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Mitigating Popularity Bias for Users and Items with

Fairness-centric Adaptive Recommendation

ZHONGZHOU LIU and YUAN FANG, School of Computing and Information Systems, Singapore

Management University, Singapore

MIN WU, Institute for Infocomm Research, A*STAR, Singapore

Recommendation systems are popular in many domains. Researchers usually focus on the effectiveness of

recommendation (e.g., precision) but neglect the popularity bias that may affect the fairness of the recom-

mendation, which is also an important consideration that could influence the benefits of users and item

providers. A few studies have been proposed to deal with the popularity bias, but they often face two lim-

itations. Firstly, most studies only consider fairness for one side—either users or items, without achieving

fairness jointly for both. Secondly, existing methods are not sufficiently tailored to each individual user or

item to cope with the varying extent and nature of popularity bias. To alleviate these limitations, in this pa-

per, we propose FAiR, a fairness-centric model that adaptively mitigates the popularity bias in both users and

items for recommendation. Concretely, we design explicit fairness discriminators to mitigate the popularity

bias for each user and item locally, and an implicit discriminator to preserve fairness globally. Moreover, we

dynamically adapt the model to different input users and items to handle the differences in their popular-

ity bias. Finally, we conduct extensive experiments to demonstrate that our model significantly outperforms

state-of-the-art baselines in fairness metrics, while remaining competitive in effectiveness.
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1 INTRODUCTION

As recommendation systems [52] have achieved widespread success in many real-world applica-
tions, more andmore researches have revealed that conventional recommendation is often plagued
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Fig. 1. A toy example illustrating the effect of popularity bias in different models. The bipartite graph in

(a) represents the user-item interaction data, where the solid/dotted edges represent the training/test sets,

respectively. Solid circles represent the group of popular users with more interactions in the training set, and

hollow circles represent the group of less popular users with fewer interactions in the training set. Items

are similarly grouped, where the solid/hollow triangles represent the popular/less popular groups of items,

respectively.

by biases which may harm the ethics of recommendation outcomes and lead to negative social im-
pacts [9]. One of the most well-known biases is called the popularity bias: Users and items are
distributed unevenly in the training data (often following some long-tailed distribution), which
means popular users or items would obtain higher weights during model training, making the
model biased toward those popular ones [2].
The popularity bias would hurt both users and item providers alike, and we illustrate the impact

with a toy example in Figure 1. In this toy example, consider two user groups of different popularity,
based on the number of interactions each user has in the training data. For instance, in Figure 1(a),
users with two interactions in the training data (i.e., solid edges) belong to the popular group
(denoted by solid circles), while users with only one interaction in the training data belong to
the less popular group (denoted by hollow circles). Similarly, there are also two groups of items
with different popularity in the training data (denoted by solid and hollow triangles, respectively).
Suppose for each user, we rank his/her non-interacted items in the training set, and recommend
the top-1 item to the user. We regard the dotted edges in Figure 1(a) as the ground truth in the

ACM Transactions on Information Systems, Vol. 41, No. 3, Article 55. Publication date: February 2023.



Mitigating Popularity Bias for Users and Items 55:3

testing set. Due to the uneven distribution of data, Figure 1(b) reveals the potential outcomes of a
conventional recommendation model (i.e., one that does not consider fairness such as NCF [20]).
On the user side, the mean precision of the popular user group (solid circle) is 1.0 while that of
the less popular group is only 0.33 (hollow circle). Although the overall mean precision of all
users stands at 0.6 which seems reasonable, the model is much more effective and thus useful
for the popular users than for the less popular users. On the item side, the popular items often
receive disproportionally more “exposure” (i.e., being recommended more frequently) than the
less popular items. For instance, the popular item group (solid triangle) only accounts for 40%
of all items in the toy example and 4

7 of all the interactions in the training set, but they get an
overrated 80% exposure in the top-1 recommendation. To sum up, users in a less popular group
are unfairly disadvantaged by virtue of the access to lower quality recommendations. At the same
time, items from small local retailers tend to be less popular than those from large chain businesses,
resulting in disproportionally less exposure in the recommendation platform, which means small
local businesses systematically and unfairly suffer from the popularity bias. What could be even
more worrying is, the popularity bias would be further amplified due to the feedback loop in
recommendation, where the resulting user-item interactions will be used as new training data
[28]. Besides, popularity bias may also contribute to other pernicious effects such as the filter

bubble, which is a phenomenon that “users become isolated from the information that varies from
their dominant preferences” [14]. It typically occurs when a recommendation system only exposes
items that are narrowly aligned with a user’s historical interests, which eventually decreases the
user’s satisfaction toward the recommendation system [15]. Thus, filter bubble can be understood
as a form of item over-exposure related to the presence of popularity bias in a user’s historical
interactions.
In this paper, we study the fairness issues arising from the popularity bias,1 aiming to mitigate

the popularity bias in the recommendation results. As a branch of algorithmic fairness, popular-
ity bias has attracted increasing attention in recent years [3, 53]. A common idea is to “reshape”
the population [25] through various means such as propensity scoring [17] and causal inference
[39, 53], in order to smooth the impact of the unevenness of popularity. The smoothing would mit-
igate the unevenness between the popular and less popular groups, thereby generating equitable
outcomes for all groups toward fairness [4, 5]. For instance, Figure 1(c) illustrates “fairer” recom-
mendation results for users than a conventional model in (b) would produce, where the difference
in prec@1 between the two user groups reduces from 0.67 in (b) to 0.17 in (c). That is, the two
groups of users shown in (c) receive recommendations of similar effectiveness [24], and thus can
both benefit from the recommendations to a similar extent. Further note that the overall prec@1
in both (b) and (c) maintains the same, which means (c) is able to achieve fairness for users without
compromising the overall effectiveness.
However, most existing works only consider the popularity bias from the user-side as we have

shown in Figure 1(c), but ignore its negative impact on the item-side. This would lead to the under-
exposure of less popular items. For instance, in Figure 1(b) and 1(c), the less popular item group
(hollow triangle) occupies only 20% of the top-1 recommendation, which is disproportionally less
than their proportion accounting for 3

7 of the total interactions or 60% of the total items in the
training set. In many scenarios, item-side fairness is as important as user-side fairness, in order to
give small item providers (e.g., neighborhood businesses in an e-commerce platform or minority
authors in a book/library service) equitable exposure. To date, only very few works have dealt

1While fairness issues can also be related to other biases or consequences [9], to avoid any ambiguity hereafter we use the

term “fair(ness)” to specifically describe the group fairness [33] of recommendation models or results that are not affected

by the popularity bias, following some previous work [1]. We will give formal definitions of fair(ness) in Section 3.
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with the impact of popularity bias on the item-side [46, 54], which expects both popular and un-
popular items to have more comparable share of exposure. For example, in Figure 1(d), the less
popular item group now occupies 60% of the top-1 recommendation, which is much closer to their
proportion in the total items and/or training data. However, these models with only item-side
fairness could still compromise user-side fairness, resulting in recommendations of divergent ef-
fectiveness for the two user groups, e.g., as shown in (d). Ideally, both user- and item-side fair-
ness are important and should be considered jointly, as illustrated by the example ranking in
Figure 1(e).
Hence, toward fairness w.r.t. the popularity bias in recommendation systems, the first open

challenge is: How can we jointly mitigate the popularity bias for both user- and item-side? A naïve
solution is a multi-phase model [32] to tackle the bias from each side one by one, but it would
ignore the intrinsic relationships between the two sides. Moreover, the popularity bias may vary in
extent and nature for each user and item, given their different frequencies in the training data and
individual characteristics. Despite various mechanisms to tackle popularity bias, previous methods
train one global model to handle the bias for all users and items, in which the model is frozen after
training completes. That means the same model is applied in a uniform manner to any user or
item alike at test time, lacking the opportunity to fully adapt to each individual user or item with
potentially different frequencies or characteristics. Hence, the second open challenge is: How can

we adaptively mitigate the bias to tailor to each individual user or item? In other words, an adaptive
debiasing model is warranted to account for the uniqueness of each input user or item in both
training and testing.
To address these challenges, we propose FAiR, a Fairness-centric model that Adaptively

mitigates the popularity bias in both users and items for Recommendation. For the first
challenge, we propose two explicit discriminators to simultaneously detect the bias in users and
items locally, and an implicit discriminator to preserve fairness globally in an end-to-end frame-
work. This design allows us to mitigate popularity bias for both user- and item-side jointly so that
their intrinsic relationships can be captured, whilst preserving the overall effectiveness of recom-
mendation in the end-to-end training process. Despite using a simple architecture with multilayer
perceptrons, empirical results show that the explicit and implicit discriminators complement and
collaborate well with each other to improve fairness from the two sides. For the second challenge,
we resort to Feature-wise Linear Modulation (FiLM) [34] to modulate the generators so that
they become conditioned on the input user or item. To our best knowledge, this is the first attempt
to utilize FiLM layers for recommendation fairness. Specifically, the input conditioning enables the
generators to sufficiently adapt to the differences and individual characteristics associated with
each user or item.
In summary, the contribution of this work is threefold.

• We identify the impacts of popularity bias for both user- and item-side, and propose to jointly
mitigate the two-sided popularity bias in our model FAiR in an end-to-end fashion.
• We recognize that the extent and nature of popularity bias often vary remarkably for differ-
ent users or items, and propose to employ a FiLMmechanism for adaptive debiasing tailored
to each individual user or item in our model FAiR.
• We conduct comprehensive experiments to show that FAiR can significantly improve the
fairness of recommendation at a competitive level of effectiveness.

2 RELATEDWORK

In this section, we will review related work in three aspects, including general fairness learning,
fairness for popularity bias in recommendation, and other related problems and approaches.

ACM Transactions on Information Systems, Vol. 41, No. 3, Article 55. Publication date: February 2023.
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2.1 General Fairness Learning

As an emerging topic in the wider machine learning community, different fairness learning ap-
proaches have been proposed. One family of methods only involve pre- and post-processing strate-
gies [12, 22] to simply alter the original distribution of training data, or re-rank the predictions to
enhance the fairness. Such methods do not address the algorithmic cause of unfairness, thus their
solutions cannot fundamentally address the bias. Furthermore, model accuracy could be signifi-
cantly compromised due to the pre- or post-processing steps. Other methods integrate various
fairness objectives or constraints into deep models including auto-encoders [27], graph neural net-
works [47] and generative adversarial networks [51], which are able to mitigate biases at the model
level and achieve desirable outcomes in term of both accuracy and fairness for different problems
such as classification [5] and representation learning [27].
It is worth nothing that a typical objective of previous fairness learning is to debias certain

sensitive attributes such as demographic information [5, 27, 47], in order to enforce statistical
parity [13, 50] or equal opportunity [18] for different groups. While sensitive attributes may also
be subject to uneven distributions in the training data, in this paper we specifically deal with the
popularity bias not particularly associated with any attribute.

2.2 Fair Recommendation for Popularity Bias

The popularity bias in recommendation systems is less explored until recent years. Like in gen-
eral fairness learning, some studies resort to pre- or post-processing techniques, such as data re-
balancing [37, 49] to change the distribution of the training data, or adjust the ranking of some
items to maintain a balance between popular and unpopular groups [24, 41]. To better cope with
the popularity bias in an end-to-end manner to achieve both fair and effective recommendations,
adversarial learning [16] has been exploited. A typical adversarial framework consists of two play-
ers: generator and discriminator. The two players compete with each other in a minimax game,
where the generator aims to mitigate bias from the input, and the discriminator aims to recover
any residual bias in the generator’s output. Such adversarial learning has been shown as a pow-
erful strategy in improving recommendation accuracy or fairness [5, 7, 54]. However, existing
adversarial strategies deal with the fairness for either users [5] or items [54] only, but in reality
both sides can suffer from the popularity bias. Note that a small number of works deal with two-
sided fairness [30, 32] for both items and users. However, they have significant differences from
our work. On one hand, Mondal et al. [30] have proposed two-sided fairness for non-personalized
recommendations. Specifically, their goal is to find a global list of recommendations which would
be liked by most of the users, whereas our work makes personalized recommendation to each
user. On the other hand, Patro et al. [32] define the user-side fairness as envy-freeness [35] and
the item-side fairness as maximin share of exposure, which differ from our goal of mitigating the
popularity bias for equitable outcomes among different user or item groups (the formal definition
of our fairness objective is given in Section 3). Besides, [32] is different from our paper in its non
end-to-end optimization manner. Furthermore, a few studies utilize causal inference to mitigate
the popularity bias [46, 53]. However, similar to existing adversarial strategies, they usually focus
on one side fairness only. Moreover, these models are frozen once training is finished, lacking the
flexibility of adapting to different input users and items.
In another line of popularity bias, some researchers focus on the missing-not-at-random

(MNAR) problem in recommendation systems [6, 29, 38]. In the MNAR problem, it is hypothe-
sized that “low ratings are much more likely to be missing from the observed data than high rat-
ings” [42], and could be regarded as a fairness problem caused by uneven popularity across item
ratings [6]. However, it is irrelevant to the user- and item-side fairness in our paper as defined in

ACM Transactions on Information Systems, Vol. 41, No. 3, Article 55. Publication date: February 2023.
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Fig. 2. Uneven popularity of users and items in the Amazon dataset.

Section 3.2. Furthermore, existing counter-measures against the unevenness associated with low
or high ratings are designed to improve the overall model effectiveness.

2.3 Other Fair Recommendation and Related Work

Some other perspectives of bias in recommendation have also been explored. For example, some
works aim to tackle model bias [40, 48] caused by biased assumptions and priors of the model
itself, or deal with the sensitive attributes of users in recommendation [47]. The feedback loop
[28] is another widely explored topic, as users tend to interact with recommended items and these
interaction data are often used as new training data. That means the presence of bias in the initial
recommendation would be amplified during the feedback process. Moreover, there exist many di-
versity models for recommendation [10], whose goal is to maximize the exposure of different item
groups in the recommendation results, which helps item-side fairness to some extent, but they do
not aim for equal exposure between popular and unpopular groups. Besides, there is a branch of
machine learning called imbalanced learning [11, 23], and some of which the models have also
utilized the adversarial learning strategy [36]. Although the skewed data distribution caused by
popularity bias is a key factor in both imbalanced and fairness learning, their objectives diverge.
That is, imbalanced learning focuses on improving the overall model effectiveness, whereas fair-
ness learning concerns about the differential treatment and aims to achieve uniform treatment of
all popularity groups.

3 MOTIVATION AND PROBLEM STATEMENT

In this section, we will motivate and formalize the fairness problem caused by popularity bias for
both user- and item-side. First, we present a case study to further motivate the problem beyond the
toy example in introduction. Then, we lay down the formal definitions of our fairness objectives
in this paper.

3.1 Case Study

We use a case study on an Amazon review dataset to motivate the fairness concerns arising from
the popularity bias in users and items. Specifically, we focus on the grocery and gourmet food
category on Amazon,2 a popular public dataset in recommendation systems research. The detailed
introduction of the Amazon dataset is given in Section 5.1.1. On this dataset, we first showcase
the uneven popularity of users and items, and further deploy two conventional recommendation
models to reveal the fairness concerns in the recommendation results.
First, for each user and item we count its number of user-item interactions in the dataset. The

number of interactions can represent the popularity of a user or an item.We plot the distribution of
their popularity (i.e., number of interactions) in descending order in Figure 2(a) and (b) for the first
1,000 most popular users and items, respectively. It can be observed that very few users or items
have an extremely large number of interactions while the remaining majority of users or items

2Henceforth we will simply call this subset “the Amazon dataset” or “Amazon”.
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Fig. 3. Impact of popularity bias on users, which results in differential recommendation quality for user

groups of different popularity. Recommendation quality is measured using (a) precision@1 and (b) recall@1.

only have limited interactions. In particular, if we focus on the group of the top 5% most popular
users/items in the dataset, we can observe that the very small proportion of users/items (5%) makes
up a significant proportion of interactions (27%/53% for the group of top users/items as shown in
Table 2). Such unevenness of popularity in users and items shows a typical characteristic of long-
tailed distribution [31], which eventually leads to the popularity bias and the related fairness issues
as we will show next [24, 43].

Next, we analyze how the unevenness of popularity can cause the so-called popularity bias and
harm the fairness of the recommendation results, if a recommendation model does not recognize
or mitigate the bias. To reveal the unfairness, we train and evaluate3 two conventional models
on the Amazon dataset, namely, CFI4 [26] and NCF [20], which are based on representative meth-
ods including matrix factorization and neural networks. However, they only focus on the overall
recommendation effectiveness and do not deal with the popularity bias.
From the perspective of user-side fairness, we first divide the users into two groups: the top

5% most popular users in “user group 1” and the remaining 95% in “user group 2”. We report
the recommendation effectiveness in each user group including precision and recall on the top-
1 recommendations, denoted as prec@1 and rec@1, respectively, in Figure 3. It can be observed
that, on average, users in group 1 receive significantly higher recommendation quality in terms of
both prec@1 and rec@1 than users in group 2. The reason is that the training instances (i.e., user-
item interactions) associated with users in group 1 are denser than those associated with users
in group 2. More concretely, in the training data the number of interactions per user in group 1
is about six times of that in group 2. Hence, users in group 1 tend to have more robust and less
noisy training data than users in group 2 do. This observation reflects how the popularity bias can
lead to imbalanced effectiveness for users in groups of different popularity. As a result, users in
group 1 (only representing 5% of the total users) benefit more from a superior recommendation
service, while users in group 2 (95% of the total users) would be unfairly subjected to a substandard
recommendation service. This differential treatment of users is a form of unfairness [24].

From the perspective of the item-side fairness, the items are similarly divided into two groups
based on the 5%–95% splitting. In item-side fairness, we are concerned in the differential exposure
across item groups [54]. As shown in Figure 4, we compare the exposure of the two item groups
w.r.t. their proportion in training data in two different ways. Firstly, in Figure 4(a)–(c), we simply
count the items without considering the ground-truth. That is, in (a), we report the proportion
of items in the two groups in training data (6% belong to group 1, and 94% belong to group 2).
However, items in group 1 get much more exposure in testing than in training, accounting for 20%

3The detailed experimental settings will be described in Section 5.1.4.
4In this case study, we adopt the alternating least squares implementation of CFI.
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Fig. 4. Impact of popularity bias on items, which results in differential opportunity of exposure on the rec-

ommendation platform for item groups of different popularity. The figures present the proportional share

of each item group in (a) training items, (b)/(c) all recommendations generated by CFI/NCF, (d) training

interactions, (e)/(f) true-positive (TP) recommendations generated by CFI/NCF.

or 25% of the top-1 recommendations generated by CFI in (b) or NCF in (c) in testing. Secondly,
in Figure 4(d)–(f), we only consider items with the so-called “true positive” exposure, i.e., items
belonging to the ground-truth interactions. Intuitively, here we investigate the impact of bias
only on the effective recommendations, which could be more important to item providers. That
is, in (d), we report the proportion of training interactions involving items in each group (55% of
the interactions involve group 1 items, and 45% involve group 2 items). However, items in group
1 represent 73% or 77% of the true positive top-1 recommendations generated by CFI in (e) or NCF
in (f) in testing, which is significantly more than the share of group 1 in the training interactions.
It means popular items get disproportionally more exposure in testing than in training, in terms
of not only raw item counts, but also the true positive counts. As a result, providers of the
less popular items (e.g., small local business in an e-commerce platform, minority authors in a
book/library service) are unfairly subjected to systematically less exposure than they deserve, a
form of discrimination brought by the recommendation model.

3.2 Problem Statement

The unfairness issues revealed in our case study above is manifested by virtue of uneven pop-
ularity in different user or item groups. In this section, we formalize the problem statement on
the mitigation of popularity bias for fairness-centric recommendation models. We first define the
recommendation task, followed by the fairness problem on both user- and item-side.
A typical recommendation task involves a user set U and an item set I, where users may

interact with some items. As a user’s subjective preferences on items are different, let yu,i ∈ R
denote the rating of user u ∈ U on item i ∈ I. If yu,i is given for certain u and i in the dataset,
u and i are said to have a user-item interaction which belongs to the ground truth; otherwise, we
regard that there is no interaction between them. A recommendation system will generate a top-K
recommendation list for each useru according to the predicted ŷu,i for items in the test candidates.
Upon the recommendation task, in our paper, we investigate group-based fairness [33] caused

by popularity bias on both user- and item-side. In particular, each user and item are assigned into
a certain group. Suppose there arem user groups and n item groups, i.e.,

U = GU1 ∪GU2 ∪ · · · ∪GUm , (1)

I = GI1 ∪GI2 ∪ · · · ∪GIn , (2)

where all groups GUj ⊂ U and GIj ⊂ I are disjoint. The groups can be defined on popularity

directly as we did in the case study, or on certain attributes that suffer from the popularity bias
(e.g., gender of users, and vendor of items). It means that some groups can be much more popular
than the others, resulting in unfairness for users and/or items in less popular groups. In this paper,

ACM Transactions on Information Systems, Vol. 41, No. 3, Article 55. Publication date: February 2023.



Mitigating Popularity Bias for Users and Items 55:9

we pursue group fairness that the algorithm should treat groups similarly, i.e., reduce differential
treatment across groups [33].
More specifically, for the user-side fairness, as motivated earlier we expect that a fair model

could retain similar recommendation quality or effectiveness for users in different groups, regard-
less of their popularity. Let M (u) denote the effectiveness metric of recommendation (e.g., preci-
sion or recall) for user u. Following previous work [24], we give the following definition on the
user-side fairness.

Definition 3.1 (User-oriented Group Fairness [24]). Given m user groups GU1 ,G
U
2 , . . . ,G

U
m , the

user-oriented group fairness (UGF) requires

Eu∼GU1 [M (u)] = Eu∼GU2 [M (u)] = · · · = Eu∼GUm [M (u)]. (3)

While this definition depicts an idealized binary classification of fairness, in practical models
there often exist different degrees of unfairness on a continuous scale. Hence, to evaluate user-side
fairness of a recommendation model, we measure the numerical difference in the recommendation
effectiveness between different user groups. More concretely, given two user groupsGU1 andGU2 ,
the user-oriented group fairness (UGF) metric [24] w.r.t. an effectiveness metricM is defined as

UGFM =

��������
1

|GU1 |
∑

u ∈GU1
M (u) − 1

|GU2 |
∑

u ∈GU2
M (u)

��������
. (4)

where the subscript M denotes an effectiveness metric for the recommendation. Smaller UGF val-
ues indicate that the difference in the effectiveness M between groups are smaller, thus better
user-side fairness. More generally, when there are more than two groups, we can easily extend
UGFM by considering the average or maximum differences in M between pairwise groups.
Finally, for the item-side fairness, we expect that a fair recommendation model could balance

the exposure rate and opportunity between different item groups in the top-K recommendation

list. Let Pj (K ) be the probability of an item in the j-th item group GIj being ranked in the top-K

recommendation list and Pj (K |y = 1) be the probability of a item in GIj being ranked among the

true positives in the top-K recommendation list. Then, the two kinds of item-side fairness can be
defined as below.

Definition 3.2 (Item Ranking-based Statistical Parity and Equal Opportunity [54]). Given n item

groups GI1 ,G
I
2 , . . . ,G

I
n , the item ranking-based statistical parity (RSP) requires

P1 (K ) = P2 (K ) = · · · = Pn (K ), (5)

and the item ranking-based equal opportunity (REO) requires

P1 (K |y = 1) = P2 (K |y = 1) = · · · = Pn (K |y = 1). (6)

Unlike user-side fairness, there are two alternative definitions of item-side fairness, namely, RSP
and REO, which are based on the concepts of statistical parity [13] and equal opportunity [18], re-
spectively. They concern the fairness issue caused by popularity bias in different aspects: RSP
encourages the equality of overall exposure rate among groups without factoring in user prefer-
ences; REO encourages the equality of true positive exposure rate among groups, which also aligns
with user preferences on items. Both definitions are commonly adopted. On one hand, the former
could benefit small item providers especially in raising their overall exposure, but their exposure
may be less effective (e.g., with a lower conversion rate). On the other hand, the latter could ben-
efit small item providers with more high-quality exposure, but does not help with their overall
exposure. To investigate item-side fairness comprehensively, we adopt both definitions. Similar to
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Table 1. Summary of Main Notations Used

Symbol Definition

U ,u Set of users and a user instance
I, i Set of items and an item instance
xu , xi Original biased embedding for user u and item i
x′u , x′i Debiased embedding for user u and item i

GUj ,G
I
j Sets of user and item groups

F Adaptive fairness filters

DU ,DI Explicit fairness discriminators
Δ Implicit fairness discriminator
Θ• Parameters of different components

αu , βu Scaling and shifting factors for modulation
gu , ĝu Ground-truth and predicted user group probabilities (categorical data)
gi , ĝi Ground-truth and predicted item group probabilities (categorical data)
r0, ru reference rating scale and rating scale of user u

yu,i , ŷu,i Ground-truth and predicted interaction between u and i

δϕ , δ̂ϕ Ground-truth and predicted probability whether sampled rating belongs to r0

user-side fairness, on practical models with non-binary fairness, we follow previous work [54] to
evaluate the following two metrics corresponding to RSP and REO, respectively.

RSP@K =
std (P1 (K ), P2 (K ), . . . , Pn (K ))

mean (P1 (K ), P2 (K ), . . . , Pn (K ))
, (7)

REO@K =
std (P1 (K |y = 1), P2 (K |y = 1), . . . , Pn (K |y = 1))

mean (P1 (K |y = 1), P2 (K |y = 1), . . . , Pn (K |y = 1))
, (8)

where Pj (K ) can be calculated as the ratio between the number of top-K recommendations in
the j-th item group and the total number of ranking candidates belonging to the j-th group, and
Pj (K |y = 1) can be calculated as the number of positive top-K recommendations in the j-th item
group and the total number of positive ranking candidates belonging to the j-th group. Similar to
UGF, lower values in RSP and REO indicate better item-side fairness.
In summary, the main objective of this paper is to reduce popularity bias in recommendation

models, in order to achieve user- and item-side fairness simultaneously across different popularity
groups. Of course, we also aim to preserve the competitiveness of the recommendation model,
which should only incur minimal compromise in the overall model effectiveness.

4 PROPOSED METHOD

To address the fairness issues as stated in the last section, we present the framework as well as
the details of the proposed FAiR model. The overall framework is shown in Figure 5, and main
notations used are shown in Table 1.

4.1 Overall Framework

As Figure 5 shows, the overall framework consists of several parts: (a) input data; (b) adaptive fair-
ness filters; (c) explicit and implicit fairness discriminators; and (d) base recommendation model.
In Figure 5(b), we design adaptive fairness filters for both users and items, which are able to

adapt to each user/item by flexibly mitigating popularity bias of potentially different extents for
the given user/item with the help of a FiLM layer. In Figure 5(c), we design adversarial fairness
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Fig. 5. Framework of the FAiRmodel. The input embeddings are first filtered by adaptive fairness filters (b) to

produce debiased embeddings, based on which the base recommendation model (d) would make predictions

on user-item pairs. Explicit and implicit discriminators (c1 & c2) are used in model training to detect any

residual unfairness after applying the filters. Note that the diagram is focused on the view of user-side

fairness only, and the view of item-side fairness is omitted as it is similar to user-side fairness with an adaptive

fairness filter and explicit fairness discriminator.

discriminators that are either explicit (c1) or implicit (c2). On one hand, the explicit discriminators
aim to tackle bias from a local perspective, targeting each user or item directly. On the other hand,
the implicit discriminator aims to tackle bias from a global perspective, targeting the overall rating
scale. Together, the fairness filters and discriminators are trained adversarially, i.e., the filters act
as a set of generators and the discriminators play the role of adversary.
Lastly, in Figure 5(d), we utilize a base recommendation model to predict user ratings toward

items. Given a pair of user-item (u, i )with embeddings xu , xi ∈ Rd , the fairness filters first generate
their debiased embeddings x′u , x′i ∈ Rd , respectively. The base model then operates on the debiased
embeddings to generate fair recommendation outcomes.
In the following, we will elaborate on each component as well as the process of model training.

4.2 Adaptive Fairness Filters

A fairness filter is a nonlinear transformation F : Rd → Rd on the original user or item embedding
(xu or xi ), to reduce the popularity bias from them and generate a debiased embedding (x′u or x′i ).
A straightforward solution is to materialize F with a neural network, as follows.

x′u = F
(
xu ;Θ

U
F
)
, (9)

x′i = F
(
xi ;Θ

I
F
)
, (10)

where F is amulti-layer perceptron (MLP), and ΘUF ,Θ
I
F denote the parameters of the MLP for

user and item fairness filter, respectively.
However, as motivated in Section 3, different users (or items) often have varying distributions

in popularity. Thus, it is inflexible and ineffective to mitigate the popularity bias for all users (or

items) using a single shared model ΘUF (or ΘIF ). We propose to make the filters adaptive, in which

the parameters ΘUF or ΘIF can adapt to different input users or items, respectively. In contrast, in

conventional neural networks, the model is frozen once training completes, which means the same
parameters are used in testing regardless of the input. Specifically, we achieve the adaptability with
FiLM [34]. The basic idea of FiLM is to generate a set of scaling and shifting operators conditioned
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on the input feature, which are then used to modulate the original parameters of a model. As a
result, the modulated parameters would better adapt to different input. In our context, the FiLM
is conditioned on the original user (or item) embedding, and generates the scaling and shifting
operators for the user (or item) fairness filter. Taking the user side as an example as shown in
Figure 5(b), the FiLM layers output

αu = FiLM
(
xu ;Θ

U
α

)
, (11)

βu = FiLM
(
xu ;Θ

U
β

)
, (12)

where αu ∈ Rd×d and βu ∈ Rd are respectively the scaling and shifting operators for user u, and
ΘUα and ΘU

β
are the trainable parameters of the corresponding FiLM layers. The FiLM layers can

be simply implemented as another MLP. Similar FiLM layers can also be employed for items, with

trainable parameters ΘIα and ΘI
β
.

The scaling and shifting operators are used to adapt the shared parameters of the adaptive
fairness filters in Equations (9) and (10). Again, we take the user side as an example. Since the
filter F is an MLP, its parameters are given by the set of weights and biases in each layer, i.e.,
ΘUF = {WU, �, bU, � }�=1,2, ... where � is the layer number in the MLP. Subsequently, scaling and

shifting operations are performed to adapt the above shared parameters into user-specific param-
eters for u, as follows.

WU, �
u =WU, �αu , (13)

bU, �
u = bU, � + βu . (14)

Collectively, ΘUF ,u = {WU, �
u , bU, �

u }�=1,2, ... denotes the set of parameters of the user fairness fil-

ter adapted specifically to u. Adapting the item parameters in the same manner, we obtain ΘIF ,i
specific to item i . Hence, the fairness filters in Equations (9) and (10) are reformulated as

x′u = F
(
xu ;Θ

U
F ,u
)
, (15)

x′i = F
(
xi ;Θ

I
F ,i
)
, (16)

which are adaptive to different input users and items.
Note that the user- (or item-) specific parameters are adapted from the shared parameters ΘUF

(orΘIF ). Here the shared parameters capture a common debiasing prior shared among all users (or

items), while the FiLM layers further modulate the common prior to adapt to individual variations
beyond their commonality. In contrast, training one separate model for every user (or item) could
be more flexible, but it can easily overfit due to the blown-up parameter space, and cannot leverage
the common prior among users (or items).

To sum up, ΘF = (ΘUF ,Θ
U
α ,Θ

U
β
,ΘIF ,Θ

I
α ,Θ

I
β
) represents all learnable parameters of the adap-

tive fairness filters, including the common priors and FiLM parameters for both users and items.

4.3 Fairness Discriminators

The fairness filters above attempt to mitigate the popularity bias by debiasing user and item em-
beddings. To judge if the fairness filters are effective, we introduce a set of fairness discriminators
to detect the presence of any residual popularity bias in the debiased embeddings. In particular, the
filters and discriminators are trained adversarially. Intuitively, adversarial learning plays a mini-
max game between a generator and a discriminator [45]. In our case, the filters act as generators
that generate fair samples, and the discriminators attempt to distill potential residual biases from
the generated samples.
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More concretely, we design explicit and implicit fairness discriminators. The explicit discrimi-
nators pursue fairness from a local perspective, dealing with each user or item directly. On the
other hand, the implicit discriminator pursues fairness from a global perspective, dealing with the
overall rating scale.

4.3.1 Explicit Fairness Discriminators. The general idea of explicit discriminators is to directly
detect the popularity bias in each local user or item. We employ two explicit discriminators, one
for the user side, and the other for the item side. Taking the user side as an example, consider a
user u with debiased embedding x′u , which is generated by the user fairness filter. We deem that
there is still residual bias in the debiased embedding x′u if the user-side explicit discriminator is
able to classify u into the correct user group based on x′u . Note that the ability to recover the user
group is a natural indicator of the presence of popularity bias, as the goal of user-side fairness is
to reduce differential treatment of user groups with varying popularity. The mechanism of item
explicit discriminator is similar.
Formally, the explicit discriminators DU : Rd → Rm for users and DI : Rd → Rn for items

are essentially multi-class classifiers, defined as follows.

ĝu = DU
(
x′u ;ΘUD

)
, (17)

ĝi = DI
(
x′i ;Θ

I
D
)
, (18)

where DU or DI is implemented as an MLP parameterized by ΘU
D

for users or ΘI
D
for items.

Their output layers employ a softmax activation, such that ĝu ∈ Rm and ĝi ∈ Rn are the predicted
group probabilities for user u and item i , respectively. More specifically, let ĝu [j] (or ĝi [j]) denote
the probability of useru (or item i) belongs to the j-th user groupGUj (or item groupGIj ). The goal
of the discriminators is to predict the group correctly, which can be achieved by maximizing the
following log-likelihood.

LD (gu , ĝu ) =
m∑
j=1

gu [j] log ĝu [j], (19)

where gu ∈ Rm is the one-hot encoding ofu’s ground-truth group such that gu [j] = 1 iffu belongs
to the j-th user group GUj . The log-likelihood for item groups, LD (gi , ĝi ), can be defined in the
same way.

4.3.2 Implicit Fairness Discriminator. While the explicit discriminators target each user or item
locally, the recommendation outcomes may still manifest unfairness globally. The key reason is
that different users have different rating scales [54]. This would particularly impact item-side fair-
ness in terms of exposure, as an item predicted with a high rating might still be ranked relatively
low for a user who habitually gives high ratings to all observed items, thus not being recommended
to the user (i.e., non-exposure). Conversely, an item predicted with a low rating might still be rec-
ommended to a user (i.e., exposure) who habitually gives low ratings to all observed items. That
means, even though item ratings in different popularity groups have been homogenized by the
fairness filters, the recommendation outcomes might still result in unfairness in item exposure to
users of different rating scales.
To address this problem, we design the implicit discriminator. The key idea is to normalize users’

predicted ratings toward a global scale, so that all users have similar rating scales on items, thereby
reducing the popularity bias due to different scales. Given a reference rating scale r0 ∈ R |I | on
items, fairness is achieved when the predicted rating scales of users become indistinguishable
from the reference scale. In this context, the fairness filters and the base recommendation model
jointly act as the generator, which aims to predict user ratings and subsequently generate a rating
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sample similar to the reference scale. At the same time, the implicit discriminator plays the role of
adversary, to distinguish if a rating sample is drawn from a user’s scale or the reference scale.
Specifically, the reference scale can be estimated from the training data, in which item i’s ref-

erence rating, r0[i], is defined as the average rating among users who rated i in training data. On
the other hand, the rating scale of user u, ru ∈ R |I | , consists of predicted item ratings from our
model, i.e., ru [i] = ŷu,i , the predicted rating of user u on item i . The implicit discriminator Δ is
essentially a binary classifier, trying to tell if a rating sample is drawn from the reference scale or
the user’s scale. Let ϕ be a rating sample consisting of K ratings uniformly sampled from either
the reference scale r0 or user scale ru for some user u. Then,

δ̂ϕ = Δ(ϕ;ΘΔ), (20)

where Δ is implemented as an MLP parameterized by ΘΔ, and δ̂ϕ is the predicted probability of
ϕ sampled from the reference scale r0. As an MLP can only take in fixed-length input, the sample
size K is fixed as 128 in our experiments.

The goal of the implicit discriminator is to tell apart user and reference scales correctly, which
can be achieved by maximizing the log-likelihood below.

LΔ(δϕ , δ̂ϕ ) = δϕ log δ̂ϕ + (1 − δϕ ) log(1 − δ̂ϕ ), (21)

where δϕ = 1 if ϕ is sampled from r0, or 0 otherwise.
Collectively, the implicit and explicit discriminators have learnable parameters given byΘD,Δ =

(ΘUD ,Θ
I
D ,ΘΔ).

4.4 Model Training

Our model optimizes not only the conventional recommendation loss, but also the generators’ and
discriminators’ loss.

4.4.1 Base Recommendation Model. As shown in Figure 5(d), the base model R : Rd ×Rd → R
predicts a rating score ŷu,i that user u will rate on item i . It operates on the debiased user and item
embeddings, x′u and x′i , i.e.,

ŷu,i = R (x′u , x′i ;ΘR ), (22)

whereR is implemented as anMLP parameterized byΘR . Similar to the filters, the base recommen-
dation can also benefit from an adaptive model, since user-item preferences also vary among users
or items. Hence, we can also employ a FiLM layer in the base recommendation model, by scaling
and shifting the MLP parameters ΘR of the recommendation model R. The base recommendation
model is trained by minimizing the mean squared error w.r.t. the ground-truth yu,i , i.e.,

LR (yu,i , ŷu,i ) = (yu,i − ŷu,i )2. (23)

4.4.2 Adversarial Training. Finally, we train the fairness filters, discriminators and base model
jointly. As in a typical adversarial training, we alternate the optimization between the discrimina-
tors and generators.
For the discriminators, we attempt to beat the generators by (1) recovering user and item groups

with the explicit discriminators; and (2) distinguishing user and reference rating scales with the
implicit discriminators, as follows.

max
ΘD,Δ

explicit discriminators︷����������������������������������������︸︸����������������������������������������︷
Eu∼ULD (gu , ĝu ) + Ei∼ILD (gi , ĝi ) +

implicit discriminator︷�������������������������������������������︸︸�������������������������������������������︷
Eu∼U,ϕ∼ruLΔ(0, δ̂ϕ ) + Eϕ∼r0LΔ(1, δ̂ϕ ) . (24)

For the generators, the goal of the filters and base model is three-fold: (1) fooling the explicit
discriminators so that the debiased user/item embeddings carry no group information and any
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ALGORITHM 1: Training pipeline of FAiR

Input:U : user set, I: item set, nд : number of updates for base model and generators per iteration, nd :
number of updates for discriminators per iteration.

Output: Optimized parameters ΘR ,ΘF and ΘD,Δ;
1 Initialize all parameters;

2 while not converged do

3 /* train discriminators */

4 for n = 0;n < nd ;n++ do

5 Sample a batch of users {u} ∼ U ;

6 Sample a batch of items {i} ∼ I;
7 Sample a batch of ratings {ϕu } ∼ ru ,u ∼ U ;

8 Sample a batch of ratings {ϕ0} ∼ r0;

9 Update ΘD,Δ according to Equation (24);

10 end

11 /* train base model & generators */

12 for n = 0;n < nд ;n++ do

13 Sample a batch of user-item pairs {u, i} ∼ U × I;
14 Sample ratings ϕ ∼ ru for each sampled user u;

15 Update ΘR ,ΘF according to Equation (25);

16 end

17 end

18 return updated parameters ΘR ,ΘF and ΘD,Δ.

associated popularity signals; (2) fooling the implicit discriminator so that the predicted user rating
scales are indistinguishable from the reference scale; and (3) the debiased embeddings still enable
the base model to learn user-item preferences accurately, as follows.

min
ΘR,ΘF

Eu∼U,i∼I
[ generator for explicit discriminators︷��������������������������������︸︸��������������������������������︷
λ1LD (gu , ĝu ) + λ2LD (gi , ĝi ) +

generator for
implicit discriminator︷����������������︸︸����������������︷
λ3Eϕ∼ruLΔ(0, δ̂ϕ ) +

base model︷����������︸︸����������︷
LR (yu,i , ŷu,i )

]
, (25)

where λ1, λ2 and λ3 are hyper-parameters to control the trade-off of different goals.
During the training of FAiR, we first update the discriminators (ΘD,Δ) by Equation (24), while

keeping the generators including base model and filters (ΘR ,ΘF ) fixed. Next, we update the gen-
erators by Equation (25), while keeping the discriminators fixed. We alternate between the two
steps repeatedly, until the convergence of all parameters. The pseudocode of the training pipeline
is sketched in Algorithm 1.

5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the fairness and effectiveness of the
proposed model FAiR.5 We also conduct ablation studies and other analyses to further investigate
the proposed model.

5.1 Experimental Setup

5.1.1 Dataset. To comprehensively evaluate FAiR for its effectiveness and fairness in different
scenarios of recommendation, we employ three datasets in various domains, namely, Amazon6 for

5We have released the code at https://github.com/mediumboat/FAiR.
6https://jmcauley.ucsd.edu/data/amazon/.
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Table 2. Statistics of the Datasets

Dataset #Users #Items #Pairs
User group 1 Item group 1

%Users %Pairs %Items %Pairs

Amazon 768,438 166,048 1,297,156 5% 27% 5% 53%
Twitter 290,049 - 3,492,386 5% 46% - -
MovieLens 943 1,682 100,000 71% 74% 5% 26%

“Pairs” denotes the user-item interaction pairs; “%Users/%Items” is the proportion of total

users/items in the group; “%Pairs” is the proportion of interaction pairs involving users or items in

the group.

e-commerce recommendation, Twitter7 for friends recommendation, and MovieLens8 for movie
recommendation. Essentially, these datasets all boil down to the prediction of interaction between
entities, e.g., user-product interaction on Amazon, user-movie interaction onMovieLens, and user-
user interaction on Twitter. These datasets are widely used by previous recommendation models
including fairness-based models. In particular, the Twitter dataset is from RecSys Challenge 20219

on recommendation fairness. To construct user groups, we split MovieLens users into two groups
by gender. For Amazon and Twitter, we choose the top 5% most frequent users as group 1, and
the remaining as group 2. To construct item groups, for all datasets we choose the top 5% most
frequent items as group 1 and the remaining as group 2.
For all datasets, we use the five-scale rating data for training and prediction. For Amazon, we

use the “Grocery and Gourmet Food” category. For Twitter, we take the average number of engage-
ments (capped at 5) in each observed user-user interaction as the rating. As the original Twitter
dataset contains about 41M users and 291M interactions, to focus on the study of recommendation
fairness rather than computational efficiency, we use breadth-first search (BFS) to sample a sub-
set of about 290K users that can be fit into our memory and trained within a reasonable time period.
Specifically, we start with a random user, and expands to its neighbors; and for each neighbor, we
expand to their respective neighbors. The expansion is repeated until we reach a pre-determined
threshold on the number of users. For MovieLens, we use the 100K version, where the number
of user-movie pairs is 100,000. Note that on Amazon/MovieLens, the products/movies are items;
while there are no items in the Twitter dataset, we can still evaluate item-side fairness by treating
the recommended friends as items.
The statistics of the datasets are summarized in Table 2.

5.1.2 Baselines. We compare FAiR with various state-of-the-art models in three broad cate-
gories, as follows.

• Conventional recommendation methods:

(1)CFI [21]: A matrix factorization-based method for collaborative filtering on implicit feed-
back, which can be applied to explicit feedback as well. CFI has two commonly used imple-
mentations as follows.We denote the implementationwith alternating least squares (ALS)
algorithm as CFIALS and the other implementation with Bayesian personalized ranking

(BPR) algorithm as CFIBPR.
(2) NCF [20]: A popular neural network-based collaborative filtering algorithm.
(3) LightGCN [19]: A powerful graph convolution network-based recommendation
algorithm.

7https://recsys-twitter.com.
8http://files.grouplens.org/datasets/movielens/.
9http://www.recsyschallenge.com/2021/.
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• General fairness and diversity models:

(4) CFC [5]: An adversarial framework with compositional fairness constraints to generate
fair graph embeddings for users with sensitive attributes.
(5) FULTR [41]: An optimization-based ranking framework to learn a fair ranking policy
for users.
(6) FR (FairRec) [32]: A post-processing multi-phrase model for two-sided fairness (i.e., not
end-to-end), aiming to achieve envy-freeness for the user side and maximin share for the
item side, which is not specifically designed to deal with the popularity bias.
(7) FaX [10]: A determinantal point process-based algorithm for diversified recommendation,
which helps item-side fairness to some extent by diversifying the exposure of different item
groups, but it does not strive for equal exposure.
• Fairness models for popularity bias:

(8) DPR [54]: An adversarial Bayesian model for item-side fairness.
(9) ADB [8]: A meta-learning based method that automatically mitigates multiple kinds of
bias for users including the popularity bias.
(10)UOF [24]: An user-oriented fairness recommendationmodel which solves the popularity
bias issue from the user perspective.
(11) MACR [46]: The model-agnostic counterfactual reasoning framework to reduce popu-
larity bias for items.

We implement the proposed FAiR using Tensorflow 2.2 in Python 3.6. All experiments were
conducted on a Linux workstation with a 6-core 3.6GHz CPU, 128GB DDR4 memory and two RTX
2080Ti GPUs. For the baseline CFI, we used a third-party implementation.10 For NCF,11 CFC,12

LightGCN,13 DPR,14 FULTR,15 FaX,16 FR,17 ADB,18 UOF19 and MACR,20 we used their respective
authors’ implementations.

5.1.3 Metrics. Weperform top-10 recommendation for each user, and evaluate the effectiveness,
user-side fairness and item-side fairness of the top-10 recommendation list.
For effectiveness, we evaluate its precision and recall, denoted as prec@10 and rec@10, respec-

tively. For both effective metrics, higher values indicate more effective recommendations.
For user-side fairness, we employ UGFM defined in Equation (4). We adopt the same effec-

tiveness metric for M as in the effectiveness evaluation, i.e., prec@10 and rec@10. We denote
the two options as UGFprec and UGFrec. For item-side fairness, we use RSP and REO defined in
Equations (7) and (8), with K = 10 (i.e., top-10 recommendations), and denote the two metrics as
RSP@10 and REO@10, respectively. For all fairness metrics, lower values indicate better fairness.

5.1.4 Data Splitting, Hyper-Parameters and Features. We split the user-item interaction pairs
into training/validation/test sets with the ratio of 0.8/0.1/0.1. To construct the validation/test

10https://implicit.readthedocs.io/en/latest/.
11https://github.com/hexiangnan/neural_collaborative_filtering.
12https://github.com/joeybose/Flexible-Fairness-Constraints.
13https://github.com/kuandeng/LightGCN.
14https://github.com/Zziwei/Item-Underrecommendation-Bias.
15https://github.com/him229/fultr.
16https://github.com/laming-chen/fast-map-dpp.
17https://github.com/gourabkumarpatro/FairRec_www_2020.
18https://github.com/DongHande/AutoDebias.
19https://github.com/rutgerswiselab/user-fairness.
20https://github.com/weitianxin/MACR.
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candidates for a user u, we first add all items in the validation/test set that have interacted with u
as positive examples, and then sample 10 non-interacting items as negative examples.
We determine the hyper-parameter and settings by tuning our model on validation set and

following the guidance from literature. For FAiR, the trade-off hyper-parameters λ1, λ2 and λ3 are
set based on the validation set. They are set to 0.7/0.1/0.3 for Amazon, 0.4/-/0.2 for Twitter (λ2 is not
applicable as there is no item), and 0.4/0.3/0.8 for MovieLens. (A sensitivity analysis of λ1, λ2 and
λ3 is also presented in Section 5.7.) We set the embedding dimensions d to 128 for all datasets. For
training, we use the Adam optimizer, and set the learning rate to 1e-3 and the batch size to 1,600. In
each iteration of training, we set the number of updates on discriminators and generators, nd and
nд , to 5 and 1, respectively. For baselines, we set their hyper-parameters based on the validation
set, following guidance from the literature.
For all methods (including FAiR) requiring user/item features as input, we generate the input

user embeddings (xu ) and item embeddings (xi ) for each dataset using a collaborative filtering
model21 implemented in TensorFlow 2. For the baseline method CFC that requires a graph as input,
we construct a bipartite graph based on the user-item interaction pairs. For the baselines CFI and
CFC, we predict the rating ŷu,i with the inner product of the corresponding output user/item
embeddings.

5.2 Performance Comparison

Table 3 shows the performance of all models on the three datasets, where each model is repeated
for five runs andwe report their mean± std-dev. Note that, as ADB runs out of memory onAmazon
and Twitter, we only report its performance on the MovieLens dataset. From the results we draw
three main conclusions.
Firstly, we observe that FAiR performs consistently well in fairness for both users and items com-

pared to other methods. Among the three datasets, FAiR beats the best conventional baseline in each
of the four fairness metrics by up to 44.3%, 38.0%, 97.5% and 60.9%, respectively, while outperform-
ing the best fairness baseline in each metric by up to 11.1%, 5.3%, 15.6% and 17.1%, respectively. The
results can be attributed to two reasons. On one hand, in our model design, we integrate both user-
and item-side fairness in an end-to-end framework. The end-to-end two-sided fairness learning
can mitigate the popularity bias while better preserving the intrinsic relationships between users
and items. Hence, FAiR generally outperforms multi-phrase models such as FR. Besides, other
fairness-aware baselines only focus on either user-side fairness (e.g., CFC and UOF) or item-side
fairness (e.g., FULTR and DPR), which means their fairness performance on the other side is lim-
ited. For instance, while DPR and FULTR have a slight edge over FAiR in the item-side metric REO
on Amazon or RSP on Twitter, they trail behind FAiR significantly on the user side metrics UGFprec
and UGFrec. On the other hand, we design the adaptive fairness filters that are able to adapt to each
user and item and effectively mitigate the popularity bias of different extents.
Secondly, there is a clear trade-off between effectiveness and fairness. Conventional methods

do not pay any attention to fairness; not surprisingly, they often achieve high effectiveness at
the expense of very poor fairness relative to fairness models as discussed in the first observation.
Conversely, fairness models achieve much better fairness by compromising effectiveness to some
extent. In particular, in our model, the trade-off between accuracy and fairness can be adjusted
by tuning the hyperparameters in Equation (25) (also see Section 5.7 on the influence of hyperpa-
rameters). Thus, to make meaningful fairness comparisons to other fairness models, our general
principle is to maintain a similar level of effectiveness as other fairness models, while the effec-
tiveness of conventional models merely provides a reference line for all the fairness-aware models.

21https://github.com/keras-team/keras-io/blob/master/examples/structured_data/collaborative_filtering_movielens.py.
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Table 3. Comparison Between FAiR and Baselines

↑Prec@10 ↑Rec@10 ↓UGFprec ↓UGFrec ↓RSP@10 ↓REO@10

Amazon

CFIALS .013±.002 .885±.006 .068±.005 .461±.016 .099±.003 .020±.008
CFIBPR .019±.001 .921±.003 .069±.004 .470±.015 .107±.001 .036±.005
NCF .017±.003 .907±.043 .069±.014 .460±.022 .109±.004 .023±.001
LightGCN .019±.002 .906±.015 .061±.008 .451±.011 .091±.004 .026±.005
CFC .013±.002 .880±.039 .036±.006 .301±.025 .089±.014 .032±.009
FULTR .011±.002 .892±.035 .054±.013 .363±.015 .077±.008 .010±.002
FR .012±.004 .872±.002 .061±.001 .459±.010 .104±.002 .030±.001
FaX .009±.002 .875±.004 .052±.003 .359±.004 .079±.002 .016±.003
DPR .013±.001 .901±.021 .158±.012 .338±.013 .064±.004 .010±.002
UOF .010±.003 .884±.013 .041±.008 .316±.009 .096±.006 .021±.003
MACR .011±.002 .896±.019 .163±.007 .342±.011 .071±.012 .015±.004
FAiR .012±.003 .887±.028 .034±.011 .285±.023 .054±.016 .012±.005

Twitter

CFIALS .047±.002 .668±.022 .554±.011 .352±.013 .437±.010 .160±.006
CFIBPR .079±.005 .737±.029 .595±.004 .363±.011 .441±.004 .168±.009
NCF 0̇64±.010 .710±.026 .564±.027 .349±.012 .436±.007 .164±.007
LightGCN .082±.011 .739±.030 .522±.031 .330±.019 .448±.014 .165±.013
CFC .057±.013 .704±.026 .451±.018 .314±.008 .053±.004 .133±.006
FULTR .056±.010 .708±.019 .463±.012 .337±.011 .102±.008 .144±.008
FR .033±.006 .515±.009 .603±.010 .350±.011 .424±.006 .151±.009
FaX .049±.004 .698±.004 .461±.003 .325±.002 .133±.003 .149±.004
DPR .065±.018 .712±.031 .459±.039 .310±.014 .003±.001 .098±.014
UOF .054±.013 .698±.007 .455±.005 .318±.006 .379±.026 .161±.005
MACR .045±.008 .616±.013 .471±.022 .329±.018 .080±.009 .142±.013
FAiR .054±.016 .686±.027 .443±.012 .308±.014 .011±.005 .087±.011

MovieLens

CFIALS .527±.005 .498±.005 .040±.005 .225±.002 .202±.015 .240±.024
CFIBPR .501±.014 .472±.013 .047±.006 .217±.005 .196±.038 .188±.048
NCF .529±.011 .495±.011 .054±.004 .230±.006 .166±.046 .174±.063
LightGCN .536±.006 .501±.002 .042±.002 .208±.006 .230±.013 .217±.014
CFC .476±.011 .449±.001 .036±.003 .203±.003 .181±.029 .166±.040
FULTR .474±.008 .445±.002 .039±.002 .208±.004 .145±.013 .157±.021
FR .516±.003 .485±.002 .042±.009 .210±.004 .143±.006 .154±.010
FaX .452±.009 .441±.003 .040±.004 .208±.003 .198±.011 .163±.014
DPR .509±.006 .474±.006 .046±.013 .226±.005 .108±.001 .082±.009
ADB .496±.012 .452±.007 .051±.007 .225±.006 .141±.010 .144±.007
UOF .478±.005 .463±.009 .044±.008 .212±.004 .183±.011 .171±.013
MACR .518±.015 .487±.010 .044±.008 .206±.015 .126±.012 .159±.008
FAiR .527±.019 .497±.018 .032±.006 .198±.009 .096±.010 .068±.014

Each result (mean ± std-dev) is obtained by averaging five runs. In each column, the best is bolded, and the next best

is underlined.
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Fig. 6. Ablation study on the two-sided fairness.

Intuitively, the effectiveness of conventional methods represents an “empirical upper bound” for
the fairness models. In short, the effectiveness of our model FAiR remains competitive among the
fairness methods, especially considering that we only implement a simple MLP as the base recom-
mendation model. That implies FAiR is able to obtain a better trade-off given its superior fairness
metrics.
Finally, we also observe that general fairness learning methods which are not specially designed

for popularity bias (i.e., CFC, FULTR, FR, and FaX) also achieve better performance on at least one
fairness metric toward popularity bias compared to conventional methods. This finding reveals
that there exist some relationships between the objectives of different debiasing methods toward
different kinds of bias. Investigating such relationships could be a potential direction for future
study.

5.3 Ablation Study

We conduct several ablations to examine the following three research questions (RQs).

5.3.1 RQ1: How Does the Two-Sided Fairness Impact the Performance? We derive two variants
by implementing only the user-side fairness component or the item-side fairness component, and
name them FAiRuser and FAiRitem, respectively. We plot their performance in comparison to the
full model FAiR in Figure 6 (no results on Twitter as it only consists of users). The results show
that FAiRuser (or FAiRitem) fares well in user (or item) fairness metrics, but performs poorly in the
fairness of the other side. It is also expected that, by filtering less information, the variants are able
to produce slightly higher effectiveness metrics than the full model. In contrast, the full model is
able to exploit the best of both worlds, with similar user-side fairness as FAiRuser, and simultane-
ously with similar item-side fairness as FAiRitem, with only marginal decrease in effectiveness. It
shows that the full model integrates both sides well.

5.3.2 RQ2: How do the Explicit and Implicit Discriminators Contribute to FAiR Model? We
derive two variants of FAiR by implementing only the explicit or implicit discriminator(s), namely
FAiRexplicit and FAiRimplicit , respectively. We compare their performance with the full model
FAiR in Figure 7 on the three datasets. From the results we observe that both variants have slightly
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Fig. 7. Ablation study on the discriminators.

Table 4. Ablation Study on FiLMs

↑Prec@10 ↑Rec@10 ↓UGFprec ↓UGFrec ↓RSP@10 ↓REO@10

Amazon 0 -0.012 +0.013 +0.021 +0.013 +0.006
Twitter -0.003 -0.039 +0.010 +0.017 +0.004 +0.004
MovieLens -0.008 -0.010 +0.007 +0.004 +0.007 +0.013

Numbers reported are the absolute changes of FAiR when FiLMs are removed.

better effectiveness than FAiR, as less information is filtered by virtue of weaker adversarial
training. However, FAiR significantly outperforms FAiRimplicit in both user- and item-side fairness,
implying that explicit discriminators are able to enhance the fairness of both sides. Comparing
to FAiRexplicit, FAiR is much better in item-side fairness while achieving similar user-side fairness,
implying that the implicit discriminator mainly improves item-side fairness. This is consistent
with the motivation of implicit discriminator in Section 4.3, which is designed to mitigate the
popularity bias w.r.t. item exposure across groups due to different user rating scales. In summary,
both implicit and explicit discriminators are useful for their purposes.

5.3.3 RQ3: How Important is it toMake the Filters Adaptive? To answer this question, we remove
all FiLM layers from our model FAiR, and report the absolute performance changes in Table 4. Re-
sults show that the removal of FiLMs consistently lead to worse effectiveness and fairness metrics.
Therefore, it can be concluded that the adaptive filters are useful, which can enable FAiR to effec-
tively adapt to different input users and items.
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Fig. 8. Curves of training loss and evaluation metrics on MovieLens.

5.4 Adversarial Training

To validate the effectiveness of adversarial training in Algorithm 1, we plot the changes in the
adversarial losses and evaluation metrics during training, on the MovieLens dataset, in Figure 8.
We first examine Figure 8(a), which shows the training loss curves of the discriminator (the

negative of Equation (24)) and generator (Equation (25)). It can be observed that the generator loss
is very large at the initial stage, as the popularity bias is significant in the original user and item
embeddings (i.e., xu and xi ). After some updates, the generators (i.e., fairness filters) begin to learn
how to debias user/item embeddings and its loss decreases quickly. Then after about 30 epochs, it
gradually becomes difficult for the discriminators to identify the bias. In short, the generators and
discriminators play a minimax game to compete with each other, resulting in fluctuations in their
losses while the overall loss is still trending down. Finally, after about 60 epochs both generators
and discriminators become well trained and converge.
Next, we examine Figure 8(b), which shows the changes in effectiveness metrics (Prec@10 and

Rec@10) during training on validation data. At the beginning, we observe strong effectiveness
metrics as we have initialized user/item features using effectiveness-oriented embeddings from a
conventional collaborative filtering model. Subsequently, when the generator is trained to become
better in mitigating bias as seen in (a), the effectiveness metrics begin to drop due to the trade-off
between effectiveness and fairness. Finally, the effectiveness metrics increase again after about
50 epochs when the adversarial losses become near-optimal, which implies that the model can
promptly refocus on the effectiveness of recommendation after the fairness filters have been well
trained.
Lastly, we examine Figure 8(c) and (d), which respectively show the changes in user-side and

item-side fairness during training on validation data. In the initial stage, the fairness metrics for
both sides have high values (i.e., worse fairness), revealing significant popularity bias which is also
consistent with the high generator loss illustrated in (a). Later on, as the generator loss gradually
decreases with better trained fairness filters, the values of the fairness metrics gradually decrease
too (i.e., fairness improves). Finally, when the generator is sufficiently trained after about 60 epochs,
the fairness metrics become more stable too with less fluctuation.

5.5 Visualization of Embeddings

To intuitively understand how the proposed fairness filters mitigate popularity bias, we visualize
the user and item embeddings on the Amazon dataset using t-SNE [44]. Specifically, we show their
distributions before and after the filters in Figure 9. In Figure 9(a), we observe that users in group
1 and group 2 are quite well separated in the embedding space before the fairness filter (i.e., xu ),
which means bias can exist leading to differential treatment to the two groups. In contrast, in
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Fig. 9. The visualization of user and item embeddings before and after adaptive fairness filters on Amazon

with t-SNE. The red and blue points indicate different user or item groups. To improve the readability of the

figure, we uniformly randomly select 1,000 instances for each group to show on each subplot after performing

t-SNE.

Figure 9(b), users in the two groups become mixed in the embedding space after the fairness filter
(i.e., x′u ), which are now harder to distinguish and more likely to get equitable outcomes. Similarly,
the item embeddings before and after fairness filters (i.e., xi and x′i ) as shown in Figure 9(c) and
(d), respectively, demonstrate a similar pattern. Thus, the adaptive fairness filters can mitigate the
popularity bias from both sides as expected.
Moreover, the visualizations also shed light onwhy there exists a trade-off between effectiveness

and fairness. In essence, the filters have altered the original distributions of users and items in
different groups, by forcing them to be similar across groups. The change in the distributions
potentially harm the effectiveness of recommendation, while improving the fairness aspect.

5.6 Model Generalizability

To further evaluate the generalizability of the trained model, we re-evaluate its performance under
alternative user/item groups, with different popularity across groups. Comparing to the group con-
struction in the main experiment, here on the MovieLens dataset we construct three user (or item)
groups by choosing the top 5%, the next 35%, and the remaining 60% users (or items) according
to their frequency of interaction. On the test data using the alternative groups, we compare the
performance of FAiR with two other competitive baselines (CFC and DPR according to their per-
formance in the main experiment) in Table 5. Results show that FAiR still maintains superior user-
and item-side fairness when facing a different setting of user/item groups with different popularity.
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Table 5. Generalizability Evaluation on Alternative Popularity Group Construction

↑Prec@10 ↑Rec@10 ↓UGFprec ↓UGFrec ↓RSP@10 ↓REO@10

FAiR 0.527 0.498 0.352 0.131 0.158 0.362

CFC 0.476 0.449 0.392 0.127 0.178 0.402
DPR 0.509 0.474 0.388 0.169 0.159 0.391

UGFprec and UGFrec are computed as the mean of corresponding UGFM on all pairs of groups.

The best result is bolded.

Fig. 10. Impact of λ1, λ2 and λ3 on MovieLens. Each row shares the same λ3 (as shown on the left), and each

column shares the same metric (as shown at the top). In each plot, x-axis is λ1, y-axis is λ2, and z-axis is the
corresponding metric (x ,y, z as shown in the first column).

5.7 Parameter Sensitivity

We investigate the impact of trade-off hyper-parameters λ1, λ2 and λ3 in Equation (25) to under-
stand how they jointly influence the overall effectiveness and fairness of the proposed FAiR. In
Figure 10, we evaluate the Prec@10 and fairness metrics w.r.t. to different sets of the hyper-
parameters on the MovieLens data, by performing a grid search over {10−2, . . . , 101}3.
We first examine the fairness metrics in the right four columns of Figure 10. Generally, the

curve surfaces of the fairness metrics are convex, with their lowest points (i.e., best fairness) in the
central regions. It means that extreme hyper-parameter values would hurt the fairness. On one
hand, larger values would make the generators stronger than the discriminators, making the latter
unable to catch up to advance the minimax game. On the other hand, smaller values would make
the generators weaker and become inadequate to tackle the bias.
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Next, we examine the effectiveness metric Prec@10 in the first column of Figure 10, where a
trade-off with fairness is observed under varying hyper-parameter values. In general, for hyper-
parameter values that result in good fairness metrics (i.e., with low values), Prec@10 scores tend
to be poor. The changes in Rec@10 follow a similar pattern.
Overall, to obtain optimal and stable performance in both effectiveness and fairness, we rec-

ommend tuning each hyper-parameter in the range (0.1, 1), i.e., the central regions shown in the
figure.

6 CONCLUSION

In this paper, we proposed an end-to-end fairness-centric model that adaptively mitigates the pop-
ularity bias in both users and items for recommendation (FAiR). Given the advantage of an end-to-
end adversarial framework with both explicit and implicit discriminators, FAiR is able to integrate
fairness for both users and items at a local as well as global level. Given the advantage of FiLM
layers, FAiR is able to customize the model to the changing input, and adaptively mitigate the
popularity bias in a manner specific to each user and item. Finally, we conducted comprehensive
experiments on three real-world datasets with pressing fairness issues in different application do-
mains. The results show that FAiR significantly outperforms state-of-the-art baselines in fairness
metrics especially in a two-sided setting, whilst obtaining competitive effectiveness w.r.t. other
fairness models. In future work, we intend to study the relationship between the popularity bias
and other kinds of bias, and extend our model to mitigate those biases.
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