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GP3: Gaussian Process Path Planning for Reliable
Shortest Path in Transportation Networks

Hongliang Guo , Xuejie Hou, Zhiguang Cao , and Jie Zhang

Abstract— This paper investigates the reliable shortest
path (RSP) problem in Gaussian process (GP) regulated trans-
portation networks. Specifically, the RSP problem that we are
targeting at is to minimize the (weighted) linear combination of
mean and standard deviation of the path’s travel time. With the
reasonable assumption that the travel times of the underlying
transportation network follow a multi-variate Gaussian distri-
bution, we propose a Gaussian process path planning (GP3)
algorithm to calculate the a priori optimal path as the RSP solu-
tion. With a series of equivalent RSP problem transformations,
we are able to reach a polynomial time complexity algorithm with
guaranteed solution accuracy. Extensive experimental results over
various sizes of realistic transportation networks demonstrate the
superior performance of GP3 over the state-of-the-art algorithms.

Index Terms— Reliable shortest path (RSP), mean-std mini-
mization, Gaussian process path planning (GP3), a priori path,
stochastic on time arrival (SOTA), Lagrangian relaxation.

I. INTRODUCTION

STANDARD shortest path problem, which aims at finding
a path with the minimum travel distance, time or other

forms of cost from origin to destination, has long been solved
optimally via efficient algorithms [1], and applied to large
scale road networks [2]. However, those algorithms typically
assume a deterministic and static underlying transportation
network, and make use of the additive nature of the objective
for label-correcting and/or dynamic programming solutions.
The assumption is invalid when facing real world applications,
in which travel times are essentially stochastic due to demand
fluctuation and supply degradation [3], [4].

On the other hand, stochastic shortest path (SSP) explicitly
targets at the problem of path planning under uncertainties
and offers travellers with a wide range of objective selections
depending on his/her attitude towards the risk of travel time
variability. Perhaps one of the most common SSP objectives is
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the least expected time (LET) path, which aims at minimizing
the expected travel time of the planned path. LET path is
suitable for risk-neutral travellers, who do not care about the
variation of the planned path. However, a large portion of the
route travellers are risk averse, e.g. they would rather travel
a longer time in expectation during navigation, in trade of a
smaller variance. This kind of travellers need a reliable shortest
path (RSP) which guarantees, with a high probability, that the
actual arrival time will not be too late.

There already exist several RSP objectives in the path
planning community, which finds the path with (1) minimal
expected disutility (MED) [5], [6]; (2) maximal stochastic
on-time arrival (SOTA) probability [7]–[12]; (3) minimal
α-reliable travel time [13]–[15], or (4) minimal mean-variance
combination [16], [17]; minimal mean-standard deviation
combination (mean-std) [18]–[21]. A brief literature review
over RSP-related research including the objective, travel time
assumptions and the methodologies will be performed in
Section II. This paper selects the mean-std minimization as
GP3’s RSP planning objective, and it is worth noting that in
GP-regulated environments, the minimal mean-std RSP can
be equivalently transformed to the α-reliable RSP as well as
the SOTA RSP, which will be proved in the Appendix.

The minimal mean-std RSP problem is essentially a
non-linear integer programming problem, and there are no off-
the-shelf solvers guaranteed to find the global optimal solution
within polynomial time. Current prevailing techniques either
use the branch and bound (or branch and cut) algorithm to
find the global optimal solution at the cost of non-polynomial
computational complexity [4], or use Lagrangian multipliers to
convert some of the constraints into the objective, and itera-
tively approximate the solution with polynomial-complexity
solvers for the converted problem. However, the relaxed
Lagrangian multiplier method cannot guarantee a global opti-
mal solution, i.e. the duality gap is not guaranteed to converge
to zero, which means that we do not know whether or
not the converged solution is the global optima. Moreover,
within each iteration, the duality gap shrinkage size cannot
be approximated/estimated theoretically, which means that we
do not know, beforehand, how many rounds of iterations is
needed for the ultimate solution to converge.

This paper proposes a Gaussian process path planning
(GP3) algorithm which (1) performs a series of equivalent
transformations to convert the original minimal mean-std RSP
problem into a (convex) quadratic integer programming (QIP)
problem; (2) uses the max-flow problem solution to enumerate

1558-0016 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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all the elementary paths as the candidates of the transformed
QIP problem solution, (3) and then selects the ‘best elementary
path’ as the optimal solution to the QIP problem. Theoretical
proof that the ‘best elementary path’ is the optimal path of the
QIP problem, is provided. In this way, GP3 algorithm is able
to reach the global optimal solution of the minimal mean-std
RSP problem with arbitrarily high accuracy within polynomial
computation time.

The contributions of the paper can be summarized as
follows: (1) we propose GP3, which enjoys polynomial com-
putational complexity and in the meantime, is able to return
the global optimal solution to the minimal mean-std problem;
(2) we prove that in GP-regulated environments, the minimal
mean-std RSP problem, SOTA RSP problem and the α-reliable
shortest path problem can be equivalently transformed to each
other with simple meta-parameter adjustments; (3) GP3 is
tested in various realistic transportation networks with real
traffic data, and the related performance is better than that
of the state-of-the-art algorithms.

The remainder of the paper is organized as follows: we
perform a brief literature review over related RSP research
in Section II, followed by a brief introduction of Gaussian
process basics in Section III. Then we present the mini-
mal mean-std path planning problem formulation and several
assumptions in Section IV, followed by the GP3 methodology
introduction and its computational complexity analysis in
Section V. Extensive experiments over various transportation
networks are executed and the performance comparisons are
presented in Section VI, and the paper ends with conclusions
and future work directions in Section VII.

II. LITERATURE REVIEW

Reliable shortest path (RSP) has been widely recognized
as an important research topic to deal with travel time
variability in the path planning community, and this section
provides a brief review over various RSP objectives and
the corresponding solution approaches. Generally speaking,
RSP planning algorithms assume either independent travel
time distributions [20], [22]–[25] across different road seg-
ments, or spatially correlated travel times [15], [18], [21],
[26], [27] within the underlying transportation networks. The
spatially correlated travel time assumption is more complex
but more realistic, e.g. traffic accidents on a certain link will
probably lead to high travel times over its downstream and
upstream links.

This paper presumes that the travel time over the entire
transportation network is correlated, and can be expressed by
a multi-variate Gaussian distribution, i.e. GP, which is the
same assumption used in [4], [16]. Empirical studies based
on real-world traffic data show that the use of multi-variate
normal distribution, i.e. GP, reflects observed path travel time
distributions very well [28]. It is also reported in [9] that
GP approximation achieves 98.3% and 94.9% of accuracy at
the 10th and 90th percentiles of the sampled real world travel
time data. Moreover, GP is both flexible to capture the spatial
correlations of travel time over the underlying transportation
network, and convenient to derive posterior distributions when
given only a subset of samples.

The essence/objective of an RSP is to find a path with one
of the following four objectives, namely (1) minimal expected
disutility (MED); (2) minimal high percentile travel time
(α-reliable shortest path); (3) maximal stochastic on time
arrival probability (SOTA); and (4) minimal linear combina-
tion of the path’s expected travel time and standard deviation
(mean-std) or variation (mean-variation). While this paper
provides a GP path planning algorithm with the minimal
mean-std objective, a brief review of the literature over the
first three categories is also provided.

The MED RSP introduces a (usually non-linear) disutility
function over the path’s arrival time, representing the user’s
risk aversion attitude, and seeks for a path with the minimal
expected disutility score. The exponential disutility function
is first proposed and solved in [29] for stationary and inde-
pendent travel time distributions, and the authors expand the
application scenario to time-dependent and correlated travel
time in [6].

The α-reliable RSP, as defined in [14], aims at finding a path
with the minimal travel time with high probability guarantee,
i.e. find a path with the minimal scalar value T , of which
the probability that the path’s travel time is smaller than T is
higher than a predefined threshold value (α). When α = 0.5,
the α-reliable shortest path is equivalent to the LET path. The
authors in [14] propose to use genetic algorithms to find the
α-reliable shortest path for the independent travel time use
case, and the case of α-reliable RSP planning for spatially
correlated travel time is solved in [18].

The SOTA criterion for RSP, first proposed by Frank
in [30], aims at finding a path with the maximal probability
of arriving at a destination before a user-specified deadline.
Fan et al. [23] study the SOTA RSP problem from the perspec-
tive of Bellman’s principle of optimality, and the approach uses
the dynamic programming procedure to iteratively solve the
SOTA RSP problem, and outputs a routing policy instead of
a priori path so as to maximize the on-time arrival probability.
Since then, various extensions with the backbone of using
dynamic programming and Bellman’s principle of optimality
have been proposed for SOTA RSP solutions [31], [32].

The mean-variance or mean-std RSP incorporates the path’s
travel time variance or standard deviation directly into the
formulation, either as a constraint [33] or as an additional
term in the objective function [16], [26], [34], [35]. The
authors in [16] propose a polynomial time algorithm to solve
the mean-variance RSP problem, in which the optimal path
is proved to be within a set of pre-calculated set of paths,
named as component paths. The algorithms for mean-std
RSP can be roughly categorized into three groups:
(1) formulate the RSP problem into a mixed integer non-linear
programming (MINLP) problem and use off-the-shelf opti-
mization solvers for the solution [35]–[37]1; (2) transform
the problem into a series of easily solvable problems for
iterative solutions [20]; (3) apply Lagrangian relaxation and
duality theory for approximate solution with duality gap
analysis [15], [21], [26], [27].

1Note that some MINLP approaches also make use of (partial) Lagrangian
relaxation for approximate solutions.
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The mainstream approaches for the polynomial complexity
RSP solutions are through Lagrangian relaxation, e.g. [21],
[26], [38], [39]. Xing and Zhou propose a sample-based
Lagrangian relaxation method for mean-std RSP planning,
in which they approximate the overall path travel time as
a normal distribution, and use the sampled travel time data
to gauge the distribution parameters [26]. The proposed
method is applicable to the transportation network with or
without travel time correlations. Zeng et al. use Cholesky
decomposition to decompose the covariance matrix and rely
on partial Lagrangian method to solve the partially unified
RSP planning problem [15]. The master problem can be
decomposed to several standard shortest path problems, and
Dijkstra’s algorithm is used to solve the master problem.
The dual variable is iteratively updated through subgradient
method. During the iteration process, the original problem’s
lower bound and upper bound are updated and the convergence
of the duality gap is provided. Similar works are proposed
in [21], [27], respectively, with different techniques for the
covariance matrix decomposition.

Lagrangian relaxation method is fast and can be proved
for convergence. However, there are two main drawbacks.
Firstly, for each iteration, the shrinkage size of the duality gap
cannot be estimated beforehand, which means that we do not
know how much improvement we can get after one iteration.
Secondly, the Lagrangian relaxation method cannot guarantee
a final zero duality gap, which means that even with infinite
amount of time, the algorithm cannot guarantee to converge
to the ultimate optimal solution.

This paper proposes a polynomial computational complexity
algorithm, named as GP3, which guarantees that (1) after each
iteration, the gap (difference between upper bound and lower
bound) will shrink by at least a half, and (2) the gap converges
to zero in the limit. It is worth noting that, in GP-regulated
environments, the mean-std RSP problem has a one-to-one
mapping relationship with the α-reliable RSP problem, and
the SOTA RSP problem can be solved by iteratively finding
an updated α-reliable RSP.

III. GAUSSIAN PROCESS INTRODUCTION

Since this paper presumes that the travel times of the
underlying transportation networks follow a Gaussian process
(GP), this section briefly introduces the basics of GP, and
more detailed contents about GP can be referred in [40].
A Gaussian process is a stochastic process (a collection of
random variables indexed by time or space), such that every
finite collection of those random variables has a multivariate
normal distribution, i.e. every finite linear combination of
them is normally distributed. Assume X ∈ Rn is a GP,
i.e. X ∼ GP(μ,�), the probability density function (pdf)
of X can be expressed as:

p(x) = 1√|2π�| exp(−1

2
(x − μ)��(x − μ)), (1)

where μ and � are the mean and covariance of X . One
of the GP characteristics is that the conditional distribu-
tion a GP is still a GP. Formally, it is stated as follows.

When X is partitioned into two subsets: X =
[

X1
X2

]
, with

X1 ∈ Rp and X2 ∈ R(n−p). Correspondingly, μ and � are

partitioned as μ =
[
μ1
μ2

]
and � =

[
�11 �12
�21 �22

]
respectively.

Then the distribution of X1 conditional on X2 = x2 is
multivariate normal X1|X2=x2 ∼ N (μ1|2,�1|2) where

μ1|2 = μ1 + �12�
−1
22 (x2 − u2), (2)

and the conditional co-variance matrix

�1|2 = �11 − �12�
−1
22 �21. (3)

This characteristic of GP gives us the capability and flexi-
bility of describing the whole transportation network’s travel
time distribution with only a subset of samples.

IV. PROBLEM FORMULATION

This section introduces the notations used throughout the
paper, followed by the minimal mean-std RSP problem state-
ment. Then, we lay down two reasonably assumptions used
in the paper, which ‘naturally’2 avoid the cycle-containing
RSP solutions.

A. Notations

Let G(N , A) represent a directed and connected transporta-
tion network, where N (|N | = n) refers to the set of nodes
and A (|A| = m) refers to the set of links. c ∈ Rm is
a random variable (RV) vector, representing the joint travel
time distribution over the entire transportation network G. This
paper presumes that c ∼ N (μ,�), where μ ∈ Rm is the
mean of c, and � ∈ Sm×m++ refers to the positive definite
covariance matrix capturing the travel time’s spatial correlation
relationships. Here, we wish to articulate that GP3 targets
at a stationary travel-time environment, where the mean and
co-variance matrix of travel-time distribution are independent
of the link flows and can be estimated statistically with real
travel-time samples.

Other related variable notations are listed as follows:
(1) i , j ∈ N refers to the node index, with r indicat-
ing the origin node and s indicating the destination node;
(2) i j , kl ∈ A refers to link index; (3) xi j ∈ {0, 1} is a
binary decision variable, when xi j = 1, it means that link i j is
selected as a part of the RSP; (4) σi j is the standard deviation
of link i j ’s travel time, Cov(i j, kl) refers to the covariance
of travel times between link i j and link kl (both σ 2

i j and
Cov(i j, kl) are elements of the co-variance matrix �); and
(5) ζ ≥ 0 is the reliability coefficient representing the user’s
risk aversion attitude.

B. Problem Statement

The output of our algorithm is an a prior path connecting
the origin node r to the destination node s, with the minimal

2Here, the word ‘naturally’ means that the optimization algorithm will
automatically search for the path without cycles (no need for the explicit
cycle-elimination constraint).
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mean-std objective. The minimal mean-std RSP problem can
be mathematically formulated as:

(P):

min
x

μ�x + ζ
√

x��x

s.t.
∑

j :i j∈A
xi j −

∑
k:ki∈A

xki =

⎧⎪⎨
⎪⎩

1, i = r

−1, i = s

0, i ∈ N − {r, s}
xi j ∈ {0, 1}.

Note that in (P), the constraints are flow balancing con-
straints with Boolean decision variables (xi j ). For representa-
tion simplicity, the flow balancing constraints in (P) is usually
succinctly stated as Ax = b, where A ∈ Rn×m is the
node-incidence Matrix [41], with its element ai j ∈ {1,−1, 0}.
The node-incidence matrix ( A) represents the topological
structure of the underlying transportation network. Its element
ai j represents the relationship between link j and node i , thus
1 ≤ j ≤ m, and 1 ≤ i ≤ n. When ai j = 1, it means that link j
starts at node i ; when ai j = −1, it means that link j ends at
node i , and when ai j = 0, it means that there is no relationship
between link j and node i . b ∈ {1, 0,−1}n , is a column
vector representing the origin-destination (OD) information,
with bi = 1 representing the origin node, and bi = −1
representing the destination node, and bi = 0 representing
the usual node. Note that with the node-incidence matrix
representation, the variable notations are slightly overloaded.
Normally, a link should be labeled as link i j , with i indicating
the link’s starting node, and j indicating the link’s ending
node. However, when we are representing the underlying
transportation network with node-incidence matrix ( A), node
is labeled as i , and link is labeled as j , which means that when
its element ai j = 1, link j start at node i . With the help of
the node-incidence matrix ( A) and the OD vector (b), (P) can
be succinctly represented as:

minimize
x

μ�x + ζ
√

x��x

subject to Ax = b

xi j ∈ {0, 1}. (4)

C. Assumptions

This subsection lays down several reasonable assumptions
which naturally avoid the ‘cycling’ problem, i.e. the opti-
mal path contains cycles/loops. For a minimal mean-std
RSP problem as formulated in (P), normally, it is not guaran-
teed that the yielded solution does not contains cycles/loops.

Assumption 1 (Travel-Time Assumption): The mean travel
times of all the links are strictly positive, i.e. μ � 0.

Assumption 2 (Cycle Co-Variance Assumption): Removing
a cycle in a path results in a path whose total variance is
strictly less than the original path.

It is straightforward to justify that Assumption 1 is rea-
sonable, as any link that the traveller travels on should
consume time, and thus the mean-travel time for any link
should be greater than zero. For the class of applications
that we are targeting at, Assumption 2 is also reasonable,

as travel on additional links can only add uncertainties, and
hence increase the variance. There are, of course, instances in
which the co-variance structure makes Assumption 2 invalid,
which makes the RSP planning problem much more difficult.
We wish to note that we rule out these cases in this paper,
but will deliver explicit discussions about cycle-elimination
techniques towards the end of Section V.

Theorem 1: The optimal solution to (P) cannot be a
cycle-containing path.

Without loss of generality, we only prove the case with one
cycle in the path.

Proof: (1) Let xc represent a one-cycle-containing path,
which connects the origin node r to the destination node s.
Denote M as the set of links that is contained in xc, i.e.
∀i j ∈ M, we have xc

i j = 1; ∀i j /∈ M, we have xc
i j = 0.

(2) Let xo be the (only) cycle contained in xc. Denote Mc

as a subset of M, which forms the cycle, i.e. the set of links
{i j |i j ∈ Mc} forms a cycling path whose source node is the
same as its destination node. (3) Denote M\Mc as the set
of links that belong to M but do not belong to Mc, and the
corresponding path is represented xc − xo. Now we begin a
two-stage proving process.

Stage 1: prove that xc − xo is a valid path for (P), i.e. a
path connecting r to s. Since xc is a path connecting r to s,
we have

∑
j :i j∈A

xc
i j −

∑
k:ki∈A

xc
ki =

⎧⎪⎨
⎪⎩

1, i = r

−1, i = s

0, i ∈ N − {r, s}
. (5)

Moreover, since xo is a cycle, which means that ∀i ∈ N ,∑
j :i j∈A

xo
i j −

∑
k:ki∈A

xo
ki = 0. (6)

Subtracting Eq. (5) by Eq. (6), we obtain that the xc − xo

is a still valid path connecting r to s.
Stage 2: prove that the mean-std RSP metric for xc − xo is

smaller than that of xc. The proving process is as follows:
μ�(xc − xo) + ζ

√
(xc − xo)��(xc − xo)

−
(
μ�xc + ζ

√
(xc)��xc

)

= −μ�xo + ζ
(√

(xc − xo)��(xc − xo) −
√

(xc)��xc
)

< ζ
(√

(xc − xo)��(xc − xo) −
√

(xc)��xc
)

= ζ

(
(xc − xo)��(xc − xo) − (xc)��xc

)
(√

(xc − xo)��(xc − xo) + √
(xc)��xc

)
< 0.

During the derivation process, there are two inequalities.
The first inequality is the result of applying Assumption 1,
and the second inequality is because of Assumption 2, which
presumes that the cycle-containing path’s variance is larger
than that of the corresponding non-cycle containing path.
With proofs from Stage 1 and Stage 2, we can conclude that
xc − xo is a valid path from r to s, and has a strictly lower
mean-variance RSP metric than that of xc.
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V. GP3: GAUSSIAN PROCESS PATH PLANNING

In the last section, we have laid down the minimal mean-std
RSP problem formulation, two realistic assumptions guaran-
teeing the natural avoidance of cycle-containing solutions, and
the minimal mean-std RSP problem’s equivalent relationship
with the α-reliable shortest path, and the SOTA RSP. This
section presents the GP3 algorithm with its computational
complexity analysis.

The first three subsections introduce the GP3 algorithm.
In GP3, we first transform the minimal mean-std RSP problem
into an indefinite quadratic integer programming (QIP) prob-
lem, and then continue to transform the indefinite QIP problem
into an equivalent convex QIP problem. Finally, we propose
a polynomial complexity algorithm to solve the equivalent
convex QIP problem. The GP3 algorithm’s flow process and
the corresponding computational complexity analysis are pre-
sented, with discussions about cycle-elimination techniques
towards the end of this section.

A. Transform the Minimal Mean-Std RSP Problem to
Indefinite Quadratic Integer Programming Problem

The minimal mean-std RSP problem as stated in (P) is a
non-linear integer programming problem, and there is no off-
the-shelf solver to efficiently find the global optimal solution.3

The key non-linear part is the term
√

x��x, in the following,
we will, step by step, convert (P) to an equivalent but easy-
to-solve problem.

First, we simplify the objective function, and put the com-
plex representation forms, i.e.

√
x��x into the constraints.

We will get:
minimize

x,t
t

subject to μ�x + ζ
√

x��x ≤ t

Ax = b

xi j ∈ {0, 1}. (7)

The first constraint in Eq. (7) can be further transformed as
follows:

μ�x + ζ
√

x��x ≤ t

⇒ ζ
√

x��x ≤ t − μ�x

⇒ ζ 2x��x ≤ (t − μ�x)2

⇒ ζ 2x��x ≤ (t − μ�x)�(t − μ�x)

⇒ ζ 2x��x ≤ x�μμ�x − 2tμ�x + t2

⇒ x�(ζ 2� − μμ�)x + 2tμ�x ≤ t2 (8)

The last row of Eq. (8) is a quadratic function over x,
and will be used to replace the first constraint in Eq. (7).
However, in order to get an equivalent replacement between
the constraints, an additional constraint needs to be inserted,
which is

μ�x ≤ t . (9)

3Here, the word ‘efficiently’ refers to an efficient algorithm which return
the optimal solution with polynomial computational complexity.

Because during the constraint conversion process
(
from

the second line to the third line) in Eq. (8)
)
, we have assumed

that μ�x ≤ t . In this case, the first constraint in Eq. (7) is
equivalently transformed to the two constraints as expressed
in Eq. (8) and Eq. (9), and the original minimal mean-std
RSP problem in Eq. (7) is equivalently transformed into the
following form:

minimize
x,t

t

subject to x�(ζ 2� − μμ�)x + 2tμ�x ≤ t2

μ�x ≤ t

Ax = b

xi j ∈ {0, 1}. (10)

Now, we use the fact that ∀t ≥ 0, we have arg min
t

t2 =
arg min

t
t , then the objective of Eq. (10) can be squared without

changing the problem’s optimal solution. After that, the first
constraint in Eq. (10) can be converted into the objective, and
the converted problem is:

minimize
x

x�(ζ 2� − μμ�)x + 2tμ�x

subject to μ�x ≤ t

Ax = b

xi j ∈ {0, 1}. (11)

Note that in Eq. (11), t is not a decision variable, but an
input parameter. For any given t ≥ 0, we solve the current
problem as stated in Eq. (11), then if the optimal objective
value is less than t2, it means that the problem in Eq. (10) is
feasible, which means that we find a feasible solution to the
original minimal mean-std RSP problem in Eq. (7). On the
other hand, if for a given t ≥ 0, the solution to Eq. (11)
cannot yield an objective value that is less than t2, it means
that there is no feasible solution to Eq. (10), hence, no feasible
solution to Eq. (7). In this case, it means that the value t is
too small, and we need to increase it to get a feasible solution,
so as to get a feasible RSP as the output.

The problem as defined in Eq. (11) is an indefinite
QIP problem, in the next subsection, we will convert the
indefinite QIP problem into a convex QIP problem.

B. Transform the Indefinite QIP to Convex QIP

In the last subsection, we have successfully transformed the
original problem (Eq. (7)) into the problem defined in Eq. (11).
The optimal solution to Eq. (11) will judge whether the
originally proposed value (t) in (Eq. (7)) is feasible or not.

However, the problem as defined in Eq. (11) is a large
scale 0 − 1 indefinite quadratic integer programming problem,
and there is also no efficient off-the-shelf solvers for the
polynomial-time optimal solution. Canonical non-linear inte-
ger programming software is usually inefficient, fortunately,
the flow balancing constraints impart a very special structure,
which makes it possible for us to transform the problem and
hence reach an efficient polynomial time solver.

There are two sources of difficulties in Eq. (11), first,
the quadratic term in the objective function is neither positive
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definite, nor negative definite, which means that it is an
indefinite quadratic matrix. Secondly, the decision variables xi j

belong to {0, 1}, whose non-continuity poses great difficulties
in finding efficient solvers. In the following, we will first
convert the quadratic part in the objective function of Eq. (11)
to a positive definite matrix, and then use the max-flow method
to find the optimal solution.

For representation simplicity, we make the following def-
initions: (1) e ∈ Rm , with all the elements equal to 1,
which means that e = [1, 1, . . . , 1]�; (2) H = ζ 2� − μμ�;
(3) λmin: the minimum of the eigenvalues of matrix H , note
that it is possible that λmin < 0, which means that H is an
indefinite matrix.

Since x ∈ {0, 1}m , it is easy to verify that x�x = e�x.
Then, the objective function in Eq. (11) can be converted as
follows:
x�(ζ 2� − μμ�)x + 2tμ�x

= x� H x + 2tμ�x

= x� H x + 2tμ�x − (λmin − 1)x�x + (λmin − 1)e�x

= x�(H − (λmin − 1)I)x + (2tμ� + (λmin − 1)e�)x,

where I is an m×m identity matrix. Now, the problem defined
in Eq. (11) is converted to:

min
x

x�(H − (λmin − 1)I)x + (2tμ� + (λmin − 1)e�)x

s.t. μ�x ≤ t

Ax = b

xi j ∈ {0, 1}. (12)

Since λmin is the minimal eigenvalue of matrix H , thus
it is straightforward to verify that the quadratic term in the
objective function in Eq. (12) is a positive definite matrix with
the minimal eigenvalue at 1. Hence the problem defined in
Eq. (12) is a convex quadratic integer programming problem.

So far, we have converted the indefinite QIP problem into an
equivalent convex quadratic integer programming problem, but
the {0, 1} constraint still makes the problem difficult to solve.
In the next subsection, we will propose an efficient solver
which finds the optimal solution to Eq. (12) within polynomial
time. Before that, we would like to simplify the representation
form of Eq. (12).

Defining Q = H − (λmin − 1)I , and l = 2tμ+ (λmin − 1)e,
the problem defined in Eq. (12) can be succinctly represented
as:

minimize
x

x� Qx + l�x

subject to μ�x ≤ t

Ax = b

xi j ∈ {0, 1}. (13)

C. An Efficient Algorithm for the Convex QIP Problem

The canonical methods to solve the convex QIP problem
in Eq. (13) is branch and bound [42], which has an exponen-
tial computational complexity. It prohibits the application to
path planning in large scale transportation networks. In this

subsection, we will first lay down the polynomial-complexity
algorithm to solve Eq. (13), then prove its correctness.

We first solve the relaxed problem of Eq. (13), which is
to relax the Boolean constraints to be convex constraints,
as stated in the following:

minimize
x

x� Qx + l�x

subject to μ�x ≤ t

Ax = b

0 ≤ xi j ≤ 1. (14)

Eq. (14) is a standard quadratic programming (QP) problem,
which can be solved efficiently with off-the-shelf solvers.
We define the optimal solution to Eq. (14) as xt , which is
dependent on the input value t . Since all the elements of xt are
between 0 and 1, we can formulate a max-flow path planning
problem [43] as follows: find a set of elementary paths x pi

(1 ≤ i ≤ K ) connecting origin r to destination s, such that,

K∑
i=1

θi x pi = xt

K∑
i=1

θi = 1

θi ≥ 0. (15)

Note that Eq. (15) is a max-flow problem, which decom-
poses the previous problem’s (Eq. (13)) solution into several
elementary paths, from which the optimal solution to Eq. (13)
is chosen, and the optimality will be proved. The max-flow
problem is readily solved in the path planning community,
and there exists several polynomial-complexity algorithms
for the solution. The number of elementary paths, i.e. K ,
depends on xt , and in practice, it is usually more or less
comparable with the number of links of the shortest path in
the transportation network.

Now, we will prove that out of the elementary paths, the one
with the minimal objective value and satisfying the constraints
in Eq. (13) will be the optimal solution to the problem
in Eq. (13).

Theorem 2: The optimal solution to Eq. (13) is one of the
elementary paths which holds the minimal objective value and
satisfies the inequality constraints.

Before the formal proving process, we sketch the proof
skeleton here. We first prove that ∇ f (xt )

�(x pi − xt ) = 0,
where f (x) is the objective function in Eq. (13), then we
establish a contradiction that if there is another path which
is not in the elementary paths, and has an objective value
lower than that of all the elementary paths, we will violate the
optimality condition, which makes xt not the optimal solution
to the problem in Eq. (14).

Proof: Step 1: prove that ∀pi , we have ∇ f (xt )
�

(x pi − xt ) = 0, where f (x) is the objective function.
Since xt is the optimal solution to Eq. (14), hence it

satisfies all the constraints, e.g. μ�xt ≤ t . Recall the orig-
inal problem as defined in Eq. (7), we can make a further
conclusion that μ�xt is strictly less than t , i.e. μ�xt < t .
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Because if μ�xt = t , the first inequality constraint in Eq. (7)
would not be satisfied, and the problem is infeasible.

On the other hand, x pi is the elementary path connecting r
to s, which means that it satisfies the flow balancing con-
straints. Now, we define d = x pi − xt , which is a feasible
direction starting from the point xt .

Consider the term xt + λ(x pi − xt ), where λ is arbitrarily
small, i.e. −	 ≤ λ ≤ 	, with 	 being a very small positive
number, we can get that ∀λ such that −	 ≤ λ ≤ 	, the resulting
point is a feasible solution to Eq. (14). Hence, ∇ f (xt )

�
(x pi − xt ) = 0. Otherwise, suppose that we could flip the
sign of λ, and always get a negative gradient direction, which
will decrease the objective value, and in this case, the original
solution would not be the minimum point anymore.

Second step: we establish a contradiction that if there is
another path who has a lower objective value than all the
elementary paths’ objective value, the path’s objective value
with be also lower than xt’s objective value.

Suppose there is another path, xq , which has a smaller
objective value than that of all the x pi , ∀1 ≤ i ≤ K , we have:

∇ f (x pi )
�(xq − x pi ) < 0. (16)

Recall that xt = ∑K
i=1 θi x pi , since the objective function

( f (x)) is a quadratic function, which makes its derivative
function a linear one, and we have

∇ f (xt ) =
K∑

i=1

θi∇ f (x pi ). (17)

Deriving the relationship between xq and xt , we have

∇ f (xt )
�(xq − xt )

=
K∑

i=1

θi∇ f (x pi )
�(xq − xt )

=
K∑

i=1

θi∇ f (x pi )
�(xq − xt ) −

K∑
i=1

θi∇ f (x pi )
�(x pi − xt )

=
K∑

i=1

θi∇ f (x pi )
�(xq − x pi )

< 0.

From the second line to the third line in the derivation,
we make use of the fact that ∇ f (xt )

�(x pi − xt) = 0 and the
property of Eq. (17). From the fourth line to the last line in the
derivation, we make use of Eq. (16). However, the conclusion
is that xq has a lower objective value than that of xt , which
violates the fact that xt is the optimal solution. Hence, there
does not exist such a path x p .

To conclude this subsection, we propose an efficient algo-
rithm to solve the convex QIP problem in Eq. (13). We first
relax the convex QIP problem to a standard QP problem, and
use the off-the-shelf solver to calculate the optimal solution.
Then, we decompose the optimal solution to several elemen-
tary paths, and select the path, which has the smallest objective
value and satisfies the inequality constraint as the final optimal
solution to Eq. (13). The theoretical proof is also provided.

D. Algorithm Flow Process for GP3

In the previous three subsections, we have introduced the
GP3 algorithm in detail, and this subsection will present
the GP3’s algorithm flow process. Before the algorithm flow
process introduction, we first estimate the lower bound and
upper bound of the value t in Eq. (7). Since the objective of
Eq. (7) is to minimize t subject to a feasible path connecting r
with s, we can evaluate any path’s t value as its upper bound.

We calculate the standard fastest path in expectation,
denoted as x f , thus we have the upper bound of t as

μ�x f + ζ
√

x�
f �x f . Deriving the lower bound of t is a little

difficult, one of the lazy and simple solution is to let the
lower bound of t be zero. However, there are much better
estimates for t’s lower bound. Let us denote the minimal
variance path as xvar, which is a path connecting r to s, while
minimizes the objective function x��x. It is worth noting that
the minimal variance path can be calculated in polynomial
time after considering the GP3 algorithm. Then the lower
bound of t can be estimated as μ�x f + ζ

√
x�

var�xvar. Now
we have:

μ�x f + ζ

√
x�

var�xvar ≤ t ≤ μ�x f + ζ
√

x�
f �x f . (18)

Before introducing the flow process of GP3, we introduce
the following definition.

Definition 1 (Tolerance η): A tolerance value η is a thresh-
old value representing the tolerance of the maximal absolute
value difference between the optimal value of an optimization
problem and the current-solution-yielding value.

In the reliable shortest path planning problem, for example,
we have the absolute best RSP, which yields an objective value
of f ∗, and we have a proposed path, which yields a value
of f . If | f − f ∗| < η, it means that our proposed solution
is within the tolerance of the problem. The algorithm flow
process of GP3 is depicted in Algorithm 1. When supplied
with required parameters, i.e. μ, � and ζ , GP3 will output
the a prior optimal path.

Tolerance η is a very useful parameter to gauge the accu-
racy of the RSP planning algorithm, and will be used in
the algorithm’s computational complexity analysis. However,
in practice, the ratio of η and the upper bound’s value is
often used, as it reflects the percentage of deviation between
the optimal solution and the current best solution. Thus,
we introduce the following definition:

Definition 2 (Relative Tolerance ηr ): A relative tolerance
value ηr is a threshold value defining the maximal allowed
value of the ratio of the current upper and lower bound’s
difference to the current upper bound.

With the definition of ηr , the algorithm will terminate when

UB − LB

UB
≤ ηr , (19)

where UB and LB are the values of the upper bound and lower
bound, respectively.

E. Computational Complexity Analysis

This section analyzes the computational complexity of GP3.
The computational cost of an operation can often be expressed
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Algorithm 1 The Algorithm Flow Process of GP3
Input: GP parameters for the underlying transportation

network (μ and �), reliability coefficient ζ ,
relative tolerance ηr , current node r , destination
node s.

Output: minimal mean-std RSP
1 Calculate the upper bound and lower bound of t

according to Eq. (18), and denote the values as tmax and
tmin, respectively.

2 calculate the minimum eigenvalue of matrix
H = ζ 2� − μμ�;

3 Convert to the problem defined in Eq. (13);
4 while (tmax − tmin)/tmax > ηr do
5 propose t = (tmax + tmin)/2; Call QP solver to solve

the relaxed problem defined in Eq. (14);
6 Call the max-flow algorithm to find the set of

elementary paths satisfying Eq. (15);
7 Evaluate all the elementary paths and find the one

with the minimal objective value of Eq. (13) while
satisfying the inequality constraint;

8 Use the selected elementary path to calculate the
objective value in Eq. (7), record the path as xe, and
denote the objective value as val;

9 if val ≤ t then
10 tmax = val;

11 else
12 tmin = t ;

13 Return the path denoted as xe;
14 Final.

through the number of floating-point operations (flops). A flop
is defined as an addition, subtraction, multiplication or division
of two floating-point numbers. To evaluate the complexity of
an algorithm, we count the total number of flops; express it
as a function (usually a polynomial) of the dimensions of the
matrices and vectors involved, and simplify the expression by
ignoring all terms except the leading terms.

Examining Algorithm 1, we can see that the overhead
(before the ‘while’ loop) of GP3 involves calculating the
shortest path, and minimal variance path, and computing the
eigenvalues of matrix H . The related computational com-
plexity can be represented by O(m2) for the shortest path
and minimal variance path computation. The computational
complexity for computing the eigenvalues of matrix H is
also O(m2). Thus, the overhead computational complexity
is 3O(m2).

Each time in the loop of Algorithm 1, we need to solve
the relaxed QP problem, whose computational complexity
is O(m3), and solve the max-flow problem, whose compu-
tational complexity is O(m2n). Evaluating the elementary
path’s performance is pure matrix multiplication, which also
holds a O(m2n) complexity. Thus, inside the loop, the scale4

4Here, the scale of computational complexity means that it may incur several
times of computation with complexity of O(m2n).

of computational complexity is O(m3 + m2n). Considering
the fact that m > n in realistic networks, we represent the
computational complexity inside the loop as O(m3).

Now, the key part is to estimate the number of loops in
the GP3 algorithm. For a given transportation network, with
fixed parameters, the algorithm will stop when tmax−tmin ≤ η,
since each time, we are able to cut the value of tmax − tmin
by half, the total number of loops that GP3 needs can then be
calculated as 
log2((tmax − tmin)/η)�. Here 
x� refers to find
the minimal integer value that is larger than or equal to the x .

Thus, GP3’s computational complexity is 
log2((tmax −
tmin)/η)�O(m3) after only accepting the leading terms, where
m is the number of links in the transportation network.

F. Discussions About Cycle-Elimination Techniques for GP3

In Section IV-C, we presume that the ‘natural’ solution
of GP3 does not contain cycles. However, in real world
applications, one cannot justify the absolute in-existence of
a cycle from GP3’s output. Now, the question is how to
formulate the problem in a way of completely avoiding cycles
in the output path. Theoretically, DFJ method [44] for cycle
elimination can be employed in GP3’s problem formulation,
specifically, we add the following constraints into Eq. (7):

∀i ∈ N
∑

j :i j∈E
xi j ≤ 1. (20)

The rationale of Eq. (20) is that the solution to GP3 cannot
contain two links, which come out of the same node. We wish
to note that adding the set of constraints of Eq. (20) makes the
problem much more complex than the original one, as there
are n additional inequality constraints in the newly formed
problem. In the experiment section, we stick with the original
problem formulation, and the aim of this subsection is to
provide a way of eliminating cycles in path planning.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we compare the performance of GP3 with
three state-of-the-art algorithms over various transportation
networks. For state of the arts, we select the subgradient (SG)
method proposed in [27], the subgradient projection (SP)
algorithm proposed in [21] and the Lagrangian relaxation (LR)
method proposed in [15]. Those three algorithms are represen-
tative in the minimal mean-std RSP planning research domain.

We first test GP3 and the state-of-the-art algorithms in a
self-constructed simple network, and demonstrate the evolu-
tion process of GP3’s parameters iteration by iteration, then,
we perform a case study in the Sioux Falls network which
is a canonical transportation test network. Later, we apply
GP3 to three real networks, namely, Anaheim, Chicago Sketch,
and Barcelona, with real mean travel time but self-generated
covariance matrix, and this section ends with GP3’s applica-
tion to a large scale network with real traffic data.

Table I summarizes the four algorithms’ parameter config-
uration. The algorithms are implemented in MATLAB(2018b)
as well as Python 3.6 (Python 3.6 is used for testing the
algorithms’ deployment to Chengdu Network).5 All the tests,

5Both Matlab code and Python code are available at https://github.
com/scott0793-debug/GP3.
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TABLE I

ALGORITHM PARAMETERS

Fig. 1. The simple network (adopted from [27]) topology and corresponding
link travel time covariance matrix.

except for the experiments in Section VI-D, are executed
on a 2.80 GHz, Intel(R) Xeon(R) CPU E5-2680 v2 com-
puter with the 64-bit version of the Windows 10 operating
system and 32GB RAM. The experiments in Section VI-D
are conducted on a Linux-based operating system with an
i9-9700K @ 3.6GHz (8 cores) processor and 32 GB of DDR4
3000Mhz RAM, which is equipped with the NVIDIA GeForce
RTX 2070, Super GPU with 8 GB of VRAM. The reason that
we change hardware for the experiments in Chengdu is that
it takes quite a long time (several minutes) for GP3 to yield
the optimal solution with the original hardware setup. With
the help of GPU, we are able to accelerate the computation
time to be in the range of 40 seconds. We use cuOSQP [45]
to solve the QP problem within GP3, and believe that if GPU
is upgraded to NVIDIA GeForce RTX 3090, GP3’s required
computation time can be further trimmed down to as low as
10 seconds (as the authors claim in [45] that the acceleration
of the GPU-assisted QP solver is 15 to 270 times faster than
that of the CPU solver.).

Additionally, it is worth noting that, over the entire exper-
imental section, the units for all the time-related values,
i.e. performance, upper bound, lower bound, algorithm running
time, are seconds.

A. Simple Network for Illustration

In order to demonstrate the evolution process of GP3 and
its characteristics within each iteration, we present the results
of a simple yet illustrative network borrowed from [27].
Fig. 1 shows the topology of the simple network as well as the
corresponding link travel time covariance matrix. The numbers
on the links of the network indicate the mean values of the
travel time. For the experiments, the origin node r = 1, and
the destination node s = 6.

Table II shows the performance (upper bound, lower bound
and the relative gap) evolution process of the four algorithms
iteration by iteration. We can see that GP3 converges with the
minimal number of iterations (the number of required itera-
tions is 2), while SG, which is the second fastest convergence

Fig. 2. Performance evolution process of GP3 over the simple network shown
in Fig. 1a, for different reliability coefficients.

Fig. 3. Sioux falls network.

algorithm, requires 4 iterations to converge. Moreover, with
simple calculation, we can see that the absolute gap of GP3
(UB − LB) will shrink by at least a half after each iteration.
Fig. 2 shows GP3’s evolution process of the upper bound,
lower bound and the relative gap ((UB−LB)/UB) for different
reliability coefficients (ζ = 1, and ζ = 2, respectively).
Note that for better visualization purpose, we plot GP3’s
related performance for 4 iterations, but we can see from the
figure that after 2 iterations, GP3’s relative gap has already
decreased to below 0.05, which is one of the algorithm’s
termination conditions.

B. Canonical Transportation Network (Sioux Falls Network)

This subsection tests the performance of the four algorithms
(GP3, SG, SP, LR) over the Sioux Falls network, which is visu-
alized in Fig. 3. Sioux Falls network is a canonical network
for transportation test problems. It has 24 nodes and 76 links,
with publicly available mean travel time, i.e. μi j . We use the
same method as reported in [20] to randomly generate the
covariance matrix. Specifically, the standard deviation σi j of
link i j ’s travel time is generated as σi j = Uniform(0, κ)μi j ,
where κ > 0 is the maximum value of the coefficient of
variation, and is set to be 0.2 in this subsection. Note that
different values of κ will be tested in the next subsection,
where we apply GP3 to three real networks, namely, Anaheim,
Chicago sketch, and Barcelona.

GP3, SG, SP and LR are tested to generate the reliable
shortest path from the origin node r = 1 to the destination
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TABLE II

PERFORMANCE EVOLUTION PROCESS OF GP3, SG, SP AND LR FOR THE SIMPLE NETWORK (RELIABILITY COEFFICIENT ζ = 1)

Fig. 4. Different resulting RSPs for different ζ values from node 1 to node 15.

TABLE III

PERFORMANCE OF GP3, SG, SP AND LR FOR THE SIOUX FALLS NETWORK (r = 1, s = 15), NOTE THAT ‘GAP’
REFERS TO THE ‘RELATIVE GAP’, WHICH IS CALCULATED AS (UB-LB)/UB

node s = 15 for illustration purpose. Fig. 4 shows differ-
ent resulting RSPs for different reliability coefficients from
the GP3 algorithm, and Table III shows the relative gap,
the number of needed iterations and total computation time
for different algorithms. From Table. III, we can see that
GP3’s needs the least number of iterations to converge, and
all the algorithms’ relative gaps are very small. Admittedly,
on average, GP3’s total computation time is higher than those
of the three algorithms, this is because GP3’s core computation
time is allocated to solving a QP problem, while all of the
other three algorithms are allocating core time for Dijkstra’s
algorithm, and Dijkstra’s algorithm is much faster than a
QP solver. However, GP3 guarantees a polynomial compu-
tational complexity as proved in the last section.

We further test GP3 for the RSP planning with the origin
node r = 1, and the destination node s covering all the remain-
ing nodes in the Sioux Falls network, i.e. s = 2, 3, . . . , 24,
and the reliability coefficient ζ spans from 1 to 45. We set
the maximum ζ at 45, because experimentally, we find that
when ζ ≥ 45, the resulting RSP remains at the minimal

variance path. Table IV shows the resulting performance of the
GP3 algorithm, and for s = 15, we use three different markers
to indicate the three different physical RSPs as illustrated
in Fig. 4, i.e. the numbers with the † symbol (the first three)
corresponds to the path visualized in Fig. 4a, the numbers with
the � symbol corresponds to the path visualized in Fig. 4b,
and the numbers with the ‡ symbol (the last two) corresponds
to the path visualized in Fig. 4c.

C. Real Network Comparison: Anaheim, Chicago Sketch and
Barcelona

In the previous two subsections, we have compared the
performance of GP3 with the other three state-of-the-art
algorithms (SG, SP and LR) over two simple yet illustrative
self-constructed networks and the canonical transportation
test network (Sioux Falls network). This subsection will
evaluate GP3’s performance over three realistic networks,
namely Anaheim, Chicago Sketch and Barcelona. The net-
work details (the number of nodes and links) are presented
in Table V.
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TABLE IV

PERFORMANCE OF GP3 FOR DIFFERENT DESTINATIONS AND DIFFERENT ζ VALUES FOR THE SIOUX FALLS NETWORK (r = 1)

TABLE V

TEST NETWORK SUMMARY

TABLE VI

EXPERIMENT PARAMETERS

The mean travel time data comes from transportation test
networks [46]. However, the minimal mean-std RSP planning
problem requires the standard deviation of the link travel times
as inputs so as to capture the path’s travel time variability.
We follow the works in [27] and [37] to generate the standard
deviations of each link, the same as what we have done
for the Sioux Falls network. We sample 50 travel time data
for each link out of the corresponding distribution, and then
use the sampled travel time data to estimate the covariance
matrix �. Table VI presents the parameter values adopted in
the experiments.6

Table VII presents comparative results of GP3, SG, SP and
LR across different ζ values, different κ values and different
networks. In the table, firstly, we can see that across all the
three networks and for different ζ and κ values, GP3 required
only 1 full iteration to reach the RSP solution, with relative

6Note that we select three different ζ values (1, 10, 30) for the evaluation,
as too large reliability coefficients i.e. ζ ≥ 30 will stick the RSP with the
minimal variance path, and too small reliability coefficients will yield LET
RSP solutions.

gap less than 5%. The underlying reason is that the LET
path’s variance is not far from that of the minimal variance
path, which makes the initial gap, i.e. tmax − tmin, very
small, and 1 full iteration of GP3 computation is able to
return a ‘qualified’ RSP, i.e. the RSP with a relative gap less
than ηr .

Secondly, for the same network, the required computation
time does not change much when we change the ζ values
or the κ values, but when the network size increases, i.e.
the number of links increases, the average computation time
increases. This is because the core computation load of GP3 is
spent on computing the relaxed convex QP problem, which
inherently depends on the number of the links in the network,
i.e. the computational complexity of the QP solver is O(m3),
where m is the number of links in the network. Finally, when
GP3 is compared with SG, SP, LR, on average, it returns
the RSP with a smaller relative gap, but admittedly requires
more computation time. We wish to point out that GP3’s
average computation time is more or less on the same scale
of SG’s, SP’s and LR’s computation time. As it can be seen
in Table VII, the maximal average computation time of GP3 is
less than 7.04 seconds, and according to the survey work
in [47], most users would bear 30 seconds for the planner to
give him/her a good reliable shortest path. Hence, we deem the
GP3 algorithm as a time-wise acceptable navigation algorithm
for a priori path computation.

Additionally, we wish to note that due to some unknown but
recurring reasons, SP’s average number of iterations increases
significantly for the Barcelona network when ζ = {10, 30},
i.e., from around 2 iterations to more than 60 iterations, and
the corresponding computation time increases significantly as
well. We repeat the experiment for 5 independent times, and
SP’s related performance (number of iterations and computa-
tion time) stays more or less the same.
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TABLE VII

PERFORMANCE COMPARISON OF GP3, SG, SP AND LR FOR DIFFERENT ζ AND κ VALUES OVER THE THREE NETWORKS

D. Large Scale Network Test With Real Traffic Data:
Chengdu

The experiments in the previous subsection evaluate the
algorithms with real mean travel time and real transportation
network topology, however, the covariance matrix is generated
according to the method proposed in [27] and [37]. In this
subsection, we will test the performance of GP3 and other
state-of-the-art algorithms in a large scale network (Chengdu
Network) with real traffic data. The real world network con-
sists of 1902 nodes and 5943 links in Chengdu city, China.
Travel speed samples of the links are measured through loop
detectors, which, together with the link length, are provided
in [48].

Since the travel time distributions are different in different
times slots of the day, e.g. peak hour, non-peak hour, and
across different types of the day, e.g. weekday, weekend,
we separate the real traffic data into four different groups,
namely, weekday peak hour,7 weekday non-peak hour, week-
end peak hour, weekend non-peak hour. In the following,
we will evaluate (1) the convergence of GP3, and the number
of required iterations of GP3 VS. the shortest distance between
the origin node and the destination node, (2) how changing the
reliability coefficient ζ affects the path selection, and (3) how
GP3 performs against different types of time slots with real
data, i.e. weekend, weekday, peak hour, non-peak hour. Note
that, when we evaluate (1), we randomly sample the OD pairs
in Chengdu, and also pick the time slots randomly out of the
four groups. When we evaluate (2), we focus on the weekday

7peak hours are defined as the following two time slots: (1) between 7:30am
to 9:30am, and (2) between 5:00pm to 7:00pm.

Fig. 5. Average relative gap evolution process for different ζ values in
Chengdu network.

peak hour time slot, as we find that when the traffic demand
is high, i.e. weekday peak hour, there is a large variety of
reliable paths for user’s selection.

To verify the convergence of the GP3 algorithm,
100 random origin-destination (OD) pairs are extracted from
the network for testing. The extracted OD pairs must sat-
isfy that the shortest distance between the origin node and
the destination node is larger than 2km, as too small an
OD distance cannot offer enough number of diversified paths
for selection. Fig. 5 shows that the average relative gap
between the upper and lower bounds decreases as the number
of iterations increases. It is found that 4 − 5 iterations is
sufficient for the algorithm to converge to a relatively small
gap (5%) under different reliability coefficients.

Table VIII shows the relationship between the required
number of iterations of GP3 VS. the distance between the
origin-destination pair. We find that, in general, when we
increase the distance of the OD pair, the required number of
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TABLE VIII

PERFORMANCE WITH DIFFERENT OD PAIRS

Fig. 6. Three different RSPs for different ζ values (the same OD pair) in
Chengdu network (Best viewed in color).

TABLE IX

PROPERTIES OF THE THREE DIFFERENT RSPS

iterations of GP3 increases. Moreover, another quite indicative
index is the initial relative gap, i.e. (tmax − tmin)/tmax in the
algorithm. When the initial relative gap is small, the required
number of iterations is small.

Fig. 6 shows three different RSPs for the same OD pair
with different reliability coefficients. When we increase the
reliability coefficients (ζ ) from 0 to ∞, the path gradually
shifts from the LET path to the minimal variance path.

Table IX shows the three different RSPs’ mean travel time,
variance and the total length, and the corresponding ζ ranges.8

We further separate the transportation data into four cate-
gories, namely, workday peak hour data, workday non-peak
data, holiday peak hour data, and holiday non-peak data, and
test the performance of the algorithms (GP3, SG, SP, LR)
for all the four categories. Table X shows the comparative
performance of the four algorithms for different categories
and different reliability coefficients. We are keen on the
algorithm’s (1) convergence; (2) convergence rate/speed; and
(3) the quality of the final solution. For (1), we show the final
relative gap; for (2) we show the average computation time,
and for (3), we introduce a new concept: optimality index,
which is defined as:

Opt = f (xalg) − f (xLET)

f (xLET)
, (21)

where xalg refers to the path given by the evaluation algorithm
(i.e. GP3, SG, SP, LR), and xLET is the LET path. f (x) is

8Note that the phase ‘corresponding ζ ranges’ means that when ζ falls into
the specified range, the corresponding path is the resulting optimal RSP.

the evaluating path’s RSP metric, which is calculated as:
f (x) = μ�x + ζ

√
x��x. A negative Opt value indicates

that the referred RSP solution is better than that of the
LET path. We wish to note that the average relative gap
in Table X indicates the theoretical performance (i.e. the worst
case performance index) of the corresponding algorithm, while
the optimality index value shows the actual performance of the
algorithm when compared with the LET path. Both are impor-
tant indicators of the underlying RSP planning algorithm.

From Table X, we can see that all of the four RSP
planning algorithms are behaving better than the LET path,
i.e. exhibiting a negative Opt value, and the average relative
gaps are near 0.05, which is the predefined threshold value.
Additionally, we have the following observations and related
explanations. (1) When we increase ζ from 1 to 30, the average
computation time increases for all the four algorithms, but
GP3’s computation time stays at a stable range. The underlying
reason is that when we increase ζ values, the initial gap
between tmax and tmin increases significantly, and thus all
the algorithms need more iterations to converge. But GP3 is
able to shrink the size of the gap by at least a half within
each iteration, thus the number of iterations, and hence the
computation time does not increase significantly.

(2) When ζ = 1, except for the period of workday peak
hour, all the other three periods will have the LET path as
the RSP solution, which makes all the algorithms’ optimality
index stay at 0. This is because with small ζ values, the opti-
mal RSP favors greatly the LET path. But during workday
peak hour, the travel time variance is so large across the
transportation networks that sometimes, we can find an RSP
which is not the LET path.

(3) GP3 is not always the best algorithm across all the
scenarios, in terms of the optimality index value. For example,
with 200 iterations, both SG and SP perform better than GP3 in
the period of holiday peak hour and ζ = 10. We perform the
paired significant test between GP3 and SG, and find that for
most of the periods of analysis, the differences in optimality
index between GP3 and SG are statistically insignificant.
It means that both GP3 and SG are behaving equally well
in this use case. This is because throughout the experiments,
ηr is set to be 0.05 for all the algorithms, which means that
when the relative gap is less than 0.05, the corresponding
algorithm terminates and returns the current RSP. However,
GP3 has a theoretical guarantee that the relative gap between
GP3’s output and the optimal path is less than 5%. This kind
of theoretical guarantee is not available for SG, SP and LR.
If we need GP3 to perform always the best out of the four
algorithms, we may just decrease ηr values, and GP3 will have
an improved optimality index value; while SG, SP and LR
would not be able to improve much because experimentally,
they cannot even reach a ηr = 0.05 relative gap threshold
within 200 iterations.

E. Discussions

We have presented the performance of GP3 against that
of the state-of-the-art algorithms for the mean-std shortest
path problem. As shown in the four previous subsections,
GP3 is able to converge to the optimal solution with arbitrarily
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TABLE X

PERFORMANCE COMPARISON OF GP3, SG, SP AND LR FOR DIFFERENT TIME SLOTS AND ζ VALUES OVER CHENGDU NETWORK

high accuracy, and the computation time is guaranteed to be
polynomial with respect to the size (number of nodes: m)
of the network. During the experiments, we do observe that,
when deployed to the realistic network (Anaheim, Chicago
Sketch and Barcelona) and Chengdu, GP3’s computation time
is longer than that of SG, SP and LR. The underlying reason
is that GP3 calls up the QP solver to solve the core problem
which has a computational complexity of O(m3), while SG,
SP and LR iteratively use Dijkstra’s algorithm as the underly-
ing solver, whose computational complexity is O(m+n log n).

On the one hand, this leaves room for GP3’s improvement in
the future. On the other hand, we observe that in real use cases,
when ζ is large, i.e. 30 in the experiments, GP3’s computation
time is able to stay at the same level as that of the state
of the arts. It means that if we are targeting at a mean-std
shortest path problem with larger ζ values, GP3 achieves the
best solution with more or less the same computation time
as the state of the arts. While if we target at the mean-std
shortest path problem with small ζ values, LET path can
already deliver a good enough solution as shown in Table X.
In this way, we can come up with a simple blending strategy
of LET and GP3 for the mean-std shortest path problem, with
short computation time and high accuracy.

VII. CONCLUSION AND FUTURE WORKS

This paper proposes GP3, a polynomial computational com-
plexity algorithm for accurate RSP solutions in GP-regulated
transportation networks. Through a series of problem transfor-
mations, the original mean-std problem is finally translated to
a convex QIP problem, and solved by an efficient algorithm.
Computational complexity analysis shows that GP3 is a poly-
nomial complexity algorithm and it guarantees to return the
RSP solution with arbitrarily high accuracy. We performed
extensive experiments over various sizes of transportation
network, from self-constructed simple networks, to canonical
transportation test networks (Sioux Falls network), to realistic
networks (Anaheim, Chicago, Barcelona and Chengdu), per-
formance comparison indicates that (1) GP3 is able to return
an RSP solution with guaranteed relative gap within several
iterations; (2) admittedly, GP3’s required computation time is
higher than that of selected state-of-the-art algorithms, but they
are, more or less, at the same scale.

In the future, we plan to make use of GP’s posterior
inference ability to estimate/predict the ‘unknown’ links’ travel
time distribution. Here, ‘unknown’ links refer to the links
without or with only a few real measurement samples. In this
way, we are able to perform RSP planning with only a subset
of samples from the underlying transportation network. We are
also planning to embed GP3 into a real navigation system,
and speed up GP3’s core computation (the QIP solver) so
that it meets users’ real time path planning requirement.
Another future work direction is to relax GP3’s Gaussian
process assumption of the underlying transportation networks,
and extend its application to transportation networks with
non-Gaussian distribution assumptions, e.g. Levy distribution,
Weibull distribution, log-normal distribution.

APPENDIX

In the appendix, we deliver the proofs of the equivalence
relationship among the minimal mean-std RSP, α-reliable path,
and the SOTA path, by introducing the following two theorems
and the respective proofs.

Theorem 3: In GP-regulated transportation networks,
the ‘risk-averse’ α-reliable RSP (α ≥ 0.5) is equivalent
to a mean-std RSP, with ζ = 
−1(α), where 
(x) is the
cumulative distribution function (CDF) of the standard
normal distribution (a normal distribution with mean μ = 0
and standard deviation σ = 1).

Proof: The α-reliable RSP problem can be formulated as:
minimize

x,T0
T0

subject to Prob(c�x ≤ T0) ≥ α

Ax = b

xi j ∈ {0, 1}. (22)

Define y = c�x. Note that y is a linear transformation
of x. From GP properties, we know that y ∼ N (μ�x, x��x).
Then, we have: Prob(y ≤ T0) = Prob

(
(y − μ�x)/

√
x��x ≤

(T0 − μ�x)/
√

x��x
) = 
((T0 − μ�x)/

√
x��x).

The transformation process of the first constraint is per-
formed as follows: 


(
(T0 − μ�x)/

√
x��x

) ≥ α ⇒ (T0 −
μ�x)/

√
x��x ≥ 
−1(α) ⇒ T0 ≥ μ�x + 
−1(α)

√
x��x.

Unifying the transformed first constraint with the objective,
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the optimization problem is equivalent to the mean-std RSP
problem with ζ = 
−1(α).

Theorem 4: In GP-regulated transportation networks,
the ‘risk averse’ SOTA RSP9 with deadline T is equivalent to
a mean-std RSP, with a specific ζ , which returns the optimal
path with the objective value equal to T , and the bisection
algorithm can be used to identify ζ .

Proof: The SOTA problem is formulated as follows:
maximize

x,α
α

subject to Prob(c�x ≤ T0) ≥ α

Ax = b

xi j ∈ {0, 1}. (23)

According to Theorem 5 of [25], the SOTA RSP problem
is equivalent to the α-reliable RSP problem with a specific α
which makes the α-reliable RSP problem output the objective
value at T0. In the meanwhile, according to Theorem 3
in this paper, in GP-regulated environments, the α-reliable
RSP problem is equivalent to the SOTA RSP problem with
ζ = 
−1(α). Thus, we can conclude that the SOTA RSP
problem with a predefined deadline (T0) as the input is
equivalent to the mean-std RSP problem with a specific ζ
which makes its equivalent α-reliable RSP output an objective
value of T0. Moreover, when we increase ζ , it means that we
are increasing α in the α-reliable RSP problem. As a result,
T0 will be increased. Therefore, the three involved parameters
(ζ , α and T0) are positively related to each other. We can use
the bisection method [49] to identify ζ for a specific input
of T0 for the SOTA RSP problem.
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