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a b s t r a c t 

For many real-world applications, predicting a price range is more practical and desirable than predicting 

a concrete value. In this case, price prediction can be regarded as a classification problem. Although deep 

forest is recognized as the best solution to many classification problems, a crucial issue limits its direct 

application to price prediction, i.e., it treated all the misclassifications equally no matter how far away 

they are from the real classes, since their impacts on the accuracy are the same. This is unreasonable to 

price prediction as the misclassification should be as close to the real price range as possible even if they 

have to be wrongly classified. To address this issue, we propose a cost-sensitive deep forest for price pre- 

diction, which maintains the high accuracy of deep forest, and propels the misclassifications to be closer 

to the real price range to reduce the cost of misclassifications. To make the classification more meaning- 

ful, we develop a discretization method to pre-define the classes of price, by modifying the conventional 

K-means method. The experimental results based on multiple real-world datasets (i.e., car sharing, house 

renting and real estate selling) show that, the cost-sensitive deep forest can significantly reduce the cost 

in comparison with the conventional deep forest and other baselines, while keeping satisfactory accuracy. 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction 

Price prediction is an important task of machine learning and 

pattern recognition techniques [1] . It has been widely studied in 

many economic related areas, such as stock market [2] , oil price 

[3] , electricity load [4] and electricity price [5] , real estates [6] , 

and airfare [7] , and plays a critical role in providing important 

decision support information. Based on the task, price prediction 

methods can be roughly classified into two types. The first type 

of methods is designed to forecast the trend of price in the time- 

series form, e.g. stock price and oil price prediction. The second 

type of methods focuses on predicting the price of individual items 

based on their features, e.g. the price of a house or air ticket. In 

this paper, we concentrate on the second type of price prediction 

task. 

Most existing works of price prediction employ regression- 

based methods to predict a concrete value for the price. However, 

for many real-world applications, predicting a class (or range) of 

price is much more practical. This is typical for the sharing econ- 

∗ Corresponding author. 

E-mail address: isecaoz@nus.edu.sg (Z. Cao). 

omy, which involves the sharing of a wide range of properties (e.g. 

cars, houses) and is rapidly expanding and becoming part of our 

life [8] . The P2P car sharing business, as a motivating example, 

is gaining more and more popularity in both research community 

and industry, as it not only facilitates the daily commute of peo- 

ple [9] , but also has potential to alleviate traffic congestion and re- 

duce pollution to the environment [10] . In general, the car fleet in 

P2P car sharing is decentralized, and owned by private individuals 

rather than a central operator. The principle role of the operator 

is to provide an online marketplace to connect car owners with 

prospective renters. Compared with other types, the P2P car shar- 

ing service is also characterized by the diverse options of cars [11] , 

which can easily meet the specific requirements of renters, but 

may also cause problems. On one hand, new renter without much 

experience, may have no idea whether the price for the car he/she 

is interested in is reasonable or not. On the other hand, the new 

owner may not know whether the price he/she listed is proper 

enough, so that the car can be attractive and the owner can make 

desirable profit. Therefore, price prediction plays a significant role 

in the P2P car sharing business, which has the potential to make 

the whole process more efficient by saving the bargain between 

owners and renters. However, due to the characteristic of decen- 

tralization, predicting a class or a range which the price of the car 

https://doi.org/10.1016/j.patcog.2020.107499 

0031-3203/© 2020 Elsevier Ltd. All rights reserved. 
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belongs to is much more practical than that of a concrete price 

value [12] . Because to both parties, it is always the cases that the 

deal will be made as long as the price falls in an acceptable range. 

In such scenarios which require predicting the class of price, the 

prediction task can be regarded as a classification problem rather 

than regression. 

Although deep forest is considered as the best solution to many 

classification tasks [13] , it cannot be directly apply it to the price 

prediction task. The traditional deep forest usually treats all the 

cost of misclassifications equally as their impacts on the classi- 

fication accuracy are the same, e.g., misclassifying the true price 

class ‘500–599’ as ‘400–499’ does not make difference to the ac- 

curacy in comparison with ‘100-199’. However, taking into account 

the particular characteristics of price prediction, ‘400–499’ is much 

more reasonable than ‘100-199’ as the former is much closer to the 

true price class. In this case, the interested party (e.g. the owner 

or renter in P2P car sharing) will not miss the target too much re- 

garding the price for the item, even if he/she made a wrong predic- 

tion. Thus, it is desirable to improve the conventional deep forest 

by considering the cost of each misclassification, such that the mis- 

classifications will be forced to be closer to the true price classes, 

while keeping satisfactory accuracy. 

To this end, in this paper we propose a cost-sensitive deep for- 

est for price prediction. With deep forest, we expect to achieve 

higher accuracy than the conventional deep forest as the number 

of price classes goes up. With the cost-sensitive scheme that im- 

poses higher cost to the misclassifications far away from the true 

price classes, we expect to reduce the cost of misclassifications and 

propel them to the true price ranges. In addition, to further im- 

prove the overall performance, we develop a discretization method 

to pre-define the classes of price, by modifying the conventional 

K-means method. The effectiveness of our method is verified by 

experimental results on multiple real-world datasets, including car 

sharing, house renting, and real estate selling. To summarize, we 

make the following contributions: (1) investigate how to apply 

deep forest to price prediction by considering it as a classification 

problem; (2) introduce the cost-sensitive scheme to deep forest; 

and (3) propose a modified K-means method for more meaningful 

discretization of the data. 

The rest of this paper is organized as follows. Section 2 re- 

views the existing methods on discretization, classification and 

cost-sensitive learning. Section 3 elaborates the methods we pro- 

posed for the cost-sensitive price prediction. Experimental results 

and performance analysis are presented in Section 4 . The paper 

ends with the conclusion and future works in Section 5 . 

2. Related work 

In our price prediction problem, we need to firstly define the 

range or interval for each price class using a discretization method, 

and then perform the prediction using a classification method. Ac- 

cordingly, we review the related works on discretization meth- 

ods, followed by the classification methods, i.e., random forest and 

deep forest. Afterwards, we discuss the related works on the cost- 

sensitive learning. 

2.1. Discretization for classification 

Three typical discretization methods for classification were 

summarized by Torgo and Gama [14] : (1) Equally probable inter- 

vals (EPI), which divides continuous values into intervals with the 

same number of examples. (2) Equal width intervals (EWI), which 

divides the whole range of target values into intervals with the 

same span. (3) K-means clustering, which minimizes the total dis- 

tance of each sample within an interval to its center given a fixed 

number of intervals. As an unsupervised method, K-means clus- 

tering is able to well explore the distribution of data, which has 

strong robustness to the data variance [15] . Inspired by the advan- 

tages, many subsequent discretization methods based on k-means 

have been developed [16] . Among them, the system RECLA is at- 

tractive, as it is able to transform a regression problem into a clas- 

sification one by applying the K-means based discretization, thus 

the existing classification methods could be adopted to solve the 

new problem. 

2.2. Classification methods: random forest and deep forest 

For many classification problems, ensemble learning based 

methods can achieve better performance than the non-ensemble 

learning based ones [17] . Random forest (RF) is the most repre- 

sentative ensemble learning method, which yields many variants, 

such as Extra Tree (ET) [18] , Rotation Forest (RoF) [19] and Oblique 

Decision Trees (ODT) [20] . RF classifier usually consists of many 

base classifiers, i.e., decision tree. For a classification problem, each 

base classifier makes a decision first, then all decisions are inte- 

grated and the category with most votes is considered as the tar- 

get output. The overall performance of an ensemble classifier is 

usually influenced by the accuracy and diversity of base classifiers. 

Normally, the more accurate and diverse the base classifiers are, 

the better overall performance the ensemble classifier gets. Nev- 

ertheless, given the characteristic of the ensemble learning, there 

is no need to constantly increase the accuracy of each base classi- 

fier. On the other hand, it is more practical and rewarding to en- 

hance the diversity of the base classifiers, which can be achieved 

through four strategies [21] : 1) Data sample manipulation, which 

samples different data to train different subclassifiers [22] . 2) In- 

put feature manipulation, which generates different feature sub- 

spaces to train different subclassifiers [23] . 3) Learning param- 

eter manipulation, which sets different parameter for different 

subclassifers [18] . 4) Output representation manipulation, which 

uses different output representations to generate different sub- 

classifiers [24] . Meanwhile, multiple strategies can also be applied 

simultaneously. 

Before deep forest (DF) is proposed, deep learning is approx- 

imately equal to deep neural network (DNN) [13] . Deep learn- 

ing achieves great success in many tasks and most of its appli- 

cations are based on DNN [25] . The success of DNN mainly ben- 

efits from three key characteristics [13] : 1) Layer-by-layer process- 

ing, by which different levels of features are extracted gradually. 2) 

In-model feature transformation, by which information extracted 

from the preceding layer is delivered to next layer as features. 3) 

Sufficient model complexity, which is necessary for exploiting large 

training data. However, the structure of DNN, especially the depth, 

needs to be designed and fixed before training, which is difficult 

to be pre-defined. Therefore, Zhou and Feng [13] proposed the 

deep forest (DF), the depth of which is self-adapting, thus opened 

a door to the non-neural-network style deep learning. DF is usu- 

ally characterized by two components, i.e., multi-grained scanner 

and cascade forest. The former is used to extract information from 

raw data which may have spatial or temporal relationship, and 

the latter is used to construct the ensemble classifier with self- 

adapting depth. However, multi-grained scanner is not a necessity 

in all DF. In general, DF can achieve competitive performance com- 

pared to DNN in a broad range of tasks, with much less hyper- 

parameters and higher accuracy [26] . On one hand, DF is still re- 

garded as an ensemble learning method based on decision trees, 

so it has most of the advantages of the general ensemble learn- 

ing methods. On the other hand, DF also has the characteristics 

of DNN mentioned above to make the ensemble classifier deeper, 

which will potentially enhance diversity and improve the overall 

performance [27] . 
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2.3. Cost-sensitive classification 

Traditional classification methods are designed to achieve the 

lowest recognition errors and thus essentially assume same cost 

or loss for different misclassifications. However, this assumption 

may not be proper for many real-world applications. Therefore, 

cost-sensitive classification, assigning different cost to different 

misclassifications, is significantly desirable. Since [28] established 

the foundation of cost-sensitive classification, it has been intro- 

duced into Support Vector Machine (SVM) [29] , Multilayer Per- 

ceptron (MLP) [30] , RF [31] and RoF [32] . However, DF, which of- 

fers an alternative when DNN is not superior, still has not been 

incorporated with the cost-sensitive scheme. Meanwhile, differ- 

ent problems in real world have been widely addressed by cost- 

sensitive classification, such as, spam detection [33] , face recogni- 

tion [34] , medical diagnosis [35] , fraud detection [36] , and class 

imbalance [37] . However, cost-sensitive classification has never 

been studied in the price prediction problem. Therefore, we aim 

to develop a comprehensive approach to predict the price by 

leveraging the deep forest and the cost-sensitive scheme in this 

paper. 

3. Methodology 

In this section, we first propose modified k-means to discretize 

the price into multiple intervals, which are considered as the price 

classes in the subsequent classification. Afterwards, we elaborate 

the cost-sensitive deep forest method for price prediction. 

3.1. Modified K-means for discretization 

In statistics, coefficient of variation (CV) is widely used to mea- 

sure the variational level of a distribution, which is defined as the 

standard deviation divided by mean. The bigger CV, the higher 

variational level. In discretization, two CV based metrics are usu- 

ally adopted to evaluate this performance, i.e., coefficient of vari- 

ation for the number of examples in interval (CVN) and coeffi- 

cient of variation for the range of interval (CVR). Generally, lower 

CVN indicates less imbalanced class, and lower CVR indicates more 

uniform range of interval. Therefore, a discretization method with 

both lower CVN and CVR is more desirable. However, in price 

prediction, the distribution of price is often uneven, i.e., most of 

the price usually locate in a small range, and the remaining mi- 

nority locate in a large range, which may significantly affect the 

performance of discretization [38] . Among various discretization 

methods, K-means often demonstrates comparatively better per- 

formance in terms of CVN and CVR, as it takes into account the 

variance and mean of the data when generating the clusters. Nev- 

ertheless, there is still much room to further improve K-means for 

discretization. 

Inspired by the uniform effect of K-means [39] and isolation 

forest [40] , we propose the modified K-means to further improve 

the discretization performance. Uniform effect of K-means refers 

to that the size of clusters generated by K-means tends to be a rel- 

atively uniform distribution [39] . Particularly, the 95%-confidence 

interval of CVN of K-means on datasets without excessive out- 

liers is [0.09, 0.85], which means the probability that the CVN 

is between 0.09 and 0.85 is 95%. Related to target domain (i.e., 

the price) rather than feature domain, outlier here refers to the 

data points with sparse distribution and far from the high-density 

groups. If the dataset contains excessive outliers, increasing the 

number of intervals will decrease CVN but increase CVR. To al- 

leviate this contradiction and get both low CVN and CVR with 

small number of intervals, we incorporate the intervals with ex- 

cessive outliers into the adjacent ones, where an isolation forest is 

adopted to select such intervals. More specifically, we employ the 

isolation forest to find outliers rather than profiling normal points 

[40] , based on two characteristics of outliers: 1) the outliers have 

fewer examples, 2) the attribute values of outliers are much dif- 

ferent from the normal ones. Then, the isolation forest iteratively 

splits the data space into subspaces using random hyperplanes, un- 

til each subspace contains only one data point. Intuitively, point 

groups with high density and normal values will stop splitting af- 

ter many iterations, while groups with low density and outliers 

will stop splitting relatively early. 

To derive the modified K-means, we firstly define an abnormal 

interval as the one that does not change if the number of intervals 

is increased. The number of abnormal intervals may be larger than 

one, and in this case, only the most abnormal interval is modified 

each time. Then, we define three types of most abnormal inter- 

vals, i.e., the interval with the largest range, the smallest number 

of examples, and the smallest density, respectively. Consequently, 

the modified K-means based on them are termed as KMR, KMN 

and KMD, respectively, while the conventional K-means is termed 

as KM. Accordingly, the overall steps for implementing the modi- 

fied K-means are stated as follows: 1) run conventional K-means by 

setting the number of intervals as smallest, 2) increase the number 

of intervals by one until the interval of most abnormal is found, 3) 

set all prices in the abnormal interval as the nearest price in the 

direction of the dense part, 4) repeat step 1, 2, 3 based on the new 

price obtained from step 3, until the number of intervals in step 

2 is equal to the desired number, 5) the final intervals from step 

4 are the output of the modified K-means. Details of the modified 

K-means are described in Algorithm 1 . In our price prediction, we 

adopt the modified K-means to conduct discretization, followed by 

the cost-sensitive deep forest to predict the price range (or inter- 

val). 

Algorithm 1: Modified K-means. 

input : P , original price data; K, number of intervals for 

modified K-means; 

s , the smallest number of intervals. 

output : I + , K intervals by modified K-means. 

initialize former number of intervals, N 

−, as s ; 

initialize former price, P − = P ; 

get N 

− intervals, I −, by K-means based on P −; 

while N 

− < K do 

get new number of intervals, N 

+ = N 

− + 1 ; 

get N 

+ intervals, I + , formed by K-means based on P −; 

if I − and I + have same intervals then 

choose the most abnormal interval; 

set all price in this interval as the price towards the 

nearest dense part of all price to get new price, P + ; 
reinitialize, P − = P + ; 
reinitialize, N 

− = s ; 

get N 

− intervals, I −, formed by K-means based on P −; 

end 

else 
N 

− = N 

+ ; 
I − = I + . 

end 

end 

3.2. Cost-sensitive deep forest 

Deep forest (DF) is a type of ensemble learning in nature, which 

is also endorsed with the strength of deep neural network [41] . In- 

side a DF, the unit in each layer is a base classifier, and the more 

complex of the base classifier, the more diverse of DF. In general, 

sufficient diversity with reasonable accuracy of base classifiers will 
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lead to satisfactory overall performance [42] . Moreover, DF can 

further enhance the diversity by automatically adjusting the depth, 

given that the depth of DF is self-adapting. Therefore, DF is able to 

achieve relatively superior performance of accuracy in classification 

even if the number of the classes is large. 

Although DF is supposed to improve the accuracy over the con- 

ventional classification methods, it overlooks a critic issue, i.e., the 

cost of different misclassifications is evaluated equally. This type 

of misclassifications evaluation is undesirable in many applications 

because they should be as near the corresponding true classes as 

possible, even though they may not facilitate increasing the accu- 

racy. It is especially crucial for price prediction, where the misclas- 

sifications should not be far from the real price range. To address 

this issue, we propose a cost-sensitive deep forest (CSDF), which 

assigns a specific cost for each misclassification, while preserving 

satisfactory accuracy. 

To construct the CSDF, cost-sensitive base classifiers should be 

developed. To this end, we define a cost matrix first. Particularly, 

based on the discretization by K-means or its improved variants, 

the median value of an interval is chosen as the center. Then the 

distance of two centers is considered as the distance of these two 

classes, which is considered as the cost for misclassifying a sample 

of one class as the other. In view of this, we assume that c ij is the 

cost for misclassifying the sample of class i as class j , and the cost 

Fig. 1. The overall architecture of the proposed CSDF. (1) Different colors of estima- 

tors refer to different base classifiers, and different estimators will result in different 

probability vectors. The probability vectors will be concatenated with input feature 

vector to act as input to different layers. (2) The horizontal and vertical ellipsis sym- 

bols refer to the user-defined number of estimators within a layer and the flexible 

self-adapting number of layers, respectively. (3) The way to perform the prediction 

is shown in the green box, and the cost regarding the output of each layer can be 

obtained by referring to the cost matrix (i.e., Eq. (1) ) based on the prediction and 

true label. Note that there is a green box in each layer. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 

matrix C is expressed as follows, 

C = 

⎡ 

⎢ ⎢ ⎣ 

c 11 c 12 · · · c 1 n 
c 21 c 22 · · · c 2 n 

. . . 
. . . 

. . . 
. . . 

c n 1 c n 2 · · · c nn 

⎤ 

⎥ ⎥ ⎦ 

, (1) 

where c i j = c ji , and c ii = 0 . Given a sample with class label y , 

the predicted class label y is obtained by optimizing the objective 

function as follows, 

y = arg min 

y j ∈ { I 1 , ... ,I n } 
loss (y, y j ) , (2) 

loss (y, y j ) = 

n ∑ 

i =1 

P ( y j | y ) c i j , (3) 

where I j refers to the case that the prediction is j while the true 

label is i ; P ( y j | y ) means the posterior probability of the predic- 

tion when the true label is given. Then the cost of a classification 

task is the average cost of classifying all samples. In general, the 

cost not only reflects the correctness of right classifications, but 

also the degree of wrong classifications. Therefore, it is desirable 

to incorporate the cost metric to the base classifier in DF for price 

prediction. 

Given the cost-sensitive base classifier, the overall architecture 

of CSDF is depicted in Fig. 1 , which is of self-adapting depth with 

multiple layers. Meanwhile, each layer consists of multiple estima- 

tors, and each estimator is built with k-fold cross validation based 

on the cost-sensitive base classifier. More specifically, (1) regard- 

ing an estimator, the input is same with the input of that layer, 

and the output is a probability vector. Normally, an element with 

a higher value inside the probability vector refers to lower cost. 

The k-fold cross validation is applied in each estimator, and each 

base classier is cost-sensitive and trained on a fold. Moreover, the 

probability vector of an estimator is calculated as the average of 

the probability vectors of these k base classifiers, so an estimator 

is the ensemble of base classifiers, and the estimator details are 

described in Algorithm 2 . (2) Regarding a layer, the input is the 

Algorithm 2: The estimator of a layer. 

input : Data X = { X 1 , X 2 · · · X k } , where X k is a sub-dataset 

that equally and stratifiedly extracted from the raw 

feature input; 

label, y = { y 1 , y 2 · · · y k } ;cost matrix, C ; classier, C l. 

output : probability vector on training set, P tr ;probability 

vector on validation set, P cv ;estimator, E 

for i = 1 to k do 

use all subdatasets expect i th subdataset to train a 

subclassifier, Cl i , and get P tr i 
; 

use i th subdataset to test the subclassifier and get P cv i 
end 

integrate all subclassifiers to get E; 

merge P tr k 
to get k − 1 probability vectors, P 

′ 
tr , for every 

example; 

average P 
′ 
tr to get P tr ; 

merge P cv k to get P cv . 

concatenation of raw feature vector and output of the preceding 

layer (if any), and the output is the probability vectors of all es- 

timators of that layer. The type and amount of estimators among 

different layers should be the same, but could be different within 

the same layer. The details of a layer are described in Algorithm 3 . 

(3) Regarding the CSDF, the input of the first layer is the raw fea- 

ture vector, and the output of the layer is used to calculate the cost 

based on the cost matrix. If the cost decreases significantly, the 
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Algorithm 3: The layer of a CSDF. 

input : data, X;label, y ;cost matrix, C; a list of classifiers, 

C l = { C l 1 , C l 2 · · ·C l l } 
output : new features for next layer, F ; 

cost of layer, c; 

layer, L 

for j = 1 to l do 

train and test jth estimator, Cl j , by Algorithm~2 to get F j , 

and probability vector on validation set, P cv j 
end 

concatenate F j from all estimators to get F ; 

average P cv j then find maximum as prediction, y ; 

compare y with y to get c based C; 

compose L by the trained list of classifiers, Cl. 

raw feature vector is concatenated with the output of that layer 

as the input of the next layer. The next layer is trained and evalu- 

ated again as described above, and this process is iterated until the 

cost does not decrease significantly. The results of the layer, whose 

cost stops decreasing is regarded as the output of CSDF. Note that 

from the computational perspective, the major difference between 

DF and CSDF is Eq. (3) , where the latter has an additional term, i.e., 

c ij . Once the dataset is given and the intervals are fixed, c ij will be 

considered as a constant. Therefore, there is basically no incremen- 

tal computation in comparison with the original DF. The details of 

CSDF are described in Algorithm 4 . 

Algorithm 4: The CSDF. 

input : raw data, X raw 

;label, y ; cost matrix, C; a list of 

classifiers for layer, C l = { C l 1 , C l 2 · · ·C l n } ; the number 

of folds, k ; the number of iteration for stopping, s ; 

the degree of improvement, p. 

output : cost sensitive deep forest, CSDF . 

initialize the number of layers, n = 1 ; 

initialize the number of layers not improving significantly, 

m = 0 ; 

divide X raw 

into k subdatasets equally and stratifiedly, 

X = { X 1 , X 2 · · · X k } 
while do 

if n > 1 then 

concatenate F with X raw 

to get new data, X 

end 

get F , c, L by Algorithm~3 

if n = 1 or c 
′ − c > p ∗ c 

′ 
then 

n 
′ = n ; 

c 
′ = c 

end 

else 
m + + ; 

end 

if m = s then 

break 

end 

n + + . 
end 

concatenate first n 
′ 

layers to composes CSDF. 

4. Experiments 

In this section, we conduct experimentation to evaluate the per- 

formance of our method for price prediction on three different 

datasets. Particularly, Section 4.1 elaborates the details of experi- 

Table 1 

Features in price prediction for car sharing. 

Feature Explanation 

rents the number of transactions completed for a car 

response the response time of owner 

age the age of car 

mile the distance travelled of car, i.e., < 2 , 2 − 4 , . . . , > 20 

displacement the displacement of car 

extra-fee the premium per kilometer over 300 kilometers 

seats the number of seats of car 

GPS whether there is a GPS navigator in car 

MP3 whether MP3 connection is available 

f2f whether transaction is face to face 

transmission the transmission of car, i.e., automatic or manual 

recommendation whether is recommended by platform 

order whether order is automatically accepted 

experience the driving years of renter 

town whether driving out of town is allowed 

weekday when transactions happened, i.e., 1,2, . . . , 7 

city where transactions happened, e.g., Beijing, Guangzhou, . . . 

gender i.e., male, female, unknown 

country the country of car brand, e.g., China, Germany, America, . . . 

mentation and performance analysis on a dataset of car sharing, 

and Sections 4.2 and 4.3 evaluate the performance on the datasets 

of house renting and real estate selling, respectively. 

4.1. Evaluation on the dataset of car sharing 

The price dataset of car sharing is collected from a P2P car shar- 

ing platform, i.e., START Car Life 1 , which ranges from Oct-16-2017 

to Oct-29-2017 (excluding public holidays). This dataset consists of 

116,145 items of car information from three cities in China. We 

select 19 attributes of the car as features (shown in Table 1 ), in- 

cluding both numerical values and texts, and we employ one-hot- 

encoding method to convert the latter into numerical values. To 

hinder small values from being overwhelmed by large values, we 

also apply normalization to the features. Fig. 2 shows the price dis- 

tribution, and we can see that most of price values are lower than 

1,0 0 0, while price values higher than 1,0 0 0 are sparsely distributed 

over a large range. Given that we consider the price prediction as a 

classification task in this paper, we apply the discretization meth- 

ods to divide the price into intervals, which are further adopted as 

the labels. Moreover, 70% of the data are randomly and stratifiedly 

selected as training set and the remaining are used for testing. 

4.1.1. Evaluation of discretization methods 

In view of the price distribution in Fig. 2 , we empirically set the 

number of intervals from 4 to 19, which are implemented with all 

mentioned discretization methods. Fig. 3 (a) shows CVN and CVR of 

EPI, EOH 

2 and KM, where KM is better than EPI and EOH, since 

both lower CVN and CVR are more desirable for a discretization 

method. Fig. 3 (b) further demonstrates CVN and CVR of K-means 

and modified K-means. We can see that CVN and CVR of all mod- 

ified K-means decrease as the number of intervals increases, and 

they all are smaller than that of K-means in most cases, which 

verified the effectiveness of the modified K-means. More specif- 

ically, regarding KMR, CVN and CVR slightly decrease when the 

number of intervals is between 9 and 16, and drop quickly for 

most of other numbers. This shows that KMR has the capability 

1 http://www.startcarlife.com/ . 
2 Every One Hundred (EOH) is a variant of EWI, in which each hundred units 

is defined as an interval. The last interval is exceptional as it contains the rest of 

price values. In price prediction, EWI will assign most of samples into few intervals, 

and the remaining intervals will have much less examples, which will cause serious 

issue of class imbalance. 
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Fig. 2. Price distribution for dataset of car sharing, and Y -axis is the count of corresponding price. 

of quickly reducing the variation levels for the number of samples 

and range of intervals, which further reduces the impact of out- 

liers on K-means. And with the reduction of outliers, the uniform 

effect of K-means reduces CVN to be below 0.85 quickly. Regard- 

ing KMD, it achieves the best overall performance, especially with 

the number of intervals being 14. The improvement in KMD re- 

duces the impact of outliers through the interval density, which 

relates to both the number of samples and range of interval. Re- 

garding KMN, the trend of CVN and CVR is similar to that of KMD, 

but the values are slightly higher than that of KMD. In spite of 

slight discrepancy among the three modified K-means, CVN and 

CVR of them are significantly smaller than that of K-means in 

most cases, which also means that they are much superior to EPI 

and EOH. 

4.1.2. Evaluation of traditional classification methods 

Before verifying our approach, we first evaluate various types 

of baselines, including SVM, MLP and conventional random forest 

(RF). The price values are divided by six different discretization 

methods, i.e., {EOH, EPI, KM, KMR, KMN, KMD}, into 16 different 

numbers of classes (intervals), i.e., from 4 to 19. As such, there will 

be 96 classification tasks for each classification method. For SVM, 

we employed a linear kernel. For MLP, we adapted the hidden lay- 

ers from 1 to 7, and finally chose 4 hidden layers and 100 units in 

each layer as they achieved the best results in most tasks. For RF, 

the number of trees is set as 10. 

Fig. 4 shows the accuracy of SVM, MLP and RF with differ- 

ent discretization methods. We can see that for each discretiza- 

tion method, RF achieves the highest accuracy followed by MLP, 

and SVM yields the lowest accuracy. One of the reasons is that the 

dataset contains many categorical features, which can be more ef- 

fectively handled by RF than others in general. Regarding different 

discretization methods, we can observe that EPI yields much lower 

accuracy compared with K-means, modified K-means and EOH. The 

reason is that EPI does not take into account the price distribution, 

which makes it problematic for the subsequent classification. An- 

other observation is that EOH gets high accuracy when the num- 

ber of intervals is large. This is because for EOH, most samples are 

discretized into the first few intervals, and the imbalanced classes 

will force the classifier to predict the sample as the interval with 

more samples, which results in high but meaningless accuracy. In 

spite of the discretization methods, RF always achieves the highest 

accuracy among the three types of baselines, which will be fur- 

ther adopted to compare with our approach. However, also given 

the analysis of CVN and CVR in Section 4.1.1 , we will focus on the 

classification for K-means and modified K-means, rather than EPI 

and EOH. 

4.1.3. Evaluation of deep forest and cost-sensitive deep forest 

We evaluate our approach, i.e., cost-sensitive deep forest 

(CSDF), by comparing it with several strong baselines. Regarding 

deep forest (DF), the hyper-parameters include the type and num- 

ber of base classifiers in each layer, the number of folds in the es- 

timator, the degree of improvement, and the number of iterations 

for stopping. We adopted two random forests and two complete- 

random tree forests in each layer, and ten trees are employed in 

each forest, which is same as RF in Section 4.1.2 . We use 5-fold 

cross validation in each estimator, and the degree of improvement 

is set as 0.01, which means that the improvement less than 1% is 

considered as insignificant. The number of iterations for stopping 

is set as three, meaning that if three successive layers have no sig- 

nificant improvement, DF will stop the iteration. 

We first compare the strong baselines in Fig. 5 , where we fo- 

cus on K-means and modified K-means. Other than RF and DF, we 

also consider one more variant of RF, i.e., RoF (Random Rotation 

Forest) for the same dataset. From Fig. 5 we can observe that, the 

accuracy of DF and RoF are comparable in most cases. However, as 

the number of intervals increases from 13 to 19, DF with the three 

modified K-means is much better than RoF. Comparing with RF, DF 

is obviously superior. In particular, when the number of intervals 

is small, the accuracy of these two methods are similar. However, 

along with the increasing number of intervals, the gap between the 

accuracy of RF and DF becomes significantly larger. More specif- 

ically, the difference between the highest and lowest accuracy of 

RF is 21.3%, while that of DF is 15.7%. Based on these observations, 

we can see that DF can achieve superior performance, especially 

for larger number of classes. Since DF is principally adapted from 

RF rather than RoF, we will look into the performance comparison 

of DF and RF. 

To further verify the improvement of accuracy achieved by DF 

over RF, we plot the improvements for different number of classes 

in Fig. 6 (a). As shown, DF increases the accuracy of all K-means 

based discretization methods for all number of classes, with the 

largest improvement close to 10%. And the improvements are more 
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Fig. 3. (a) CVN and CVR (the lower, the better) of EPI, EOH and K-means; (b) CVN and CVR of K-means and modified K-means. In (b), some lines are overlapped with each 

other at the beginning. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

obvious as the number of classes becomes larger. Comparing with 

RF in Fig. 5 , we can observe that the trends of improvements in 

Fig. 6 (a) roughly mirrored the accuracy drops of RF in Fig. 5 . In 

other words, the lower accuracy of RF, the larger improvement of 

DF. Since RF is the base classifier of DF, the improvement achieved 

by DF might come from the diversity enhancement by ensemble 

learning, deep architecture and in-model feature transformation of 

deep learning. The diversity levels of different layers from the same 

DF are the same, so the difference in diversity levels comes from 

the number of layers in DF. Fig. 6 (b) further shows the number of 

layers achieving the best results, which exhibits similar trends as 

those in Fig. 6 (a), i.e., the more layers, the higher improvement. 

In addition, for the curves in Fig. 6 (a) that have low improve- 

ments (roughly below 0.02), the corresponding numbers of layers 

in Fig. 6 (b) are around 2. That happened might be due to the in- 

model feature transform, which is more helpful starting from the 
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Fig. 4. Accuracy of SVM, MLP and RF with different discretization methods. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 5. Accuracy of RF, RoF and DF with different discretization methods. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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Fig. 6. (a) Improvement on accuracy of DF over RF; and (b) the number of layers achieving the best results in DF. Note that all methods are trained and tested for 30 times, 

and the average number of layers is not integer. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 

CVN and CVR of K-means and modified K-means on dataset of real estate selling. 

# classes 3 4 5 6 7 8 9 10 11 12 

KM CVN 0.706 0.724 0.657 0.735 0.813 0.700 0.737 0.650 0.618 0.526 

CVR 0.801 0.822 0.975 0.784 0.660 0.775 0.830 0.923 1.008 1.084 

KMR CVN 0.706 0.724 0.657 0.735 0.813 0.458 0.409 0.372 0.314 0.360 

CVR 0.801 0.822 0.975 0.784 0.660 0.357 0.388 0.438 0.481 0.491 

KMN CVN 0.706 0.724 0.657 0.735 0.813 0.458 0.409 0.372 0.314 0.360 

CVR 0.801 0.822 0.975 0.784 0.660 0.357 0.388 0.438 0.481 0.491 

KMD CVN 0.706 0.724 0.657 0.735 0.813 0.458 0.409 0.372 0.314 0.360 

CVR 0.801 0.822 0.975 0.784 0.660 0.357 0.388 0.438 0.481 0.491 

second layer in the deep architectures. Based on these observa- 

tions, we can basically conclude that the number of layers signifi- 

cantly influences the improvement. 

Finally, we compare the performance of the proposed CSDF 

with DF. All hyper-parameters in CSDF are same as those in DF, 

and their cost is depicted in Fig. 7 (a), respectively. As shown, most 

cost of CSDF is lower than that of DF for all discretization meth- 

ods. More specifically, the average cost of CSDF is 5.6% lower than 

that of DF. We also observe that both methods get relatively small 

cost on modified K-means than on other discretization methods. 

Fig. 7 (b) shows the accuracy of the proposed CSDF and DF, and 

we can see that the accuracy values of both methods drop as the 
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Fig. 7. (a) Cost (the lower, the better), and (b) accuracy of DF and CSDF. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

number of classes increases. This is because as the range of inter- 

vals decreases, classifying an instance correctly may become rel- 

atively difficulty for any method. However, there is no significant 

difference of accuracy between CSDF and DF, both of which are 

superior, especially when comparing them with Figs. 4 and 5 . Note 

that, taking Eq. (3) into account, the accuracy and cost may influ- 

ence each other. Moreover, both accuracy and cost are also influ- 

enced by the discretization methods, so there might not be clear 

trend for the cost. Nevertheless, in spite of the trend, the observa- 

tions demonstrate that CSDF can significantly reduce the classifica- 

tion cost of DF, and make the misclassification much closer to the 

true interval, while keeping almost same accuracy as DF. 

4.2. Evaluation on the dataset of house renting 

We continue to verify our approach on a price dataset of 

house renting, which is about the Airbnb house renting in United 

States 3 . The dataset we used includes 66,735 items of houses 

3 https://www.kaggle.com/stevezhenghp/airbnb- price- prediction . 
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Fig. 8. Price distribution for dataset of house renting, and Y -axis is the count of corresponding price. 

Fig. 9. CVN and CVR of K-means and modified K-means on dataset of house renting. Note: Some lines are overlapped with each other; and the smaller of the values, the 

better. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

with 16 features, i.e., number of people that can be accommo- 

dated, number of bathrooms, whether cleaning fee applied, avail- 

ability of profile pictures, whether host identity verified, whether 

instantly bookable, number of reviews, review scores rating, num- 

ber of bedrooms, number of beds, city, cancellation policy, bed 

type, room type, property type, and neighbourhood. Same as 

previously, 70% of data items are randomly and stratifiedly se- 

lected as training set and the remaining 30% are used for test- 

ing. Fig. 8 shows the price distribution of the whole dataset, and 

we can observe that most price values are lower than 300, while 

price values higher than 300 are sparsely distributed over a large 

range. 

Considering that the range of house price is about one third 

of the car sharing price, we empirically set the number of inter- 

vals (i.e., classes) of house renting price from 3 to 9. Firstly, we 

compare CVN and CVR of K-means and modified K-means, which 

are depicted in Fig. 9 . From Fig. 9 we observe that, CVN and CVR 

of modified K-means are smaller than that of K-means, especially 

for number of intervals larger or equal to 6, which means that the 

modified K-means makes the intervals more uniform and balanced. 

Since CVR of K-means becomes significantly larger as the number 

of intervals increases, we will not adopt the conventional K-means 

as the discretization method for the subsequent classification. Sec- 

ondly, we compare the accuracy of RF, RoF and DF as shown in 

Fig. 10 . All accuracy values drop as the number of intervals in- 

creases, however, DF still gets the best performance with all modi- 

fied K-means, especially for larger numbers of intervals. Finally, we 

continue to compare DF and CSDF regarding the cost and accuracy. 

As shown in Fig. 11 (a), most of the cost of CSDF is lower than that 

of DF. Although this superiority is less significant on house rent- 

ing data than that of car sharing data, the advantage regarding the 

cost might be more obvious as the number of intervals becomes 
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Fig. 10. Accuracy of RF, RoF and DF on dataset of house renting. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.) 

larger. However, we did not further increase the number of inter- 

vals up to the one in the car sharing data, because as mentioned 

previously, the price range is relatively smaller in the house rent- 

ing data. Meanwhile, in Fig. 11 (b), the accuracy of CSDF is almost 

the same as DF at the beginning, and becomes slightly higher than 

that of DF, as the number of intervals increases. 

4.3. Evaluation on the dataset of real estate selling 

We further evaluate our method on a price dataset of real es- 

tate selling, which includes 1,460 samples of real estates with 79 

features 4 . Same as previously, 70% of the samples are randomly 

and stratifiedly selected as training set and the remaining 30% are 

used for testing. Fig. 12 shows the price distribution of the whole 

dataset, and we can observe that most price values are lower 

than 40 0,0 0 0. As we consider the price prediction as classification 

rather than regression, we empirically set the number of intervals 

(i.e., classes) of house selling data from 3 to 12. 

We first evaluate K-means and modified K-means for discretiza- 

tion, the results of which are recorded in Table 2 . We can ob- 

serve that CVN and CVR of the four methods are same as the 

number of intervals is between 3 and 7. That is because almost 

no abnormal interval exists for small number of intervals, given 

the relative even distribution of the price. As the number of inter- 

vals continues to increase, CVN and CVR of modified K-means drop 

quickly, and the trend of K-means almost does not change. It im- 

plies the occurrence of abnormal intervals, while K-means is capa- 

bility of capturing them. However, given the relative less intervals, 

CVN and CVR of the three modified K-means are the same for all 

cases. Therefore, we only choose one of them for the subsequent 

classification. 

Then we compare the accuracy of RF, RoF, DF and CSDF for clas- 

sification as shown in Fig. 13 . All accuracy values drop as the num- 

4 https://www.kaggle.com/c/house- prices- advanced- regression-techniques/ 

overview . 

Table 3 

Cost of DF and CSDF. 

#classes 3 4 5 6 7 

DF 10894.5 12609.9 15199.0 14654.4 15882.2 

CSDF 9634.4 11649.2 14446.0 14015.2 15512.4 

#classes 8 9 10 11 12 

DF 14976.6 15237.0 15084.1 15358.6 16158.0 

CSDF 14945.3 15148.7 14906.6 15394.5 16030.9 

ber of intervals increases, however, DF and CSDF are comparable to 

each other, both of which achieve the best overall accuracy. Mean- 

while, the accuracy values of RF and RoF are much lower than that 

of the two DF based methods, with RoF being slightly superior to 

RF, especially for larger numbers of intervals. Finally we verify the 

cost by comparing DF and CSDF. As shown in Table 3 , expect for 

the number of intervals 11, all the cost of CSDF is lower than that 

of DF, which further justifies the effectiveness of CSDF in reducing 

the cost for price prediction. 

To summarize, in comparison to the conventional methods, our 

CSDF achieved superior overall performance in price prediction for 

car sharing, house renting and real estate selling. With higher ac- 

curacy and lower cost for all the three tasks, the proposed CSDF 

also demonstrates strong capability of generalization. 

5. Conclusion and future works 

In this paper, we consider price prediction as a classification 

task in the sense of predicting the price interval of an item, which 

is practical for many applications. Traditional classification ap- 

proaches only focus on the accuracy, and completely ignore the 

fact that different misclassifications have different costs, which 

makes them not suitable for price prediction problems. To re- 

solve this issue, we proposed the cost-sensitive deep forest (CSDF), 

which explicitly considers the cost of misclassifications and there- 
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Fig. 11. (a) Cost (the lower, the better), and (b) accuracy of DF and CSDF on dataset of house renting. Note: some lines are overlapped with each other. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 

fore can propel the wrong predictions to be closer to the cor- 

responding real price intervals. We also proposed a modified K- 

means as the price discretization method, which explicitly consid- 

ers the impact of outliers on the steadiness of prediction intervals 

compared with conventional K-means. In our experiments, owing 

to the cost-sensitive scheme we developed, CSDF results in less 

classification cost compared with the traditional deep forest on 

multiple price prediction tasks, while showing satisfying accuracy. 

Besides the applications used in this paper (car sharing, house 

renting and real estate selling), CSDF also has the potential to be 

applied to other similar price prediction tasks, which we plan to 

demonstrate in the future by performing experiments on other 

datasets. We will also investigate other techniques to further en- 

hance our method, for example using the intuitionistic fuzzy 

set [43] as a measurement to evaluate the decision making for 

price prediction. 
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Fig. 12. Price distribution for dataset of real estate selling, and Y -axis is the count of corresponding price 

Fig. 13. Accuracy of RF, RoF, DF and CSDF with modified K-means. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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