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Improving the Performance of Transportation
Networks: A Semi-Centralized Pricing Approach

Zhiguang Cao

Abstract—Improving the performance of transportation net-
work is a crucial task in traffic management. In this paper,
we start with a cooperative routing problem, which aims to
minimize the chance of road network breakdown. To address this
problem, we propose a subgradient method, which can be natu-
rally implemented as a semi-centralized pricing approach. Partic-
ularly, each road link adopts the pricing scheme to calculate and
adjust the local toll regularly, while the vehicles update their
routes to minimize the toll costs by exploiting the global toll
information. To prevent the potential oscillation brought by the
subgradient method, we introduce a heavy-ball method to further
improve the performance of the pricing approach. We then test
both the basic and improved pricing approaches in a real road
network, and simultaneously compare them with several base-
lines. The experimental results demonstrate that, our approaches
significantly outperform others, by comprehensively evaluating
them in terms of various metrics including average travel time
and travel distance, winners and losers, potential congestion
occurrence, last arrival time, toll costs and average traffic flows,
with two different O-D profiles.

Index Terms— Traffic control, public transportation, vehicle
routing, path planning.
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I. INTRODUCTION

DDRESSING the issue of congestion has been recog-

nized as a primary task for traffic management, as well
as for the sustainable development of many cities [1]. It draws
extensive attentions from industry, research community and
city authority, since it directly affects peoples’ daily life in
various ways [2]. Traffic congestion always results in unde-
sired traffic delays, which not only displease the commuters
with respects to traveling experience, but also engender an
increase in fuel consumption and economic loss. Particularly,
the fuel consumption from the transportation systems plays
a large role in urban greenhouse gases (GHG) emissions,
which causes inestimable impacts to the environments [3], [4].
To alleviate the traffic congestion impacts, a lot of strategies
have been proposed, which mainly focus on providing efficient
route guidance for single independent vehicles [5]-[8], and
multiple cooperative vehicles [9]-[12], respectively. In view
of the potential benefits to the whole transportation network
and social welfare, the latter strategies are widely adopted and
applied.

Various cooperative routing solutions have been studied.
Papageorgiou [13] proposed a general framework for traffic
dynamic modelling and control, which can integrate with
traffic assignment. Within this framework, dynamic system
optimum and user optimum can be achieved by design-
ing corresponding control strategies, respectively. Adler and
Blue [14] developed a cooperative multiagent transporta-
tion management and route guidance system to reduce the
average travel time of the whole transportation network.
In the system, they fostered the scheme of interaction and
cooperation between network operator agents and vehicle
agents. The results demonstrated that the system had desirable
capability in terms of scalability, and the performance for
the transportation network was significantly improved by an
information provider agent. Yamashita et al. [15] proposed
a centralized multiagent routing approach, which aimed to
cooperatively minimize the expected travel time for all vehicle
agents. In this approach, a vehicle agent was assumed to
be willing to share its real time information (i.e., current
location, destination, and the expected remaining route to
destination) with a central server. Then the central server
assigned a higher weight to a block of road link if more
vehicles were likely to pass by exploiting the route information
it collected. Thus, the route guidance for each vehicle could
be derived through minimizing the corresponding weights.
Chow et al. [16] proposed a cooperative and adaptive traffic
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control method implemented in a decentralized way. They
adopted a linear quadratic formulation based upon a cyclic
store-and-forward model, given the need of computational
effectiveness for real time application. Moreover, the decen-
tralized control also incorporated an user-optimal re-routing
algorithm with purpose to improve the performance through
better utilizing network capacity. Knoop et al. [17] investi-
gated four cooperative routing strategies based on macroscopic
fundamental diagram (MFD). The results based on simulation
demonstrate that the situation without control performs worst,
and the situation with control in conjunction with full speed
information performs the best. Moreover, all situations with
control based on variables aggregated over a sub-network
generate performance in between. He et al. [18] proposed
a cooperative routing approach to avoid potential congestion
by exploring large-scale social signals obtained from two
kinds of devices, namely, mobile phone and subway card.
In this approach, two types of routing strategies were con-
sidered, i.e., shortest path and minimum cost, the latter of
which included travel time and cost related to congestion.
Kordonis et al. [19] proposed a mechanisms for cooperative
freight routing, which adopted monetary incentives to balance
the traffic load and alleviate the time delays experienced by
both truck and passenger vehicle drivers. With the assump-
tion of voluntary participation, the presented scheme was
budget-balanced, and it did not penalize the truck drivers
compared to the user equilibrium. Desai et al. [20] proposed a
practical multiagent-based approach to cooperatively achieve
desired route allocation, which was supposed to minimize
the expected travel time of all the routes. More specifically,
in this approach, vehicle agents (VAs) propagated important
traffic information by using inter-vehicular communication and
then undertook its distributed processing. VAs exchanged their
route preference information to achieve an initial allocation
of routes. The allocation was then further improved via suc-
cessive virtual negotiation “deals”. Yildirimoglu et al. [21]
developed a network-level traffic management scheme based
on MFD (Macroscopic Fundamental Diagram), which aims
to mitigate congestion in urban areas by considering the
effect of route choice at an aggregated level. Particularly, this
scheme includes a route guidance system that advises drivers
a sequence of subregions to assist them in reaching their
destination. Wang et al. [22] presented a multiagent system to
avoid the potential traffic congestion en-route. In this system,
algorithm of NRR (Next Road Rerouting) was conceived to
distribute the vehicle agents affected by an en-route event,
to the sub-optimal paths. The rerouting strategy took into
account four crucial real time factors, which were supposed to
help in reducing the average travel time in comparison with the
scenario without using NRR. Menelaou et al. [23] presented
a low-complexity route reservation scheme to control the road
congest, which decomposes the road infrastructure into slots
in the spatial and temporal domains for each vehicle. With
this scheme, vehicles could either be delayed at their origin
or are routed through longer but congestion-free routes so that
their traveling time would be minimized. Menelaou et al. [24]
improved the route reservation approach by solving two
problems under MFD, which are the earliest destination arrival
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time problem and the traffic load balancing problem, respec-
tively. Particularly, the former aims to minimize the travel time
for all vehicles while the road links they travelled through
should not exceed the critical density, and the latter aims to
minimize the variance of densities across the road network,
both of which are solving using dynamic programming solu-
tion. Sirmatel and Geroliminis [25] proposed a network-level
economic MPC scheme to improve mobility in urban road net-
works, which integrates perimeter control and regional route
guidance. In particular, this scheme formulates the problem of
finding the perimeter control and route guidance inputs to a
multi-region urban network to minimize total time spent (TTS)
as an economic MPC problem.

Although a lot of success has been achieved for cooperative
routing, most of them directly optimize the metric of expected
travel time or travel distance. Since traffic is always random
and dynamic, using simple mean values of travel time or travel
distance as the optimization objective may not handle well
the stochastic nature of the traffic. For instance, the routes
of least expected travel time with a large variance (refers to
risk in this context) may not make sense in practice. On the
other hand, probability is usually deemed as a robust metric
to measure a dynamic or stochastic process, as it always
takes into account both mean value and variance (or standard
deviation) [26], [27]. In view of this, we focus on minimizing
the probability of breakdown to improve the performance of
the whole transportation network in this paper.

To arrive at this goal, we first leverage a static and
centralized cooperative vehicle routing model [28], which
considers the breakdown probability of each road link, and
the decision variable is the assigned traffic load to a road
link. To make the solution much more practical, we further
equivalently reformulate the problem so that the decision
variable is converted into the assigned routes for vehicle, while
the objective becomes minimizing all the possible violations
for each road link, which may lead to potential breakdown.
Afterwards, rather than solving the optimization problem in
one shot, we propose a subgradient method to iteratively
solve the problem with expectation to better tackle the traffic
dynamics. More importantly, by doing so, the subgradient
method can be naturally implemented as a semi-centralized
pricing approach: one of the decision variables in the sub-
gradient method can be endorsed with a physical meaning,
i.e., the toll for a each road. Thus, each road link may update
the local toll regularly according to the rules of subgradient
method, while the vehicles adjust their routes to minimize
the toll costs by exploiting the latest information of global
tolls. We would like to note that, various pricing or tolling
solutions have been studied [29]-[33]. Our approach differs
from them in that, our original goal has nothing to do with
tolls directly. To summarize, our contributions are stated as
follows:

1) We aim to improve the performance of road networks
by extending a centralized and static optimization model
in [28] that considers reducing the chance of road net-
work breakdown. In specific, we reformulate the prob-
lem and solve it by proposing a sub-gradient method,
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so that the model turns to be semi-centralized and
capable of coping with traffic dynamics.

2) We theoretically proved that the proposed sub-gradient
method could guarantee convergence.

3) To apply the sub-gradient method into practice in an
iterative way, we endorse the parameters in sub-gradient
method with physical meanings, which further turns to
be a dynamic pricing approach by complying certain
assumptions. And experimental results demonstrated its
superiority to the baselines.

The remainder of the paper is organized as follows.
Section II elaborates the problem definition and transfor-
mation. Section III develops an adaptive semi-centralized
pricing solution, and an improvement based on the heave-
ball method is proposed as well. Section IV demonstrates the
comprehensive experimental results and analysis, and the best
setting for the solution is concluded and recommended as well.
Section VI concludes the paper and states the future works.

II. PROBLEM DEFINITION AND TRANSFORMATION

In this section, we first formulate a cooperative routing
problem aiming at minimizing the probability of breakdown
for the whole road network, by optimizing the traffic load
for each road link. Then we reformulate the problem as
a cardinality minimization so that the decision variable is
converted from traffic load into the routes for each vehicle.

A. Formulation as Minimizing Breakdown Probability

Given a transportation network represented as a directed
graph G, i.e., G = (E, V), E denotes the set of edges (i.e.,
road links), and V denotes the set of nodes (i.e., intersections).
In [34], breakdown refers to a local first-order phase transition
from free flow to synchronized flow. According to the traffic
flow theory in [34], the optimum of a transportation network is
achieved when dynamic traffic control is performed in such a
way that the probability for the breakdown occurrence in any
road links reaches the minimum possible value. This is equiva-
lent to maximizing the probability that none traffic breakdown
occurred in any road link [28]. And we would like to note
that, readers may refer to [28], [34] for more details about the
definition of breakdown. Consequently, the cooperative routing
problem can be formulated as:

|E| A

mfaxln E (l Prob(r; +x,)) % et
where H!’ﬂ (1 — Prob(ri + x;)) represents the probability
that no breakdown occurred on any of the road links; In(-)
refers to the log operation, which helps to simplify the actual
computation process, but does not change the optimal point
of the problem; Prob(x;) = %
probability for road link e;; x; is the decision variable denoting
the controllable load of the road link e;; r; is the default road
network load at road link e;; w; represents the unit impact of
road traffic load to road link breakdown; 7; represents other
miscellaneous factors (e.g., weather condition and road width),

is the road breakdown
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which also influence the road breakdown; |E| refers to the
total number of road links in the road network; Ax = b is
the network flow conservation constraint; A is a |V| x |E]|
matrix, which describes the road network topology; b is a
column vector specifying the origin and destination of the
vehicles; the controllable load should be non-negative, defined
as X > 0 [28]. Solving the problem in Eq. (1) is equivalent to
minimizing the following equation:
|E|

mjn Z In (1 + ewi(chrri)Jrr;)
=1

B. Reformulation as a Practical Routing Engine

Ax = b;

X Ef,

)

x> 0.

It is straightforward to prove that Eq. (2) satisfies Slater’s
condition of convex optimization [35], therefore, the solution
procedure is tractable. However, the decision variable X in
Eq. (2) is the expected traffic load for each road link, which
is impractical as it does not explicitly instruct a vehicle which
way to go. Therefore, we further reformulate the cooperative
routing problem in Eq. (2) as a routing engine, which directly
engenders a route for each vehicle as follows:

Axj=b;, j=1{1,2,...N}

N
>xj<cté: 3)
5= (0, g0,

where x; is the decision variable, which explicitly represents
the route for vehicle j; Card(-) is the cardinality function,
which returns the quantity of non-zero elements for the input
parameter; N is the quantity of the vehicles; ¢ and & are both
vectors with size of 1 x |E[; ¢ represents the capacity for all
road links; & represents the potential violations with respect to
the road link capacities. Thus, the cooperative routing problem
becomes minimizing the quantity of the road links on which
a breakdown may happen. And in this paper, we aim to
solve the problem described in Eq. (3), as it is much more
practical. We would like to note that, the problem in Eq. (3)
is similar to the problems in [13] and [24], especially the
Earliest Destination Arrival Time (EDAT) problem in [24],
as they both consider traffic balance, either explicitly or
implicitly. In particular, the EDAT problem is to minimize the
traveling time while keeping the traffic density not exceeding
a critical value, and our problem is to minimize the chance
that the quantity of vehicles for a road link will exceed the
corresponding capacity.

min Card(§)
Xgeees

XN,E

III. SOLUTION TO REDUCE THE CHANCE
OF BREAKDOWN

In this section, we introduce an approximation to the car-
dinality minimization problem. To derive an iterative solution
to the approximation, we first look into its dual problem, and
then prove the concavity, so that a subgradient method can
be adopted to solve the problem. More importantly, to make
the subgradient method meaningful and practical, we conceive
a semi-centralized pricing scheme, in which each road link
updates its local toll, while the vehicles will minimize their
toll costs by updating their routes according to the global tolls.
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A. €1-Norm Approximation to Cardinality Minimization

Generally, the most efficient approach to solve the cardi-
nality optimization is the {i-norm approximation [35], [36].
Consequently, the cooperative routing problem in Eq. (3) can
be further expressed as follows:

ij ij,

N

ijfc—i—’;‘; 4
j=1

xj={0, }EI, ¢ >0,

where the £1-norm operator is explicitly removed due to the
constraint ; > 0. The problem in Eq. (4) is a mixed integer
linear programming (MILP) problem and hence is NP-hard.
Normally, it can be solved as a typical one-short optimization
using a popular solver, e.g., branch and price algorithm in
Cplex. However, on one hand, the computation for the one-
short optimization might be prohibitively time-consuming,
given the fact that both the scale of the road network and the
quantity of the vehicles are usually huge. On the other hand,
traffic is always random, and pre-computed routes by one-short
optimization might not handle well the traffic dynamics [37].
Therefore, we will develop an adaptive approach to iteratively
solve the problem in Eq. (4), which not only improves the
computation efficiency, but also has the potential to tackle the
traffic dynamics.

j=A{l,...N};

xN,§ Jj=1

B. Reformulation for an Adaptive Solution

The optimization problem described in the preceding sub-
section assumes fixed model parameters, which have already
been pre-gauged. However, in reality, traffic condition may
change dramatically in a short time due to various factors
(e.g., weather, road work and traffic jam occurrence), and
drivers may also need to accordingly adjust their routes on the
fly. Therefore, an adaptive solution, which leverages both the
objective of reducing network breakdown and traffic dynamics,
is much more desired. In view of this, we first define the
problem in Eq. (4) as Problem I, and then look at a slightly
transformed problem (i.e., Problem II) as follows:

Axj =bj,
N R |E|
. BN xj =10, )'¥,
i max(§ +2T(Qx)) —e—&) | T )
xNaE j:1 .
J:{l,...N},

where A is the Lagrangian multiplier. To verify that the
problem II has the same solution with Problem I, we define
the solution to Problem I as p*, and that to Problem II as d*.
The detailed logic is stated in two steps as follows:

1) d* < p*: Since p* is the optimal solution to Problem I,
it satisfies (27 xj —c—&) < 0. In this case, the optimum
for Problem II will set A = 0. Consequently, p* is reachable
in Problem II. Thus, we have d* < p*.

2) d* > p*: On one hand, whenever one of the elements
in the vector (27 xj —c¢ — &) is greater than zero, we can
set the corresponding element of A to be 400, since the
‘inner’ optimization in problem II is to maximize the objec-
tive function. In this case, no matter what we do with the
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‘outer’ optimization parameters in problem II, the objective
value will be 4+o0o. Therefore, none single element of the
vector (ZZN x; —c — &) will be greater than zero. On the
other hand, no matter whether all the elements of the vector
(Zjv xj —c—§&) are less than or equal to zero, the best value
for the corresponding 4 must be zero, since any other value
will make the objective decrease, which contradicts the ‘inner’
optimization. In this case, it is already the same as Problem I,
which means d* = p*. In view of the two aspects together,
we can conclude that d* is either +o00 or equal to p*, which
leads to d* > p*.

By combining the two seminal conclusions, we may draw
that d* = p*. Therefore, we will concentrate on Prob-
lem II instead, as it is much easier to solve, and the adap-
tive solution to which may have potentials to handle traffic
dynamics well.

C. Concavity Proof

Normally, subgradient method is a desirable solution to
iteratively solve large-scale problems [38], such as Eq. (5).
However, the precondition is that the target optimization
should satisfy the concavity condition. To prove it, we first
perform a slight transformation to Problem II, which can be
expressed as follows:

Axj =bj,
N — |E|
. - . xj = {0, 1}'*,
m}flxxrlr,l}{},('s"")‘ ((ij)—c—i)) A>=0, £>0, ©
xN";‘ ',:1 '_ N
]:{1,...N},

where the order of maximization and minimization in the
objective function has changed. Then, we take A as the
parameter out of Eq. (6), and define the objective value as
g(X), which is expressed as follows:

sQ) =, mn,

xN,§

N
E+ATOQ xj—c—8) ). (7)
j

The key step for concave satisfaction is to prove that g()
is a concave function as the constraint Ax; = b; in Eq. (6)
is affine. To this end, we need to show that VAy, VA2 and
V6O €[0,1], the below inequality holds:

0g(k1) + (1 —0)g(h2) = g(OA1 + (1 —0)g(X2)).  (3)

Then, we begin the proof from the left hand side of Eq. (8),
and we have:

Og(r1) + (1 —0)g(A2)

N
= Jmin 9(£ + llT(in —c— E))

xNaE
N
+ min (1-0) (s +A2 (D xi—c— s))
XN,‘;- i
N
< nin § (E + XlT(in —c— 5))
xm’s’ i
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N
+(1-0) (s +0 O xi—c— s>)
N 1
= min (g +0M O xi—c—§)
*NE i

N
+ (1= xi—c- s>)

N
= XIEP’(;: +(9x1T+ a- e)sz) (in —c— g))

xNaE
= g((omT+ a1 -027)) ©)
Thus, g(A) is indeed a concave function. Conse-

quently, the subgradient method can be exploited to solve
the Eq. (5).

D. Velocity Based Pricing Approach

In real transportation scenario, it is difficult to gauge the
dynamic road link capacity (i.e., ¢) and the O-D information
for all the drivers. However, it is relatively easy to acquire the
real time travel speed information of all road links. Coherently,
we assume that the speed is inversely proportional to the
density of vehicles in the road link, thus we have ® =
f (Z;\lz1 xj), where m represents the speed of all road links,
which decreases as the amount of vehicles for each road link
becomes larger. On the other hand, if we only take A as the
parameter out of Problem II in Eq. (5), then we can follow the
subgradient method to gradually update A to reach the final
optimal solution by exploiting the optimal x* in each iteration.

Thus, it is natural to conceive a dynamic pricing approach,
in which A is considered as the tolls for each road link,
and updated in each iteration, while each vehicle tries to
minimize its own toll costs by choosing the optimal route
x%. Since the travel speed m of road links is assumed to
be a function of x;, we can automatically adjust the tolls to
encourage or discourage vehicles to take the link. In other
words, we are trying to minimize the number of road links
which have a lower-than-tolerance velocity by adjusting the
road link tolls. Combining those concerns with the subgradient
method, we have:

2 = (3 - ataf =2l (10)

+

where l;‘“ is the toll of road link ¢; in the k + 1, iteration;
o is the step size; 7[1." is the average velocity of e; in the
kep iteration; z/% = pnif
and nif is the maximum allowed velocity of e¢;. In view
of those explanations, each road link will adjust the local
toll according to Eq. (10), and the vehicles will update their
routes by minimizing the toll costs in each iteration. Since we
assume that the vehicles know the real time global tolls, our
pricing approach is semi-centralized in nature. Moreover, with
appropriate definition of &, we can guarantee that the solution
will become better and better as iteration goes on.

is the road-breakdown velocity,
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TABLE I
PROPERTIES OF TESTING ROAD NETWORK

# Road Links
503

# Road Intersections
212

Network Area
34,000,000m?

City
Guangzhou

In addition, to make the solution much concise, we add one
more step to normalize the toll for each road link as follows:
j.]-chl
k+1 __ i
L= 1T ak+1 an

E. Further Improvement to the Proposed Solution

In Eq. (10), the road-breakdown velocity may vary with
different road links. However, to a specific road link, 7rl.’01 is
fixed. Since 7[1." is supposed to dynamically change with each
iteration, a potential oscillation might occur for the toll li.‘,
which may cause undesirable influences to the routes chosen
by the vehicles. Therefore, to address this potential issue,
we introduce the ‘heavy-ball’ method [39] into our pricing

approach as follows:
W = (3 = ak =2l - pat! - ,1{?))+, (12)

where the term f (/15.‘_1 — /15.‘) functions as a stabilizer to
eliminate the possible oscillation phenomenon. Similarly, it is
also followed by a normalization step as Eq. (11).

IV. EXPERIMENTATION AND EVALUATION

In this section, we conduct extensive experimentation in
various settings to compare the proposed pricing approach
and the improvement with existing methods, and demonstrate
their advantages over others. Particularly, we first introduce
the experimental settings, then we focus on evaluating our
approach in the aspects of travel time, travel distance, winners
and losers, potential congestion, arrival time of last vehicle
and toll costs. Finally, we summarize all the solutions and
recommend the most desirable and practical one, by taking all
metrics into account.

A. Experimentation Setup

The experimentation is conducted on the simulator, SUMO
(i.e., simulation of urban mobility platform). SUMO is an open
source, highly portable, microscopic and continuous traffic
simulation for handling both artificial and real-world road
networks. In this experimentation, we take an island, i.e., the
Guangzhou Higher Education Mega Center, China, as the
testing bed. The road network is displayed in Fig. 1 (a), which
is extracted from OpenStreetMap.! The network properties are
summarized in Table 1.

Particularly, all experimentation in this section is conducted
on an ordinary PC with Intel Core i7-7700 processor and
32.00 GB RAM. Pertaining to the vehicles in the simulator,
the configurations are set as follows:

1) The length of vehicle is 5m, the minimal gap is 2.5m,
and the vehicle following model is Krauss [40].

1 http://www.openstreetmap.org
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Fig. 1.

2) We use a binomial distribution to randomly generate
9000 O-D pairs (a pair for a vehicle) over the whole
road network within the first 1000 simulation steps.?
The default routes are initialized by ‘“duarouter” in
SUMO, which seeks for the shortest distance path.
When a vehicle arrives its destination, it will park and
not occupy any road resource.

The traffic light use the default settings.

We use the built-in functions getLastStepMeanSpeed and
getMaxSpeed to return the average travel speed and
maximum allowed speed of each road link for Eq. (10).
Each road link updates its local toll according to Eq. (10)
or Eq. (12), with certain frequency.

The parameters in Eq. (12) are set as: o = 0.9 and
£ = 0.5; The parameter for nf”l in Eq. (10) is set as:
p =0.5.

To comprehensively verify our approach, we compare with
two benchmarks: (1) Default method: it uses the default router
in SUMO, which aims to minimize the travel distance; (2) RIS
method [15]: a server collects information from all vehicles
and reroutes them in each step using a Route Information
Sharing (RIS) scheme, which is centralized. In this scheme,
a weight is added to a road block (normally, it is a small part
of a road link) by each vehicle who is likely to pass it, then
the central server minimizes the total weights for each vehicle.
Particularly, in the experimentation, we divide each road link
into segments of 10 meters length, and each of the segments
is defined as a road block. Then, all blocks along the intended
route of a vehicle will be given weights in a descending
order by that vehicle, with the furthest one being 0. Finally,
the weight of each block will be calculated as the summation
of the weights imposed by all vehicles, which will be used
to adjust the routes of all vehicles in the next step. With
respects to our own approach, we assume that all the vehicles
are sensitive to the dynamic toll, and will minimize the toll
costs along the route. In this regard, we also develop some
variants to our basic pricing and improved pricing approach:
(3) Pricing: N steps: each road link employs Eq. (10) to
update the local toll every A simulation steps; (4) Improved
Pricing: N steps: each road link employs Eq. (12) to update
the local toll every N simulation steps. At the same time,

3)
4)
5)
6)
7

8)

21f there already exists a vehicle when that location is chose as the origin of
anew vehicle, then that new vehicle would not be generated. Thus, the vehicle
population might be less than 9000.

Authorized licensed use limited to: University of Electronic Science and Tech of China.
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(b) example of low aﬁ density
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The real road network and examples of different traffic densities. [Best Viewed in Color].

TABLE 11
VEHICLE POPULATION GENERATED

[T [ 2 [ 3 [ & [ 5 ] 6 ] 7 ] 8 [ 9 ] 10
[ 8682 | 7.060 | 8,959 | 8,402 | 8936 | 8,199 | 8176 | 7,320 | &,701 | 8316 |

the vehicles will update their routes accordingly. In our
experimentation, A is set as 10, 20 and 30 simulation steps,
respectively. Then, we run the simulation for 10 times on
SUMO according to the above settings, the results of which
are recorded and analyzed in Section IV-B, IV-C, IV-D.
Before elaborating the results, we first record the vehicle
population for each simulation in Table. II. From Table. II we
can see that, the minimum population of the vehicles is above
7,000, which means that traffic density is comparatively high
in view of the properties in Table. I. Moreover, we also
present some examples of different traffic densities in the
midst of the simulation, which are shown in Fig. 1 (b) and (c),
respectively.

B. Analysis of Travel Time and Distance

For each of the 10 simulations, we implement our two
pricing approaches (with variants) and the benchmark methods
using the same settings, and each simulation terminates only
when the last vehicle arrived at its destination. Then we record
the results with respects to average travel time and average
travel distance in Fig. 2 (a)-(d). More specifically, the average
travel time in each simulation is calculated as follows: we
first add the travel time for all vehicles together, then we
use the summation to divide the vehicle population. Likewise,
the average travel distance is obtained in a similar way.

From Fig. 2 (a) we can see that, regarding each method,
the average travel time varies with different simulations. Even
though, for most of the cases, the Pricing and Improved
Pricing dominantly achieve lower values than the Default
method and the RIS method, which indicates that our pricing
approaches work competitively well against others, consid-
ering that average travel time is one of the most important
metrics for network breakdown. Comparing the two pricing
approaches with the Default method, the former is superior
at large because pricing based approaches update the tolls by
taking into account the travel speed in Eq. (10), which directly
relates to the travel time. While the latter only adopts the
metric of distance as the objective, which is also the default
setting in most of the navigation systems. This superiority

Downloaded on August 02,2022 at 03:35:18 UTC from IEEE Xplore. Restrictions apply.



CAO et al.: IMPROVING THE PERFORMANCE OF TRANSPORTATION NETWORKS

6359

440

380

0 1- Default; 2- RIS
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Iteration No.

(a) average travel time per simulation

Fig. 2. Results of travel time and distance. [Best Viewed in Color].

is not obvious for the 2nd simulation. However, the vehicle
population in that simulation is the smallest (i.e., 7,060 as
shown in Table. II), which implies a lower traffic density in
comparison with the other 9 simulations. Comparing the two
pricing approaches with the RIS method, the latter performs
surprisingly worse although it adopts a centralized cooperative
routing scheme. The rationale behind this observation for the
RIS method might come down to two aspects: (1) it is too
greedy in that the central server updates the traffic condition
at each simulation step, and reroutes all the vehicles whenever
they arrive at an intersection, which might be unnecessary;
(2) although the central server collects the route information
from each vehicle and assign a weight to all the road blocks
that they are likely to pass, it might not 100% accurately
consider the time when those assigned weights take effect.
For example, if two vehicles will pass a same road block,
but at significantly different times, then the influence to each
other can be neglected. On the other hand, the two pricing
approaches are semi-centralized, which are deployed on each
road link. And each road link only manages the local toll
updates according to the detected traffic condition (i.e., average
travel speed) in a real-time manner.

We record the mean of the average travel time over the
10 simulations in Fig. (2) (b), as well as the longest and
shortest average travel time for each method. From Fig. (2) (b)
we can observe again that, the two pricing approaches are
better than the RIS method, and the RIS method is better
than the Default method, in terms of the mean of average
travel time. More importantly, comparing the two pricing
approaches, the mean of average travel time for the Improved
Pricing approach is shorter than the Pricing approach for
each corresponding A, which indicates that the proposed
improvement takes effect. Because the heavy ball method can
help to alleviate the potential oscillation of the dynamic price,
which might cause a vehicle to constantly switch among two
or more candidate routes. As a consequence, the improvement
not only helps to reduce the ‘“hesitation” time, but also
improve the quality of the chosen route. Looking into the
two pricing approaches, respectively, we can observe that,
the average travel time slightly increases as N becomes
larger, e.g., Improved Pricing: 10 steps is smaller than
Improved Pricing: 30 steps, and Pricing: 10 steps is smaller
than Pricing: 30 steps. It is straightforward since smaller N
indicates more fresh traffic condition information, and the
up-to-date information is more useful to plan a high-quality
route. However, it is neither desired or practical to make N

Authorized licensed use limited to: University of Electronic Science and Tech of China.

3400
2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9

Iteration No. Different Methods
(c) average travel distance per simulation (d) mean, max and min of average distance

3400
1

too small. On one hand, the time might be wasted in swinging
forward and backward among several candidate solutions.
On the other hand, the drivers dislike frequently changing the
route.

Similarly, we also record the average travel distance and
mean of the average travel distance in Fig. 2 (c) and (d). From
Fig. 2 (c¢), we can obviously see that the RIS method traveled
the longest distance for all the cases. This happened because
the RIS method reroutes the vehicles too frequently, and the
way to calculate the weight to a road block may not accurately
reflect the real traffic condition. As a consequence, the vehi-
cles may travel on unexpected or unnecessary longer routes.
The Default method achieved the shortest travel distance as
expected, because it directly takes the shortest distance as
the optimal criterion, the whole route of which is fixed once
the O-D is finalized. The travel distances for the pricing and
the Improved Pricing approaches are slightly longer than the
Default method in all the 10 simulations, which demonstrate
competitive performance. This can be further justified by
Fig. 2 (d), in which the means of the travel distance for the
two pricing approaches are close to that of the Default method.
It also needs to be noted that, unlike the pattern of the average
travel time in Fig. 2 (b), the average travel distance for the
Improved Pricing approach is slightly longer than that of
the Pricing approach. This phenomenon further explains the
nature of our approach that they achieve shorter travel time at
the price of longer travel distance. It is reasonably practical and
desirable as travel time is much more important than distance
in real life. On the other hand, if all vehicles constantly seek
for the shortest distance, they may get stuck into congestion in
the same route. At the same time, we observe that the average
travel distance becomes longer as A decreases. This occurred
because more rerouting is likely to be conducted if A is small,
and vehicles may traveled on additionally longer paths, but
traffic conditions of which are more favourable.

C. Analysis of Winner and Loser for Travel
Time and Distance

Since the travel time is a more important metric, we record
the results of winners and losers by comparing all methods
with the Default method, in the aspect of travel time. More
specifically, only a vehicle saved (lost) more than 10 simu-
lation steps, we consider it as a winner (loser). In particular,
the average quantities of winners and loser, and the average
time saved and lost are shown in Fig. 3 (a)-(d).
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Fig. 3. Win and lose for travel time and distance. [Best Viewed in Color].

From Fig. 3 (a) and (b) we can observe that, the quantities of
winners for the two pricing approaches are significantly higher
than that of losers. The proportion of winners is almost half of
the vehicle population (see Table II), while the quantities of
winners are almost twice as the losers. Looking into the two
pricing approaches, the Improved Pricing approach achieves
slightly higher amount of winners than that of the Pricing
approach. We also notice that, although the quantity of winners
for the RIS method is close to the two pricing approaches,
the amount of losers for the former is also significantly large.
Simultaneously, we observe that the quantity of winners for
the pricing approaches will slightly go up as N decreases.

We record the average travel time saved and lost
in Fig. 3 (c) and (d), respectively. From Fig. 3 (c) we observe
that, the Pricing and Improved Pricing approaches saved
similar average travel time for all the winners in comparison
with the Default method. However, the two pricing approaches
lost less average travel time than the RIS method in most of
the cases, as shown in Fig. 3 (d). It happened might due to that
some of the vehicles in the RIS method waste too much time
in frequent rerouting and on the routes which do not reflect the
100% accurate traffic conditions. At the same time, the average
travel time lost becomes shorter as A becomes smaller for
the two pricing approaches. On the other hand, the lost time
for the Improved Pricing approach is slightly lower than the
Pricing approach, which again verifies the effectiveness of the
improvement.

Combining the four sub-figures, we can obviously see that
the two pricing approaches result in higher amounts of winners
than losers, and the average travel time saved is also much
longer than the time lost. Comparing the Improved Pricing
approach with the Pricing approach, the former has both more
winners and losers, but shorter average time lost, while both
approaches have longer average time saved. Moreover, smaller
N usually leads to more winners and comparatively shorter
travel time lost. In addition, the RIS method has many winners
as well as losers, but the average time lost is shorter than the
average time saved, which explained the reason that the RIS
method has slightly better overall performance than the Default
method in terms of average travel time.

D. Analysis of Congestion, Last Arrival
Time and Toll Costs

We evaluate our approach in the aspect of potential conges-
tion occurrence. To test a worse case on purpose, we suppose
that, the congestion would occur in a road link as long as

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Iteration No. Iteration No.

(c) average time saved (d) average time lost

the average travel speed is lower than 50% of the maximum
speed.’> Then we count all the occurrence of potential con-
gestion over the whole simulation. It should be noted that
multiple congestion might happen on the same road link at
different time. The results are recorded in Fig. 4 (a).

From Fig. 4 (a), we can observe that, the two pricing
approaches and the RIS method achieve lower congestion
occurrence than that of the Default method. It is straightfor-
ward, as the latter never reroutes the vehicle no matter how
crowded the traffic is. On the other hand, the occurrence of
congestion for the two pricing approaches is slightly higher
than the RIS method. This phenomenon happened because the
RIS method updates the traffic condition information at each
step, and it reroutes the vehicles even the sign of congestion is
not obvious at all. This scheme is helpful to prevent congestion
in short term, but will engender unnecessarily additional
travel time or travel distance in the long term. Fig. 4 (a) can
also tell that, between the two pricing approaches, Improved
Pricing: 30 steps is comparatively inferior in terms of potential
congestion occurrence. Therefore, we look into this approach
by comparing it with the Default method, and record the
average occurrence for each road link over 10 simulations,
which are shown in Fig. 4 (b). From Fig. 4 (b), we can
observe that, Improved Pricing: 30 steps has lower occur-
rences of congestion than the Default method in most of
the cases, especially after the first 1000 simulation steps,
when the Improved Pricing: 30 steps approach takes effect
for smoothing the traffic. It is reasonable as we cannot expect
the approach to work well at the very beginning when the
traffic density is comparatively low. Meanwhile, we observe
slight oscillations for both our approach and the Default
method (without dynamic pricing), and they might be caused
by the regular traffic signal phases, which is normal and
acceptable. Particularly, we only display the detailed results of
Improved Pricing: 30 steps to save space, but the remaining
pricing based approaches are expected to perform better than
it in terms of congestion occurrence, considering the curves
in Fig. 4 (a).

Besides, the time of last arrival is also a key metric to evalu-
ate the proposed solution, as it may partially reflect the severe
sacrifice made to some individuals. Therefore, we calculate
the average time of last arrival over the 10 simulations, which
are displayed in Fig. 4 (c). From Fig. 4 (c), we can observe
that, the RIS method and the two pricing approaches need

3In real life, this situation might be still far away from congestion.
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Fig. 4. Performance regarding congestion, last arrival time and tolls. [Best Viewed in Color].

shorter average arrival time for the last vehicle, compared
with the Default method. The average last arrival time for
the Pricing approach is close to the RIS method, while
the Improved Pricing approach is obviously lower than the
latter. Simultaneously, we observe a slight increase of last
arrival time for both pricing approaches, as N goes up to
30. However, considering that Improved Pricing: 30 steps is
already able to significantly alleviate the congestion at an
early stage, as demonstrated in Fig. 4 (c), all the proposed
pricing approaches are expected to be favorably competitive
in speeding up the arrival of the last vehicle.

Additionally, we also analyze the toll costs for vehicles who
followed the two pricing approaches. However, we only focus
on the winners and losers mentioned in Fig. 3 (a) and (b).
To this end, we first compute the tolls for the Default method
according to the corresponding pricing approaches, although
the vehicles are unaware of it. Then we compute the dif-
ference of toll costs between the Default method and the
relevant pricing approaches, which is followed by a standard
normalization. Afterwards, we display the ratios of the saved
toll costs in Fig. 4 (d), in comparison with the Default
method. From Fig. 4 (d), we can see that, both the winners
and losers significantly saved toll costs, as it is one of the
objectives for the two pricing approaches. At the same time,
the Improved Pricing approach reduces more toll costs than
the Pricing approach. More importantly, in both approaches,
the losers save more toll costs, which can be considered as
certain compensation for their lost in travel time or travel
distance.

E. MFD Analysis

We further evaluate our approach by analyzing the macro-
scopic fundamental diagram (MFD). To this end, we imple-
ment a Dynamic Tolling strategy, i.e., Feedback-Control
Approach [29] as the baseline. For both methods, we vary
the number of vehicles from 1000 to 10000, with an interval
of 1000, and update the toll or price every 30 steps. Then we
record the average traffic flows, the results of which are plotted
in Fig. 5. From Fig. 5 we can observe that, the average traffic
flows increase as the vehicle density becomes larger, until
the vehicle amount reaches 7000 and 8000 for our approach
and the dynamic tolling method, respectively. Although the
traffic with our approach becomes saturated earlier, its overall
performance is better than that of the Dynamic Tolling method,
especially when the traffic is saturated, i.e., vehicle number

1800 T T
—&— Dynamic Tolling

1600 - —&— Ours 4
1400 -
1200

1000

Traffic Flow (veh/hr)
S (o2} [+
o (=] o
o o o

N
=}
S

o

. .
5000 10000
Number of Vehicles

o

15000

Fig. 5. MFD comparison.

of 9000 and 10000. The superiority might come from the
stabilizer in Eq. (12), which leads to more stable pricing.

F. Overall Performance With a More
Realistic O-D Profile

Previously, we randomly generated about 9000 O-D pairs
and one vehicle for each pair. To make the O-D profile more
realistic, in each simulation, we randomly select 1000 O-D
pairs and generate 6 to 12 vehicles per pair. Then we
implement the methods of Default, RIS, Dynamic Tolling and
Improved Pricing: 30 steps (Ours), and run the simulation for
10 times, the results of which are recorded in Fig. 6. From
Fig. 6 (a) we can see that our method always consumes the
shortest average travel time, and the Dynamic Tolling method
consumes slightly longer time than ours. Although the RIS
method seeks the path of least expected travel time at each
step, its average travel time in turn is much longer than ours in
many cases. The Default method consumes the longest travel
time as it only takes into account the static distance. Therefore,
in Fig. 6 (b), the Default method achieves the shortest travel
distance in all cases. Our method and the Dynamic Tolling
method achieve only slightly longer travel distance. Mean-
while, the RIS method achieves the significantly longest travel
distance due to the greedy rerouting. Thereby, we focus on
comparing our method with Dynamic Tolling method. From
Fig. 6 (c) we can observe that both our method and the
Dynamic Tolling method incur much less links of congestion
than that of the Default method, and our method leads to
less congested links than that of Dynamic Tolling method,
while this superiority is much obvious around the peak. Then
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we stick to the same rule to select O-D pairs, but vary the
number of vehicles from 1000 to 10000, with an interval
of 1000 to conduct the MFD analysis. From Fig. 6 (d) we can
see that, the traffic flows for all three methods tend to decrease
as the vehicle number is not less than 8000. However, our
method and the Dynamic Tolling method always outperform
the Default method. And in most of cases, the Dynamic Tolling
method is inferior to our method, especially for larger number
of vehicles. To sum up, our method achieves the best overall
performance with this more realistic O-D profile.

G. Summary

In view of the metrics of travel time, travel distance, winners
and losers, congestion occurrence, last arrival time, toll costs
saved and average traffic flows together, as well as the semi-
centralized nature, it is safe to conclude that our pricing
approach outperform the Default, the RIS and the dynamic
tolling methods under two different O-D profiles. Between the
two pricing approaches, Improved Pricing: 30 steps is more
desirable for two reasons: (1) the overarching performance
of the Improved Pricing approach is better than the Pricing
approach; (2) N = 30 is more favorable than N = 10 as it is
not practical for vehicles to update their routes too frequently.

V. DISCUSSION

Out goal is to improve the overall performance of the
network. There might exist various means to achieve this,
e.g., directly minimizing the expected total travel time or
delays; balancing the traffic over the whole network; and
achieving certain equilibrium. In this paper, we choose the
metric of breakdown probability as major means to improve
the overall performance. We did not particularly study the
distribution relationships between breakdown and other rel-
evant factors, as we directly adopt the analytical model of
breakdown probability defined in Eq. (1) [28]. Our target is to
develop a practical solution to Eq. (1) so that it could handle
traffic dynamics and improve the overall performance of road
network, rather than statistically validating the relationships
between inputs and outputs of the model. We approximately
reformulate Eq. (1) and Eq. (2) as a routing engine in Eq. (3)
while considering the objectives and constraints in Eq. (1)
and Eq. (2). Thus, the decision variable in Eq. (3) is the
route for a vehicle. Considering the approximate equivalence
between Eq. (3) and Eq. (1), we could adopt the number
of breakdown links in Eq. (3) to verify the chance of road

0 B
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Simulation Step

(c) average congestion occurrence per step

5000 10000
Number of Vehicles

(d) MFD comparison

15000

Overall performance for a more realistic O-D profile. [Best Viewed in Color].

network breakdown, which is further approximately evaluated
by the number of congested road links in experimentation.
However, it is worth to statistically evaluate the relationships
between breakdown and other relevant factors in future, as did
in [41].

To make the pricing scheme much easier to apply into
practice, we adopted a speed based measurement, as shown
in Eq. (10), to regulate the price. However, according to the
original formulation in Eq. (5), occupancy or density based
measurement would be more desirable. Nevertheless, speed is
much easier to be acquired than that of occupancy or density.
Therefore, we made an assumption of linear relationship to
convert the quantity of vehicles to the average speed, which
might not be 100% accurate although practical. Due to those
assumptions and approximations, we may not completely
guarantee global convergence in practice, but hope that the
adapted sub-gradient method is still able to improve the overall
performance, which is empirically justified by experimenta-
tion. We will investigate more rational ways to further improve
the performance in future, and may also explore reinforcement
learning based method [42] to update the price.

VI. CONCLUSION AND FUTURE WORK

In this paper, we developed a subgradient method to solve
a cooperative routing problem, which is originally supposed
to reduce the chance of network breakdown. This subgradient
method can be naturally implemented as a semi-centralized
pricing approach, in which each road link calculates and
updates its toll, while the vehicles try to minimize the total
toll costs by dynamically adjusting their routes. The approach
is semi-centralized, in the sense that each road link only uses
the local information to update the toll, but the vehicles are
assumed to know the latest global tolls. To mitigate the poten-
tial negative effects of oscillation brought by the subgradient
method, we propose the heavy-ball method as an improvement.
The experimental results of a real road network on SUMO,
demonstrated the advantages of our approaches over others,
in the aspects of travel time, travel distance, winners and
losers, potential congestion occurrence, last arrival time, toll
costs saved, as well as the average traffic flows.

We do acknowledge the limitations of our current approach
and would like to point out several issues that need to be
considered and addressed in future: (1) The parameters a and
f are important to the performance, and some smart ways need
to be investigated to calculate the optimal values for them.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on August 02,2022 at 03:35:18 UTC from IEEE Xplore. Restrictions apply.



CAO et al.: IMPROVING THE PERFORMANCE OF TRANSPORTATION NETWORKS

(2) In the current method, we assume that we know the speed
information for all road links, and all drivers are sensitive to
the toll, which may not hold in real application. Therefore,
the toll updates should consider the case where the speed
information is only available for some of the road links, and
only a portion of the drivers comply with it. (3) All road links
update their tolls synchronously in the current method, while
asynchronous updating might be more practical, which can be
achieved by individually optimizing the updating frequency for
each road link. (4) The scheme to collect the tolls is not the
concern of this paper, however, it is a premise to implement
the proposed method into practice. Some practice schemes
should be investigated, such as the ERP2 in Singapore,
which will use the satellite based techniques to charge tolls
nationwide.
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