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Abstract

Priority dispatching rule (PDR) is widely used for solving real-world Job-shop
scheduling problem (JSSP). However, the design of effective PDRs is a tedious
task, requiring a myriad of specialized knowledge and often delivering limited per-
formance. In this paper, we propose to automatically learn PDRs via an end-to-end
deep reinforcement learning agent. We exploit the disjunctive graph representa-
tion of JSSP, and propose a Graph Neural Network based scheme to embed the
states encountered during solving. The resulting policy network is size-agnostic,
effectively enabling generalization on large-scale instances. Experiments show that
the agent can learn high-quality PDRs from scratch with elementary raw features,
and demonstrates strong performance against the best existing PDRs. The learned
policies also perform well on much larger instances that are unseen in training.

1 Introduction

Job-shop scheduling problem (JSSP) is a well-known combinatorial optimization problem in computer
science and operations research, and is ubiquitous in many industries such as manufacturing and
transportation [1, 2]. In JSSP, a number of jobs with predefined processing constraints (e.g. the
operations are processed in order by their eligible machines) are assigned to a set of heterogeneous
machines, to achieve the desired objective such as minimizing the makespan, flowtime, or tardiness.
Due to its NP-hardness, finding exact solutions to JSSP is often impractical [3, 4], while efficiency in
practice usually relies on heuristics [5, 6] or approximate methods [7].

Priority dispatching rule (PDR) [6] is a heuristic method that is widely used in real-world scheduling
systems. Compared with complicated optimization methods such as mathematical programming
and metaheuristics, PDR is computationally fast, intuitive and easy to implement, and naturally
capable of handling uncertainties that are ubiquitous in practice [8]. Motivated by these advantages, a
large number of PDRs for JSSP have been proposed in the literature [9]. However, it is commonly
accepted that designing an effective PDR is very costly and time-consuming, requiring substantial
domain knowledge and trial-and-error especially for complex JSSP. Moreover, performance of a
PDR often varies drastically on different instances [10]. Therefore, a natural question to ask is: can
we automate the process of designing PDR, such that it performs well on a class of JSSP instances
sharing common characteristics? A number of recent works on learning algorithms for other types of
combinatorial optimization problems (COPs) (see [11] for a survey) show that deep reinforcement
∗Both authors contributed equally.
†Corresponding Author.
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learning (DRL) could be an ideal technique for this purpose. However, for complex scheduling
problems such as JSSP which differs structurally from other COPs and received much less attention,
existing methods cannot apply [11], and it remains challenging to design effective representation and
learning mechanism.

In this paper, we propose a novel DRL based method to automatically learn strong and robust PDRs
for solving JSSP. Specifically, we first present a Markov Decision Process (MDP) formulation of PDR
based scheduling, where the states are captured by leveraging the disjunctive graph representation
of JSSP. Such representation effectively integrates the operation dependencies and machine status,
and provides critical information for scheduling decisions. Then, we propose a Graph Neural
Network (GNN) based scheme with an efficient computation strategy to encode the nodes in the
disjunctive graphs to fixed dimensional embeddings. Based on this scheme, we design a size-
agnostic policy network that can process JSSP instances with arbitrary size, which effectively enables
training on small-sized instances and generalizing to large-scale ones. We train the network using a
policy gradient algorithm to obtain high-quality PDRs, without the need of supervision. Extensive
experiments on generated instances and standard benchmarks show that, the PDRs trained by our
policy significantly outperform existing manually designed ones, and generalize reasonably well to
instances that are much larger than those used in training.

2 Related Work

Lately, the idea of applying deep (reinforcement) learning as an end-to-end solution to combinatorial
optimization problems has been widely explored. Most of them focus on solving routing problems
(e.g. travelling salesman problem) [12, 13, 14, 15, 16, 17], graph optimization problems [18, 19], and
the satisfiability problem (SAT) [20, 21, 22]. In contrast, scheduling problems which have numerous
real-world applications, are relatively unexplored, especially for JSSP.

Several existing works study simple job scheduling problems, in which jobs as elementary tasks
without internal operation dependencies that are essential to JSSP. In [23], a DRL agent is proposed
to learn job scheduling policies for a compute cluster. A 2-D image based state representation
scheme is used to capture the status of resources and jobs. In [24], DRL is employed to learn
local search heuristics for solving a similar problem, where the states are represented by a Directed
Acyclic Graph (DAG) describing the temporal relations among jobs in the corresponding schedule.
A major limitation in these works is that, the state representation is hard-bounded by some factors
(e.g. look ahead horizon, size of job queue or slot), and is not scalable to arbitrary numbers of
jobs and machines (resources). This limitation is partially alleviated in [25], which also employs an
image based representation but with a transfer learning method to reconstruct the trained policies on
problems with different sizes. Nevertheless, policy transfer is still relatively costly and inconvenient.
In contrast, our method is fully size-agnostic and the trained policy can be directly applied to solve
larger problems without the need of transfer.

In [26], a DRL method is proposed for task scheduling in a cloud computing environment. GNN
is used to extract embedding of each task represented as a DAG, and the policy network can scale
to arbitrary number of tasks. However, the underlying problem is not JSSP and the task DAG
only describes the required temporal dependencies among its subtasks. The resource information
is encoded as node features, hence the number of resources is hard bounded. In contrast, our GNN
performs embedding on the disjunctive graph with directed disjunctive arcs reflecting processing
order on each machine, and is size-agnostic in terms of both jobs and machines. Moreover, the
topology of task DAGs in [26] is static, while the disjunctive graph in our setting is dynamically
evolving and highly correlated with the decisions made at each step. Similar to [26], a RL method
combined with GNNs is proposed to accelerating computation in distributed system [27]. Other
examples of applying GNNs to solve real life scheduling problem includes [28], where they adopted
an imitation learning algorithm for solving robotic scheduling problems in manufacturing.

Research on standard JSSP is rather sparse. In [29], an imitation learning method is proposed to
learn dispatching rules for JSSP, where optimal solutions to the training instances are labelled using a
MIP solver. However, due to the complexity of JSSP, finding enough optimal solutions to large-scale
instances for training is impractical, and only instances up to 10 jobs× 10 machines are considered,
which significantly limits the applicability. In [30], a Deep Q Network [31] based method is proposed
to solve JSSP, which learns to select PDR for each machine from a pool of candidates. Though the
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(a) JSSP instance (b) Complete solution

Figure 1: Disjunctive graph representation. (a) represents a 3× 3 JSSP instance. Black arrows are
conjunctive arcs, and dotted lines are disjunctive arcs grouped into machine cliques with different
colors. (b) is a complete solution, where all disjunctive arcs are assigned with directions.

methods in [29, 30] show better performance than traditional PDRs, they are not end-to-end, and rely
on manual features to describe scheduling states, ignoring the underlying graph structure of JSSP. In
contrast, our method can extract informative knowledge from low-level raw features based on the
disjunctive graph, and directly makes decisions without the need of pre-defined candidate PDRs.

3 Preliminaries

Job-Shop Scheduling Problem. A standard JSSP instance consists of a set of jobs J and a set of
machinesM. Each job Ji ∈ J must go through ni machines inM in a specific order denoted
as Oi1 → ... → Oini , where each element Oij (1 ≤ j ≤ ni) is called an operation of Ji with a
processing time pij ∈ N. The binary relation→ also refers to precedence constraint. Each machine
can only process one job at a time, and preemption is not allowed. To solve a JSSP instance, we need
to find a schedule, i.e. starting time Sij for each operation Oij , such that the makespan denoted as
Cmax = maxi,j{Cij = Sij + pij} is minimized and all the constraints are satisfied. The size of a
JSSP instance is denoted as |J | × |M|.
Disjunctive graph. It is well-known that a JSSP instance can also be represented as a disjunctive
graph [32]. LetO = {Oij |∀i, j}∪{S, T} be the set of all operations, where S and T are dummy ones
denoting the start and terminal with zero processing time. Then a disjunctive graph G = (O, C,D)
is a mixed graph with O being its vertex set. In particular, C is a set of directed arcs (conjunctions)
representing the precedence constraints between operations of the same job; and D is a set of
undirected arcs (disjunctions), each of which connects a pair of operations requiring the same
machine for processing. Consequently, finding a solution to a JSSP instance is equivalent to fixing the
direction of each disjunction, such that the resulting graph is a DAG [33]. An example of disjunctive
graph for a JSSP instance and its solution are depicted in Figure 1(a) and (b), respectively.

4 Method

In this section, we present the rationale of our method. We first formulate Markov Decision Process
model of PDR based scheduling. Then, we design an efficient method to represent the scheduling
policy based on Graph Neural Network, followed by the introduction of training algorithm.

4.1 Markov Decision Process Formulation

The PDR based method solves a JSSP instance using |O| steps of consecutive decisions. At each step,
a set of eligible operations (i.e. those whose precedent operation has been scheduled) are identified
first. Then, a specific PDR is applied to compute a priority index for each eligible operation, and the
one with the highest priority is selected for scheduling (or dispatching). However, solely deciding
which operation to dispatch is not sufficient, as we also need to choose a suitable start time for it.
In order to build tight schedules, it is sensible to place the operation as early as possible on the
corresponding machine [29]. Once all operations are dispatched, a complete schedule is generated.
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Traditional manually designed PDRs compute the priority index based on the operation features. For
example, the widely used Shortest Processing Time (SPT) rule selects from a set of operations the
one with the smallest pij . In this paper, we employ DRL to automatically generate high-quality PDRs.
As mentioned above, solving a JSSP instance can be viewed as a task of determining the direction
of each disjunction. Therefore, we consider the dispatching decisions made by PDRs as actions of
changing the disjunctive graph, and formulate the underlying MDP model as follows.

State. The state st at decision step t is a disjunctive graph G(t) = (O, C ∪Du(t),D(t)) representing
the current status of solution, where Du(t) ⊆ D contains all the (directed) disjunctive arcs that
have been assigned a direction till t, and D(t) ⊆ D includes the remaining ones. The initial state
s0 is the disjunctive graph representing the original JSSP instance, and the terminal state sT is a
complete solution where D(T ) = ∅, i.e. all disjunctive arcs have been assigned a direction. For each
node O ∈ O, we record two features: 1) a binary indicator I(O, st) which equals to 1 only if O is
scheduled in st, and 2) an integer CLB(O, st) which is the lower bound of the estimated time of
completion (ETC) of O in st. Note that for the scheduled operation, this lower bound is exactly its
completion time. For the unscheduled operation Oij of job Ji, we recursively calculate this lower
bound as CLB(Oij , st) = CLB(Oi,j−1, st) + pij by only considering the precedence constraints
from its predecessor, i.e. Oi,j−1 → Oij , and CLB(Oij , st) = ri + pij if Oij is the first operation of
Ji where ri is the release time of Ji.

Action. An action at ∈ At is an eligible operation at decision step t. Given that each job can only
have at most one operation ready at t, the maximum size of action space is |J |, which depends on
the instance being solved. During solving, |At| becomes smaller as more jobs are completed.

State transition. Once PDR determines an operation at to dispatch next, we first find the earliest
feasible time period to allocate at on the required machine. Then, we update the directions of
the disjunctive arcs of that machine based on the current temporal relations, and engenders a new
disjunctive graph as the new state st+1. An example is given in Figure 2, where action a4 = O32

is chosen at state s4 from action space {O12, O23, O32}. On the required machine M2, we find that
O32 can be allocated in the time period before the already scheduled O22, therefore the direction of
the disjunctive arc between O22 and O32 is determined as O32 → O22, as shown in the new state s5.
Note, the starting time of O22 is changed from 7 to 11 since O32 is scheduled before O22.

Figure 2: Example of state transition. Orange
nodes are operations already scheduled, and the
grey node is operation selected to be scheduled
at current state. Integers in bracket are starting
time of scheduled operations, where unscheduled
operations have unknown starting time (denoted as
?).

Reward. The goal is to learn to dispatch step by
step such that the makespan is minimized. To
this end, we design the reward functionR(st, at)
as the quality difference between the partial solu-
tions corresponding to the two states st and st+1,
i.e. R(at, st) = H(st)−H(st+1), where H(·)
is the quality measure. Here we define it as the
lower bound of the makespan Cmax, computed
as H(st) = maxi,j{CLB(Oij , st)}. For the ter-
minal state s|O|, clearly we have H(s|O|) =
Cmax since all operations are scheduled. Hence
when the discount factor γ = 1, the cumula-
tive reward is

∑|O|
t=0R(at, st) = H(s0)−Cmax.

Given that H(s0) is constant, maximizing the
cumulative reward coincides with minimizing
the makespan.

Policy. For state st, a stochastic policy π(at|st) outputs a distribution over the actions in At. If
traditional PDRs are employed as policy, then the distribution is one-hot, and the action with the
highest priority has probability 1.

4.2 Parameterizing the Policy

The disjunctive graph in the above MDP formulation provides a holistic view of the scheduling states
that comprehensively contains numerical and structural information such as operation processing
time, precedence constraints, and processing order on each machine. By extracting all the state
information embedded in disjunctive graphs, effective dispatching is viable. This motivates us to
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parameterize the stochastic policy π(at|st) as a graph neural network with trainable parameter θ, i.e.
πθ(at|st), which enables learning strong dispatching rules and size-agnostic generalization.

Graph embedding. Graph Neural Networks (GNN) [34] are a family of deep neural networks that
can learn representation of graph-structured (non-euclidean) data, which has many applications in
real life [35, 36]. It extracts feature embedding of each node in an iterative and non-linear fashion.In
this paper, we adopt the Graph Isomorphism Network (GIN) [37], which is a recent GNN variant and
proved to have strong discriminative power. Particularly, given a graph G = (V,E), GIN performs K
iterations of updates to compute a p-dimensional embeddings for each node v ∈ V , and the update at
iteration k is expressed as follows,

h(k)v = MLP
(k)
θk

((
1 + ε(k)

)
· h(k−1)v +

∑
u∈N (v)

h(k−1)u

)
, (1)

where h(k)v is the representation of node v at iteration k and h(0)v refers to its raw features for input,
MLP

(k)
θk

is a Multi-Layer Perceptron (MLP) with parameter θk for iteration k followed by batch
normalization [38], ε is an arbitrary number that can be learned, and N (v) is the neighbourhood of v.
After K iterations of updates, a global representation for the entire graph can be obtained using a
pooling function L that takes as input the embeddings of all nodes and output a p-dimensional vector
hG ∈ Rp for G. Here we use average pooling, i.e. hG = L({hKv : v ∈ V }) = 1/|V |

∑
v∈V h

K
v .

GIN is originally proposed for undirected graphs in [37]. However, in our case, the disjunctive
graph G(t) correlative to each state st is a mixed graph with directed arcs, which describe critical
characteristics such as the precedence constraints and operation sequences on machines. Therefore,
we need to generalize GIN to support disjunctive graphs. A natural and straightforward strategy
for this is to replace each undirected arc in G(t) by two directed ones connecting the same nodes
with opposite directions, resulting in a fully directed graph denoted as GD(t) [39, 40]. Then, the
neighbourhood of node v in Eq. (1) can be defined asN (v) = {u|(u, v) ∈ E(GD(t)}, where E(·) is
the arc set of a graph, i.e. N (v) contains all incoming neighbours of v. In this way, GIN is able to
operate on GD(t). An illustration is given in Figure 3(a), which is the directed version of the state
s4 in Figure 2. The transition to s5 can be naturally achieved by removing directed arcs (O32, O11)
and (O22, O32) in Figure 3(b) since the direction of the corresponding disjunctive arcs should be
O11 → O32 and O32 → O22.

However, a major limitation of the above "removing-arc" strategy is that, it maintains two directed
arcs for each disjunctive arc, making GD(t) too dense to be efficiently processed by GIN. This is
more severe for the initial states, where for each machine the operations requiring it forms a clique
that is fully connected with |J |(|J | − 1)/2 arcs in G(t). To resolve this issue, we propose to "add"
arcs rather than removing them, where the undirected disjunctive arcs are neglected. More specifically,
we use ḠD(t) = (O, C ∪ Du(t)) as an approximation of GD(t). Along with the scheduling process,
Du(t) becomes larger since more directed arcs will be added to it. An illustration of this "adding-
arc" strategy is shown in Figure 3(c). Clearly, this strategy leads to much sparser graphs for state
representation. Finally, we define the raw features for each node O ∈ O at st as a 2-dimensional
vector h(0)O (st) = (I(O, st), CLB(O, st)), and denote the node and graph embedding obtained after
K iterations as h(K)

O (st) and hG(st), respectively.

Action selection. To select an action at at st, we further process the extracted graph embeddings
h
(K)
O with an action selection network. In doing so, we expect to produce a probability distribution

over action space from which at can be sampled. Specifically, we first adopt an MLP to obtain a
scalar sore scr(at) = MLPθπ ([h

(K)
at , hG(st)]) for each at, where [, ] means concatenation. Then, a

softmax function is applied to output a distribution P (at) over computed scores. We sample actions
based on P (at) for training. During testing, we greedily pick at with the maximum probability.

Remark. Our design of policy network has several advantages. First, unlike previous works [23, 24,
25], it is not hard bounded by the instance size (|J | and |M|), since all parameters are shared across
all nodes in the graph. This size-agnostic property effectively enables generalization to instances
of different sizes without re-training or knowledge transferring. Second, it can potentially deal
with more complex environments with dynamics and uncertainty such as job arriving on-the-fly and
random machine breakdown, by adding or removing certain nodes and/or arcs from the disjunctive
graphs. Finally, our model could be extended to other shop scheduling problems (e.g. flow-shop and
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(a) Directed disjunctive graph (b) Removing-arc strategy (c) Adding-arc strategy

Figure 3: Fully directed disjunctive graph, removing-arc strategy, and adding-arc strategy. (a)
is a fully directed disjunctive graph by replacing each undirected disjunctive arc with two opposite
directed arcs. (b) shows the removing-arc strategy. The directed arc conflicting with the current
decision is removed from the graph, i.e. arcs (O32, O11) and (O22, O32). (c) shows the adding-arc
strategy. The directed arc following the current decision is added to the graph, i.e. arcs (O11, O32)
and (O32, O22).

open-shop) since they can be represented by disjunctive graphs [41, 42]. While the first advantage
will be demonstrated in the experiments, we plan to further explore the latter two in the future.

4.3 Learning Algorithm

We train the policy network using Proximal Policy Optimization (PPO) [43], which is an actor-critic
algorithm. The actor refers to the policy network πθ described above. The critic vφ shares the same
GIN network with the actor, and uses an MLP MLPθv that takes input of hG(st) to output a scalar to
estimate the cumulative rewards at st. To boost learning, we follow the principle of PPO and generate
N independent trajectories, and update network parameters w.r.t cumulative gradient of N estimates.
Details of the training algorithm are provided in the Supplementary Material.

5 Experiment

We present the experimental results in this section. The evaluations are performed both on generated
instances and public JSSP benchmarks.

Datasets. We evaluate our method on instances of various sizes. Specifically, 6×6, 10×10, 15×15,
20× 20, and 30× 20 instances are generated following the well-known Taillard’s method [44] for
training and testing. Furthermore, we demonstrate strong generalization of our method by directly
testing on much larger instances with sizes 50× 20 and 100× 20 generated also following [44]. We
also perform experiments on well-known public JSSP benchmarks, including Taillard’s instances
[45] generated following [44] and the DMU instances [46]. The range of operation processing times
in DMU instances doubles that of Taillard’s ones.

Models and configurations. We use fixed hyperparameters for training. For each problem size, we
train the policy network for 10000 iterations, each of which contains 4 independent trajectories (i.e.
instances). The model is validated on 100 instances generated on-the-fly and fixed during training.
All raw features are normalized to the same scale. For the GIN layers (Eq. (1)) shared by π and v,
we set the number of iterations K = 2. We set ε to 0 following [37]. Each MLP

(k)
θk

in the GIN
layer has 2 hidden layers with hidden dimension 64. The action selection network MLPθπ and state
value prediction network MLPθv both have 2 hidden layers with hidden dimension 32. For PPO,
we set the epochs of updating network to 1, the clipping parameter εPPO to 0.2, and the coefficient
for policy loss, value function, and entropy to 2, 1, and 0.01, respectively. For training, we set the
discount factor γ to 1, and use the Adam optimizer with constant learning rate lr = 2× 10−5. Other
parameters follow the default settings in PyTorch [47]. The hardware we use is a machine with Intel
Core i9-10940X CPU and a single Nvidia GeForce 2080Ti GPU. Our code is available.1

1https://github.com/zcajiayin/L2D
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Size SPT MWKR FDD/MWKR MOPNR Ours Opt. Rate(%)

6× 6
Obj. 691.95 656.95 604.64 630.19 574.09

100%Gap 42.0% 34.6% 24.0% 29.2% 17.7%
Time(s) 0.012 0.012 0.012 0.012 0.061

10× 10
Obj. 1210.98 1151.41 1102.95 1101.08 988.58

100%Gap 50.0% 42.6% 36.6% 36.5% 22.3%
Time(s) 0.037 0.039 0.039 0.037 0.176

15× 15
Obj. 1890.91 1812.13 1722.73 1693.33 1504.79

99%Gap 59.2% 52.6% 45.1% 42.6% 26.7%
Time(s) 0.113 0.116 0.117 0.112 0.435

20× 20
Obj. 2519.8 2469.19 2328.15 2263.68 2007.76

4%Gap 62.0% 58.6% 49.6% 45.5% 29.0%
Time(s) 0.306 0.312 0.312 0.305 0.932

30× 20
Obj. 3208.69 3080.11 2883.88 2809.62 2508.27

12%Gap 65.3% 58.7% 48.6% 44.7% 29.2%
Time(s) 0.721 0.731 0.731 0.720 1.804

Table 1: Results on instances of small and medium sizes. "Opt. Rate": rate of instances for which
OR-Tools returns optimal solution.

Baselines. There are hundreds of PDRs proposed for JSSP in the literature with various performance
and we can not compare with them exhaustively. Therefore, we select four traditional PDRs based on
their performance reported in [9], including Shortest Processing Time (SPT), Most Work Remaining
(MWKR), Most Operations Remaining (MOPNR), and minimum ratio of Flow Due Date to Most
Work Remaining (FDD/MWKR). SPT is one of the most widely used PDRs in research and industry,
while the other three are top-performing PDRs on Taillard’s benchmark as reported in [9]. Specifically,
FDD/MWKR is newly developed in [9]. All baselines are implemented in Python, and the details are
introduced in the Supplementary Material. For the generated instances, solutions of all methods are
benchmarked with those obtained by Google OR-Tools [48], a mature and widely used exact solver
based on constraint programming, with time limit of 3600 seconds for each instance. For the public
benchmarks, we use the best-known solutions from the literature.2

5.1 Results on Generated Instances

We first perform training and testing on the generated instances of small to medium sizes (6× 6, 10×
10, 15 × 15, 20 × 20, 30 × 20). For each size, we generate 100 instances randomly and report the
average objective, gap to the OR-Tools solutions, and computational time of our method and baselines.
The results are summarized in Table 1. We can observe from this table that the PDR learned by our
method consistently outperforms all baseline PDRs by a large margin regarding all instance sizes.
Performance of baseline PDRs deteriorates quickly with the increase of instance size, whereas PDR
learned by our method performs stable and relatively well especially on larger instances. In terms
of computational efficiency, though the inference time of our method is relatively longer than the
traditional PDRs, it is still quite acceptable especially considering the significant performance boost.
Compared with OR-Tools which takes 3600s on the vast majority of 20× 20 and 30× 20 instances,
our method is much more efficient. Based on the above observations, we can conclude that our
method is able to train high-quality PDRs from scratch, without the need of supervision.

Next, we evaluate the performance of our policy in terms of generalizing to large instances. More
specifically, we directly use the policies trained on 20× 20 and 30× 20 instances to solve 50× 20
and 100× 20 instances. The results are summarized in Table 2, where the result for each instance
size is averaged over 100 random instances. As shown in this table, both our policies trained on much
smaller instances perform reasonably well on these large sized ones, and deliver solutions that are
much better than those of the traditional PDRs. This observation shows that our method is able to
extract knowledge from small sized instances that is also useful in solving large-scale ones, which is
a desirable property for practical applications. Meanwhile, our method is computationally efficient
and can provide high-quality solution for the largest instance within 30s. We can also observe that

2The best solutions for Taillard’s and DMU instances can be found in http://optimizizer.com/TA.php and
http://jobshop.jjvh.nl/, respectively.
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Size SPT MWKR FDD/MWKR MOPNR Ours
(20× 20)

Ours
(30× 20) Opt. Rate

50× 20
Obj. 4469.8 4273.08 3993.45 3859.14 3581.5 3522.5

48%Gap 54.9% 48.1% 38.4% 33.7% 24.1% 22.1%
Time(s) 2.504 2.523 2.524 2.504 4.917 4.872

100× 20
Obj. 7516.12 7069.72 6658.17 6385.32 6175.01 6088.68

2%Gap 35.1% 27.0% 19.6% 14.7% 10.9% 9.4%
Time(s) 16.661 16.694 16.723 16.625 27.869 28.616

Table 2: Generalization results on large-sized instances. "Opt. Rate": rate of instances that
OR-Tools returns optimal solution.

Size SPT MWKR FDD/MWKR MOPNR Ours Ours
(20× 20)

Ours
(30× 20) Opt. Rate

Ta 15× 15
Obj. 1902.6 1927.5 1808.6 1782.3 1547.4 . .

100%Gap 54.8% 56.7% 47.1% 45.0% 26.0% . .
Time(s) 0.111 0.115 0.117 0.111 0.447 . .

Ta 20× 15
Obj. 2253.6 2190.7 2054 2015.8 1774.7 . .

90%Gap 65.2% 60.7% 50.6% 47.7% 30.0% . .
Time(s) 0.178 0.183 0.183 0.178 0.624 . .

Ta 20× 20
Obj. 2655.8 2518.6 2387.2 2309.9 2128.1 . .

30%Gap 64.2% 55.7% 47.6% 42.8% 31.6% . .
Time(s) 0.305 0.311 0.311 0.304 0.937 . .

Ta 30× 15
Obj. 2888.4 2728 2590.8 2601.3 2378.8 . .

70%Gap 61.6% 52.6% 45.0% 45.6% 33.0% . .
Time(s) 0.383 0.390 0.392 0.383 1.114 . .

Ta 30× 20
Obj. 3234.7 3193.3 3045 2888.1 2603.9 . .

0%Gap 66.0% 63.9% 56.3% 48.2% 33.6% . .
Time(s) 0.722 0.730 0.731 0.720 1.799 . .

Ta 50× 15
Obj. 4194.7 3907.8 3736.3 3608 . 3430.2 3393.8

100%Gap 51.4% 40.9% 34.8% 30.1% . 23.7% 22.4%
Time(s) 1.208 1.221 1.226 1.209 . 2.700 2.696

Ta 50× 20
Obj. 4532.2 4375.1 4022.1 3920 . 3611.8 3593.9

100%Gap 59.5% 53.9% 41.5% 37.9% . 27.0% 26.5%
Time(s) 2.507 2.527 2.523 2.508 . 4.856 4.883

Ta 100× 20
Obj. 7564.6 7128.8 6620.7 6452.3 . 6255 6097.6

100%Gap 41.0% 32.9% 23.4% 20.2% . 16.6% 13.6%
Time(s) 16.652 16.686 16.745 16.647 . 28.239 28.328

Table 3: Results on Taillard’s benchmark. "Opt. Rate": rate of instances with optimal solution.

our 20× 20 policy performs only slightly worse than the 30× 20 one, indicating a relatively robust
generalization performance.

5.2 Results on Public Benchmarks

We first perform experiments on the 80 Taillard’s instances, which can be classified into 8 groups
according to their sizes, each with 10 instances. We train a policy for each of the 5 groups up to
30 × 20, while the remaining 3 groups are used for the generalization test. The results for each
group are summarized in Table 3, while the detailed results for each instance can be found in the
Supplementary Material. Note that the gaps are calculated using the best solutions in the literature. As
shown in this table, the PDRs learned by our method still maintain good performance on the Taillard’s
benchmark and produce solutions significantly better than baseline PDRs, both when evaluating on
the same size and when generalizing to larger size. It is interesting to see that all methods show
smaller gaps on large-sized instances (50× 15, 50× 20 and 100× 20), which is probably because
instances with larger |J |/|M| tend to be easier to solve as noticed in [44]. But still, these instances
could be hard for exact solvers due to the NP-hardness of JSSP, as OR-Tools only solves 2% of
100× 20 instances optimally within the 3600s time limit, as shown in Table 2.
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Size SPT MWKR FDD/MWKR MOPNR Ours
(30× 20) Opt. Rate

Dmu 30× 20
Obj. 7036 6925 6827.3 6491.9 5967.4

10%Gap 65.9% 63.2% 60.1% 52.0% 39.5%
Time(s) 0.709 0.718 0.721 0.709 1.805

Dmu 50× 15
Obj. 8975.4 8906 9150.2 8436.5 8179.4

50%Gap 50.4% 48.9% 52.5% 40.8% 36.2%
Time(s) 1.195 1.208 1.220 1.197 2.694

Dmu 50× 20
Obj. 10132.8 9807 9899.6 9408 8751.6

50%Gap 62.2% 56.4% 57.3% 49.6% 38.9%
Time(s) 2.496 2.516 2.521 2.500 4.908

Table 4: Results on DMU benchmark. "Opt. Rate": rate of instances with optimal solution.

Next, we conduct experiments on the 80 DMU instances, which can also be classified into 8 groups
according to their sizes. Here we train a policy for each of the 4 groups up to 30 × 20, with the
remaining 4 groups as test sets for generalization. Due to limited space, we only present results of the
30× 20 policy and its generalization performance on 50× 15 and 50× 20 instances in Table 4. We
can see that our policy still outperforms baselines on these instances with reasonable time. Complete
results on DMU benchmark are given in the Supplementary Material.

6 Conclusions and Future Work

In this paper, we present an end-to-end DRL based method to automatically learn high-quality
PDRs for solving JSSP. Based on the disjunctive graph representation of JSSP, we propose an MDP
formulation of the PDR based scheduling process. Then we design a size-agnostic policy network
based on GNN, such that the patterns contained in the graph structure of JSSP can be effectively
extracted and reused to solve instances of different sizes. Extensive experiments on generated and
public benchmark instances well confirm the superiority of our method to the traditional manually
designed PDRs. In the future, we plan to further enhance the performance of our method, and extend
it to support other types of shop scheduling problems and complex environments with uncertainties.

Broader Impact

Some work [49, 50] discussed the design of intelligent production systems by integrating modern
AI technology. Our work, which solves a well-known problem that is ubiquitous in real-world
production system, i.e. job shop scheduling, is within this scope. The automated end-to-end learning
system in this work tries to free human labor from tedious work of designing effective dispatching
rules for particular job shop scheduling problem. On the other side, however, this work may have
some limitations. First, despite of performance improvement, it sacrifices interpretability due to the
unexplainable nature of deep neural networks, whereas traditional dispatching rule based scheduling
system is intuitive to human. This issue might make it untrustworthy for some applications, due to
the potential risk and uncertainty. Second, highly automated and end-to-end system may conceal
some details that are critical but easy to be ignored and bias human’s understanding underneath.
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