Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

7-2023

Semantic-based neural network repair

Richard SCHUMI
Singapore Management University, rschumi@smu.edu.sg

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Artificial Intelligence and Robotics Commons, and the Software Engineering Commons

Citation

SCHUMI, Richard and SUN, Jun. Semantic-based neural network repair. (2023). ISSTA 2023: Proceedings
of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis, Seattle, WA, July
17-21. 150-162.

Available at: https://ink.library.smu.edu.sg/sis_research/8117

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8117&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Check for
Updates

Semantic-Based Neural Network Repair

Richard Schumi
Singapore Management University
Singapore
rschumi@smu.edu.sg

ABSTRACT

Recently, neural networks have spread into numerous fields in-
cluding many safety-critical systems. Neural networks are built
(and trained) by programming in frameworks such as TensorFlow
and PyTorch. Developers apply a rich set of pre-defined layers to
manually program neural networks or to automatically generate
them (e.g., through AutoML). Composing neural networks with
different layers is error-prone due to the non-trivial constraints
that must be satisfied in order to use those layers. In this work,
we propose an approach to automatically repair erroneous neural
networks. The challenge is in identifying a minimal modification to
the network so that it becomes valid. Modifying a layer might have
cascading effects on subsequent layers and thus our approach must
search recursively to identify a ”globally” minimal modification.
Our approach is based on an executable semantics of deep learning
layers and focuses on four kinds of errors which are common in
practice. We evaluate our approach for two usage scenarios, i.e.,
repairing automatically generated neural networks and manually
written ones suffering from common model bugs. The results show
that we are able to repair 100% of a set of randomly generated neu-
ral networks (which are produced with an existing Al framework
testing approach) effectively and efficiently (with an average repair
time of 21.08s) and 93.75% of a collection of real neural network
bugs (with an average time of 3min 40s).

CCS CONCEPTS

« Software and its engineering — Formal software verifica-
tion; « Computing methodologies — Artificial intelligence; -
Theory of computation — Constraint and logic programming.

KEYWORDS

automatic Al model repair, deep learning models, semantics, speci-
fication, Al model generation, neural network generation, Tensor-
Flow, Prolog

ACM Reference Format:

Richard Schumi and Jun Sun. 2023. Semantic-Based Neural Network Repair.
In Proceedings of the 32nd ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis (ISSTA °23), July 17-21, 2023, Seattle, WA, USA.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3597926.3598045

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07.

https://doi.org/10.1145/3597926.3598045

150

Jun Sun
Singapore Management University
Singapore
junsun@smu.edu.sg

1 INTRODUCTION

Artificial intelligence (Al) is based on imitating natural intelligence
or learning behaviour with a machine. The method called deep
learning (DL) employs artificial neural networks to simulate the
neurons of brains [43]. In recent years, DL has advanced into numer-
ous fields, like language processing, face and speech recognition,
due to improvements in computer hardware [42].

Although Al systems have been successfully used in many do-
mains, they are not failure-free. Especially in safety critical appli-
cations, like autonomous driving, or medical systems, even minor
bugs can have severe consequences. Studies of bugs in Al systems
[32, 53, 64] have analysed various posted bug reports (or issues),
and the large number of identified posts illustrates the high fre-
quency of such bugs. These studies evaluated the time it took from
posting a bug until it was resolved and the time ranges from weeks
to months depending on the type of the issue.

Moreover, there are other factors that make it especially diffi-
cult and time-consuming to debug Al systems. Neural networks
can have a long training time of days or weeks, which makes it
cumbersome to evaluate potential ways of fixing a neural network.
Often the error messages that occur during Al development can be
unrelated to the actual issue that needs to be fixed [32], the error
messages can be inconsistent, or there can even be hidden issues
that do not produce error messages [45]. Another difficulty comes
from the underlying Al frameworks such as TensorFlow or PyTorch.
These frameworks are still being rapidly developed, and a new re-
lease may not be backward compatible and can break existing code
[32]. Furthermore, the provided documentation can sometimes be
vague or buggy [35], which makes it hard for developers to use
unfamiliar AT components.

In order to make it easier for developers to fix and prevent such
bugs, it is important to be able to systematically (and automatically)
test and repair the underlying neural networks or deep learning
models. Thus, in this work, we present a novel semantic-based neu-
ral network repair approach that helps Al developers fix common
errors in the architecture and with the parameters of Al models.

Designing Al or deep learning models is a cumbersome task
that requires a lot of expertise, domain knowledge, and effort. Al
frameworks provide dozens of deep learning layers that can per-
form simple mathematical functions or complex operations, like
different convolutions or recurrent layers. Most of these layers have
preconditions, e.g., for the input data or for the parameters. Building
avalid model requires the fulfilment of all the preconditions from all
layers of the model, which can be challenging since layers can not
only be combined in sequences, but in general can be in the form of
directed acyclic graphs. Given such a graph, every connection can
cause potential precondition violations, and identifying them can
be cumbersome. Moreover, the debug information that is provided
by AI frameworks can be imprecise or inconsistent [45]. Due to

https://doi.org/10.1145/3597926.3598045
https://doi.org/10.1145/3597926.3598045
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597926.3598045&domain=pdf&date_stamp=2023-07-13

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

that, the process of developing a new model can be time-consuming
and frustrating. With our approach, an AI developer is provided
with automatically generated changes that can repair the model.
The changes are presented in a list, which is ordered based on a
change indicator value that reflects the number (and magnitude) of
changes that are required. Our approach facilitates and speeds up
the time-consuming task of finding a valid model architecture and
consistent model parameters. This can be especially helpful for new
Al developers, who still lack the necessary skills to fix such issues
on their own. Moreover, our approach can support other Al tech-
niques, like AutoML [29] where, e.g., a model architecture can be
automatically derived for a given problem, or automatic AT model
generation [55], which can be used in various scenarios, like Al
framework testing. For both these techniques, it can be hard to find
valid model architectures, especially if randomness is involved. To
avoid generating invalid models, existing AutoML or Al framework
testing approach often rely on a limited set of models defined by
templates. By repairing generated models, unnecessary pruning of
the search space can be avoided, which might benefit both these
techniques.

Our approach relies on an existing semantics called ExAIS [45]
which defines the functionality of almost all TensorFlow layers
in the logical programming language Prolog. ExAIS contains a
number of preconditions that produce debug messages and enable
the identification of model bugs. Based on these messages, we apply
multiple algorithms to fix different types of errors. For example, for
a dimension error (which occurs when the input does not have the
required number of dimensions), a simple fix strategy could be to
introduce a reshape layer.

However, it is usually not as easy to repair a neural network
with just a single change, because in most cases there need to be
further modifications in the following layers as a consequence, i.e.,
structural changes like that can also cause invalid weight shapes
deeper in the network. Moreover, there are usually multiple po-
tential fixes for a bug, and it can be challenging to find the best
repair in different scenarios. There is already an existing tool called
Tensfa [57, 58] that can automatically repair dimension errors or
more generally tensor shape faults, which are also bugs that we are
targeting with our method, but in contrast our approach can also
repair different types of bugs and it works more straight forward
as we will explain later.

To sum up, the main contributions of our work are:

e We present a novel semantic-based Al model repair approach
that is able to suggest multiple model changes that can fix
an invalid Al model.

e We collect a set of real bugs from Al developers in order to
evaluate our approach in a realistic setting.

e Additionally, we performed an evaluation with randomly
generated models in order to test our approach for a diverse
set of models and bugs.

Structure. The rest of the paper is structured as follows. In Sect. 2,
we introduce necessary background information, e.g., about the
semantics that we apply. In Sect. 3, we present the underlying
algorithms of our repair approach in detail. In Sect. 4, we show an
evaluation with two usage scenarios. Lastly, we review the related
work in Sect. 5 and conclude in Sect. 6.

151

Richard Schumi and Jun Sun

2 BACKGROUND

In this section, we describe the technologies that will be supported
by our repair approach as well as the underlying semantics.

2.1 Al Framework Testing

While our primary goal is to support programmers when they are
developing Al models manually, another interesting application
that can be supported by our approach is Al framework (such
as TensorFlow and PyTorch) testing. There is an active line of
research on automatic testing of Al frameworks [24, 25, 35, 40,
46, 49, 55]. These works are motivated by the fact that bugs in
Al frameworks might potentially affect all Al applications that
are built with such frameworks. Due to that and also due to the
fact that Al frameworks can still suffer from severe bugs [45], it is
important to thoroughly and systematically test them. Existing Al
framework testing techniques can be categorized into the following
groups: differential testing [40, 49, 55] and metamorphic testing [24,
25, 46]. Differential testing is a technique that compares multiple
frameworks (or implementations) against each other, and bugs are
discovered when there is an inconsistency. Metamorphic testing for
Al frameworks usually introduces changes in the input data for the
Al model that should not affect the output, and a different output
(prediction result) would suggest an issue in the Al framework. For
both these techniques, it is important to have a wide variety of valid
Al models in order to test different aspects of the Al frameworks.

Our repair approach can support the generation of such models
by enabling effective random model generation that would normally
produce a high percentage of invalid models or by allowing other
approaches to explore more complicated scenarios that might often
be dismissed due to difficulties in finding a working model.

2.2 AutoML

Another application that can be supported by our repair approach
is Automatic machine learning (AutoML) [29, 62]. AutoML, which
is also called neural architecture search (NAS) in the deep learn-
ing context, is a term for methods that try to reduce the need for
manual model building for various learning tasks, like image/object
recognition, or language modelling. Developing Al systems usually
requires a lot of expertise and effort, e.g., for data pre-processing
tasks, like feature engineering and to find a deep learning model,
i.e., to choose a model architecture and to tune the model in order
to achieve an acceptable accuracy. There has been a lot of progress
with AutoML techniques, which can potentially take over such tasks
and sometimes produce models with higher accuracies compared
to hand-crafted models from experienced Al developers [65]. There
are many AutoML approaches that try to find model architectures
and tune parameters with different strategies.

Depending on the search strategy, some AutoML approaches can
produce invalid models that have to be discarded [65] which hinders
the performance of AutoML. To avoid generating a large number
of invalid models, AutoML approaches usually apply only a limited
set of predefined layers or groups of layers (a.k.a. cells) to build
neural networks based on knowledge from manually developed
networks, which might hinder the discovery of architectures that
outperform existing ones [26]. With our approach, we can support
a variety of layers and neural network architectures. Hence, we

Semantic-Based Neural Network Repair

believe that our semantic-based repair method can help to enable
AutoML approaches to explore an extended search space.

2.3 ExAIS

Our technique utilises an executable Al semantics called ExAIS [45]
that is written in the logical programming language Prolog [38].
Prolog is a declarative language that relies on first order logic.
Programs in Prolog are built with rules and facts, which are usually
concerned with mathematical relations. The declarative nature
of the language facilitates the creation of high level semantics.
Moreover, it supports various list operations and mathematical
expressions, which makes it convenient for specifying deep learning
layer behaviour that is often concerned with high dimensional input
and mathematical operations.

Listing 1 shows the Prolog semantics of a Dense layer [2] of
ExAIS. It is a standard densely connected layer, which contains a
number of nodes, each of which is connected with all inputs. The
output is computed as the sum of all inputs (multiplied with the
weights) at each node with an added bias value. The specification
works as follows. The rule starting in Line 1 has multiple parameters:
alist [I|Is], a weight array IWs, and a bias array Bs (which can be
intuitively regarded as inputs) and a list Os (which can be regarded
as the output). The list notation [I|Is] enables access to the first
element I and the remaining elements Is of a list. Line 2 constrains
the depth of the nested input to two. We handle higher dimensional
input separately. Line 3 applies a predicate that is true when 0
can be unified as the expected output for an input I, and Line 4 is
a recursive constraint, which intuitively continues with the next
inputs. The rule in Lines 6-9 is similar, except that it handles (layer)
inputs with a higher dimension, which is checked in Line 7, and
recursively uses the initial predicate from Line 1 since the dense
layer only performs computations in the innermost list even when
it receives high dimensional input data. Line 11 (and Line 18) are the
base cases for the recursion, i.e., when only an empty list remains.

The predicate in Line 13 encodes the main layer functionality and
becomes true when the Res variable is the expected output for the
input [I|Is].Ithasthe same arguments as the first rule and an addi-
tional temporary variable Res@ for the result. It consists of clauses
for multiplying the weight arrays IW with each input I and for
adding the results in Line 16. The predicates multiply_list_with
and add_lists are straightforward and are therefore omitted. With
this Prolog semantics, we can now answer a variety of queries, e.g.,
to compute the expected output of a Dense layer.

More relevantly, EXAIS contains preconditions that reflect layer
requirements, like a specific input shape, or dependencies between
the arguments. An example precondition to check if layer input
data has a minimum number of dimensions is illustrated in Listing 2.
The predicate check_min_dimensions takes the input data and a
minimum dimension value as arguments. Line 2 shows a predicate
that becomes true, when D1 can be unified to the dimension number
of Is. Next, there is a condition to check if the dimensions of the in-
put are smaller than the given minimum value. If it is smaller, then
an error message is produced. Otherwise, the predicate becomes
true. Most layers of ExAIS contain preconditions in this form. The
preconditions are part of the EXAIS semantics and were created
manually by the ExAIS developers according to the TensorFlow

152

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

1 dense_layer([I|Is], IWs, Bs, [0]|0s]) :-
2 depth([I|Is],2),
3 dense_node_comp (I, IWs, Bs, 0),
4 dense_layer(Is, IWs, Bs, 0s).
5
6 dense_layer([I|Is], IWs, Bs, [0]0s]) :-
7 depth([I|Is],D), D > 2,
8 dense_layer (I, IWs, Bs, 0),
9 dense_layer (Is, IWs, Bs, 0s).
10
11 dense_layer([1, _, _, [1).
12
13 dense_node_comp([I|Is],[IW|IWs],Res0@,Res) :-
14 multiply_list_with(IW,I,Res1),
15 add_lists(Res@,Resl1,Res2),
16 dense_node_comp (Is, IWs,Res2,Res).
17
18 dense_node_comp ([],[],Res,Res).
Listing 1: Prolog semantics of the Dense layer [45].
1 check_min_dimensions(Is, D) :-
2 depth(Is,D1),
3 (D1 < D ->(write("Invalid Model, Badness Value: "),
4 BV is D1-D,BV1 is BV*100000000000000000 ,
5 writeln(BV1),
6 S1 = "Dimension error, Input Shape ",
7 shape (Is, Shape),
8 term_string(Shape,S2),
9 string_concat(S1,S2,RS),
10 S3 = ", Expected Min Dimensions ",
11 string_concat(S3,D,RS1),
12 string_concat (RS,RS1,S),
13 throw(S)); true).

Listing 2: Precondition to check if the input data has a
minimum number of dimensions.

documentation and according to other publications that describe
the layer functionality and requirements. When an AI model is
executed with the semantics, then all the preconditions of the indi-
vidual layers are checked. Any violation of the preconditions would
make the model invalid. Hence, the preconditions can help identify
problematic model aspects. In this work, we utilize this feature to
enable our automated Al model repair approach. The execution of
the Prolog predicates works similarly to the execution of functions.
There is a predicate for each layer, which contains precondition
calls and calls to subpredicates, which enables an automatic pre-
condition check during the layer execution. There might be layer
preconditions that are not specified in ExAIS and their violations
would not be repairable by our approach, but since we tested thou-
sands of random models with our approach, we are confident that
we can resolve precondition violations in most cases.

The semantics consists of 65 deterministic layers and seven non-
deterministic layers. We focus on repairing deterministic layers
in this work. Only six of the 65 layers have no preconditions (i.e.,
the Flatten layer, ReLU, ThresholdedReLU, LeakyReLU, Masking,
TimeDistributed). Seven of the layers have simple preconditions
(UpSampling1D-3D, ZeroPadding1D-3D, Embedding), i.e., they only
require input with a certain number of dimensions. The remaining
layers have non-trivial preconditions that mainly fall in the follow-
ing categories. First, there are consistency requirements between
the layer arguments (or inputs) and the weight shape, e.g., for a

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

dense layer the first dimension of the weight needs to have the
same size as the last dimension of the input. Second, we may have
inconsistencies among the shapes of multiple inputs of a layer, i.e.,
some layers perform mathematical operations, like addition or mul-
tiplication of multiple layer inputs. These layers may require that
the shape of the inputs must be the same. Third, there can be consis-
tency requirements between the layer arguments or with the layer
arguments and the inputs. For example, for some convolutional
layers setting a dilation_rate value not equal to one is incompatible
with specifying any stride value not equal to one.

During our investigations, we noticed that there are various
studies that evaluate AI faults (based on bug reports) and that
some of them are related to violations of the layer preconditions
of ExAIS and can thus be detected by its precondition checks. For
example, one study [32] investigated bug reports and it illustrates
data and layer dimension errors, which make up close to 30% of
the findings. Moreover, the study showed a broad categorisation of
the manual repairs that were suggested in the bug reports. Another
study [31] discusses Tensor shape errors that are related to input
shape violations that can be captured with ExAIS’s preconditions.
The source of most bugs of those studies was not directly related
to a misuse of layers or a wrong network architecture, which made
them inapplicable for our approach, but their frequency highlights
the significance of such bugs.

Additionally, we performed experiments with randomly gener-
ated models, and collected bug reports from stackoverflow as we
will explain in Section 4 and in both cases we observed bugs that
are related to precondition violations of ExAIS. Hence, we believe
that bugs based on the precondition violations are relevant and
that it is important to provide better ways to fix such bugs. Based
on the three categories of preconditions and the simple dimension
preconditions, we developed repair algorithms for the issues that
are identified with the preconditions. We explain these algorithms
in the following section.

3 METHOD

In this section, we describe how we fix specific bugs and how our
repair algorithm for AT models works in detail.

We consider a repair to be valid if it removes TensorFlow errors
(that occur during the model execution) with minimal adjustments.
We created our repair suggestions with the intention to preserve
the original model as much as possible, i.e., we were looking for
minimal model adjustments that maintain the layers and most of the
structure of the model. The motivation behind this is the fact that
developers usually make small mistakes [50]. For simple cases, like
dimension errors, our repairs follow the best practice, as suggested
by the accepted solutions from bug reports. For more complicated
cases, like argument or shape issues, we developed repairs that
only utilise standard layers [3] (or argument modifications). There
would be various other repair options if more deep learning op-
erations, like NumPy functions [28], would be considered. We
believe that fixes with standard layers are well suited since they
are straightforward, easier to understand, and many Al developers
stick to these layers. Generally, it is hard to justify the quality of
more complicated repairs without an additional training and model
validation step. We intend to further explore these steps in future

153

Richard Schumi and Jun Sun

work. Overall, we believe that our repairs are reasonable, especially
since they often were equivalent to accepted solutions for real bugs
as we will explain later in Section 4.

To illustrate the repair of specific model bugs, we present our
approaches for fixing common errors that are related to the misuse
of standard deep learning layers, i.e., dimension, input shape, and
argument errors. Bugs that originate from other Al development
tasks, like the data preprocessing, training, or model validation, are
out of the scope of this work. Table 1 gives a simplified overview
of our repair approaches for these errors and shows example fixes.

For dimension errors, there are two cases: the expected number
of dimensions is larger than the actual number of dimensions, or
the opposite. For the first case, we check if the problematic layer
can be replaced with a higher dimensional version (e.g., Conv2D
with Conv3D). Alternatively, this case can be repaired by adding
a reshape layer with dimension size one before the layer with the
bug. A reshape layer can modify the shape of the input data, while
it still keeps the same number of values, i.e., the product of the
dimension sizes will be the same after a reshape. The second case,
i.e., the expected number of dimensions is smaller than the actual
dimension number, can be handled similarly. A layer can be replaced
with a smaller dimensional version, but in contrast to the previous
case, the reshape works differently. In order to obtain a smaller
dimension number, a new shape is computed by combining the
last two dimensions of the given input (by multiplying them). Both
these repair options are considered for our algorithm. The final
minimal suggested fix is determined based on which of the two
fixes leads to a smaller overall change.

Next, for input shape bugs, there are also two potential repairs.
Inconsistent input shapes can occur when a layer that takes multi-
ple inputs (e.g., Add) has incompatible inputs with different shapes
or dimension sizes. One way to resolve this bug, is to add padding
around one of the inputs, i.e., with a ZeroPadding layer that in-
creases the input space and adds zeros around the given data. An
example repair with such a layer is illustrated in the second row
of Table 1. It shows a graph model with an Add layer that has two
ReLU layers with different shapes as input. The fixed model has
an additional ZeroPadding1D layer that is in-between the ReLU
layer with the smaller input and the Add layer. A padding layer can
resolve most of such bugs, but not all, since there are only padding
layers that take three to five-dimensional inputs. Alternatively, if
the dimension is outside this range, the shape mismatch can be fixed
with a Concatenate layer. This layer can adjust the input shape by
combining a certain dimension of the input with additional values
or arrays of values, which enables our repair approach to change
the input shape according to the requirements of the invalid layer.

Thirdly, for argument errors, there are also a number of possible
repairs. Most of these errors can be repaired by regenerating the
layer arguments, i.e., by randomly exchanging the arguments of
the layer with random values. This procedure works step by step,
first a replacement of a single argument is tried and if this is not
successful then more arguments are exchanged. A special case of
an argument error is a weight shape bug that occurs when the
weight data does not match with other arguments/input data of the
layer or when it has a wrong dimension number. This case can be
repaired by regenerating the weights of the layer while considering
the other layer arguments and the input shape.

Semantic-Based Neural Network Repair

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

Table 1: Repair approaches for different types of bugs.

e insertion of a reshape layer that adds a dimension
with size one to increase the number of dimensions
of the data

Input data needs fewer dimensions

e replacement of the layer that causes the error with
a higher dimension version if it is available

e insertion of areshape layer that reduces the number
of dimensions by combing (multiplying) the last
two dimensions into one dimension (e.g., a shape
(2,3,2) would become (2,6))

Repair Approaches Examples
Dimension Error | Input data needs more dimensions Model with a bug
e replacement of the layer that causes the error with | model = tf.keras.Sequential ([
a lower dimension version if it is available 2;:5;;1((1)0 - i‘;{i‘i::f‘;‘;::il(g ;;) 5 1 0.)),

MaxPooling3D (pool_size =(3,3,3))])

Fixed model

model = tf.keras.Sequential ([
Dense (16, input_shape=(10,10,10,)),
Conv2D(16, kernel_size=(2,2)),
MaxPooling2D (pool_size=(3,3))])

Input Shape Bug

Multiple inputs of a layer need to have matching
shape or dimension sizes

o addition of a ZeroPadding1D-3D layer to adjust one

of the input shapes according to the expected one

from the error message (if the dimensions of the

Model with a bug

R1
R2
A

ReLU(input_shape=(2,2,)
ReLU(input_shape=(5,2,)
Add () ([R1, R2])

Fixed model

lations among each other or with the input
o step-wise (random) regeneration of the layer argu-
ments by increasing the number of arguments that
are changed
Weight shape bugs due to weight data that does
not match with other arguments/input data or has
wrong dimensions
o regeneration of the layer weights while considering
the other layer arguments and input shape
Pool or kernel shapes that are too large for the input
shape
e regeneration of the pool/kernel shape
e regeneration of layer arguments, like padding

input are between three and five) 1 o IENV(dnput_slnpe =(@ o8 ,)
. . . Z = ZeroPadding1D (padding=(2,1))(R1)
e insertion of Concatenate layer that can adjust the | r; _ ReLu(input shape=(5,2,)
input shape by combining a specified shape with | A = Add() ([Z, R2])
additional values
Argument Error | Layer arguments have consistency requirement vio- | Layer with a bug

Cropping1D (input_shape =(4,4,) ,cropping =(2,2))

Fixed layer
Cropping1D (input_shape =(4,4,) ,cropping =(2,1))

Layer with a bug

MaxPooling2D (input_shape =(8,8,8,) ,pool_size=(9,9))

Fixed layer

MaxPooling2D (input_shape =(8,8,8,) ,pool_size =(4,3))

Another case that needs to be handled separately are pool (or
kernel) shapes that are inconsistent with the input shape, because
they are too large. These bugs can be fixed by adopting the pool
(or kernel) shapes or by regenerating other layer arguments, like
padding. There are more special cases like this that have their own
preconditions and need some specific approaches to be repaired,
which were omitted for brevity. There are two example layers given
for this bug type as illustrated in the last row of Table 1. First,
there is a Cropping1D layer, that applies too much cropping, which
would result in an empty output. The bug is fixed by reducing the
cropping size values.

Another example shows a pool shape bug in a MaxPooling2D
layer that has a pool shape that is too large for the specified input
shape. A fix for this bug is produced by replacing the pool sizes

154

with smaller values. It should be noticed that in reality such bugs
are much harder to find since the models are larger, have many
arguments, and the input and output shapes of layers are often
not easy to see. Moreover, a model can usually not just be repaired
with a singular change of a layer since in many cases there need
to be further adjustments deeper in the neural network. For exam-
ple, argument regenerations often change the output shape of a
layer, which can cause inconsistencies with the weight or shape re-
quirements in the next layers. The following simple example model
illustrates this cascading behaviour.

C1
C2

ConviD(2,input_shape=(8,1,) ,kernel_size=2,dilation_rate =3)
ConviD(2,input_shape=(16,1,) ,kernel_size=2,dilation_rate=3,
strides =3)

Subtract () ([C1, C2])

SEE

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Richard Schumi and Jun Sun

Algorithm 1 Pseudo code of the repair algorithm.

Input: SemanticHelper helper class for the execution of the semantics
1: function FINDFIXWITHMINIMALCHANGE(rand,model, error, maxFixes)

> find single fix with minimal change in the Al model

> produces fixes based on the approaches of Table 1

> run semantics, get success/error

if —success A (newError.getBadness() < error.getBadness() V newError.getLocation() > error.getLocation()) then

2: workingFixes < {}

3: fixingCount « 0

4: do

5: fixes « errorSpecificFixes(rand, model, error, maxFixes)

6: for each fix € Fixes do

7: (success, newError) « SemanticHelper.run(fix)

8:

9: fix « findFixWithMinimalChange(rand, fix, newError, maxFixes)
10: workingFixes.add (fix)

11: fixingCount « fixingCount + 1

12 while workingFixes.isEmpty() A fixingCount < maxFixes
13: return getFixWithSmallestChangeV alue(workingFixes)

14: function FINDFIxES(rand, model, error, maxFixes)

15: workingFixes < {}

16: fixes « errorSpecificFixes(rand, model, error, maxFixes)

17: for each fix € Fixes do

18: (success, error) « SemanticHelper.run(fix)

19: if —success then

20: fix « findFixWithMinimalChange(rand, fix, error, maxFixes)
21 workingFixes.add (fix)

22: return sortByChangeValue(workingFixes)

> returns the fix with the smallest change value

> produces fixes based on the approaches of Table 1
> run the semantics, get success/error

> uses the first function

> sorts the fixes accoring to their change value

It shows a Subtract layer that has two Conv1D layers as inputs. The
model seems to be valid at a first glance. Both Conv1D layers would
produce the same output shape, since the stride argument (that spec-
ifies the step size with which the kernel is moved over input data)
offsets the larger input shape of the second convolution. However,
a stride value greater than one is incompatible with a dilation_rate
value greater than one. (A dilation_rate can be specified to expand
a kernel with zero values.) A regeneration of the arguments to fix
this violation, e.g., by replacing the stride or dilation_rate value,
will always change the output shape. As a consequence, there will
be an inconsistent input shape error at the Subtract layer, which
needs to be fixed as shown in Table 1.

The overall repair approach that incorporates the specific fixes
(from Table 1) is outlined in Algorithm 1. It consists of two major
functions. A function that tries to find a singular working fix with
a minimal change compared to the original model, and a function
that returns a number of potential working fixes by applying the
first function. The first function findFixWithMinimalChange takes a
random object, a model to be fixed, an error object, and a maximum
number of fixes that should be considered as input. In Lines 1-2, we
initialise a set workingFixes and a counter fixingCount. Then, there
is a do-while loop that continues until there is a working fix, or
until the maximum number of allowed fixing attempts is reached.
Within the loop, the errorSpecificFixes function (Line 5) is called to
receive the potential fixes for a given error. For each of the fixes, we
apply our SemanticHelper to check if it produced a valid model. The
SemanticHelper is a wrapper class that helps with the execution
of ExXAIS to make a prediction for a given model, by returning a
success message or an error object. If it returns an error, then we
check if the error helped to improve the model, i.e., with the help
of a badness value (Line 8), and try to further repair the model by

155

recursively calling the function. The badness value is calculated by
preconditions of EXAIS and returned with an error message, and it
works similar as fitness in search-based software testing [27]. It is a
distance metric that is larger when the layer arguments and inputs
are far from being valid, i.e., the layer preconditions are ranked
based on severity and a value is calculated by taking into account
the difference of an observed and an expected argument value and
by multiplying it with a severity factor [45].

Finally, in Line 13, a helper function is used that sorts our work-
ing fixes based on a change value that indicates the similarity to
the original model, and return the fix with the smallest change.
The change value is another distance metric that is calculated by
considering the number of layer arguments, the layer replacements
and additions that are required to repair the original model. We
consider an argument modification the smallest change (change
value 1), followed by a layer replacement (change value 5), and the
largest changes are layer additions (change value 10).

The second function findFixes has the same arguments, and also
initializes a set for the fixes. Line 16 applies the errorSpecificFixes
function to obtain potential fixes for the specified error. Then, for
each of these fixes, we check if it is working with the SemanticHelper.
If it is not, then we apply the findFixWithMinimalChange to recur-
sively find a working fix. The fix is added to the fix set, which is
sorted and returned at the end of the function. The difference of this
function to the first one is that it produces a number of potential
fixes instead of a single one.

Listing 3 illustrates a real neural network in the form of a Ten-
sorFlow Python program that was posted on stackoverflow [4]
and contains a bug. The model is invalid, because the ConviD
layer requires input data with three dimensions, but it receives a
two-dimensional input. In order to run such a neural network with

Semantic-Based Neural Network Repair

1 import tensorflow as tf

2 from tensorflow.keras import layers, models

3 model_valid = tf.keras.Sequential ([

4 layers.Flatten(input_shape=(10,)),

5 layers.Dense (16, activation='relu'),

6 layers.ConviD (16, kernel_size=(2), activation='relu
', padding='same'),

7 layers.MaxPooling1D(pool_size=(4), strides=3,
padding="'valid'),

8 layers.Flatten(),

9 layers.Dense(1, activation='softmax')

10 ip}

Listing 3: Real model with a bug from stackoverflow [4].

ExAIS, it needs to be converted into a Prolog model, which is shown
in Listing 4. Fortunately, this conversion can be done automatically
with our repair tool. Our tool supports models in an JSON format
which is based on a format introduced by SOCRATES [41]. Al mod-
els can be exported into this format in a straightforward way. We
automatically convert these JSON models into Prolog models (in
the form of queries). The model consists of predicate calls for the
layers that are assigned to variables (Lines 1-6). For the execution
of the model (i.e., making a prediction) there is an exec_layers
predicate in Line 7. This predicate takes a list of layer variables,
executes them, checks the preconditions and helps to identify the
name of a layer that violates a precondition. Since the model is
invalid, it cannot be used for a prediction. The execution returns
the following error message to show the precondition violation.

-100000000000000000
Input Shape [1,16],

Invalid Model, Badness Value:
Aborted at Con60545: Dimension Error,
Expected Dimensions 3!!!

This message gives us the necessary information to repair the bug,
i.e., it shows the problematic layer and what needs to be changed.
A fix that was produced for the error is shown in Listing 5. This
fix was computed by the findFixWithMinimalChange function and
it has minimal changes, i.e, it is the most similar to the original
model, since the only change is the insertion of a reshape layer. The
reshape adds a dimension with size one to the input data to satisfy
the dimension requirements for the Conv1D layer. Alternatively,
such an error could be resolved by looking for a lower dimensional
version of the Conv1D layer, but since it is already the version with
the lowest number of dimensions, this is not feasible in this case.

4 EVALUATION

In this section, we evaluate the effectiveness and performance of
our approach. We implemented our approach that can support var-
ious types of neural networks and tested it with a variety of Al
models. To demonstrate its usefulness, we show two example ap-
plications, i.e., repairing automatically generated neural networks,
and repairing manually designed neural networks with bugs. We
perform multiple experiments to answer the following research
questions (RQ).

e RQ1: How effective is our approach in repairing automatically
generated models? There are various issues, like inconsis-
tencies with layer arguments, or a faulty network structure,
that can result in invalid neural networks. It is important to
evaluate to what extent we can repair such bugs.

156

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

e RQ2: How effective is our approach in repairing manually
written models? Developing an Al model is an error-prone
task. To highlight the usefulness of our repair approach in
practice, we demonstrate the applicability of our approach
for a number of real modelling bugs, and investigate to what
extent our suggested repairs are relevant for fixing these
bugs.

® RQ3: What kind of Al models can we support with our approach,
and how efficient is our repair method? To clarify the scope of
our supported models, it is important to explain what kind of
layers and model types we support. Moreover, it also makes
sense to investigate up to what network size our approach
still runs in a reasonable time.

The experiments were performed on a 7th Gen. Lenovo X1 Carbon
ThinkPad with an 8th Gen i7 CPU with four 1.80 GHz cores and 16
GB RAM. For executing the Prolog semantics, we used SWI-Prolog
8.2.1, and our repair tool was built in Java 13.0.7. It consists of about
10,000 lines of code and includes some of the functionality of the
ExAIS test case generator in order to produce Prolog models. More-
over, it uses the JSON.simple library and can load and save models
in a JSON format that is based on the format from SOCRATES [41].
Additionally, it can store models as TensorFlow programs, and vi-
sualize them with Dot from Graphviz. The tool together with our
experiment data and results are available in our repository [22]. In
the following, we present our answers to the research questions.

RQ1: How effective is our approach in repairing automatically
generated models? There are a number of approaches that automat-
ically generate Al models for the purpose of Al framework testing.
Wang et al. [55] show a differential testing approach called LEMON
that uses mutations to generate Al models. The approach produces
100% valid models since the mutations are designed to generate
only working models, but LEMON is limited to 24 types of layers.

A fuzzing method that extracts information from Al library doc-
umentations was illustrated by Li [35]. The approach generates
Al models based on learned input requirements of deep learning
layers, but it only produces about 25% valid models that are limited
to singular layer models.

Another fuzzing approach that generates Al models was pre-
sented by Schumi and Sun [45]. The method is semantic-based and
produces Al models with an optimisation algorithm with some
rudimentary fix components that work more random and focus
more on replacing problematic layers. The approach focuses more
on generating valid models, but incorporates rudimentary repairs,
for dimension errors and input shape bugs. The algorithm works
by adding, replacing or deleting layers and it is guided by a badness
value that indicates how far the model is away from being valid.
However, it restarts the generation if it cannot find a working model
or it just deletes problematic model components. Hence, in many
cases it does not perform a fix. It is able to produce 99.1% valid
models for differential testing. We use this approach as a baseline
to compare it to our method.

In order to evaluate the effectiveness of our approach, we per-
formed an experiment with 1,000 randomly generated invalid Al
models. The models were produced with an adopted generation
approach from [45] by randomly connecting various types of layers.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Richard Schumi and Jun Sun

1 LF1a71197 = flatten_layer ([[1.2079020849786344, 1.449234775683509, ...]1], Fla71197),
2 LDen79959 = dense_layer(Fla71197, [[0.6039479770827674, ©.410518536377564, ...]1]1, Den79959),
3 LCon60545 = conviD_layer(Den79959, 2,[[[e.6711,...11],[...], 1, true, 1, Con60545),
4 LMax46787 = max_pooli1D_layer(Con60545, 4, 3, false, Max46787),
5 LFla21960 = flatten_layer (Max46787, Fla219690),
6 LDen25740 = dense_layer(Fla21960, [[0.6182226038831956, ...]1]1,[...]1, Den25740),
7 exec_layers ([LF1a71197,LDen79959,LCon60545 ,LMax46787 ,LF1a21960 ,LDen2574071,["F1a71197","Den79959","Con60545" "
Max46787","F1a21960","Den25740"],Den25740,"Den25740") .
Listing 4: EXAIS Prolog code of a neural network with a bug.
1 import tensorflow as tf Table 2: Overview of the produced model bugs.
2 from tensorflow.keras import layers, models
3 model_valid = tf.keras.Sequentlal([Type ofBug NumberofBugs
4 layers.Flatten(input_shape=(10,)), . -
5 layers.Dense(16, activation='relu'), Dimension Error 219
6 layers.Reshape ((16,1)), Weight Shape Issue 45
7 layers.ConviD (16, kernel_size=(2), activation='relu Input Shape Bug 705
» padding='same’), . Argument Error 828
8 layers.MaxPooling1D(pool_size=(4), strides=3,
padding="'valid'), Total 1797
9 layers.Flatten(),
10 layers.Dense(1, activation='softmax')
11 1

Listing 5: Potential repair for the buggy model.

Many layers are connected sequentially by feeding the output as in-
put to the next layer in the sequence. However, there are also layers
that take multiple inputs, e.g., to perform mathematical operations,
like addition. For these layers, multiple input layers are connected.
It should be noted that a random model that is produced in such
a way is nearly always invalid due to various layer preconditions
that must be satisfied.

The resulting neural networks had an average size of 7.4 layers
(excluding input layers). We set the parameters to use small inputs
with a range of one to four values per dimension, since bigger sizes
vastly increased the overall size of the highly dimensional input
data (with up to 7 dimensions) and slowed down the execution
of ExXAIS. On average there were 1.8 bugs per model and in total
there were 1797 bugs that needed to be fixed. An overview of the
types of bugs is shown in Table 2. It can be seen that argument
errors are the most common, followed by input shape bugs and
dimension errors. Our approach successfully repaired all the bugs,
i.e., we were able to repair 100% of the random bugs that occurred
within the randomly generated neural networks, and it took on
average only 21.08s per model. Being able to repair such a wide
set of models with various different layer types shows that our
approach is highly effective. In order to compare our approach
to the baseline, we executed the same 1,000 invalid random tests
with the optimisation algorithm from [45]. The approach was able
to find a valid fix that was similar to our solution in 87.9% of the
models, i.e., the layers of the model were kept and similar adoptions
as with our algorithm were made. It took on average 8.96s, which
is about twice as fast as our approach, because it discards models
(or model parts) early when they are not working, and since it does
not include a comprehensive search algorithm that tries to find
minimal working fixes. For 121 cases, it did not produce a model
that we would consider a fix since the algorithm was randomly
replacing or removing layers or regenerating the whole model,

157

i.e., the fixed models were altered in a way that made them no
longer recognisable compared to the original model. Hence, we
believe that our method showed a significant improvement of this
state-of-the-art approach.

RQ2: How effective is our approach in repairing manually written
models? In order to answer this research question, we collected a
set of real modelling bugs from AI developers that were reported
on stackoverflow. We searched issues for which people were strug-
gling to find a solution for an error message from TensorFlow that
was caused by a misuse of one of the standard layers or a wrong
combination of these layers. To find these issues, we used search
queries based on common error messages from TensorFlow that
we obtained with the previous random test models. For example,
we searched with error specific queries, like “TensorFlow shape
must be rank”, “TensorFlow inconsistent input shapes”, “Operands
could not be broadcast together with shapes”, and with general
queries, like “TensorFlow layer argument error” or “TensorFlow
layer dimension error”. We found hundreds of bugs reports that
we had to manually inspect since the vast majority of them had
causes unrelated to the model or layer definition, i.e., they were not
relevant to our approach.

Some of the bugs are outside the scope of our method, since the
cause of these bugs is not related to the model structure or layers. Al
development has several steps, like the data preprocessing, training,
or model validation, where bugs can occur, but our approach is
only concerned with bugs within the models, e.g., by a wrong use
of standard layers. Moreover, many models contain hand-crafted
layers or enhanced features that are not supported by the semantics.

We found 16 bugs that matched our criteria, five with dimension
errors [4, 6, 9, 16, 17], three with invalid kernel or pool shapes
[12, 20, 21], five weight shape issues [7, 10, 13, 18, 19], and three
bugs with inconsistent arguments or input shapes [8, 14, 15]. An
overview of these bugs, their type, model sizes and repair times is
shown in Table 3. For 15 of the models, our method was able to find
potential repairs. One model [9] was too large for the execution
with the semantics since the vocabulary data (of an Embedding

Semantic-Based Neural Network Repair

layer) was too much (25001x200) for Prolog to handle, but after
reducing the vocabulary size (to 2501x200), which was irrelevant
to the bug in the model, our method was able to produce a repair.
On average the repair time was 3min 40s, the maximum time was
23min 21s. The model sizes ranged from about 1KB up to 43MB.

The results show the effectiveness of our method in repairing real
modelling bugs, which we believe is important because it seems to
be common that Al developers have difficulties to correctly design
an Al model or to understand error messages from Al frameworks.

In order to further evaluate the practical usefulness of our ap-
proach, we evaluated our produced repairs for these manual bugs
by comparing them to the accepted solutions from stackoverflow.
Table 4 gives an overview of this comparison. Out of the 16 mod-
els, eight of our repairs were equivalent or very close (in terms
of the type and magnitude of the modification) to the suggested
solutions on stackoverflow [4, 6, 7, 9, 10, 17-19]. For example, for
dimension issues, our solutions would be to introduce resize layers
as it was also suggested on stackoverflow. Five of our repairs were
of similar quality compared to the posted solutions [8, 12-14, 16],
e.g., for inconsistent weight shapes we usually regenerate the layer
weights based on the other layer arguments. Alternatively, such
issues can be addressed by adjusting the layer arguments to correct
the weight shape. Our remaining three repairs were not related
to the suggested stackoverflow solutions [15, 20, 21], but they still
produced working models that might be helpful as an alternative
solution for the bugs. For example, a wrong pool/kernel shape can
be corrected in multiple ways. Our solution to randomly regenerate
the layer arguments step by step usually produced a valid repair,
but there can still be other better solutions. Based on these results,
we believe that our repairs are reasonably useful in practice and
can be helpful for various real modelling bugs.

RQ3: What kind of AI models can we support with our approach,
and how efficient is our repair method? Since our approach is based
on the existing semantics ExAIS, we support neural networks that
are supported by the semantics. EXAIS supports 65 determinis-
tic layers of various types, like convolutional, pooling, recurrent,
activation, normalisation, mathematical, and cropping. It was de-
veloped for TensorFlow and support almost all of its layers, i.e.,
the developers built EXAIS for TensorFlow 2.4 and identified 72
unique non-abstract and non-wrapper layers. Only 7 of these layers
were not included. A full list of the supported layers is available in
the repository of ExAIS [22]. Hence, our repair approach is able to
repair a variety of neural networks, and nearly all types of layers.

In order to evaluate to which extent our approach works with
different model sizes and how fast it can repair these models, we set
up two experiments. (1) We evaluate the repair time of randomly
generated neural networks of different types with an increasing
number of layers. For this generation, we restricted the types of
layers since the execution time of the semantics is very different
depending on the type of layers. (2) We use models for benchmark
datasets with more realistic input and weight data sizes in order to
evaluate the performance in a practicable setting.

The results of the first experiment are shown in Fig. 1 and Fig. 2,
which illustrate the repair time of our approach for different types
of models and for increasing layer numbers. Fig. 1 shows sequen-
tial models that include activation layers and (1) dense layers, (2)

158

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

80| —e— dense .
2 60 | —®— recurrent .
g 40| pooling B
= —%— conv
£ 20 i
= /
0L ! ! L —
10 20 30 40 50
model size (number of layers)
Figure 1: Run time of our repair algorithm.
200 | —e— dense N
%]
< t
2 150 |~ Tecurren N
g —e— pooling
i 100 | —— conv y
g sol |
! ! ! !
10 20 30 40 50

model size (number of layers)

Figure 2: Run time of our repair algorithm for graph models.

recurrent layers, (3) pooling layers, and (4) convolutional layers.
Fig. 2 shows the same, but also includes graph models that include
forks as a result of mathematical layers with multiple inputs. It
can be seen that even relatively large models can be repaired in
a reasonable time. Sequential models with up to 50 layers can be
repaired in 80s, even if they contain mostly complex layers like
convolutional or pooling. Graph models with about 50 layers take
longer, but can still be repaired in max 3min 40s. We believe that
compared to the manual effort of inspecting and repairing such a
large model, our repairing time is reasonably practical.

For the second experiment, we applied three models for the well-
known CIFAR [34] and MNIST datasets [11] that were provided
by SOCRATES [41]. The models were called cifar_conv_small_relu,
mnist_conv_small_relu_diffai and mnist_conv_9_200. Additionally, we
used a model [5] for the Fashion-MNIST dataset [59] and another
model [23] for the Street View House Numbers (SVHN) dataset [37].
In contrast to the previously generated models, these neural net-
works had input data of up to 64KB and a model size of up to 10MB
due to bigger weight size. In order to evaluate our approach for
these models, we manually added inconsistent arguments, dimen-
sion errors, and weight shape issues. On average, it took 3min 12s
to repair these models, and the maximum repair time was 5min 54s.
This demonstrates that we are also able to apply our approach to
practical neural networks and not just randomly generated ones.
Moreover, it shows that the repair time of these larger neural net-
works was still reasonable, especially since the experiments were
only performed on a laptop with rather limited computing resources
and without parallelisation.

Discussion. A potential threat to the validity of our evaluation
might be that we focused too much on models with small input sizes.
Generally, AI models can handle huge data like voice recordings,
or large images. An evaluation with larger test inputs and models
might be more realistic, but a large input size (in the MB range)

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Richard Schumi and Jun Sun

Table 3: Overview of the real model bugs and their types and model sizes.

References Number | Min Model | Max Model | Min Repair | Max Repair | Avg. Repair
of Bugs Size Size Time[s] Time[s] Time[s]
Dimension Error [4,6,9, 16, 17] 5 4KB 10MB 5 301 69
Pool/Kernel Shape Bug [12, 20, 21] 3 35KB 6MB 5 501 181
Weight Shape Issue [7, 10, 13, 18, 19] 5 1KB 43MB 5 1402 388
Input Shape Bug [8, 14] 2 2MB 5MB 238 254 246
Argument Error [15] 1 186KB 186KB 217 217 217
Total - 16 1KB 43MB 5 1402 220

Table 4: Comparison of the repairs of the real model bugs to the solutions from stackoverflow.

Equivalent Comparable | Not Comparable Total
or Closely Related Quality but Still Valid
Dimension Error 4 1 - 5
Pool/Kernel Shape Bug - 1 2 3
Weight Shape Issue 4 1 - 5
Input Shape Bug - 2 - 2
Argument Error - - 1 1

will produce even bigger models, which would soon cause memory
overflows in the semantics. However, usually bugs in large models
can be broken down to smaller version that are easier to process.
We believe that our test models with rather small inputs were still
reasonable and did not represent a big limitation, and it is well-
known that small test cases can reveal various bugs [33]. Moreover,
we tested reasonably sized models from several benchmark datasets,
and we evaluated real model bugs.

One might argue that the performance of our approach for larger
models is limited, since it can take a couple of minutes to execute
our approach for large models. We believe that the performance
is still reasonable especially since it can avoid a lot of effort that
would be required to manually inspect a model for bugs, or when
the long resolution time for Al bug reports is considered that can
range from weeks to months [53].

Another threat to the validity of our evaluation might be a po-
tential bias when we selected the real model bugs. It is true that
we had quite restricted criteria when we were looking for these
bugs. There are numerous bug reports from Al developers that are
outside the scope of this work since they are not related to the
misuse or wrong composition of standard layers. Moreover, there
are still many bugs that come from AI models that include non-
standard features, like custom layers, which make them unusable
with our approach. Hence, it was a cumbersome task to look for
relevant bugs for our approach. We believe that we still managed to
find a representative set of model bugs that was suited for a good
evaluation of our method. There might be rare bugs in the same
category that are not supported by our method, but our evaluation
showed that we are able to repair common modelling bugs in a
reasonable time.

Another question that might come up is why we do not use error
messages from an Al framework instead of utilizing a semantics to
support our repair approach? It is true that our algorithms would in
principle also work with error messages from Al frameworks and

159

it would even be faster, but there are a number of problems with
these messages [45]. The error messages are not always consistent,
i.e., even for the same type of bug there can be various different
messages, which might be caused by independent implementations
in different layers. The source of an error is not always clear and
the necessary debug information to repair an error can be hard to
extract since the messages have no clear and consistent form. In
contrast, EXAIS provides error messages that are well-structured
and consistent. They can easily be automatically parsed and provide
clear debug information and the source of a bug. Moreover, it is
easy to extend ExAIS with additional preconditions, which can
be helpful for checking custom model properties or it enables the
identification of problematic behaviour that might not lead to error
messages in an Al framework. Hence, we believe that it was a good
choice to apply ExXAIS for our repair approach.

5 RELATED WORK

Most of the related work in neural network repair focuses on other
aspects of the neural networks, like improving the accuracy or
ensuring certain properties.

For example, Sohn et al. [47] introduce a repair technique called
Arachne that can improve pre-trained models by adjusting the
weights of layers. The method applies differential evolution to
optimise the weights and to correct misbehaviour, like misclassifi-
cations. Moreover, they demonstrate how to resolve fairness issues,
i.e., by repairing a bias in a gender classifier.

Another approach that deals with fairness properties was pre-
sented by Sun et al. [52]. The work illustrates a causality-based
repair technique called CARE that can identify problematic neurons
that are responsible for undesired neural network behaviour. It is
able to ensure that a neural network satisfies various fairness and
safety properties, e.g., it can remove backdoors caused by malicious
training data.

Semantic-Based Neural Network Repair

Yang et al. [61] shows a repair framework that is able to ensure
safety and robustness with regard to input-output safety specifi-
cations. They illustrate a depth-first-search reachability analysis
algorithm to find unsafe input regions and examples that represent
these regions. The approach is evaluated with an aircraft collision
avoidance and a rocket landing system. Similarly, Sotoudeh and
Thakur [48] present a provable point repair algorithm that is able to
deal with misclassifications and that can ensure safety properties.

Usman et al. [54] illustrates a constraint-based repair method
called NNREPAIR for neural network classifiers. The technique
applies fault localization to find problematic network parameters,
and it can improve the accuracy of a model and fix safety properties.

Xie et al. [60] introduced a model-based repair approach for re-
current neural networks (RNN) called RNNRepair. It is based on an
influence model that relates the behaviour of a network to the train-
ing data. The method can help to understand the behaviours of an
RNN, as well as increase the accuracy and repair safety properties.

Zhang et al. [63] introduced a DNN training monitoring and au-
tomatic repairing tool called AUTOTRAINER that can fix common
training problems, like a slow convergence or fluctuating accura-
cies. Similarly, a tool called DeepDiagnosis that further improved
the repair performance for such bugs, was introduced by Wardat et
al. [56] It applies dynamic analysis to monitoring and detect errors
according to various symptoms. It can fix eight different training
problems and can do this more efficient and with a better perfor-
mance than other tools. In contrast to both these methods, our
approach is only concerned with the model and layer definitions
and not with the training phase.

Related work is also in the field of Al model debugging which
includes a number of approaches and tools [30, 36, 39, 44, 51] that
offer features like fuzzing, faulty neuron (or feature) localisation,
visualisation, or auditing, to enable finding bugs that lead to inaccu-
racy or property violations. However, such approaches are usually
limited to specific types of models, e.g., classifiers.

In contrast to all these approaches, our work is not concerned
with the accuracy or with certain properties about the predictions
of a neural network. We focus on repairing modelling bugs that
cause invalid neural networks with structural problems, wrongly
used layers, or inconsistent layer arguments.

The closest related work is the tool called Tensfa from Wu et
al. [57, 58]. The tool can automatically detect and repair tensor
shape faults, which are comparable to our dimension and input
shape bugs. For these bugs, the approach works for even broader
scope of Al models and programs since it supports more general
operations with Tensors, like array adjustments with NumPy [28],
which are not standard layers. The approach uses decision tree
model to detect bugs based on crash messages from TensorFlow.
It applies static data dependence analysis and a dynamic shape
tracking techniques to locate faults, and multiple mutation strate-
gies that perform repairs by considering the frequency and time
cost of a number of repair patterns. Some of the repair patterns,
like the introduction of reshape layers, are similar to our fixes, but
since Tensfa uses more operations than just standard layers, it has
more repair options for fixing shape issues. Additionally, Tensfa
can check if the input and output shapes of a model are causing a
bug, which is out of the scope of our method.

160

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

In contrast, our repair method with ExAIS works more straight
forward. To identify and localize faults, we just run a model with
ExAIS and the precondition checks will identify and localize the
bugs. Moreover, our approach is not just limited to Tensor shape
bugs, since we support other issues, like argument or weight shape
errors, and the focus of our repairs is on finding minimal changes
with standard layers. Lastly, Tensfa can only fix issues when there
is an error message. EXAIS can also identify rare bugs that do not
produce error messages from TensorFlow [1].

To the best of our knowledge, our work is the first that shows
an automatic semantic-based repair approach for AT model bugs.

6 CONCLUSION

We have introduced a novel neural network repair approach that is
based on an executable semantics and demonstrated two applica-
tions. Our method is able to repair invalid Al models that suffer from
structural problems, wrongly used layers, or wrongly connected
layers. It works by executing a given Al model with an existing Al
framework semantics called ExAIS that has built-in preconditions
that are able to provide error messages with debug information
that helps to localise and characterise a bug. Based on these error
messages that are produced when there is a precondition violation,
we are able to identify and repair invalid model aspects with a
number of algorithms for different types of bugs.

One major application of our approach is the repair of auto-
matically generated neural networks that can, e.g, be used for Al
framework testing. In order to evaluate the effectiveness of our
approach for this application, we generated 1,000 random models
with bugs and repaired them. Our approach was able to repair 100%
of these neural networks, and it took on average only 21.08s to com-
pletely repair the models. Moreover, we evaluated the approach by
repairing a set of larger test models (for well-known benchmark
datasets) which required about 192s on average.

Another application that we presented is the repair of real mod-
elling bugs from Al developers. For this use case, we collected a set
of neural network bugs that developers were struggling with from
stackoverflow. Out of 16 faulty Al models, we could directly repair
15 models, and also the one remaining model could be repaired after
a minor size adjustment of the model. The average repair time for
the bugs was only 3min 40s. Inspecting the quality of our repairs,
showed that 13 of our produced repairs were equally as good or
were comparable to the solutions on stackoverflow.

To sum up, our approach was able to effectively and automati-
cally produce practical repairs for real world bugs within minutes.
This shows that it can be valuable for AI developers since it can
reduce a lot of debugging effort.

We believe that these two approaches highlight the usefulness
and applicability of our approach, which has potential to enable
further applications. In the future, we aim to explore semantic-based
repair techniques for other AI model aspects.

Acknowledgments. This research is supported by the Ministry
of Education, Singapore under its Academic Research Fund Tier 3
(Award ID: MOET32020-0004). Any opinions, findings and con-
clusions or recommendations expressed in this material are those
of the author(s) and do not reflect the views of the Ministry of
Education, Singapore.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

REFERENCES

[11]

[12]

[13

[14]

[15

[16]

[17]

[18

[19

[20]

[21]

[22

[23]

[24]

[25]

[26

2021. cropping layer additional error message. https://github.com/tensorflow/
tensorflow/issues/50612

2021. Dense Layer. https://tensorflow.org/api_docs/python/tf/keras/layers/Dense
2021. TensorFlow layer documentation. https://www.tensorflow.org/versions/r2.
4/api_docs/python/tf/keras/layers

2022. 1D Convolution Layer dimension mismatch issue. https://stackoverflow.
com/questions/69305003/1d-convolution-layer-dimension-mismatch-issue
2022. Fashion Classification Using CNN. https://github.com/heisenbuug/Fashion-
Classification-Using-CNN

2022. How to resize input size for ConvlDTranspose layer in Keras?
https://stackoverflow.com/questions/64312226/how-to-resize-input-size-
for-convldtranspose-layer-in-keras

2022. Incomparable weight shape between caffe and tensorflow / keras.
https://stackoverflow.com/questions/71054511/incomparable-weight- shape-
between-caffe-and-tensorflow-keras

2022. Keras Maxpooling2d layer gives ValueError. https://stackoverflow.com/
questions/39815518/keras-maxpooling2d-layer-gives-valueerror

2022. Keras ValueError: Input 0 is incompatible with layer conv2d 2.
https://stackoverflow.com/questions/45329416/keras-valueerror-input-0-
is-incompatible-with-layer-conv2d-2

2022. Layer Weight Shape (6,6) Not Compatible With Provided Weight Shape
(6,). https://stackoverflow.com/questions/72079459/layer-weight-shape-6-6-not-
compatible-with-provided-weight- shape-6

2022. MNIST Adversarial Examples Challenge. https://github.com/MadryLab/
mnist_challenge

2022. Negative dimension size caused by subtracting 3 from 1 for
conv2d_2/convolution. https://stackoverflow.com/questions/45645276/negative-
dimension-size- caused-by-subtracting-3-from- 1-for-conv2d- 2- convolution
2022. Tensorflow Keras Embedding Layer Error: Layer weight shape not
compatible. https://stackoverflow.com/questions/58548520/tensorflow-keras-
embedding-layer-error-layer-weight- shape-not-compatible

2022. Tensorflow ValueError: Operands could not be broadcast together with shapes
(5, 5, 160) (19, 19, 80). https://stackoverflow.com/questions/60575399/tensorflow-
valueerror-operands-could-not-be-broadcast-together-with-shapes-5

2022. TypeError and ValueError while training model with keras.
https://stackoverflow.com/questions/56624408/typeerror-and-valueerror-
while-training-model-with-keras

2022. ValueError: Input 0 of layer Istm is incompatible with the
layer: expected ndim=3, found ndim=2 in a LSTM model. https:
//stackoverflow.com/questions/71734426/valueerror-input-0-of-layer-Istm-is-
incompatible- with-the-layer-expected-ndi

2022. ValueError: Input 0 of layer Istm_cell_1 is incompatible with the layer:
expected ndim=3, found ndim=2. https://stackoverflow.com/questions/70611262/
valueerror-input-0-of-layer-Istm-cell- 1-is-incompatible- with- the-layer-expec
2022. ValueError: Layer weight shape (3, 3, 3, 64) not compatible with provided
weight shape (64, 3, 3, 3). https://stackoverflow.com/questions/48283625/
valueerror-layer-weight-shape-3-3-3-64-not-compatible- with-provided-
weight

2022. ValueError: Layer weight shape (43, 100) not compatible with provided weight
shape (412457, 400). https://stackoverflow.com/questions/59840678/valueerror-
layer-weight- shape-43-100-not-compatible- with- provided- weight- sha

2022. ValueError: Negative dimension size caused by subtracting 22 from 1
for conv3d_3/convolution (op: Conv3D). https://stackoverflow.com/questions/
60959631/valueerror-negative-dimension-size-caused-by-subtracting-22-
from-1-for-conv3d

2022. ValueError: Negative dimension size caused by subtracting 5
from 4. https://stackoverflow.com/questions/61868973/valueerror-negative-
dimension-size-caused-by-subtracting-5-from-4

2023. ExAIS: Executable AI Semantics Repository with AI Framework Testing and
AI Model Repair Tools. https://github.com/rschumi0/ExAIS

Laxmi Chaudhary. 2022. SVHN Deep Neural Network Image Classification. https:
//github.com/LaxmiChaudhary/SVHN-Deep-Neural-Network

Junhua Ding, Xiaojun Kang, and Xin-Hua Hu. 2017. Validating a Deep Learning
Framework by Metamorphic Testing. In 2nd IEEE/ACM International Workshop
on Metamorphic Testing, MET@ICSE 2017, Buenos Aires, Argentina, May 22, 2017.
IEEE Computer Society, 28—-34. https://doi.org/10.1109/MET.2017.2

Anurag Dwarakanath, Manish Ahuja, Samarth Sikand, Raghotham M. Rao,
R. P. Jagadeesh Chandra Bose, Neville Dubash, and Sanjay Podder. 2018. Iden-
tifying implementation bugs in machine learning based image classifiers us-
ing metamorphic testing. In Proceedings of the 27th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2018, Amsterdam, The
Netherlands, July 16-21, 2018, Frank Tip and Eric Bodden (Eds.). ACM, 118-128.
https://doi.org/10.1145/3213846.3213858

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural Architecture
Search: A Survey. J. Mach. Learn. Res. 20 (2019), 55:1-55:21. http://jmlr.org/
papers/v20/18-598.html

161

[27]

[28

[29

[30

[31

@
&,

[33

[34

[35

'S
S

[37

[38

[39

[40

[41

[42

=
&

[44

Richard Schumi and Jun Sun

Mark Harman, Phil McMinn, Jerffeson Teixeira de Souza, and Shin Yoo. 2010.
Search Based Software Engineering: Techniques, Taxonomy, Tutorial. In Empirical
Software Engineering and Verification - International Summer Schools, LASER
2008-2010, Elba Island, Italy, Revised Tutorial Lectures (Lecture Notes in Computer
Science, Vol. 7007), Bertrand Meyer and Martin Nordio (Eds.). Springer, 1-59.
https://doi.org/10.1007/978-3-642-25231-0_1

Charles R. Harris, K. Jarrod Millman, Stéfan van der Walt, Ralf Gommers, Pauli Vir-
tanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.
Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk,
Matthew Brett, Allan Haldane, Jaime Fernandez del Rio, Mark Wiebe, Pearu Peter-
son, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020. Array program-
ming with NumPy. Nat. 585 (2020), 357-362. https://doi.org/10.1038/541586-020-
2649-2

Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A survey of the state-
of-the-art. Knowl. Based Syst. 212 (2021), 106622. https://doi.org/10.1016/j.knosys.
2020.106622

Fred Hohman, Minsuk Kahng, Robert Pienta, and Duen Horng Chau. 2019. Visual
Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers. IEEE
Trans. Vis. Comput. Graph. 25, 8 (2019), 2674-2693. https://doi.org/10.1109/TVCG.
2018.2843369

Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea
Stocco, and Paolo Tonella. 2020. Taxonomy of real faults in deep learning systems.
In ICSE °20: 42nd International Conference on Software Engineering, Seoul, South
Korea, 27 June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM,
1110-1121. https://doi.org/10.1145/3377811.3380395

Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan. 2020. Repairing
deep neural networks: fix patterns and challenges. In ICSE °20: 42nd International
Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020,
Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 1135-1146. https://doi.org/
10.1145/3377811.3380378

Daniel Jackson and Craig Damon. 1996. Elements of Style: Analyzing a Software
Design Feature with a Counterexample Detector. In Proceedings of the 1996 Inter-
national Symposium on Software Testing and Analysis, ISSTA 1996, San Diego, CA,
USA, January 8-10, 1996. ACM, 239-249. https://doi.org/10.1145/229000.226322
Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

Yitong Li. 2020. Documentation-Guided Fuzzing for Testing Deep Learning APl
Functions. Master’s thesis. University of Waterloo.

Shiging Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama.
2018. MODE: automated neural network model debugging via state differential
analysis and input selection. In Proceedings of the 2018 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, No-
vember 04-09, 2018, Gary T. Leavens, Alessandro Garcia, and Corina S. Pasareanu
(Eds.). ACM, 175-186. https://doi.org/10.1145/3236024.3236082

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-
drew Y Ng. 2011. Reading digits in natural images with unsupervised feature
learning. (2011).

Ulf Nilsson and Jan Matuszynski. 1990. Logic, programming and Prolog. Wiley
Chichester.

Augustus Odena, Catherine Olsson, David G. Andersen, and Ian J. Goodfellow.
2019. TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing.
In Proceedings of the 36th International Conference on Machine Learning, ICML
2019, 9-15 June 2019, Long Beach, California, USA (Proceedings of Machine Learning
Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR,
4901-4911. http://proceedings.mlr.press/v97/odenal9a.html

Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. 2019. CRADLE:
cross-backend validation to detect and localize bugs in deep learning libraries. In
Proceedings of the 41st International Conference on Software Engineering, ICSE 2019,
Montreal, QC, Canada, May 25-31, 2019, Joanne M. Atlee, Tevfik Bultan, and Jon
Whittle (Eds.). IEEE / ACM, 1027-1038. https://doi.org/10.1109/ICSE.2019.00107
Long H. Pham, Jiaying Li, and Jun Sun. 2020. SOCRATES: Towards a Uni-
fied Platform for Neural Network Verification. CoRR abs/2007.11206 (2020).
arXiv:2007.11206 https://arxiv.org/abs/2007.11206

Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria E. Presa
Reyes, Mei-Ling Shyu, Shu-Ching Chen, and S. S. Iyengar. 2019. A Survey on
Deep Learning: Algorithms, Techniques, and Applications. ACM Comput. Surv.
51,5 (2019), 92:1-92:36. https://doi.org/10.1145/3234150

Jirgen Schmidhuber. 2015. Deep learning in neural networks: An overview.
Neural Networks 61 (2015), 85-117. https://doi.org/10.1016/j.neunet.2014.09.003
Eldon Schoop, Forrest Huang, and Bjoern Hartmann. 2021. UMLAUT: Debugging
Deep Learning Programs using Program Structure and Model Behavior. In CHI
’21: CHI Conference on Human Factors in Computing Systems, Virtual Event /
Yokohama, Japan, May 8-13, 2021, Yoshifumi Kitamura, Aaron Quigley, Katherine
Isbister, Takeo Igarashi, Pernille Bjorn, and Steven Mark Drucker (Eds.). ACM,
310:1-310:16. https://doi.org/10.1145/3411764.3445538

https://github.com/tensorflow/tensorflow/issues/50612
https://github.com/tensorflow/tensorflow/issues/50612
https://tensorflow.org/api_docs/python/tf/keras/layers/Dense
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/layers
https://www.tensorflow.org/versions/r2.4/api_docs/python/tf/keras/layers
https://stackoverflow.com/questions/69305003/1d-convolution-layer-dimension-mismatch-issue
https://stackoverflow.com/questions/69305003/1d-convolution-layer-dimension-mismatch-issue
https://github.com/heisenbuug/Fashion-Classification-Using-CNN
https://github.com/heisenbuug/Fashion-Classification-Using-CNN
https://stackoverflow.com/questions/64312226/how-to-resize-input-size-for-conv1dtranspose-layer-in-keras
https://stackoverflow.com/questions/64312226/how-to-resize-input-size-for-conv1dtranspose-layer-in-keras
https://stackoverflow.com/questions/71054511/incomparable-weight-shape-between-caffe-and-tensorflow-keras
https://stackoverflow.com/questions/71054511/incomparable-weight-shape-between-caffe-and-tensorflow-keras
https://stackoverflow.com/questions/39815518/keras-maxpooling2d-layer-gives-valueerror
https://stackoverflow.com/questions/39815518/keras-maxpooling2d-layer-gives-valueerror
https://stackoverflow.com/questions/45329416/keras-valueerror-input-0-is-incompatible-with-layer-conv2d-2
https://stackoverflow.com/questions/45329416/keras-valueerror-input-0-is-incompatible-with-layer-conv2d-2
https://stackoverflow.com/questions/72079459/layer-weight-shape-6-6-not-compatible-with-provided-weight-shape-6
https://stackoverflow.com/questions/72079459/layer-weight-shape-6-6-not-compatible-with-provided-weight-shape-6
https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/mnist_challenge
https://stackoverflow.com/questions/45645276/negative-dimension-size-caused-by-subtracting-3-from-1-for-conv2d-2-convolution
https://stackoverflow.com/questions/45645276/negative-dimension-size-caused-by-subtracting-3-from-1-for-conv2d-2-convolution
https://stackoverflow.com/questions/58548520/tensorflow-keras-embedding-layer-error-layer-weight-shape-not-compatible
https://stackoverflow.com/questions/58548520/tensorflow-keras-embedding-layer-error-layer-weight-shape-not-compatible
https://stackoverflow.com/questions/60575399/tensorflow-valueerror-operands-could-not-be-broadcast-together-with-shapes-5
https://stackoverflow.com/questions/60575399/tensorflow-valueerror-operands-could-not-be-broadcast-together-with-shapes-5
https://stackoverflow.com/questions/56624408/typeerror-and-valueerror-while-training-model-with-keras
https://stackoverflow.com/questions/56624408/typeerror-and-valueerror-while-training-model-with-keras
https://stackoverflow.com/questions/71734426/valueerror-input-0-of-layer-lstm-is-incompatible-with-the-layer-expected-ndi
https://stackoverflow.com/questions/71734426/valueerror-input-0-of-layer-lstm-is-incompatible-with-the-layer-expected-ndi
https://stackoverflow.com/questions/71734426/valueerror-input-0-of-layer-lstm-is-incompatible-with-the-layer-expected-ndi
https://stackoverflow.com/questions/70611262/valueerror-input-0-of-layer-lstm-cell-1-is-incompatible-with-the-layer-expec
https://stackoverflow.com/questions/70611262/valueerror-input-0-of-layer-lstm-cell-1-is-incompatible-with-the-layer-expec
https://stackoverflow.com/questions/48283625/valueerror-layer-weight-shape-3-3-3-64-not-compatible-with-provided-weight
https://stackoverflow.com/questions/48283625/valueerror-layer-weight-shape-3-3-3-64-not-compatible-with-provided-weight
https://stackoverflow.com/questions/48283625/valueerror-layer-weight-shape-3-3-3-64-not-compatible-with-provided-weight
https://stackoverflow.com/questions/59840678/valueerror-layer-weight-shape-43-100-not-compatible-with-provided-weight-sha
https://stackoverflow.com/questions/59840678/valueerror-layer-weight-shape-43-100-not-compatible-with-provided-weight-sha
https://stackoverflow.com/questions/60959631/valueerror-negative-dimension-size-caused-by-subtracting-22-from-1-for-conv3d
https://stackoverflow.com/questions/60959631/valueerror-negative-dimension-size-caused-by-subtracting-22-from-1-for-conv3d
https://stackoverflow.com/questions/60959631/valueerror-negative-dimension-size-caused-by-subtracting-22-from-1-for-conv3d
https://stackoverflow.com/questions/61868973/valueerror-negative-dimension-size-caused-by-subtracting-5-from-4
https://stackoverflow.com/questions/61868973/valueerror-negative-dimension-size-caused-by-subtracting-5-from-4
https://github.com/rschumi0/ExAIS
https://github.com/LaxmiChaudhary/SVHN-Deep-Neural-Network
https://github.com/LaxmiChaudhary/SVHN-Deep-Neural-Network
https://doi.org/10.1109/MET.2017.2
https://doi.org/10.1145/3213846.3213858
http://jmlr.org/papers/v20/18-598.html
http://jmlr.org/papers/v20/18-598.html
https://doi.org/10.1007/978-3-642-25231-0_1
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.1145/3377811.3380395
https://doi.org/10.1145/3377811.3380378
https://doi.org/10.1145/3377811.3380378
https://doi.org/10.1145/229000.226322
https://doi.org/10.1145/3236024.3236082
http://proceedings.mlr.press/v97/odena19a.html
https://doi.org/10.1109/ICSE.2019.00107
https://arxiv.org/abs/2007.11206
https://arxiv.org/abs/2007.11206
https://doi.org/10.1145/3234150
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1145/3411764.3445538

Semantic-Based Neural Network Repair

[45] Richard Schumi and Jun Sun. 2022. ExAIS: Executable Al Semantics. In 44th
IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022, Pitts-
burgh, PA, USA, May 25-27, 2022. ACM, 859-870. https://doi.org/10.1145/3510003.
3510112
Arnab Sharma and Heike Wehrheim. 2019. Testing Machine Learning Algorithms
for Balanced Data Usage. In 12th IEEE Conference on Software Testing, Validation
and Verification, ICST 2019, Xi’an, China, April 22-27, 2019. IEEE, 125-135. https:
//doi.org/10.1109/ICST.2019.00022
[47] Jeongju Sohn, Sungmin Kang, and Shin Yoo. 2019. Search Based Repair of
Deep Neural Networks. CoRR abs/1912.12463 (2019). arXiv:1912.12463 http:
//arxiv.org/abs/1912.12463
[48] Matthew Sotoudeh and Aditya V. Thakur. 2021. Provable repair of deep neural
networks. In PLDI "21: 42nd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation, Virtual Event, Canada, June
20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 588-603. https:
//doi.org/10.1145/3453483.3454064
[49] Siwakorn Srisakaokul, Zhengkai Wu, Angello Astorga, Oreoluwa Alebiosu, and
Tao Xie. 2018. Multiple-Implementation Testing of Supervised Learning Soft-
ware. In The Workshops of the The Thirty-Second AAAI Conference on Artificial
Intelligence, New Orleans, Louisiana, USA, February 2-7, 2018 (AAAI Workshops,
Vol. WS-18). AAAT Press, 384-391. https://aaai.org/ocs/index.php/WS/AAATW 18/
paper/view/17301
Eike Stein, Steffen Herbold, Fabian Trautsch, and Jens Grabowski. 2021. A new
perspective on the competent programmer hypothesis through the reproduction
of bugs with repeated mutations. CoRR abs/2104.02517 (2021). arXiv:2104.02517
https://arxiv.org/abs/2104.02517
[51] Hendrik Strobelt, Sebastian Gehrmann, Michael Behrisch, Adam Perer, Hanspeter
Pfister, and Alexander M. Rush. 2019. Seq2seq-Vis: A Visual Debugging Tool
for Sequence-to-Sequence Models. IEEE Trans. Vis. Comput. Graph. 25, 1 (2019),
353-363. https://doi.org/10.1109/TVCG.2018.2865044
[52] Bing Sun, Jun Sun, Hong Long Pham, and Jie Shi. 2022. Causality-based Neural
Network Repair. In 44th International Conference on Software Engineering (ICSE
2022). IEEE.
Ferdian Thung, Shaowei Wang, David Lo, and Lingxiao Jiang. 2012. An Empirical
Study of Bugs in Machine Learning Systems. In 23rd IEEE International Symposium
on Software Reliability Engineering, ISSRE 2012, Dallas, TX, USA, November 27-30,
2012. IEEE Computer Society, 271-280. https://doi.org/10.1109/ISSRE.2012.22
Muhammad Usman, Divya Gopinath, Youcheng Sun, Yannic Noller, and Corina S.
Pasareanu. 2021. NNrepair: Constraint-Based Repair of Neural Network Classi-
fiers. In Computer Aided Verification - 33rd International Conference, CAV 2021,
Virtual Event, July 20-23, 2021, Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 12759), Alexandra Silva and K. Rustan M. Leino (Eds.). Springer, 3-25.
https://doi.org/10.1007/978-3-030-81685-8_1
Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang. 2020. Deep
learning library testing via effective model generation. In ESEC/FSE "20: 28th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020,
Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann (Eds.). ACM, 788-799.
https://doi.org/10.1145/3368089.3409761

[46

[50

[53

[54

[55

162

(56

(57

[58

[59

[60

[61

[63

[64

[65

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

Mohammad Wardat, Breno Dantas Cruz, Wei Le, and Hridesh Rajan. 2022. Deep-
Diagnosis: Automatically Diagnosing Faults and Recommending Actionable Fixes
in Deep Learning Programs. In 44th IEEE/ACM 44th International Conference on
Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM,
561-572. https://doi.org/10.1145/3510003.3510071

Dangwei Wu, Beijun Shen, Yuting Chen, He Jiang, and Lei Qiao. 2021. Tensfa:
Detecting and Repairing Tensor Shape Faults in Deep Learning Systems. In 2021
IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 11-21. https://doi.org/10.1109/ISSRE52982.2021.00014

Dangwei Wu, Beijun Shen, Yuting Chen, He Jiang, and Lei Qiao. 2022. Auto-
matically repairing tensor shape faults in deep learning programs. Information
and Software Technology 151 (2022), 107027. https://doi.org/10.1016/j.infsof.2022.
107027

Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms. CoRR abs/1708.07747
(2017). arXiv:1708.07747 http://arxiv.org/abs/1708.07747

Xiaofei Xie, Wenbo Guo, Lei Ma, Wei Le, Jian Wang, Lingjun Zhou, Yang Liu, and
Xinyu Xing. 2021. RNNRepair: Automatic RNN Repair via Model-based Analysis.
In Proceedings of the 38th International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event (Proceedings of Machine Learning Research,
Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 11383-11392. http:
//proceedings.mlr.press/v139/xie21b.html

Xiaodong Yang, Tom Yamaguchi, Hoang-Dung Tran, Bardh Hoxha, Taylor T.
Johnson, and Danil V. Prokhorov. 2022. Neural Network Repair with Reachability
Analysis. In Formal Modeling and Analysis of Timed Systems - 20th International
Conference, FORMATS 2022, Warsaw, Poland, September 13-15, 2022, Proceedings
(Lecture Notes in Computer Science, Vol. 13465), Sergiy Bogomolov and David

Parker (Eds.). Springer, 221-236. https://doi.org/10.1007/978-3-031-15839-1_13
Quanming Yao, Mengshuo Wang, Hugo Jair Escalante, Isabelle Guyon, Yi-Qi

Hu, Yu-Feng Li, Wei-Wei Tu, Qiang Yang, and Yang Yu. 2018. Taking Human
out of Learning Applications: A Survey on Automated Machine Learning. CoRR
abs/1810.13306 (2018). http://arxiv.org/abs/1810.13306

Xiaoyu Zhang, Juan Zhai, Shiqing Ma, and Chao Shen. 2021. AUTOTRAINER:
An Automatic DNN Training Problem Detection and Repair System. In 43rd
IEEE/ACM International Conference on Software Engineering, ICSE 2021, Madrid,
Spain, 22-30 May 2021. IEEE, 359-371. https://doi.org/10.1109/ICSE43902.2021.
00043

Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018.
An empirical study on TensorFlow program bugs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2018,
Amsterdam, The Netherlands, July 16-21, 2018, Frank Tip and Eric Bodden (Eds.).
ACM, 129-140. https://doi.org/10.1145/3213846.3213866

Barret Zoph and Quoc V. Le. 2017. Neural Architecture Search with Reinforcement
Learning. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.
https://openreview.net/forum?id=r1Ue8Hcxg

Received 2023-02-16; accepted 2023-05-03

https://doi.org/10.1145/3510003.3510112
https://doi.org/10.1145/3510003.3510112
https://doi.org/10.1109/ICST.2019.00022
https://doi.org/10.1109/ICST.2019.00022
https://arxiv.org/abs/1912.12463
http://arxiv.org/abs/1912.12463
http://arxiv.org/abs/1912.12463
https://doi.org/10.1145/3453483.3454064
https://doi.org/10.1145/3453483.3454064
https://aaai.org/ocs/index.php/WS/AAAIW18/paper/view/17301
https://aaai.org/ocs/index.php/WS/AAAIW18/paper/view/17301
https://arxiv.org/abs/2104.02517
https://arxiv.org/abs/2104.02517
https://doi.org/10.1109/TVCG.2018.2865044
https://doi.org/10.1109/ISSRE.2012.22
https://doi.org/10.1007/978-3-030-81685-8_1
https://doi.org/10.1145/3368089.3409761
https://doi.org/10.1145/3510003.3510071
https://doi.org/10.1109/ISSRE52982.2021.00014
https://doi.org/10.1016/j.infsof.2022.107027
https://doi.org/10.1016/j.infsof.2022.107027
https://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://proceedings.mlr.press/v139/xie21b.html
http://proceedings.mlr.press/v139/xie21b.html
https://doi.org/10.1007/978-3-031-15839-1_13
http://arxiv.org/abs/1810.13306
https://doi.org/10.1109/ICSE43902.2021.00043
https://doi.org/10.1109/ICSE43902.2021.00043
https://doi.org/10.1145/3213846.3213866
https://openreview.net/forum?id=r1Ue8Hcxg

	Semantic-based neural network repair
	Citation

	Abstract
	1 Introduction
	2 Background
	2.1 AI Framework Testing
	2.2 AutoML
	2.3 ExAIS

	3 Method
	4 Evaluation
	5 Related Work
	6 Conclusion
	References

