Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

2-2021

Multi-decoder attention model with embedding glimpse for
solving vehicle routing problems

Liang XIN
Wen SONG

Zhiguang CAO
Singapore Management University, zgcao@smu.edu.sg

Jie ZHANG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Databases and Information Systems Commons

Citation

XIN, Liang; SONG, Wen; CAOQ, Zhiguang; and ZHANG, Jie. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. (2021). Proceedings of the 35th AAAI Conference on
Artificial Intelligence, Virtual event, 2027 February 2—9. 12042-12049.

Available at: https://ink.library.smu.edu.sg/sis_research/8135

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8135&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

Multi-Decoder Attention Model with Embedding Glimpse for Solving Vehicle
Routing Problems

Liang Xin,'* Wen Song,”* Zhiguang Cao,’" Jie Zhang'
'Nanyang Technological University, Singapore
2Shandong University, China
3National University of Singapore, Singapore
XINLO003 @e.ntu.edu.sg, wensong @email.sdu.edu.cn, zhiguangcao @outlook.com, zhangj @ntu.edu.sg

Abstract

We present a novel deep reinforcement learning method to
learn construction heuristics for vehicle routing problems.
In specific, we propose a Multi-Decoder Attention Model
(MDAM) to train multiple diverse policies, which effectively
increases the chance of finding good solutions compared with
existing methods that train only one policy. A customized
beam search strategy is designed to fully exploit the diversity
of MDAM. In addition, we propose an Embedding Glimpse
layer in MDAM based on the recursive nature of construction,
which can improve the quality of each policy by providing
more informative embeddings. Extensive experiments on six
different routing problems show that our method significantly
outperforms the state-of-the-art deep learning based models.

Introduction

Routing problems, such as the Travelling Salesman Problem
(TSP) and Capacitated Vehicle Routing Problem (CVRP),
are a family of combinatorial optimization problems (COP)
that have extensive real-world applications in many domains
(Toth and Vigo 2014). Due to the combinatorial nature,
routing problems are NP-hard in general (Applegate et al.
2006). Exact approaches, such as branch-and-bound algo-
rithms (Fischetti, Toth, and Vigo 1994), have nice theoret-
ical guarantee of optimality, but the (worst-case) compu-
tation complexity is exponential. In contrast, approximate
algorithms guided by heuristics can find near-optimal solu-
tions with polynomial computation complexity, therefore are
often preferred, especially for large-scale problems.
Traditional approaches design hand-crafted rules as the
heuristics. Instead, as modern approaches, deep learning
models learn the heuristics from data samples (Bello et al.
2017; Dai, Dai, and Song 2016; Nazari et al. 2018; Kool,
van Hoof, and Welling 2019a; Chen and Tian 2019). Most
of these deep learning methods follow the encoder-decoder
structure, and learn construction heuristics by repeatedly
adding nodes (or locations) into an empty or partial solution
until completion. Particularly, the encoder maps the infor-
mation of nodes into feature embeddings, and the decoder

“Liang Xin and Wen Song contributed equally.

"Zhiguang Cao is the corresponding author.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

12042

predicts the probabilities of selecting each valid node at ev-
ery construction step. To improve solution quality, differ-
ent methods (e.g. sampling (Kool, van Hoof, and Welling
2019a) or beam searching (Nazari et al. 2018)) are used to
generate a set of solutions from the trained construction pol-
icy to get the best one.

Though showing promising results, existing works suffer
from two major limitations. First, the generated solutions
are not diverse enough. Intuitively, a more diverse set of
solutions could potentially lead to better ones. This is be-
cause for VRP and many other COPs, multiple optimal so-
lutions exist and trying to find different ones will increase
the chance of finding at least one. In addition, with the same
number of solutions, generating less diverse and partially
identical solutions will leave less space for the potentially
better ones. Existing methods train only one constructive
policy discriminatively, and the solutions are created using
sampling or beam search from this same policy. The only
source of diversity comes from the relatively deterministic
probability distribution, which is far from enough. The sec-
ond limitation, as pointed out in (Xin et al. 2020), is regard-
ing the training of construction policy itself. The construc-
tion process can be viewed as a sequence of node selection
sub-tasks, where the already visited node is irrelevant to the
future decisions. However, most existing models for learning
construction heuristic (Kool, van Hoof, and Welling 2019a;
Bello et al. 2017) use the same node embeddings to decode
at each step, without eliminating irrelevant nodes. Therefore,
the node embeddings are based on the original graph for the
whole task, not the graphs for each sub-task, and may dete-
riorate the quality of the trained policy.

In this paper, we address the above limitations simulta-
neously. First, to improve diversity, we propose the Multi-
Decoder Attention Model (MDAM) to train multiple con-
struction policies. It employs a Transformer (Vaswani et al.
2017) to encode the node information, and multiple iden-
tical attention decoders with unshared parameters to sam-
ple different trajectories. During training, each of the de-
coders learns distinct solution patterns, and is regularized by
a Kullback-Leibler divergence loss to force the decoders to
output dissimilar probability distribution of selecting nodes.
Based on MDAM, we propose a novel beam search scheme
where separate beams are maintained for each decoder. This

enables full utilization of the distinct patterns learned by
each decoder, and effectively keeps the diversity of solu-
tions. Secondly, to increase the quality of trained construc-
tion policies, we propose an Embedding Glimpse layer in
MDAM by exploiting the recursive nature of routing prob-
lems. As the visited nodes become unrelated to the future
decisions, we explicitly remove them in the top attention
layer of our encoder. Therefore the decoders will get more
informative embeddings for selecting the next node, hence
increase the quality of each single solution.

We would like to note that, rather than outperforming
those highly optimized solvers in general, we are here
to push the edge of deep learning model towards learn-
ing stronger heuristics for routing problems and potentially
other combinatorial problems with weak hand-designed
heuristics. Similar to (Kool, van Hoof, and Welling 2019a),
while focusing on TSP and CVRP, our method is flexible
and generally applicable to a wide range of routing prob-
lems with different constraints and even uncertainty. Exten-
sive experiment results on six routing problems well confirm
the effectiveness of increasing diversity and removing irrel-
evant nodes. More importantly, our model significantly out-
performs state-of-the-art deep reinforcement learning based
methods, and also demonstrates comparable or superior per-
formance to the traditional non-learning based heuristics and
sophisticated solvers in short inference time.

Related Works

Among existing models for learning construction heuristics,
Pointer Network (PtrNet) in (Vinyals, Fortunato, and Jaitly
2015) uses Long Short-Term Memory (LSTM) Networks
(Hochreiter and Schmidhuber 1997) as encoder and decoder
to solve TSP with supervised learning, hence limited to
small scale due to the expensive query for labels (optimal
solutions). In contrast, Bello et al. (2017) use REINFORCE
algorithm (Williams 1992) to train PtrNet. Without the need
for true labels, the model can be trained on TSP with larger
sizes. Instead of encoding nodes sequentially with LSTM in
PtrNet, Nazari et al. (2018) use permutation invariant lay-
ers to encode nodes and train this model for CVRP. They
also improve the solution quality using beam search to keep
track of the most promising solutions and choose the best
one. Kool, van Hoof, and Welling (2019a) adopt the Trans-
former model (Vaswani et al. 2017) to encode nodes and use
a pointer-like attention mechanism to decode. By sampling
1,280 solutions from the trained policy, this elegant model
achieves state-of-the-art results on several routing problems.

Some other works do not adopt the above encoder-
decoder structure. Dai et al. (2017) use Deep Q-Learning
algorithm to train a deep architecture over graph, i.e. Struc-
ture2Vec (Dai, Dai, and Song 2016), for several combina-
torial optimization problems including TSP. However, the
full connectivity makes the graph structure of TSP unimpor-
tant and results in unsatisfactory performance compared to
that of other problems with crucial graph information, such
as Minimum Vertex Cover and Maximum Cut. Instead of
learning construction heuristics, Chen and Tian (2019) pro-
pose NeuRewriter to learn improvement heuristics, and train

12043

a region-picking policy and a rule-picking policy that recur-
sively refine an initial solution for certain steps. For CVRP,
NeuRewriter outperforms the sampling results in (Kool, van
Hoof, and Welling 2019a). However, unlike our easily paral-
lelized searching method, NeuRewriter is naturally not par-
allelizable when solving an instance since it uses sequential
rewriting operations. Different from learning to pick nodes
in construction or improvement heuristics, Lu, Zhang, and
Yang (2020) design a network to learn which type of local
move to pick and exhaustively search for the best possible
greedy move of this type at each local improvement step.
Despite the good solution quality, this model is not practi-
cal due to its prohibitively long computation time caused by
the tens of thousands of exhaustive searching over the local
move space at each step.

Model
Multi-Decoder Attention Model and Search

To output diverse solutions, we propose the Multi-Decoder
Attention Model (MDAM) and design a customized beam
search scheme utilizing the structure of multiple decoders to
effectively keep the diversity of the solutions in the beam.

Multi-Decoder Attention Model The MDAM consists of
an encoder and multiple decoders with identical structures
but unshared parameters. The encoder takes the input in-
stance z as the two-dimensional coordinates of nodes in TSP
and embed them into feature vectors. For other routing prob-
lems, additional dimensions such as demands and prizes are
included as input. During each step of the solution construc-
tion, each decoder takes node embeddings to produce proba-
bilities of visiting each valid node. The MDAM architecture
is shown in Figure 1, while EG layer will be detailed later.

The encoder of MDAM follows the Transformer Model
(Vaswani et al. 2017). It consists of multiple self-attention
blocks, the core of which is the multi-head attention layer
and is defined formally as follows:

?a th, ‘/zh = WSX’H W}%Xw Wl}/L'Xza
A" = Attention(Q", K", V')
= softmax(Q"K"" /\/d)V", h =1,2, ... H,

Multihead(Q, K, V') = Concat(A', A%, ..., AWy, (3)

where Eqgs. (1) and (2) are performed for each of the H at-
tention heads; X is the d-dimensional embedding for the ith
node; @, K,V are Query, Key, Value vectors, respectively,
Wh, Wi, Wi € R with dy, = d/H; the attention out-
puts A" are concatenated and projected with Wy, € R%*¢
to get this multi-head attention layer output.

Then skip-connection layers (He et al. 2016), Batch Nor-
malization (BN) layers (Ioffe and Szegedy 2015) and two
linear projection layers with ReLU activation in between (re-
ferred as FF) are used to get the output f of this self-attention
block as follows:

fi = BN(XZ + Multiheadi (Q, K, V)),

fi = BN(fi + FF(f;)).

(D

2

4)
(&)

Encoder

(I-1)xSelf-attention Blocks EG layer

Node

Feed Forward

Add & Nom

Concat & Linear

L 1
[Scale Dot-Product An.emionJJ

[Scale Dot-Product Attention],U
h

Attention Weight '

Embeddings

Attention
Decoder 1

Probability
Distribution

[H HOutpul Node]—» Output
Sequence

T []

Divergence

Attention
Decoder 2

Probability
Distribution

{ H HOutpul Node J—P Output
Sequence

[Linear]] [L‘mear]] [Liﬂear]]

fx o fv fk fa

fv

[nput

EG layer

Node
Embeddings

Figure 1: The Multi-Decoder Attention Model (we use two decoders for illustration)

Let M be the number of decoders with identical structure.
Each decoder, indexed by m, is an attention mechanism that
models the probability of selecting next node to visit at each
step t, P™(yt|x, y1, ..., y:—1), following (Kool, van Hoof,
and Welling 2019a). The decoder indexed by m is defined
formally as follows:

fe = Concat(f, fcy, fe, .), ©)

92" = Multihead (W, fe, Wik [, Wit f), @)
" k"t =W5el , W fis (®)

u" = Dtanh((q"™) k" /Vd), ©)

P (yi|x, y1, -, yr—1) = softmax(u™), (10)

where f. is the context embedding; f is the mean of the
nodes’ embeddings f; fc, and fc, , are the embeddings of
the starting node and the current node, respectively, which
are replaced by trainable parameters for the first step; Eq. (7)
is a multi-head attention over the valid nodes at step ¢ to get
a new context, similar to the glimpse in (Bello et al. 2017);
g7, g™, k" are of dimension d; Eq. (9) uses D = 10 to
clip the result for better exploration following (Bello et al.
2017); the softmax function in Eq. (10) is over the set of
valid nodes.

While greedily decoding, each decoder independently
outputs a trajectory by selecting the node with maximum
probability at each step. We impose a regularization to en-
courage the decoders to learn distinct construction patterns
and output diverse solutions. A Kullback-Leibler (KL) di-
vergence between each pair of the output probability distri-
butions from the multiple decoders of MDAM is maximized
as the regularization during training:

M M

Dgr = ZZZZPl(y\x, s) log

s i=1j=1 y

P(y|z, s)

I (y|x, s)’

where Pi(y|z,s) is the probability that decoder i selects
node y in state s for instance z.

(1D

12044

Customized Beam Search While the solution space for
combinatorial optimization problems is exponentially large,
evaluating a small set of solutions is computationally fea-
sible with the known deterministic metric (e.g. tour length
for routing problems). Therefore, it is desirable to output
a set of solutions and retrieve the best one. However, with
learned construction heuristics, existing methods like the
typical sampling and beam search fail to maintain a set of
diverse solutions. This issue comes from the fact that ran-
domly sampling (with replacements) from the same distri-
bution (policy) frequently outputs partially or completely re-
peated solutions, and beam search on a tree finds a set of
unique solutions but with low variability and being deter-
ministic (Kool, Van Hoof, and Welling 2019b).

To achieve better performance, we propose a novel beam
search scheme customized for MDAM where each decoder
performs search independently. Given a required beam size
B, we maintain a separate beam for each decoder to keep
the diversity of the whole beam, and the size of a beam is
B = [B/M]. The solutions in the same beam will utilize a
consistent construction pattern since they are constructed by
the same decoder.

During searching of the same decoder, we can usually
conclude the inferiority of a partial solution to another, with-
out the need of full construction. Taking TSP for exam-
ple, some partial solutions of a decoder may collapse into
having the same starting node, set of visited nodes, and
current node, i.e. the same remaining sub-task. Figure 2
depicts an example, where the second (1—2—4—5) and
third (1 —-4—2—5) partial solutions in step 4 of decoder 1
collapse. One of these two will have a partial tour length
longer than or equal to the other. Hence with all possible
future decisions of the same decoder, it can never achieve
shorter complete tour length, i.e. inferior to the other one.
For CVRP, similar analysis also applies. But to ensure infe-
riority, in addition to the collapse condition, the partial so-

Decoder 1 Decoder 2

Step 1

. 3

Step4@ @elge

Step 5

Figure 2: The Multi-Decoder Attention Model (we use two
decoders for illustration)

lution with the tour length longer than or equal to the other
should have less or same vehicle capacity left.

Here we design a merging technique based on the infe-
riority conditions above to avoid unnecessary solution con-
structions and save space in the beam for potentially better
ones. Specifically, in each beam we evaluate partial solutions
on the fly, and merge them whenever one is inferior to an-
other one. After merging, the inferior one will be deleted,
and the probability of the superior one will take the larger
value of the merged two. Due to pairwise comparisons, the
computation overhead for merging grows quadratically with
the increase of beam size. Nevertheless, this is not a critical
issue for our method since we maintain separate beams for
each decoder, the sizes of which (B) are often small.

Embedding Glimpse Layer

For construction heuristics, the model needs to output a se-
ries of node selections in an auto-regressive way. The al-
ready visited nodes are no longer relevant to the future deci-
sions, and decoding based on the same embeddings for all
the construction steps may lead to poor performance. To
further improve the solution quality, an ideal way is to re-
embed only the unvisited nodes after visiting one node at
each tour construction step. However, this requires complete
re-embedding of nodes in each step, and is extremely ex-
pensive. To address it, we propose the Embedding Glimpse
(EG) layer to approximate the re-embedding process. This
is based on the intuition that higher layer of a neural net-
work extracts more task-related features. Taking the Convo-
lutional Neural Network (CNN) for Computer Vision tasks
as an example, the lower layers usually extract general fea-
tures like pixel and edge patterns, while the features from
the upper layers are more related to solving the specific tasks
(Schroff, Kalenichenko, and Philbin 2015). We hypothesize
that the attention model shares a similar hierarchical feature
extraction paradigm, and design the EG layer as follows.

In the encoder with [self-attention blocks, we perform the
re-embedding process approximately by fixing the lowest
[— 1 attention layers and masking out the attention weights
of the irrelevant nodes in the top attention layer to get the

12045

new node embeddings. Termed as EG layer, this top atten-
tion layer is part of the encoder and keeps the same for each
of the multiple decoders. Part of the EG layer can be pre-
computed for only one time (the orange boxes in Figure 1):

MKMVE=WhX, WX, WX, (12)
T
w"(Q", K" = Q"K" /\/d. (13)

At step ¢, we mask out the attention weights to the visited
nodes C;_1 by setting w,’fctil = —oo and do the following
(the purple boxes in Figure 1):

A = Attention(Q", K", V") = softmax(w")V", (14)

Multihead(Q, K, V) = Concat(A', A%, ..., ATYW,. (15)

Then Eqs. (4) and (5) engender the node embeddings, based
on which each decoder selects a node to visit and gets a new
mask. After that, while making a new decision about which
node to visit, new node embeddings can be achieved by per-
forming Eqgs. (14), (15), (4) and (5) with the new mask.

The EG layer can be considered as correcting the node
embeddings with the information that the visited nodes
should be no longer relevant. However, running EG layer
every step incurs additional computational overhead. To al-
leviate this, we perform EG layer every p steps. This is rea-
sonable because the node embeddings change gradually and
only one node is removed in a step. We found this tech-
nique consistently boosts the performance with little infer-
ence time. The EG layer can be viewed as a generalization
of the step-wise idea in (Xin et al. 2020) with better com-
putation efficiency. By choosing the hyper-parameter p, we
can keep the number of times to re-embed with EG layer
approximately constant for problems with different sizes.

Training

The MDAM structure and the training process is shown in
Figure 1. The [-layer encoder consists of [-1 attention blocks
and one EG layer which we have introduced before. For in-
put instance x, each of the multiple decoders individually
samples a trajectory m, to get separate REINFORCE loss
with the same greedy roll-out baseline from MDAM:

) (Limm)

-
— Py (mml2)

VLrL(0|z) = b(x))V log Py" (7m|x),

(16)
where L(7,,) is the tour length. The baseline we adopt is
similar to the one with the best performance in (Kool, van
Hoof, and Welling 2019a). The model with the best set of
parameters among previous epochs is used as the baseline
model to greedily decode the result as the baseline b(x).

() = min L(xy, = {yfp (1), 0D}, (D)
oo () = arg max(Py (yil, Yl (1), oy gl (= 1)), (18)

Yt

where 6 is the current parameters of MDAM, 6’ is the fixed
parameters of baseline model from previous epoch, and m
is the decoder index. We optimize the model by gradient de-
scent:

Vﬁ(@) = VERL(0|I) - kKLVDKL7 (19)

where kx 1 is the coefficient of KL loss. Ideally, for each
state encountered by each decoder, a KL loss should be com-
puted during training to encourage diversity. To avoid expen-
sive computation, we only impose KL loss on the first step,
motivated by the following reasons. First, the initial state of
all decoders is the same, i.e. an empty solution, where KL
loss is meaningful and easy to compute since all decoders
start from this state. Second, for the same instance, different
optimal solutions usually have different options at the first
step, which have strong impact on the construction patterns.

Experiments

In this section, we conduct experiments on six routing prob-
lems to verify the effectiveness of our method. Among them,
TSP and CVRP are the most widely studied ones. TSP is
defined as finding the shortest tour which visits each of
the cities once and returns to the starting city, given the
distances between each pair of the cities. CVRP general-
izes TSP, where the starting city must be a depot and ev-
ery other city has a demand to be served by the vehicles.
Multiple routes could be planned in CVRP, each for a ve-
hicle, which visits a subset of cities with total demands not
exceeding the capacity of the vehicle. All the cities need to
be covered by the routes. We follow existing works (Kool,
van Hoof, and Welling 2019a; Nazari et al. 2018) to gen-
erate instances with 20, 50 and 100 nodes (cities), which
use two-dimensional Euclidean distance to calculate the dis-
tance between two cities, and the objective is to minimize
the total travel distance. The coordinates of the city locations
are sampled from the uniform distribution ranging from 0
to 1 for both dimensions independently. For CVRP, the ve-
hicle capacities are fixed as 30, 40, 50 for problems with
20, 50, 100 nodes (cities), respectively. And the demands of
each non-depot city are sampled from integers {1...9}. Re-
garding the remaining four routing problems, i.e., Split De-
livery Routing Problems (SDVRP), Orienteering Problem
(OP) (Golden, Levy, and Vohra 1987), Prize Collecting TSP
(PCTSP) (Balas 1989) and Stochastic PCTSP (SPCTSP),
the settings follow the existing work (Kool, van Hoof, and
Welling 2019a) and are introduced in the Supplementary
Material. Note that these problems have their specific con-
straints and even random elements (SPCTSP). Nevertheless,
MDAM is flexible enough to handle these properties by
masking out the invalid nodes to visit at each step.

Hyperparameters. We embed the nodes with element-wise
projection to 128-dimensional vectors. The Transformer en-
coder has 3 layers with 128 dimension features and 8 atten-
tion heads where the top one serves as the EG layer, and the
hidden dimension of the fully connected layer (FF in Eq. (5))
is 512. We choose the number of decoders in MDAM to be
5, and each of the 5 decoders takes 128 dimension vectors
and 8 heads attention. For EG layer, we set the number of
steps between re-embeddings to be 2, 4, 8 for TSP20, 50,
100 and 2, 6, 8 for CVRP20, 50, 100 for faster evaluation.
Following (Kool, van Hoof, and Welling 2019a), we train
the model with 2,500 iterations per epoch and batch size 512
(except 256 for CVRP100 to fit GPU memory constraint) for
100 epochs. We use Adam Optimizer (Kingma and Ba 2015)
with learning rate 10~ for optimization. The coefficient of

12046

KL loss ki1, needs to be large enough to keep the diversity
between different decoders but not too large to deteriorate
the performance of each decoder. We set ki1, to 0.01 based
on experiments on TSP20. Our code has been released '.

Comparative Study

Here we compare our method (MDAM) with existing strong
deep learning based models. For testing, we sample 10,000
instances from the same distributions used for training. To
compute the optimality gap, we use the exact solver Con-
corde 2 to get the objective values of the optimal solutions
for TSP. And for CVRP which is much harder to be solved
exactly, we use the state-of-the-art heuristic solver LKH3
(Helsgaun 2017) to get the benchmark solutions by follow-
ing (Kool, van Hoof, and Welling 2019a). For the beam
search version of MDAM, we use 5 decoders each with
beam size B=30 and 50 (denoted as bs30 and bs50), i.e.
the whole beam size B=150, and 250 respectively. Note that
some methods (e.g. (Vinyals, Fortunato, and Jaitly 2015),
(Dai et al. 2017), (Tsiligirides 1984), and (Deudon et al.
2018)) do not serve as baselines due to the reported inferior
performance in (Kool, van Hoof, and Welling 2019a). We do
not compare with L2I (Lu, Zhang, and Yang 2020), due to its
prohibitively long computation time. Without any instance
parallelization, the average inference time of MDAM with
50-width beam search on one CVRP100 instance is 6.7s,
while L2I needs 24 minutes (Tesla T4). For the other four
problems, we compare MDAM with AM and other strong
baselines as in (Kool, van Hoof, and Welling 2019a), with
details introduced in Supplementary Material.

The results are summarized in Table 1. We can observe
that for almost all the testing sets of the six routing prob-
lems with 20, 50 and 100 nodes, MDAM outperforms AM
(Kool, van Hoof, and Welling 2019a) significantly. To avoid
prohibitively long computation time for large problems, ex-
act solver Gurobi 3 is used as heuristics with time limits.
On CVRP and SDVRP, our MDAM with greedy decod-
ing strategy significantly outperforms existing greedy de-
coding models in (Nazari et al. 2018) and (Kool, van Hoof,
and Welling 2019a), and the (standard) beam search ver-
sion of RL (Nazari et al. 2018). With our beam search
scheme, MDAM outperforms not only the sampling version
of AM (Kool, van Hoof, and Welling 2019a), but also the
improvement heuristic NeuRewriter (Chen and Tian 2019)
on CVRP. For the comparison with traditional non-learning
based methods, it is worth noting that MDAM outperforms
sophisticated general purpose solvers OR Tools * and Gurobi
(with time limits) on large instances (OP and PCTSP with
100 nodes), and shows relatively good scalability. For some
problems such as OP with 50 nodes, MDAM outperforms
highly specialized heuristic solvers.

For SPCTSP, optimization based methods (e.g. Gurobi,
OR Tools and improvement heuristics) require some forms
of online re-optimization (REOPT) (Kool, van Hoof, and

"https://github.com/liangxinedo/MDAM
Zhttps://www.math.uwaterloo.ca/tsp/concorde
3https://www.gurobi.com
*https://developers.google.com/optimization/routing

Method n=20 n=50 n=100
Obj Gap Time | Obj Gap Time | Obj Gap Time
Concorde 3.84* 0.00% Im | 5.70* 0.00% 2m | 7.76%* 0.00% 3m
a, AM greedy 3.85 0.34% Os | 5.80 1.76% 2s | 8.12 4.53% 6s
g AM sampling 3.84 0.08% Sm | 5.73 0.52% 24m | 7.94 2.26% 1h
MDAM greedy 3.84 0.05% 5s | 5.73 0.62% 15s | 7.93 2.19% 36s
MDAM bs30 3.84 0.00% 2m | 5.70 0.04 % 7m | 7.80 0.48% 20m
MDAM bs50 3.84 0.00% 3m | 5.70 0.03% 14m | 7.79 0.38% 44m
LKH 6.14* 0.00% 2h | 10.38* 0.00% 7h | 15.65% 0.00% 13h
RL (beam 10) 6.40 439% 27m | 11.15 7.46% 39m | 16.96 8.39% 74m
o AM greedy 6.40 4.43% Is | 10.98 5.86% 3s | 16.80 7.34% 8s
e AM sampling 6.25 1.91% 6m | 10.62 240% 28m | 16.23 3.72% 2h
% NeuRewriter 6.16 0.48% 22m | 10.51 1.25% 35m | 16.10 2.88% 66m
MDAM greedy 6.24 1.79% 7s | 10.74 3.47% 16s | 16.40 4.86% 45s
MDAM bs30 6.14 0.26 % 3m | 10.50 1.18% 9m | 16.03 249% 31m
MDAM bs50 6.14 0.18% Sm | 10.48 0.98 % 15m | 15.99 2.23% 53m
RL (greedy) 6.51 5.77% -1 11.32 8.07% - | 17.12 7.17% -
RL (beam 10) 6.34 3.01% - | 11.08 5.78% - | 16.86 5.54% -
& AM greedy 6.39 3.82% Is | 10.92 4.25% 4s | 16.83 5.36% 11s
E AM sampling 6.25 1.55% 9m | 10.59 1.10% 42m | 16.27 1.85% 3h
»vs MDAM greedy 6.25 1.49% 13s | 10.72 2.31% 28s | 16.39 2.62% 1m
MDAM bs30 6.16 0.08 % 4m | 10.49 0.18% I1lm | 16.01 0.24% 28m
MDAM bs50 6.15* 0.00% 6m | 10.47* 0.00% 19m | 15.97* 0.00% 1h
Gurobi 5.39* 0.00% 16m - -
Gurobi (30s) 5.38 0.05% 14m | 13.57 16.29% 2h | 3.23 90.28% 3h
Compass 5.37 0.36% 2m | 16.17 0.25% Sm | 33.19* 0.00% 15m
A, AM greedy 5.19 3.64% Os | 15.64 3.52% 1s | 31.62 4.75% 5s
S AM sampling 5.30 1.56% 4m | 16.07 0.87% 16m | 32.68 1.55% 53m
MDAM greedy 5.32 1.32% Ts | 15.92 1.80% 14s | 32.32 2.61% 32s
MDAM bs30 5.38 0.15% Im | 16.19 0.10% 6m | 32.91 0.84% 14m
MDAM bs50 5.38 0.13% 3m | 16.21* 0.00% 15m | 32.96 0.69% 32m
Gurobi 3.13* 0.00% 2m - -
Gurobi (30s) 3.13* 0.00% 2m | 4.48 0.03% 54m -
OR Tools (60s) 3.13 0.01% 5h | 4.48* 0.00% 5h | 6.07 1.56% 5h
& ILS C++ 3.16 0.77% 16m | 4.50 0.36% 2h | 5.98* 0.00% 12h
5 AM greedy 3.18 1.62% Os | 4.60 2.66% 2s | 6.25 4.46% 5s
A AM sampling 3.15 0.45% Sm | 4.52 0.74% 19m | 6.08 1.67% 1h
MDAM greedy 3.16 0.82% Ts | 4.56 1.73% 18s | 6.17 3.13% 34s
MDAM bs30 3.14 0.21% 2m | 4.50 0.55% 9m | 6.07 1.46 % 16m
MDAM bs50 3.14 0.19% 4m | 4.50 047% 23m | 6.06 1.31% 35m
REOPT all 3.34 274% 17m | 4.68 2.22% 2h | 6.22 1.72% 12h
REOPT half 3.31 1.82% 25m | 4.64 1.35% 3h | 6.16 0.74% 16h
&AM greedy 3.26 0.17% Os | 4.65 1.66% 2s | 6.32 3.36% S5s
B AM sampling (half) 3.25% 0.00% 15m | 4.59 0.16% 37m | 6.15 0.52% 92m
& MDAM greedy (half) | 3.26 0.14% 24s | 4.61 0.77% 53s | 6.19 1.29% 102s
MDAM bs10 (half) 3.25 0.11% 3m | 4.58* 0.00% 8m | 6.11* 0.00% 17m

12047

Table 1: Multi-Decoder Attention Model (MDAM) vs Baselines (AM (Kool, van Hoof, and Welling 2019a), RL (Nazari et al.
2018), NeuRewriter (Chen and Tian 2019), Compass (Kobeaga, Merino, and Lozano 2018), ILS (Lourengo, Martin, and Stiitzle
2003)). Note: We evaluate our model using a single RTX-2080Ti GPU. AM sampling samples 1,280 solutions. We run Concorde
and LKH in parallel for 32 instances on a 32 virtual CPU system (2Xeon E5-2620). Other results come from the original papers.
The runtimes are reported for solving 10,000 test instances following (Kool, van Hoof, and Welling 2019a). All problems aim to
minimize the objectives except OP, which aims to maximize the prizes collected along the tour. Bold is the best among learning
based methods, while ‘*’ is the best in all methods.

Method n=20 n=50 n=100

Obj Gap Time Obj Gap Time Obj Gap Time

n, MDAM (no MD) greedy | 3.85 0.27% Is 578 1.52% 3s 8.06 3.76% 7s
MDAM (no EG) greedy | 3.84 0.06% 3s 574 0.71% 8s 798 2.78% 23s
MDAM greedy 3.84 0.05% S5s 573 0.62% 15s 793 2.19% 36s

& MDAM (no MD) greedy | 6.39 4.27% Is | 1093 5.32% 3s | 16.57 5.96% 9s
> MDAM (no EG) greedy | 6.25 1.95% 4s | 10.79 3.95% 11s | 16.46 5.26% 26s
O MDAM greedy 624 1.79% 7s | 10.74 3.47% 16s | 16.40 4.86% 45s

Table 2: MDAM Structure Ablation Results

Welling 2019a) to adapt to the dynamic changes (e.g. con-
straint violation). Similarly, for AM sampling and MDAM,
we iteratively plan the tour based on the expected prize of
the unvisited nodes and execute half of it. We use beam size
10 for MDAM searching as increasing the beam size does
not significantly improve the performance and fast inference
time is important for online settings.

In terms of efficiency, though the baselines were executed
on different machines, the computation time of MDAM is
well accepted compared with existing deep learning based
methods, especially considering the significant performance
boost. Though MDAM (and all deep models) could be
slower than the highly specialized solver on some problems
(e.g. Concorde on TSP), it is generally much faster than the
traditional algorithms with comparable solution quality.

Ablation Study

We further evaluate the effectiveness of different compo-
nents in our model taking TSP and CVRP as the testbed. We
assess the contribution of the Multi-Decoder structure (MD)
and Embedding Glimpse layer (EG) to the quality of greedy
construction policy, based on ablation study. We omit beam
search here since it is an independent technique applicable to
a given greedy decoding policy. The results are summarized
in Table 2. We can observe that both MD and EG consis-
tently improve the quality of learned construction policy for
all instance sets, which well verifies the rationale of our de-
sign. While MD boosts the performance significantly with
relatively longer inference time, improvement by EG is rela-
tively small but with little additional computation overhead.

Analysis of MDAM

To demonstrate the usefulness of the distinct construction
patterns learned by each decoder, we evaluate the perfor-
mance of each decoder on CVRP20 with greedy decoding
and beam search (B=50). Figure 3 reports the number of
times that each decoder finds the best (winning) and strictly
best (solely winning) solution among all the 5 decoders in
both the greedy decoding and search mode. We can see that
it is common that more than one decoders find the best solu-
tion, since the winning times are higher than the solely win-
ning times in both greedy decoding and beam search modes.
More importantly, all decoders perform similarly since no
one is dominant or not contributing at all, showing that each
of them is indeed effective in the solving process.

12048

3500 1

Decoder 1
Decoder 2
Decoder 3
Decoder 4
Decoder 5

3000 4

2500 4

2000 4

Winning Times

15004

1000 4

500 1

Greedy Solely Greedy Search Solely Search

Figure 3: Greedy Decoding and Beam Search (B=50) Re-
sults of Each Decoder on CVRP20

In the Supplementary Material, we present more analysis
of MDAM, including the effectiveness of the merging tech-
nique we designed for the customized beam search, and the
impact of different number of decoders in the beam search
mode. We also compare with a stronger version of AM to
further prove the effectiveness of MDAM. More specifi-
cally, we tune the temperature hyperparameter of the soft-
max output function of AM sampling to provide more di-
verse solutions. Finally, we show that comparing with AM,
our MDAM has better generalization ability on larger prob-
lems such as CVRP with 150 and 200 nodes.

Conclusions and Future Work

In this paper, we propose a novel model to learn construc-
tion heuristics for routing problems, which is trained by
reinforcement learning. It employs a multi-decoder struc-
ture to learn distinct construction patterns, which are fur-
ther exploited by a customized beam search scheme. An
Embedding Glimpse layer is incorporated in the model,
which empowers the decoders with more informative em-
beddings. Our method outperforms state-of-the-art deep
learning based methods on six routing problems, and engen-
ders solutions close to traditional highly optimized solvers
with reasonable time. In the future, we plan to improve our
model by allowing flexibility in the number of decoders, and
enabling collaborations among the decoders to make deci-
sions jointly instead of individually.

Acknowledgments

The research was supported by the ST Engineering-NTU
Corporate Lab through the NRF corporate lab@university
scheme. Part of this research was conducted at Singtel
Cognitive and Artificial Intelligence Lab for Enterprises
(SCALE@NTU), which is a collaboration between Singa-
pore Telecommunications Limited (Singtel) and Nanyang
Technological University (NTU) that is funded by the Sin-
gapore Government through the Industry Alignment Fund -
Industry Collaboration Projects Grant. Wen Song was par-
tially supported by the Young Scholar Future Plan of Shan-
dong University (Grant No. 62420089964188). Zhiguang
Cao was partially supported by the National Natural Science
Foundation of China (61803104).

References

Applegate, D. L.; Bixby, R. E.; Chvatal, V.; and Cook, W. J.
2006. The traveling salesman problem: a computational
study. Princeton university press.

Balas, E. 1989. The prize collecting traveling salesman
problem. Networks 19(6): 621-636.

Bello, I.; Pham, H.; Le, Q. V.; Norouzi, M.; and Bengio,
S. 2017. Neural combinatorial optimization with reinforce-
ment learning. In Proceedings of International Conference
on Learning Representations (ICLR) Workshop.

Chen, X.; and Tian, Y. 2019. Learning to perform local
rewriting for combinatorial optimization. In Advances in
Neural Information Processing Systems, 6278—6289.

Dai, H.; Dai, B.; and Song, L. 2016. Discriminative em-
beddings of latent variable models for structured data. In
International conference on machine learning, 2702-2711.

Dai, H.; Khalil, E.; Zhang, Y.; Dilkina, B.; and Song, L.
2017. Learning combinatorial optimization algorithms over
graphs. In Advances in Neural Information Processing Sys-
tems, 6348—6358.

Deudon, M.; Cournut, P.; Lacoste, A.; Adulyasak, Y.; and
Rousseau, L.-M. 2018. Learning heuristics for the tsp by
policy gradient. In International conference on the integra-
tion of constraint programming, artificial intelligence, and
operations research, 170—181. Springer.

Fischetti, M.; Toth, P.; and Vigo, D. 1994. A branch-and-
bound algorithm for the capacitated vehicle routing problem
on directed graphs. Operations Research 42(5): 846-859.

Golden, B. L.; Levy, L.; and Vohra, R. 1987. The orienteer-
ing problem. Naval Research Logistics (NRL) 34(3): 307—
318.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770-778.

Helsgaun, K. 2017. An extension of the Lin-Kernighan-
Helsgaun TSP solver for constrained traveling salesman and
vehicle routing problems. Roskilde: Roskilde University .

Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8): 1735-1780.

12049

Ioffe, S.; and Szegedy, C. 2015. Batch Normalization: Ac-
celerating Deep Network Training by Reducing Internal Co-
variate Shift. In Proceedings of International Conference on
Machine Learning, 448-456.

Kingma, D. P; and Ba, J. 2015. Adam: A method for
stochastic optimization. In Proceedings of International
Conference on Learning Representations (ICLR).

Kobeaga, G.; Merino, M.; and Lozano, J. A. 2018. An ef-
ficient evolutionary algorithm for the orienteering problem.
Computers & Operations Research 90: 42-59.

Kool, W.; van Hoof, H.; and Welling, M. 2019a. Attention,
Learn to Solve Routing Problems! In Proceedings of Inter-
national Conference on Learning Representations (ICLR).

Kool, W.; Van Hoof, H.; and Welling, M. 2019b. Stochastic
beams and where to find them: The gumbel-top-k trick for
sampling sequences without replacement. In International
Conference on Machine Learning, 3499-3508. PMLR.

Lourengo, H. R.; Martin, O. C.; and Stiitzle, T. 2003. Iter-
ated local search. In Handbook of metaheuristics, 320-353.
Springer.

Lu, H.; Zhang, X.; and Yang, S. 2020. A Learning-based
Iterative Method for Solving Vehicle Routing Problems. In
Proceedings of International Conference on Learning Rep-
resentations (ICLR).

Nazari, M.; Oroojlooy, A.; Snyder, L.; and Takac, M. 2018.
Reinforcement learning for solving the vehicle routing prob-
lem. In Advances in Neural Information Processing Systems,

9839-9849.

Schroff, F.; Kalenichenko, D.; and Philbin, J. 2015. Facenet:
A unified embedding for face recognition and clustering. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 815-823.

Toth, P.; and Vigo, D. 2014. Vehicle routing: problems,
methods, and applications. STAM.

Tsiligirides, T. 1984. Heuristic methods applied to orien-
teering. Journal of the Operational Research Society 35(9):
797-809.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is all you need. In Advances in neural information
processing systems, 5998—6008.

Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer net-
works. In Advances in Neural Information Processing Sys-
tems, 2692-2700.

Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine learning 8(3-4): 229-256.

Xin, L.; Song, W.; Cao, Z.; and Zhang, J. 2020. Step-wise
Deep Learning Models for Solving Routing Problems. IEEE

Transactions on Industrial Informatics 1-1. doi:10.1109/
TI1.2020.3031409.

	Multi-decoder attention model with embedding glimpse for solving vehicle routing problems
	Citation

	Multi-Decoder Attention Model with Embedding Glimpse for Solving Vehicle Routing Problems

