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a b s t r a c t 

Nowadays, an increasing number of vehicle routing problem with stochastic demands (VRPSD) models have 

been studied to meet realistic needs in the field of logistics. In this paper, a bi-objective vehicle routing problem 

with stochastic demands (BO-VRPSD) was investigated, which aims to minimize total cost and customer dis- 

satisfaction. Different from traditional vehicle routing problem (VRP) models, both the uncertainty in customer 

demands and the nature of multiple objectives make the problem more challenging. To cope with BO-VRPSD, a 

membrane-inspired multi-objective algorithm (MIMOA) was proposed, which is characterized by a parallel dis- 

tributed framework with two operation subsystems and one control subsystem, respectively. In particular, the 

operation subsystems leverage a multi-objective evolutionary algorithm with clustering strategy to reduce the 

chance of inferior solutions. Meanwhile, the control subsystem exploits a guiding strategy as the communication 

rule to adjust the searching directions of the operation subsystems. Experimental results based on the ten 120- 

node instances with real geographic locations in Beijing show that, MIMOA is more superior in solving BO-VRPSD 

to other classical multi-objective evolutionary algorithms. 

1. Introduction 

Vehicle routing problem with stochastic demand (VRPSD) was first 

introduced by Bertsimas in 1992 [1] . Like in many other vehicle routing 

problems (VRPs), vehicles depart from a depot and serve geographically 

dispersed customers, and return to the depot after fulfilling delivery 

tasks. The major difference of VRPSD from other VRPs is that, the de- 

mand of a customer follows a probabilistic distribution and is unknown 

until the vehicle reaches the location of customer. So far, various models 

have been investigated to solve VRPSD, such as chance-constraint pro- 

gramming, dynamic programming, and multi-scenario approach [2,3] . 

Among them, the most widely studied models are those based on two- 

stage stochastic programming [4] . Specifically, in the first stage, a priori 

route is planned to offer a guidance for the vehicle, based on the order 

of which the customers will be visited. In the second stage, the vehicles 

will travel on the a priori route, and if a vehicle does not have adequate 

goods to satisfy a customer, it has to return to the depot for replenish- 

ment. Afterwards, the vehicle goes back to continue serving the same 

∗ Corresponding author. 

E-mail address: jhxiao@nankai.edu.cn (J. Xiao). 

customer. In this model, the feasibility of a priori route may change due 

to the uncertain demands and some internal operations of an algorithm, 

which can be recovered by corrective actions, i.e., recourse . The final 

solution to VRPSD is an optimal complete route begins and ends in the 

depot and successfully serves all customers with stochastic demands. 

Due to the uncertainty of demands, VRPSD is considered as more intri- 

cate than VRPs with deterministic demands [5,6] . 

Since the major settings in VRPSD are more in line with the real- 

world applications, many variants of VRPSD have been studied to model 

realistic problems, most of which were addressed by heuristics or meta- 

heuristics algorithms [7] . Among them, a two-echelon VRPSD in city 

logistics was solved by a genetic algorithm based approach in [8] , 

where stochastic programming with recourse is applied to minimize the 

travel cost and failure route cost. An adaptive large neighborhood search 

heuristic was developed to tackle the VRPSD with weight-related cost in 

[9] . A nature-inspired approach, that integrates glowworm swarm opti- 

mization algorithm, variable neighborhood search algorithm and path 

re-linking algorithm was proposed to solve VRPSD in [10] . A hybrid 

meta-heuristic to cope with the route duration constraints in VRPSD 
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was presented in [11] . In addition, VRPSD was also extended to con- 

sider multi-objectives to meet more realistic needs in [12,13] , where 

the objectives were typically chosen among total cost, total travelling 

distance, driver remuneration, waiting time, number of vehicles and 

workload balance and so on. 

From the perspective of enterprise development, the total cost and 

customer satisfaction are deemed as two most crucial factors, which are 

related to their current and long-term earnings, respectively. On one 

hand, fuel emission cost is one of the most significant components in the 

total cost, as energy-saving plays a crucial role in both the economic and 

environmental concerns. Hence, a lot of studies on green road freight 

transportation that aim at reducing the carbon dioxide emissions from 

logistic transportation [14–19] have been conducted. Readers may also 

refer to [20] for a fundamental survey of green VRP, fuel consump- 

tion and vehicle emission models. On the other hand, responsiveness 

to customers is one of the most important factors of evaluating the ser- 

vice quality, based on which the customer satisfaction can be measured. 

Prompt services have positive influence on the reputation of an enter- 

prise, and may potentially increase the long-term economic interests. 

However, in most cases, minimizing fuel emission and improving cus- 

tomer satisfaction are conflicting with each other, and the tradeoff be- 

tween economic and environmental concerns and customer satisfaction 

was considered as one of promising directions in the green VRPs [21] . 

Nevertheless, to the best knowledge, this subject has been rarely stud- 

ied or addressed [22] , especially in the case of VRPSD. Therefore, this 

paper mainly emphasizes on optimizing the tradeoff between total cost 

and customer satisfaction in the context of VRPSD. 

In general, VRPSD in this paper can be modelled as a bi-objective (to- 

tal cost and customer satisfaction) vehicle routing problem with stochas- 

tic demand (BO-VRPSD), which comes down to a multi-objective opti- 

mization problem in nature. Recently, a new bio-inspired optimization 

model called membrane algorithm (MA) has been introduced to cope 

with multi-objective optimization problems [23,24] . The MA usually 

has cell-like or tissue-like structure, since it is inspired by the struc- 

ture and dynamic activities of living cells, tissues, or organs [25,26] . 

Moreover, it offers distributed parallel structure to many optimization 

algorithms (rules) [27–29] . Meanwhile, various multi-objective MA(s) 

have been proposed to deal with practical problems [30–34] , and it is 

also demonstrated that they can outperform many other types of multi- 

objective optimization algorithms in a diversity of applications [35–37] . 

In addition to those classic works, Zhang et al. [38] designed a multi- 

objective membrane algorithm that combined membrane system and 

quantum heuristic to solve the multi-objective knapsack problem. Za- 

harie et al. [39] proposed a new strategy to apply the genetic oper- 

ators to the conventional and distributed evolutionary algorithms, re- 

spectively. Cheng et al. [40] developed a membrane heuristic evolution- 

ary algorithm based on population P system and differential evolution 

to solve the multi-objective optimization problems. Liu et al. [41] con- 

ceived an evolutionary operator to improve the search efficiency, where 

the non-dominated sorting and crowding distance were introduced into 

the skin membrane. Although a lot of success has been achieved for the 

membrane related algorithms, specific design on how to address BO- 

VRPSD has been rarely studied. 

In this paper, a new membrane-inspired multi-objective algorithm 

(MIMOA) with three membranes (subsystems) is proposed to solve BO- 

VRPSD, which aims to optimize the total cost and customer dissatis- 

faction given stochastic customer demands. MIMOA adopts a cluster- 

ing strategy in operation subsystems and a guiding strategy in control 

subsystem to govern the direction of population evolution. The main 

contribution of this paper is summarized as follows. 

• To the best knowledge, MIMOA is the first membrane-inspired algo- 

rithm applied to solve BO-VRPSD, which aims to seek optimal trade- 

off between total cost and customer dissatisfaction with stochastic 

customer demands. 

• The clustering strategy in the operation subsystems divides cus- 

tomers into clusters, and prescribes the scope for the operations of 

crossover and mutation, which helps to avoid the potentially inferior 

crossover and mutation of chromosomes between distant zones. 

• The guiding strategy in the communication rule is designed based on 

a skin membrane control strategy, where the multi-population co- 

evolution in the three subsystems enables the solution to converge 

faster. 

The remainder of this paper is organized as follows. The mathemat- 

ical model of the BO-VRPSD is proposed in Section 2 . An efficient algo- 

rithm for solving the BO-VRPSD, i.e., MIMOA, is designed and presented 

in Section 3 . The performance of the MIMOA is analyzed by comparing 

it with other classic multi-objective algorithms in Section 4 . Finally, con- 

clusions and future works are listed in Section 5 . 

2. Problem description 

The BO-VRPSD is defined on a complete graph 𝐺 = ( 𝑁, 𝐸) , where 

𝑁 = {0 , 1 , 2 , … , 𝑛 } is the set of customers and the depot (i.e., 0), and E 

is the set of arcs between nodes. The random demand of customer i is 

denoted by d i , which is unknown until a vehicle arrives at that customer. 

Each vehicle i has a velocity v i and a capacity c i . The vehicle has to 

return to the depot for replenishment if the goods in the vehicle cannot 

satisfy the customers’ demand. The routes which vehicles have to travel 

through in order to replenish are defined as extra routes . Accordingly, 

the mathematical model of BO-VRPSD is defined as follows, 

Minimize { 𝑓 1 ( 𝑥 ) , 𝑓 2 ( 𝑥 )} subject to 𝑥 ∈ 𝐃 , (1) 

where f 1 ( x ) represents the total cost including carbon emission cost of 

all vehicles when they are travelling and wages of all drivers, f 2 ( x ) rep- 

resents the total value of customer dissatisfaction, and D is the decision 

space. 

2.1. The total cost 

In this paper, the total cost includes fuel emissions cost and the driver 

wages, and is expressed as follows, 

𝑇 = 𝐹 + 𝑊 , (2) 

where F represents fuel emissions cost and W denotes the driver wages. 

Assume e represents the complete route of a vehicle, then the nodes 

sequentially visited by the vehicle is described as follows, 

Ω( 𝑒 ) = ⟨0 , 𝑛 1 ( 𝑒 ) , 𝑛 2 ( 𝑒 ) , … , 𝑛 𝑚 ( 𝑒 ) , 0 ⟩, (3) 

where 0 represents depot and n i ( e ) represents the i th customer node the 

vehicle served in route e . In the meantime, the fuel emissions cost of 

route e is calculated as follows, 

𝐹 𝑡 ( 𝑒 ) = 𝐹 0 ,𝑛 1 ( 𝑒 ) + 

𝑚 −1 ∑
𝑗=1 

𝐹 𝑛 𝑗 ( 𝑒 ) ,𝑛 𝑗+1 ( 𝑒 ) + 𝐹 𝑛 𝑚 ( 𝑒 ) , 0 + 𝐸 𝑡 ( 𝑒 ) , (4) 

where 𝐹 0 ,𝑛 1 is the fuel emissions cost from the depot to customer 1. Sim- 

ilarly, 𝐹 𝑛 𝑗 ( 𝑒 ) ,𝑛 𝑗+1 ( 𝑒 ) is the fuel emissions cost from customer j to customer 

𝑗 + 1 . E t ( e ) is the amount of fuel emissions cost for extra routes in e . 

Accordingly, the total fuel emissions cost for all vehicles is defined as 

follows, 

𝐹 = 

𝑘 ∑
𝑗=1 

𝐹 𝑡 
(
𝑒 𝑗 
)
, (5) 

where k is the pre-defined number of vehicles and e j denotes the route 

served by the j th vehicle. And homogeneous vehicles will be considered 

in this model. Moreover, two constraints were also proposed to ensure 

that each customer cannot be served by different vehicles as follows, 

∪𝑘 
𝑖 =1 Ω

(
𝑒 𝑖 
)
= 𝑁, (6) 

2 



Y. Niu, Y. Zhang, Z. Cao et al. Swarm and Evolutionary Computation 60 (2021) 100767 

Table 1 

Notations in Eq. (7) and their values. 

Notation Description Value 

R Engine speed (rev/s) 36.67 

V Engine displacement (L) 6.9 

l Engine friction factor (kj/rev/liter) 0.20 

A Frontal surface area (m 

2 ) 8.0 

C d Coefficient of aerodynamics drag 0.7 

C r Coefficient of rolling resistance 0.01 

𝜉 Fuel-to air mass ratio 1 

𝜏 Acceleration (m/s 2 ) 0 

n tf Vehicle drive train efficiency 0.45 

𝜂 Efficiency parameter for diesel engines 0.45 

𝜅 Heating value of a typical diesel fuel (kj/g) 44 

𝜓 Conversion factor (g/s to L/s) 737 

g Gravitational constant (m/s 2 ) 9.81 

𝜌 Air density (kg/m 

3 ) 1.2041 

𝑃 ( 𝑒 𝑖 ) ∩ 𝑃 ( 𝑒 𝑗 ) = {0} , 𝑖 ≠ 𝑗, (7) 

where P ( e i ) represents the set of customers served by the i th vehicle. 

Moreover, the fuel consumption on certain route in Eq. (4) can be 

further calculated as follows [17,18] , 

𝐹 𝑛 𝑖 ( 𝑒 ) ,𝑛 𝑗 ( 𝑒 ) = 𝜆𝑓 𝑐 
(
𝑙𝑅𝑉 𝑑 𝑖,𝑗 ∕ 𝑣 + 𝑀𝛾𝛼𝑑 𝑖,𝑗 + 𝛽𝛾𝑑 𝑖,𝑗 𝑣 

2 ), (8) 

where 𝜆 = 𝜉∕ 𝜅𝜓 , 𝛾 = 1∕1000 𝑛 𝑡𝑓 𝜂 , 𝛼 = 𝜏 + 𝑔𝐶 𝑟 , 𝛽 = 0 . 5 𝐶 𝑑 𝜌𝐴 ; f c is the fuel 

emissions cost per liter; d i,j is the distance between n i ( e ) and n j ( e ); v 

refers to the speed of vehicles; and M is the total weight of the vehi- 

cle. Particularly, Eq. (8) involves three modules, i.e., the engine mod- 

ule ( lRVd i, j / v ), the weight module ( M 𝛾𝛼d i,j ), and the speed module 

( 𝛽𝛾d i, j v 
2 ). Notations and their default values are listed in Table 1 . 

In addition, the driver wages are defined as follows, 

𝑊 = 

𝑘 ∑
𝑖 =1 

𝑊 𝑖 = 𝑓 𝑑 𝑠 𝑖 , (9) 

where W i is the wage of driver i, f d represents the wages of the driver 

per hour, and s i means the working duration of driver i . 

2.2. Customers dissatisfaction 

The dissatisfaction model in this paper is developed based on the 

soft and hard time windows [22] , which are characterized by a four- 

dimensional vector [ ah i as i bs i bh i ]. More specifically, the vector [ as i , bs i ] 

represents the soft time window, and the vector [ ah i , bh i ] represents 

the hard time window. Violation of the soft time window will cause 

dissatisfaction to customer, and violation of the hard time window will 

maximize the customer dissatisfaction value. 

Accordingly, the dissatisfaction level (DSL) of customer i , which also 

refers to f 2 ( x ) in Eq. (1) , is expressed as follows, 

𝐷𝑆𝐿 𝑖 = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

1 0 < 𝑦 𝑖 ≤ 𝑎ℎ 𝑖 
( 𝑎𝑠 𝑖 − 𝑦 𝑖 )∕( 𝑎𝑠 𝑖 − 𝑎ℎ 𝑖 ) 𝑎ℎ 𝑖 < 𝑦 𝑖 ≤ 𝑎𝑠 𝑖 

0 𝑎𝑠 𝑖 < 𝑦 𝑖 ≤ 𝑏𝑠 𝑖 , 

( 𝑦 𝑖 − 𝑏𝑠 𝑖 )∕( 𝑏ℎ 𝑖 − 𝑏𝑠 𝑖 ) 𝑏𝑠 𝑖 < 𝑦 𝑖 ≤ 𝑏ℎ 𝑖 
1 𝑦 𝑖 > 𝑏ℎ 𝑖 , 

(10) 

where y i is the arrival time of the vehicle that supposed to serve cus- 

tomer i . 

3. Algorithm 

In this section, the MIMOA was proposed to solve the BO-VRPSD 

model, where only homogeneous vehicles are considered. The MIMOA 

has a tissue-like structure with three membranes which represent one 

control subsystem and two operation subsystems, as depicted in Fig. 1 . 

Particularly, control subsystem governs the evolutionary directions of 

the two operation subsystems by employing a guiding strategy in the 

Fig. 1. Three subsystems of MIMOA. 

communication rule; and operation subsystems leverage evolutionary 

algorithm and clustering strategy to search better solutions and send 

them back to the control subsystem for a new round of evolution. In 

specific, control subsystem not only receives solutions from the opera- 

tion subsystems, but also distributes back a modified solution according 

to the status of operation subsystems, so that the whole searching pro- 

cess would be ameliorated. Accordingly, transmission channels between 

operation subsystems and the control subsystem are bidirectional. 

The main procedure of the MIMOA is described in Algorithm 1 , 

Algorithm 1 Main framework of MIMOA 

Input: population size 𝑆 and customer data 𝐷. 

Output: 𝑃 0 . 

1: 𝐷 

′ = clustering_control.clustering ( 𝐷) 
2: 𝑃 0 ← ∅
3: for 𝑖 = 1 → 2 do 

4: 𝑃 𝑖 = clustering_control.initialization ( 𝐷 

′, 𝑆) 
5: while maximum iteration number is not reached do 

6: for 𝑖 = 1 → 2 do 

7: 𝑃 𝑐 
𝑖 
= evaluation ( 𝑃 𝑖 ) 

8: 𝑃 𝑚 
𝑖 

= nondominated_sorting ( 𝑃 𝑐 
𝑖 
) 

9: 𝑃 𝑙 
𝑖 
= clustering_control.crossover ( 𝑃 𝑚 

𝑖 
) 

10: 𝑃 𝑟 
𝑖 
= clustering_control.mutation ( 𝑃 𝑙 

𝑖 
) 

11: 𝑃 𝑛 
𝑖 
= local_search ( 𝑃 𝑟 

𝑖 
) 

12: 𝑃 𝑖 = truncation ( 𝑃 𝑛 
𝑖 
, 𝑆) 

13: 𝑃 0 ← 𝑃 0 ∪ 𝑃 1 ∪ 𝑃 2 

14: 𝑃 0 = truncation ( 𝑃 0 , 𝑆) 
15: 𝑃 0 , 𝑃 1 , 𝑃 2 = communication_strategy ( 𝑃 0 , 𝑃 1 , 𝑃 2 ) 

where P 0 represents the population in the control subsystem, and P 1 
and P 2 represent the populations in the two operation subsystems, re- 

spectively. In each operation subsystem, a clustering strategy, a local 

search algorithm, and a truncation operator are implemented together 

with the genetic operations. The clustering strategy is designed to di- 

vide customers to several zones according to their geographic locations 

before assigning them to appropriate routes. In doing so, it reduces the 

probability of wrong evolutionary direction and also endorses the algo- 

rithm with better convergence. The local search is used to bootstrap the 

solution. The truncation operator [43] is performed on populations P 1 , 

P 2 and P 0 as well, to eliminate individuals with lower ranks. In addition, 

the communication of the whole system is designed based on a guiding 

strategy [42] , to further enhance convergence and diversity of solution 

sets. 

3.1. Chromosome representation 

In order to better differentiate the partial and whole route, from here 

on, route and complete route are used to denote them, respectively. Gen- 

erally, a complete route consists of multiple routes . In the proposed MI- 

3 
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Fig. 2. A complete route and its chromosome representation. 

MOA, variable-length chromosomes [12,44,45] are adopted to represent 

routes, which are illustrated in Fig. 2 . Particularly, a chromosome, con- 

sisting of several customer nodes, represents a route out of the complete 

route. Each vehicle starts its route from the depot at beginning, and re- 

turns to the depot after completeness. 

3.2. Algorithms in operation subsystems 

In each operation subsystem, a multi-objective evolutionary algo- 

rithm with clustering strategy (MOEA-CS) was proposed to find candi- 

date solutions for the BO-VRPSD. 

3.2.1. Clustering strategy 

At the beginning of the algorithm, the information for customers and 

vehicles is taken as input. A clustering strategy based on K-Means algo- 

rithm is designed to classify customers according to geographic location, 

in which Euclidean distance is adopted as the similarity index. The spe- 

cific steps are described in Algorithm 2 . Taking the illustration in Fig. 3 

Algorithm 2 Clustering strategy 

Input: Number of clusters 𝐾, customer data 𝐷 and Maximum number 

of iterations 𝑀 . 

Output: Cluster Set 𝐶 = { 𝐶 1 , 𝐶 2 , … , 𝐶 𝐾 } . 
1: 𝑈 ← {} 
2: 𝑈 𝑡𝑚𝑝 ← {} 
3: for 𝑘 = 1 → 𝐾 do 

4: 𝑢 𝑘 = random_sampling_without_replacement ( 𝐷) 
5: 𝑈 ← 𝑈 

⋃
𝑢 𝑘 

6: for 𝑚 = 1 → 𝑀 do 

7: for 𝑘 = 1 → 𝐾 do 

8: 𝐶 𝑘 ← {} 
9: for 𝑖 = 1 → 𝑙𝑒𝑛 ( 𝐷) do 

10: for 𝑘 = 1 → 𝐾 do 

11: 𝑑 𝑖,𝑘 = Euclidean_distance ( 𝐷[ 𝑖 ] , 𝑈 [ 𝑘 ]) 
12: 𝑑 𝑖,𝑡 = min { 𝑑 𝑖, 1 , 𝑑 𝑖, 2 , … , 𝑑 𝑖,𝐾 } 
13: 𝐶 𝑡 ← 𝐶 𝑡 

⋃
𝐷[ 𝑖 ] 

14: for 𝑘 = 1 → 𝐾 do 

15: 𝑢 𝑘 ← 

1 
|𝐶 𝑘 |

∑
𝑐∈𝐶 𝑘 

𝑐 

16: 𝑈 𝑡𝑚𝑝 ← 𝑈 𝑡𝑚𝑝 

⋃
𝑢 𝑘 

17: if 𝑈 == 𝑈 𝑡𝑚𝑝 then 

18: 𝑏𝑟𝑒𝑎𝑘 

19: else 

20: 𝑈 ← 𝑈 𝑡𝑚𝑝 

21: 𝑈 𝑡𝑚𝑝 ← {} 

22: 𝑟𝑒𝑡𝑢𝑟𝑛 𝐶 ← { 𝐶 1 , 𝐶 2 , … , 𝐶 𝐾 } 

as an example, if the number of clusters is set as four, the seventeen 

customers will be divided into four zones by applying the clustering 

strategy. After clustering, each customer has an initial label regarding 

the zone it belongs to, and it can be changed when applying the adjacent 

swap operations. 

Fig. 3. A example of clustering strategy. 

3.2.2. Initialization 

At the initialization stage, each vehicle only serves customers be- 

longing to the same zone, and customers in different zones can not be 

assigned to the same route. In each zone, a customer sequence is gener- 

ated randomly to identify the probable service order, and customers are 

sorted according to the sequence one by one. A customer with higher 

priority is always preferred in comparison to the ones with lower priori- 

ties, unless the mean of its demand exceeds the remaining capacity of the 

vehicle at that moment. For example, suppose that the vehicle capacity 

is 50, the customer sequence in a zone is [1, 2, 3, 4, 5, 6, 7], and their 

corresponding demands are 22, 15, 15, 20, 12, 20, 10, respectively. The 

first route begins at the depot and adds customer 1 and 2 in turn. After 

serving the first two customers, the remaining capacity of the vehicle 

is 13. At that time, it cannot satisfy the demand of customer 3, but can 

satisfy customer 5, so it will assign customer 5 to its route. Then, the 

remaining capacity becomes 1, and no more customer can be served by 

this vehicle. Afterwards, another route will start. The same procedures 

will repeat until all customers are served. Consequently, three routes, 

i.e., 0–1–2–5–0, 0–3–4–7–0, and 0–6–0, would be generated. And each 

vehicle is in charge of one route. 

3.2.3. Evaluation and selection 

Chromosomes are evaluated and ranked based on the Pareto domi- 

nance, where a binary tournament is adopted to choose parent chromo- 

somes for genetic operators. In particular, a pair of chromosomes are 

chosen randomly, and the one with lower rank is picked out for repro- 

duction. This process will repeat until sufficient parent chromosomes 

are acquired. 

The route simulation method (RSM) [45] is adopted to estimate the 

expected cost of the solution. An example of a route sequence is illus- 

trated in Fig. 4 , in which solid lines represent planned routes before 

departure, and dashed lines represent extra route incurred in actual ser- 

vice. Suppose that the capacity of each vehicle is 50, and arrows point 

to the heading directions of the vehicle. In this example, the vehicle 

leaves the depot and first arrives at customer 2, after which the remain- 

ing capacity of the vehicle is 30. Then the vehicle visits customer 3 and 

5 subsequently. When it reaches customer 5, the remaining capacity 
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Fig. 4. An example of RSM. 

can not meet the demand. The vehicle unloads all the remaining goods 

and return to the depot to replenish goods. After that, it goes back to 

customer 5 to continue serving. Then the vehicle continues to visit cus- 

tomer 4, after which the remaining capacity of the vehicle becomes 0. It 

has to return to the depot again, and continues to visit customer 1 and 

other remaining customers (if any) after replenishment. Upon the com- 

pleteness of serving all customers, the vehicle returns to the depot for 

termination. Given the randomness of the customer demands, the above 

operations are repeated several times for each complete route, and the 

average is considered as the travel cost of this complete route. 

3.2.4. Route-exchange crossover 

MIMOA adapts an existing route-exchange crossover [45] , which 

is ameliorated by incorporating geographic location constraints. Only 

routes belonging to the same zone (their customers with the same label) 

can be exchanged with each other, as shown in Figure 5 . Sequences of 

routes in one chromosome are reproduced and shared with other chro- 

mosomes. When a route is inserted to another chromosome as a new 

route, duplicated customers are deleted from the original route to en- 

sure feasibility of the chromosome. 

3.2.5. Mutation operators 

In the proposed MIMOA, four mutation operators are designed to 

explore a larger search space. 

(1) Single node swap operator : This operator randomly chooses two cus- 

tomer nodes with the same label from two different routes, and ex- 

changes them, as depicted in Fig. 6 (a). 

(2) Route merging operator : This operator combines two shorter routes 

with the same label, as depicted in Fig. 6 (b). It is executed only when 

there is a route with length smaller than a threshold, which will be 

merged with the remaining shortest route. The motivation is that, 

too rare customer requests for a single route may cause a waste of 

the vehicle capacity, thus increase the cost for the complete route. 

(3) Route splitting operator : This operator breaks a long route into two 

routes at a random node, as depicted in Fig. 6 (c). This operation 

is performed only when there is a route with length exceeding a 

threshold. The motivation is that, too many customer requests for a 

single route may cause more potential failures. 

(4) Adjacent swap operator : This operator randomly selects two nodes 

from two adjacent zones, and exchanges them, as depicted in 

Figure 6 (d). If a customer is reassigned to another zone, its label 

will be changed accordingly. 

3.2.6. Local search 

After generic operations, several local search algorithms are de- 

signed to improve the quality of current populations. They also help 

to identify gaps in the Pareto front while enhancing the convergence. 

Three local search algorithms are adopted in MIMOA, the first two of 

which are modified based on the ones in [45,46] . 

(1) Shortest Path Search (SPS): It rearranges customers in a particular 

route. The customer farthest from the depot will be placed to the 

beginning of the route, and the customer closest to the first customer 

will be chosen as the second customer. This step will be repeated 

until all customers are reordered. 

(2) Which Directional Search (WDS): It constructs a new route by re- 

versing the direction of a given route. If the new route is better, it 

will replace the original one. 

(3) Time Priority Search (TPS): It reorders the customers in each route 

according to the time window constraints of each customer. The pri- 

ority of a customer is determined based on the end of time windows. 

In general, the smaller the end time, the higher the priority. 

3.3. Communication rule in control subsystem 

Control subsystem implements the communication rule based on a 

guiding strategy, in order to facilitate the search directions of operation 

subsystems. Transmission channels between operation subsystems and 

control subsystem are bidirectional, which are governed by the guid- 

ing strategy. Firstly, operation subsystems send solutions in the archive 

population to the control subsystem, and control subsystem performs 

non-dominated sorting and truncation operations [43] to eliminate the 

inferior solutions. Then the updated solutions in control subsystem will 

be distributed to operation subsystem according to convergence and dis- 

tribution of populations in operation subsystem [42] . For any solution s ∗ 

in control subsystem, the number of solutions in operation subsystems 

which is dominated by s ∗ is calculated. Then, s ∗ will be allocated to the 

operation subsystem which has the more dominated solutions. If two 

operation subsystems have the same number of dominated solutions, 

s ∗ will be allocated to the operation subsystem with smaller crowding 

distance. It should be notedthat if the operating subsystem already con- 

tains a solution assigned by the control subsystem, the duplicate solu- 

tion will not be received any more. Finally, those inferior solutions are 

eliminated, and the population size of the operation subsystem is re- 

duced to a specified value by the truncation operator. Consequently, 

Fig. 5. Route-exchange crossover. 
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Fig. 6. Mutation operators. 
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Fig. 7. Customer nodes. 

Fig. 8. The non-dominated solution sets of MOEA-CS and MOEA. 

Table 2 

Parameters. 

Parameter Value 

Population size 300 

Maximum iteration number of MIMOA 500 

Number of clusters 4 

Crossover rate 0.7 

Mutation rate 0.4 

Merge threshold 7 

Split threshold 15 

RSM sampling time 10 

Capacity of vehicle 12,500 

new populations are generated, and all operation subsystems are 

updated. 

4. Experimental studies 

The MIMOA was implemented in Python and experiments were con- 

ducted on Windows 10 with the AMD Rayzen7 1700x processor. The 

key experimental parameters are listed in Table 2 . 

As there is no commonly used benchmark dataset for the BO-VRPSD 

in the literature, the problem instances for testing are generated based 

on the actual geographic distance for customers in Beijing. As shown in 

Fig. 7 , it contains 10 different instances with 120 customers. Time win- 

dows and service time for each customer are generated randomly. Mean 

demand of each customer is obtained according to a discrete uniform 

distribution within the interval [300, 1800], and standard deviation is 

randomly generated which falls between 0 and 1/3 of the mean demand 

of the customer. As shown in Table 2 , the capacity of vehicle is set of 

12500. 

4.1. Performance of clustering strategy 

In this section, to verify the effectiveness of clustering strategy, the 

multi-objective evolutionary algorithm with clustering strategy (MOEA- 

CS) is compared with MOEA, which is implemented in operation sub- 

systems. 

In general, MOEA-CS is supposed to guide the evolution direction 

of solutions proactively and alleviate the disadvantages caused by in- 

correct evolution, thus increase the chance of finding better solutions. 

Fig. 9. (a) Average total cost and (b) average customer dissatisfaction of archive populations for MOEA-CS and MOEA. 
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Fig. 10. (a) Average total cost and (b) average customer dissatisfaction of non-dominated solutions for MOEA-CS and MOEA. 

Fig. 11. The non-dominated solution set of MOEA-GS and MOEA. 

Fig. 8 shows that the lowest cost value and the lowest customer dis- 

satisfaction achieved by MOEA-CS are 1737.64 and 8.18, respectively, 

both of which are significantly superior to that of MOEA. Fig. 9 (a) and 

(b) shows the convergence of the mean of the total cost and customer 

dissatisfaction in solution sets, which cover all solutions in the archived 

population and generations. Fig. 10 (a) and (b) shows the convergence of 

the mean of the total cost and customer dissatisfaction in non-dominated 

solutions for MOEA-CS and MOEA, where the total cost and customer 

dissatisfaction are averaged over the 10 runs. Combining Figs. 9 and 10 , 

it is obvious to see that MOEA-CS can converge faster than MOEA. 

The reason for the better performance yield by the clustering strat- 

egy can be explained as follows. (1) During initialization, the customer 

nodes are clustered according to the geographical location, based on 

which, an initial solution is generated. This type of initial solution is 

generally more reasonable than those generated directly based on all 

customer nodes, which also facilitates speeding up the convergence. (2) 

The clustering strategy helps to limit the scope of crossover and muta- 

tion. It states that another chromosome involved in crossover and mu- 

tation needs to be in the same region or in an adjacent region, so that 

Table 3 

Performance comparison for different optimization algorithm. 

Instances NSGAII SMG-MOMA MIMOA 

BJ120_01 Min TC 2443.49 2266.78 1781.44 

Min CD 11.06 11.23 8.33 

Min TC × CD 33677.80 29828.69 16159.71 

BJ120_02 Min TC 2196.63 2102.81 1675.21 

Min CD 11.25 9.67 7.05 

Min TC × CD 33678.77 27022.15 13620.02 

BJ120_03 Min TC 2404.58 2279.57 1784.54 

Min CD 10.68 9.48 7.14 

Min TC × CD 29299.79 24475.85 13725.37 

BJ120_04 Min TC 2183.62 2077.51 1651.78 

Min CD 13.75 12.81 8.23 

Min TC × CD 37276.04 34055.46 15176.42 

BJ120_05 Min TC 2338.58 2295.97 1915.95 

Min CD 9.47 10.71 7.07 

Min TC × CD 24761.09 31292.90 15116.97 

BJ120_06 Min TC 2488.53 2234.51 1804.48 

Min CD 8.95 9.72 6.09 

Min TC × CD 26869.85 24072.22 12217.33 

BJ120_07 Min TC 2391.07 2395.87 1984.14 

Min CD 8.27 8.29 7.01 

Min TC × CD 21373.30 20737.66 15196.90 

BJ120_08 Min TC 2425.62 2336.72 1821.99 

Min CD 7.89 8.03 7.0 

Min TC × CD 22154.81 22195.16 13488.27 

BJ120_09 min TC 2321.87 2237.77 1758.13 

Min CD 11.12 10.03 6.49 

Min TC × CD 30585.92 26920.64 12561.85 

BJ120_10 Min TC 2481.82 2397.21 2041.19 

Min CD 7.99 7.71 7.07 

Min TC × CD 23436.88 21854.76 16243.08 

the route for each vehicle might not include nodes far away from each 

other. Moreover, together with the solution quality improving by local 

search, the chance of yielding poor solutions after cross mutation would 

be significantly reduced. 

4.2. Performance of guiding strategy 

One of the major effectiveness for the membrane framework in MI- 

MOA lies in the communication between control subsystem and two op- 

eration systems, where control subsystem leverages a guiding strategy 

to speed up convergence and improve the quality of solutions. To ver- 
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Fig. 12. (a) Average total cost and (b) average customer dissatisfaction of archive populations for MOEA-GS and MOEA. 

Fig. 13. (a) Average total cost and (b) average customer dissatisfaction of non-dominated solutions for MOEA-GS and MOEA. 

ify this effectiveness, MOEA is also compared with the multi-objective 

evolutionary algorithm with guiding strategy, which is referred to as 

MOEA-GS. And the sets of Pareto optimal solutions achieved by MOEA 

and MOEA-GS are plotted in Fig. 11 , respectively. It is easy to observe 

that MOEA-GS is more efficient in satisfying the two conflict objectives 

than that of MOEA. 

Fig. 12 shows the convergence of total cost and customer dissatisfac- 

tion of average solutions for the archive population. Fig. 13 shows the 

convergence of total cost and customer dissatisfaction of average non- 

dominated solutions. It can be observed that MOEA-GS has a significant 

superiority in finding solutions with smaller total cost and customer dis- 

satisfaction compared with MOEA, and this advantage is particularly 

obvious in optimizing the objective of total cost. 

4.3. Performance of MIMOA 

In this section, the overall performance of MIMOA is evaluated based 

on three objectives, i.e., Min TC (total cost), Min CD (customer dissatis- 

faction) and Min MP (multi-objective performance), respectively. Mul- 

tiplicative aggregation [47] for total cost and customer dissatisfaction 

in non-dominated solutions is adopted to evaluate the multi-objective 

performance. Meanwhile, two more multi-objective optimization algo- 

rithms, i.e., NSGAII [50] and SMG-MOMA [42] are implemented as 

baselines to compare with MIMOA, the results of which are recorded 

in Table 3 . 

From Table 3 , it can be obviously found that MIMOA performs better 

than NSGAII and SMG-MOMA for all ten instances in terms of optimizing 

the Min TC , Min CD and Min MP . Moreover, Fig. 14 shows the detailed 

results of the three algorithms for the ten instances, which demonstrates 

the significant advantage of MIMOA in optimizing the two objectives 

over NSGAII and SMG-MOMA. 

The average computation time (in seconds) for the three algorithms 

is recorded in Fig. 15 . In specific, the population size is 300; each in- 

stance contains 120 customers; and the maximum number of iterations 

is 500. Note that all previous results are obtained with 500 as the maxi- 

mum number of iterations. From Fig. 15 , it is easy to see that, the com- 

putation time for MIMOA is only slightly longer than the other two for 

several instances. Given the significant superiority of MIMOA in reduc- 
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Fig. 14. The non-dominated solution set of MIMOA, NSGAII 

and SMG-MOMA for ten instances. 
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Fig. 15. Calculation time of different in- 

stances. 

ing objective values, the slightly longer computation time is acceptable. 

On the other hand, it also shows that the clustering strategy and the 

guidance strategy did not consume much additional time. 

5. Conclusions 

This paper studies a mathematical model of bi-objective VRPSD (BO- 

VRPSD), which considers two conflicting objectives, i.e., total cost and 

customer satisfaction. Generally, BO-VRPSD aims to achieve desirable 

tradeoff between business interests and customer satisfaction for route 

planning. 

To address BO-VRPSD, a membrane-inspired multi-objective algo- 

rithm(MIMOA) was proposed, which has a tissue-like framework includ- 

ing three subsystems, i.e., one control subsystem and two operation sub- 

systems. In MIMOA, an improved MOEA with clustering strategy was de- 

signed for the operation subsystems; communications between control 

subsystem and operation subsystems were implemented based on a guid- 

ing strategy. Experimental results based on ten 120-node instances with 

real geographic geographic locations in Beijing show that, membrane- 

inspired framework together with the clustering strategy and guiding 

strategy can significantly improve the performance over other classi- 

cal multi-objective evolutionary algorithms. In future, (1) measures on 

further improving the efficiency or execution speed of MIMOA will be 

investigated, by leveraging the models and algorithms in [48,49] , (2) 

impacts of different clustering strategies and cluster numbers to MIMOA 

will be studied. 
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