0.76 169.92±1.05 12.703±0.14 49.106±0.07 102.52±0.94 165.88±1.77 13.050±0.16 48.063±0.36

CoDriver ETA 106.62±0.74 167.06±2.71 12.125±0.07 50.624±0.08 97.78±0.97 160.12±2.69 12.511±0.13 49.974±0.43
TTPNet 104.91±0.67 163.25±1.41 12.004±0.11 51.524±0.36 97.96±0.70 156.92±1.76 12.802±0.08 49.688±0.37
HierETA 99.61±0.66 153.62±1.20 11.673±0.12 53.153±0.22 94.62±0.58 149.64±2.17 12.275±0.10 51.339±0.17
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Figure 4: Performance of HierETA and its competitors on
the MAPE metric for trips with varying origin-destination
distances.

Root Mean Squared Error (RMSE),

𝑅𝑀𝑆𝐸 =

√√√
1
𝑁

𝑁∑︁
𝑘=1

(𝑦𝑘 − 𝑦𝑘 )2

Mean Absolute Percentage Error (MAPE),

𝑀𝐴𝑃𝐸 =
1
𝑁

𝑁∑︁
𝑘=1

����𝑦𝑘 − 𝑦𝑘𝑦𝑘

���� × 100%

and Satisfaction Rate (SR),

𝑆𝑅 =
1
𝑁

𝑁∑︁
𝑘=1

(����𝑦𝑘 − 𝑦𝑘𝑦𝑘

���� ≤ 10%
)
× 100%

where 𝑦𝑘 and 𝑦𝑘 denote the ground truth and the predicted value,
respectively.

5.4 Experimental Results and Analysis
Table 2 presents the comparison between HierETA and its competi-
tors. The naive baselines Route-ETA simply utilizes the historical
traffic speed, and MlpTTE possesses a multilayer perceptron that
fails to characterize the valued spatio-temporal information. As
such, these twomethods produce unsatisfactory results. DeepTravel

performs better as it considers the contextual information, while
only applying BiLSTM is incapable of modeling the complex spatial
dependency of traffic data. Other competitors show advanced per-
formance. For example, ConstGAT considers the graph structures
of the road network to exploit the joint relations of spatio-temporal
information. And TTPNet restores the valued historical traffic speed
to alleviate the intractable data sparsity problem and utilizes graph
embedding to represent the road network structure. Compared to
the best-performing competitors, our model HierETA shows sig-
nificantly better performance on all evaluation metrics. On the
Beijing dataset, HierETA outperforms the best competitor TTPNet
by reducing the MAE from 104.91 to 99.61 seconds on MAE. On
the Guangzhou dataset, our model also surpasses TTPNet by 3.34
seconds on MAE and improves the satisfaction rate from 49.69% to
51.34%, achieving 3.32% relative improvement.

We also visualize the prediction error of HierETA with five best-
performing competitors on the Beijing dataset by considering trips
with varying distances. To this end, we group the trips in test set
into subgroups by their lengths in 5km step, and study the perfor-
mance of different models on these subgroups. As shown in Figure 4,
HierETA obtains significant advantages in all scenarios, especially
in the case of long trajectories, more obvious performance improve-
ments have been achieved. That is, interpreting the trajectory from
multiple views effectively portrays the hierarchical structure of
road network and eases the error propagation for estimating the
travel time.

In general, HierETA is effective for explicitly learning both struc-
tural and semantic traffic characteristics using the hierarchical self-
attention network and multi-view trajectory representation. By hi-
erarchically modeling the multi-view trajectory features, our model
is able to learn long-range spatio-temporal dependencies from dif-
ferent granularities. Compared with the single-view segment rep-
resentation, our hierarchical structure is more interpretable and
capable of modeling the underlying road network structure.

5.5 Model Analysis
We also analysize the key model parameters and conduct ablation
study to provide a comprehensive understanding of HierETA.
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Figure 5: Ablation study ofHierETAw.r.t different (a) window
sizes 𝜑 of local attention and (b) coefficients 𝜆. We set the
default values as 𝜑 = 3 and 𝜆 = 0.4, respectively.

Table 3: Ablation results of HierETA and its variants on Bei-
jing and Guangzhou datasets.

Dataset Beijing Guangzhou
Metrics MAE(s) MAPE(%) MAE(s) MAPE(%)
HierETA 99.61 11.673 94.62 12.275
w/o lcoal@e 100.64 11.909 95.08 12.455
w/o global@e 102.51 11.716 96.72 12.734
w/o guide@d 101.90 12.043 97.40 12.447
w/o cross info. 101.69 11.992 97.03 12.545
w/o hier. 103.55 12.243 98.90 13.041

5.5.1 Parameter Analysis. To examine the performance of HierETA
over different settings of parameters, we first analyze the impact of
the local segment attention under different window sizes 𝜑 on the
Beijing dataset. As plotted in Figure 5(a), compared to the setting
that no adjacent segment is explored, i.e., 𝜑 = 1, HierETA generally
achieves better performance by introducing neighboring segments,
i.e., 𝜑 > 1, and the best result is obtained when 𝜑 = 3. That is,
the local segment attention shows the best empirical performance
when only the nearest segments are considered. The performance
gradually decreases with the increase of window sizes 𝜑 . This ob-
servation may come from the fact that, when the attention scope
is enriched, the correlation between adjacent segments slightly
decreases while the modeling uncertainty increases.

We also evaluate the importance of leveraging the multi-view
features by varying 𝜆 from 0 to 1, the results are recorded in Fig-
ure 5(b). We find that high error rates are observed when only
the segment- or link-intersection attention is applied (𝜆 equals to
0 or 1 respectively). And HierETA achieves consistently satisfac-
tory results when 𝜆 locates within [0.2, 0.8], clearly revealing the
robustness when jointly leveraging the multi-view context features.

5.5.2 Ablation Study. We provide the ablation tests to examine the
effectiveness of key modules in HierETA. Five variants are consid-
ered by individually eliminating the local (w/o local@e) or global
(w/o global@e) attentions in the segment encoder, the attention
guidance in the hierarchy-aware attention decoder (w/o guide@d),
the intersection information (w/o cross info.), and the hierarchical
structure (w/o hier.).

• w/o lcoal@e: The local attention in encoder is removed
to verify the effectiveness for modeling the semantic traffic
condition.

• w/o global@e: This model does not consider the global
attention to verify the necessity of extracting the structural
traffic pattern.

• w/o guide@d: The attention guidance assisting in decoder
is removed, lacking the feedback from the link-view consis-
tency as in Eq. (10).

• w/o cross info.: Only segment-view and link-view repre-
sentations of trajectory are applied for modeling the spatio-
temporal dependency.

• w/ohier.: In this case, we eliminate the hierarchical structure
by removing the joint link-intersection encoder.

Table 3 presents the experimental results with HierETA as a
comparison. We find that HierETA consistently outperforms all
variants, indicating the importance of these modules. The result
shows that HierETA performs better than both variants that elim-
inating local and global attentions, which is contributed to the
introduction of the global structural and local semantic patterns.
The performance of variant without attention guidance is also infe-
rior to that of HierETA, as it is incapable of balancing the segment,
link, and intersection features simultaneously. Note that significant
declines are witnessed without the hierarchical structure. Specif-
ically, after introducing the hierarchical representation, HierETA
decreases the MAE from 103.55 to 99.61 and 98.90 to 94.62 on Bei-
jing and Guangzhou datasets, with a relative improvement of 3.8%
and 4.3% respectively. This validates the great benefits of explicitly
representing trajectory on the road network using multi-view rep-
resentation learning and hierarchically organizing the segment-,
link-, and intersection-views for the ETA task.

6 CONCLUSION
In this work, we propose to comprehensively interpret trajectories
from the segment-, link-, and intersection-views and accordingly
design a novel hierarchical self-attention network HierETA to learn
the underlying structure of trajectories on the road network. Tak-
ing the complex real-world traffic conditions into consideration,
HierETA adaptively integrates the global and local patterns for
spatio-temporal dependency modeling within the multi-view rep-
resentation framework. In addition, we devise a hierarchy-aware
attention decoder that adaptively balances the importance of multi-
view context features. Experiments on two large-scale real-world
datasets from Didi Chuxing show that HierETA achieves the state-
of-the-art performance. Moreover, the novel multi-view trajectory
representation has shown great promise in practice, and hence
opens up new opportunities in developing advanced trajectory data
mining models.
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