
Threshold Attribute-Based Credentials With
Redactable Signature

Rui Shi , Huamin Feng , Yang Yang , Member, IEEE, Feng Yuan , Yingjiu Li , Hwee Hwa Pang ,
and Robert H. Deng , Fellow, IEEE

Abstract—Threshold attribute-based credentials are suitable for
decentralized systems such as blockchains as such systems gen-
erally assume that authenticity, confidentiality, and availability
can still be guaranteed in the presence of a threshold number of
dishonest or faulty nodes. Coconut (NDSS’19) was the first selective
disclosure attribute-based credentials scheme supporting threshold
issuance. However, it does not support threshold tracing of user
identities and threshold revocation of user credentials, which is
desired for internal governance such as identity management, data
auditing, and accountability. The communication and computation
complexities of Coconut for verifying credentials are linear in
the number of each user’s attributes and thus costly. Addressing
these issues, we propose a novel efficient threshold attribute-based
anonymous credential scheme. While retaining all the features of
Coconut, our scheme supports threshold tracing of user identities
and threshold revocation of user credentials, and it significantly
reduces the computational and communication complexities of
credential verification. In addition, we prove that our scheme
enjoys strong security features, including anonymity, blindness,
traceability, and non-frameability.

Manuscript received 1 June 2022; revised 11 April 2023; accepted 22 May
2023. Date of publication 29 May 2023; date of current version 8 October 2023.
The work of Yang Yang was supported in part by the National Natural Science
Foundation of China under Grant 61872091, in part by Singapore National
Research Foundation under Grant NRF2018NCR-NSOE004-0001, and by the
AXA Research Fund. The work of Huamin Feng was supported by the National
Defense Basic Research Program of China under Grant JCKY2019102C001.
The work of Yingjiu Li was supported by Ripple University Blockchain Research
Initiative. The work of HweeHwa Pang was supported by Lee Kong Chian Chair
Professorship. The work of Robert Deng was supported in part by Singapore
National Research Foundation under Grant NRF2018NCR-NSOE004-0001,
and in part by AXA Research Fund. Recommended for acceptance by S. Nepal.
(Corresponding author: Yang Yang.)

Rui Shi is with the School of Cyberspace Security, Beijing University of Posts
and Telecommunications, Beijing 100876, China, and also with the Institute
of Information Security, Beijing Electronic Science and Technology Institute,
Beijing 100070, China (e-mail: ruishi_mail@126.com).

Huamin Feng is with the Institute of Information Security, Beijing Elec-
tronic Science and Technology Institute, Beijing 100070, China (e-mail:
fenghm@besti.edu.cn).

Yang Yang is with the College of Computer Science and Big Data, Fuzhou
University, Fuzhou 350116, China, and also with the School of Computing and
Information Systems, Singapore Management University, Singapore 188065
(e-mail: yang.yang.research@gmail.com).

Feng Yuan is with the Institute 706, Second Academy of CASIC, Beijing
100854, China (e-mail: fyuan1234@aliyun.com).

Yingjiu Li is with the Department of Computer and Information Science,
University of Oregon, Eugene, OR 97403 USA (e-mail: yingjiul@uoregon.edu).

Hwee Hwa Pang and Robert H. Deng are with the School of Computing and
Information Systems, Singapore Management University, Singapore 188065
(e-mail: hhpang@smu.edu.sg; robertdeng@smu.edu.sg).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TSC.2023.3280914, provided by the authors.

Digital Object Identifier 10.1109/TSC.2023.3280914

Index Terms—Blockchain, threshold, traceable, unlinkable
redactable signature, attribute-based credentials.

I. INTRODUCTION

A TTRIBUTE-BASED anonymous credential provides a
privacy-protecting identity authentication mechanism and

is becoming an essential cryptographic primitive. An anony-
mous credential system consists of issuer, user, and verifier. A
user obtains credentials from an issuer on a set of attributes
that describe the user’s access rights. The user then presents
the credentials anonymously to a verifier by disclosing only a
selected subset of the user’s attributes or by proving that the
user’s attributes satisfy certain relations. Anonymous creden-
tials protect user privacy by providing anonymity, and support
fine-grained access control by providing selective disclosure and
relationship proof.

Blockchain is a shared, decentralized ledger that helps record
transactions in a business network. Deploying anonymous cre-
dentials in blockchain facilitates the auditing and tracing of
assets. In blockchain platforms such as Ethereum [1] and Hyper-
ledger [2], credentials can be issued through smart contracts, typ-
ically by integrating credential issuers into blockchain nodes for
automated issuance. However, such systems generally assume
that authenticity, confidentiality and availability are guaranteed
even in the presence of a threshold number of dishonest or faulty
nodes. Meeting this assumption, threshold credential schemes
require only a certain number of issuers available online to
implement credential issuing, making them suitable for deploy-
ment in blockchain platforms. Sonnino et al. [4] for the first time
proposed such a threshold attributes-based anonymous creden-
tial scheme named Coconut and integrated it into Ethereum and
Chainspace [3]. Coconut supports threshold issuance for both
private and public attributes, multiple unlinkable presentations
of anonymous credentials, selective disclosure of user attributes,
and const-size credentials. However, Coconut does not support
threshold tracing of user identities and threshold revocation of
user credentials. The communication and computation complex-
ities of credential verification in Coconut increase linearly with
the number of each user’s attributes, which is unfavorable for
applications with massive user attributes.

Identity tracing and credential revocation is a necessary fea-
ture to enhance anonymous credentials schemes so that illegal
and malicious user behavior can be investigated while user pri-
vacy is protected due to the use of anonymous credentials. It can
help governments and enterprises achieve internal governance

Published in IEEE Transactions on Services Computing, 2023, 16 (5). DOI: 10.1109/TSC.2023.3280914

https://orcid.org/0000-0002-3489-2110
https://orcid.org/0009-0008-3469-8802
https://orcid.org/0000-0002-7891-2670
https://orcid.org/0009-0004-4243-4082
https://orcid.org/0000-0001-8256-6988
https://orcid.org/0000-0001-7266-5712
https://orcid.org/0000-0003-3491-8146
mailto:ruishi_mail@126.com
mailto:fenghm@besti.edu.cn
mailto:yang.yang.research@gmail.com
mailto:fyuan1234@aliyun.com
mailto:yingjiul@uoregon.edu
mailto:hhpang@smu.edu.sg
mailto:robertdeng@smu.edu.sg
https://doi.org/10.1109/TSC.2023.3280914

such as identity management, data auditing, and accountability.
To prevent abuse of tracing and revocation rights, it is desirable
that tracing and revocation be distributed to multiple entities and
enabled as long as more than a threshold number of entities are
cooperative.

The communication and computation complexities of cre-
dential verification matter in large-scale applications. The com-
plexities of Coconut for verifying a user’s credential increase
linear with the number of the user’s attributes, regardless of
how many user’s attributes are disclosed for credential verifica-
tion. Such complexities are not ideal for applications in which
massive user attributes are issued. For example, Anonymous
Credentials (IRMA) [6] developed by the Privacy By Design
Foundation promotes a wide range of real-world attributes to
be used by governments and businesses, including diplomas,
passports, cards, and membership IDs for online services, which
are beyond personal attributes such as name, gender, address,
and position, as well as attributes related to a user’s computing
devices such as hardware platform and software configuration.
The number of attributes for certain users may grow to hundreds,
making it necessary to reduce the complexities of verifying
user’s credentials in practice.

Addressing these issues, we propose a threshold attribute-
based credential with redactable signature. Our scheme retains
all the excellent features of the Coconut, such as supporting
threshold issuing for both private and public attributes, multiple
unlinkable presentations of anonymous credentials, selectively
disclosing user attributes, and const-size credentials. In addition,
our scheme supports threshold tracing of user identities and
threshold revocation of user credentials to make it is more
suitable for deployment into anonymous-yet-accountable dis-
tributed applications; we also reduce the complexities of selec-
tively disclosing attributes with polynomial-based unlinkable
redactable signatures (URS); finally, we formally prove our
scheme is secure and implement it.

A. Contributions

Besides what Coconut has achieved, our scheme makes the
following unique contributions:
•Threshold tracing of user identities and threshold revocation

of user credentials: Our scheme supports threshold identity
tracing and threshold credential revocation, such that the identity
tracing and credential revocation capability are distributed tonT

tracers, and the user identity can be traced and credential can be
revoked only when at least tT -out-of-nT tracers are cooperative.
This avoids malicious tracing and malicious revocation caused
by less than tT tracers.
• Efficient selective disclosure: Our scheme improves the

efficiency of credential verification significantly. Unlike Co-
conut [4], we do not rely on complex ZKP to prove the validity of
user credentials in compliance with a selective disclosure policy.
We innovatively replace costly ZKP with polynomial-based
URS signature. We compare the communication and compu-
tational overheads of our scheme with Coconut and discover
that the computation and communication overheads of credential
verification are reduced significantly to O(k) from O(q), where
q and k denote the total number of a user’s attributes and the

number of a user’s disclosed attributes, respectively. In practice,
the latter (k) is (significantly) smaller than the former (q).
• Formal security proof: We provide formal security proofs

for our scheme, including anonymity, blindness, traceability,
and non-frameability. We show how to reduce them to either
well-known complexity assumptions or the security of proven
cryptography primitives.
• Application and implement: Our scheme is suitable for de-

ployment in blockchain and other anonymous-yet-accountable
scenarios. In particular, we highlight its application in an ac-
countable anonymous reporting system and an existing permis-
sioned token system in Supplementary Material A, available
online. We implement our scheme on a personal laptop and com-
pare its performance with Coconut. In the credential verification
algorithm, the communication cost of our scheme is 24.8% and
4.3%, and the computation cost of our scheme is 71.3% and
12.7% of Coconut for q = 100 and q = 700, respectively. In
addition, we implemented the smart contract of our scheme on
the blockchain platform and tested its cost to demonstrate its
feasibility.

B. Related Work

1) Selective Disclosure Credentials: Anonymous attribute-
based credentials supporting selective disclosure of attributes
can be obtained in a similar way as using randomizable signa-
tures: each user receives a signature as credential on (commit-
ments to) a vector of attributes from a central authority; when the
credential is shown, the user chooses a subset of their attributes
to disclose, randomizes their signature (so that the generated
signature and the issued signature cannot be linked) and proves
the correspondence of this signature to the disclosed attributes as
well as the undisclosed attributes in zero-knowledge proofs [8],
[9], [10], [11], [12], [13]. In terms of privacy, this solution is
entirely satisfactory. However, in terms of efficiency, it is not
as satisfactory because undisclosed attributes are hidden in the
proof of knowledge, which costs more than the user’s disclosed
attributes.

Fuchsbauer and Hanser [15], [16] randomized both the sig-
nature and the signed message (which is a commitment to
the set of user’s attributes) using a structure-preserving sig-
nature on equivalence classes (SPS-EQ) and then relying on
subset-opening of set commitments (SC) for selective disclosure
of attributes. They thereby avoided costly ZKP over hidden
attributes. Unfortunately, once attributes are signed in their
solution, one can disclose them but cannot prove that hidden
attributes satisfy certain relationships. Lysyanskaya et al. [17],
[18] were inspired by the paper of [16] on SPS-EQ. They
provided a construction of delegatable anonymous credentials
based on mercurial signature which can be used to randomize
signatures, messages, and public keys. Their construction is not
based on zero-knowledge proofs, and is therefore considerably
more efficient. Unfortunately, the credentials constructed using
this approach suffer from the same disadvantages as [16].

In [19], a new unlinkable redactable signature (URS) was
constructed by Camenisch et al. and it allows users to redact part
of a signed message, but still can prove that its signature is valid
for a set of disclosed attributes. Unfortunately, their scheme can

only be instantiated by Groth-Sahai proofs [20], and it is hard
to compete with the most effective solution in practice. In [21],
Sanders followed the approach based on URS from [19] and
constructed a flexible redactable signature scheme that achieves
unlinkability at almost no cost. Unlike the methods given in [16],
[17], [18], Sanders’s URS can prove complex relationships
among attributes and does not rely on zero-knowledge proofs
for partial verification. Unfortunately, the construction in [21]
suffers from large public key size, which is, quadratic in q (i.e.,
a total number of a user’s attributes). In [7], Sanders proposed
an improved version of the construction of [21], which reduces
the public key size to linear of q.

2) Distributed and Traceable Credentials: Due to its flexi-
ble deployment, privacy protection, and auditability, many dis-
tributed and traceable credential schemes have been proposed.
Garman et al. [37] presented a decentralized anonymous cre-
dentials system for distributed ledgers; their system can be
used to issue publicly verifiable claims without central issuers;
however, showing credentials requires expensive double discrete
logarithm proofs. Yang et al. [38] avoided complex double
discrete logarithmic proofs using blacklist-based authentication.
Unfortunately, none of the above schemes supports threshold
issuing of credentials and threshold tracing of identities.

Hébant et al. [39] proposed a scheme of traceable constant-
size multi-authority credentials based on aggregatable signa-
tures with randomizable tags (ART-sign). Their scheme allows
traceability and, for the first time, the cost for users to prove
credentials is independent of the number of a user’s attributes
and the number of credential issuers. On the other hand, it shares
the same disadvantage as in [16] which does not support proof
of relationship of attributes.

Sonnino et al. [4] proposed “Coconut,” which is a thresh-
old anonymous credential system from Pointcheval–Sanders
(PS) [13] signature, and Rial et al. [5] analyze the security
properties of Coconut in the universal composability framework.
Unfortunately, Coconut does not address the issues of threshold
tracing of user’s identities, and the efficiency of credential
verification increases linearly with the number of each user’s
attributes.

There are also group signature schemes that implement
threshold issuance and threshold tracing, but they are not
attribute-based and cannot achieve flexible access control. Gen-
naro et al. [40] proposed to extend BBS [12] and CL [10]
group-signature schemes to support threshold issuance. But their
schemes follow the sign-and-encrypt paradigm, which results in
a huge signature size to achieve threshold tracing. Camenisch
et al. [14] recently proposed a short threshold dynamic group
signature scheme. They formalized threshold dynamic group
signatures, defined their security in the presence of multiple
issuers and tracers, and presented an efficient, provably secure
instantiation based on PS signatures [13].

II. PRELIMINARY

A. Bilinear Pairing

Let G1, G2 and GT be cyclic groups of prime order p.
Let g and g̃ be generators of G1 and G2, respectively. The

mapping e : G1 ×G2 → GT is a bilinear map if it has three
properties: (1) bilinearity: ∀g ∈ G1, g̃ ∈ G2 and a, b ∈ Zp, we
have e(ga, g̃b) = e(g, g̃)ab. (2) non-degeneracy: e(g, g̃) �= 1GT

.
(3) computability: e can be efficiently computed. Our scheme is
based on the Type-III pairing [27], which means that there is no
efficiently computable homomorphism between G1 and G2.

B. Computational Assumptions

Discrete Logarithm (DL) assumption. Let G be an cyclic
group of prime order and g is a generator of G. Given (g, gx) ∈
G2, the DL assumption holds in G if no efficient adversary can
compute x with non-negligible probability.
Decisional Diffie− Hellman (DDH) assumption [28]: Let G

be an cyclic group of prime order and g is a generator of G.
Given (g, gx, gy, gz) ∈ G4, the DDH assumption holds in the
group G if no efficient adversary can distinguish z = x · y from
an element z that is randomly chosen from Zp.

C. Polynomial-Based Unlinkable Redactable Signatures

Polynomial-based unlinkable redactable signatures
(URS) [7], which consists of a tuple (Setup,KeyGen,
Sign, Derive, Verify) algorithms, is adopted to issue a

credential for the attributes of a user.
•Setup(1λ): On input a security parameter λ, this algorithm

generates public parameters pp = (G1, G2,GT , g, g̃, p, e).
•KeyGen(n): On input an integer n, this algorithm selects

(x, y)←− RZ∗p and computes X̃ = g̃x; Ỹi = g̃y
i
(i ∈ [1, n])

and Yi = gy
i
(i ∈ [1, n] ∪ [n+ 2, 2n]). The secret key is sk =

(x, y), and the public key is pk = (X̃, {Yi, Ỹi}ni=1, {Yi}2ni=n+2).
•Sign(sk, {mi}ni=1): To signnmessagesm1, . . . ,mn (mi ∈

Zp, i ∈ [1, n]), this algorithm selects σ1 ←− RG1, computes

σ2 = σ
x+

∑n
i=1 yi·mi

1 . It setsσ3 = 1G1
and σ̃ = 1G2

, and outputs
σ = (σ1, σ2, σ3, σ̃).
•Derive(pk, σ, {mi}ni=1,D): On input a signature σ =

(σ1, σ2, σ3, σ̃) on {mi}ni=1, the public key pk and a index subset
D ⊆ [1, n], this algorithm selects (r, t)←− RZ∗p and computes

σ′1 = σr
1; σ

′
2 = σr

2(σ
′
1)

t; σ̃′ = g̃t
∏

i∈[1,n]\D Ỹ
mi
i . Then, for all

i ∈ D, it computes ci = H(σ′1, σ
′
2, σ̃

′,D, i) that is used to com-
putes: σ′3 =

∏
i∈D[Y

t
n+1−i ·

∏
j∈[1,n]\D Y

mj

n+1−i+j]
ci . It returns

the derived signature σ′ = (σ′1, σ
′
2, σ

′
3, σ̃

′) on {mi}i∈D.
•Verify(pk, σ, {mi}i∈D): A signature σ = (σ1, σ2, σ3, σ̃)

on {mi}i∈D is valid if the following equations hold:
e(σ1, X̃σ̃ ·

∏
i∈D Ỹ

mi
i) = e(σ2, g̃) and e(

∏
i∈D Y

ci
n+1−i, σ̃) =

e(σ3, g̃), where ci = H(σ′1, σ
′
2, σ̃

′,D, i). If these equations are
all satisfied, then the algorithm returns 1; otherwise returns 0.

In the random oracle and generic group models, URS [7]
signature is unforgeable and unlinkable.

D. ElGamal Encryption

ElGamal encryption [22] scheme, which consists of a tuple
(Setup,KeyGen, Enc, Dec) algorithms, is adopted to to blind
private attributes and keys.

Fig. 1. Architecture.

•Setup(1λ): On input a security parameter λ, this algorithm
generates a cyclic group G with prime order p. It chooses a
generator g of G, and outputs public parameters pp = (G, g, p).
•KeyGen(pp). This algorithm chooses a random z ←− RZ∗p

as a secret key, and outputs the public key Z = gz .
•Enc(Z,m): On input a public key Z and a message m,

this algorithm chooses a random r ←− RZ∗p, and encrypts m as
C = (C1, C2) = (gr, Zrm).
•Dec(z, C): This algorithm decrypts the message m as m =

C2C
−z
1 .

ElGamal encryption [22] scheme is IND-CPA secure under
DDH assumption. In our construction, it is easy to generate ZKP
with the ElGamal encryption.

E. Signature of Knowledge

Signature of knowledge (SoK) [30] for a NP-relationR with
the language LR = {y : ∃x, (x, y) ∈ R}, which consists of a
tuple (Setup,Sign,Verify) algorithms, is adopted to prove the
knowledge of private attributes and keys.
•Setup(1λ): On input a security parameter λ, this algorithm

outputs a public parameter pp.
•Sign(m,x, y): On input a messagem and a relation (x, y) ∈
R, it outputs a SoK: Π = SoK{x : (x, y) ∈ R}.
•Verify(m,Π, y): On input a message m, a SoK Π and a

statement y. If π is valid, return 1; otherwise return 0.
A SoK is SimExt secure [30] if it satisfies correctness,

simulatability and extractability. The SoK can be instantiated by
Fiat-Shamir paradigm [29] incorporated with zero-knowledge
protocols in [31].

III. SYSTEM AND SECURITY MODEL

A. System Model

As shown in Fig. 1, the architecture of our scheme consists
of five types of parties: a one-time trusted third party (TTP),
multiple issuers (I), multiple tracers (T), users (U) and verifiers
(V). In addition, it contains a public append-only ledger (L) for
storing and retrieving user registration/revocation information.
The specific role of each party is described as follows.

•TTP is a one-time trusted third party responsible for setting
up the system (see step 1©) and generating private/public key
pairs for nI issuers (2©).
• Ii is an independent issuer responsible for issuing partial

credentials for users (5©). There are nI issuers in a distributed
system. It is reasonable to assume that some of the issuers are
malicious or can be compromised and that some of the issuers
may not be available online all the time. It is thus required that
the issuers can issue credentials to users (5©) as long as at least
tI honest issuers are online.
• Ti is an independent tracer responsible for tracing user

identities (8©) and revoking user credentials (9©). There are
nT tracers in a distributed system. It is reasonable to assume
that some of the tracers are malicious or can be compromised
and that some of the tracers may not be available online all the
time. It is thus required that the tracers can trace users’ identities
(8©) as long as at least tT honest tracers are online. If a user is
discovered with malicious behavior, tT honest tracers jointly
revoke the issued credentials (9©).
• U with a set of private attributes should register to tI -out-

of-nI issuers (5©), and then the acquired tI partial credentials
can be aggregated into single (6©). When showing credential
(7©), U needs to disclose a subset of attributes or provide proof
of relationship of the hided attributes to V.
• V is an honest but curious credential verifier that honestly

validates the token generated by the user during credential veri-
fication (7©) but is curious to know users’ undisclosed attributes
and real identities. V requests the tracers to trace the identities
of malicious users who do not comply with the access policy.
• L is a public append-only ledger. During user registration

(5©), issuers store user registration information toL. During user
tracing (8©), tracers retrieve user registration information from
L. During user revocation (9©), tracers store user revocation
information to L. During credential verification (7©), verifiers
retrieve user revocation information from L. L can be instan-
tiated using blockchain, where issuers/tracers can store user
registration/revocation information through the blockchain’s
transaction protocol.

B. Formal Definition

The notations used in our scheme are summarized in Table I,
and the algorithms are formally defined below. Since L is
publicly available to all participants, the following algorithm
definitions take L as input by default.
•Setup(1λ, nI , tI , nT , tT , q)→ pp: This algorithm is oper-

ated only once by TTP. It inputs a security parameter λ, a
number nI of issuers and threshold value tI , a number nT of
tracers and threshold value tT , and a total number q of user
attributes, and outputs the system parameter pp.
•TTPKeyGen(pp)→ (pk, {iski, ipki}nI

i=1): This algorithm
is operated by TTP. It inputs the system parameter pp, and
outputs the verification key pk. It then generates private key
iski and public key ipki for each Ii, where i ∈ [1, nI].
•TraceKeyGen(pp)→ (tski, tpki): This algorithm is oper-

ated by each Ti (i ∈ [1, nT]) that inputs the system parameter
pp, and outputs private key tski and public key tpki.

TABLE I
SUMMARY OF NOTATIONS

•UKeyGen(id, pp)→ (usk, upk): This algorithm is oper-
ated by U that inputs the user identity id and the system param-
eter pp, and outputs private key usk and public key upk.
• 〈Obtain(id, usk, upk, {mj}qj=1, ipki, {tpkj}nT

j=1, pp)↔
Issue (iski, ipki, pp)〉 → (credi/⊥): This algorithm is
operated by interacting between U and Ii. To obtain a partial
credential from Ii, U takes user identity id, private/public key
pair (usk, upk), private attributes {mj}qj=1, Ii’s public key
ipki, tracers’ public key {tpkj}nT

j=1 and pp as inputs. Ii takes
private key iski, public key ipki, and pp as inputs. If the
execution fails, the algorithm returns ⊥, otherwise the user
registration information reg is stored to L and the user partial
credential credi is returned.
•CredAgg({credi}i∈I , pp)→ cred: This algorithm is oper-

ated by U that inputs pp and tI partial credentials {credi}i∈I ,
where I ⊂ [1, nI], and outputs an aggregated credential cred.
•
〈
Show(usk, {mj}qj=1,D, cred, pp)↔ Verify(pk, pp)

〉
→

(0/1, tok): This algorithm is operated by interacting between U
and V. U takes usk, {mj}qj=1, a index subset D (D ∈ [1, q]) of
disclosed attributes, cred and pp as inputs. V takes pk and pp as
inputs. At the end of this algorithm, V outputs a bit b (outputs 1
if cred is valid and not revoked or 0 otherwise) and a credential
token tok.
• 〈Trace(tski, tok, pp)〉i∈T → (id/⊥): This algorithm is

jointly operated by tT tracers {Ti}i∈T (T ⊂ [1, nT]) who in-
put private keys tski, tok and pp. It traverses the registration
information in L, returns the id of the user who has computed a
valid credential token tok, and returns ⊥ if the execution fails.
• 〈Revoke(tski, id, pp)〉i∈T → rev: This algorithm is

jointly operated by tT tracers {Ti}i∈T (T ⊂ [1, nT]) who input
private keys tski, user identity id and pp. It outputs the user
id’s revocation information rev, and stores the revocation
information to L.

Correctness: Our scheme is correct if (1) a tok of a credential
cred with respect to a selective disclosure set {mj}j∈D should
be accepted by the credential verification algorithm, provided
that cred on a set of attributes {mj}qj=1 are aggregated from
partial credentials issued by tI honest issuers and not revoked;
(2) by operating the tracing and revocation algorithm, any tT
tracers should all output the same user identity id and revocation
information rev. The formal correctness definition is shown in
Supplemental Material B, available online.

C. Security Model

Our scheme should satisfy the following security require-
ments: anonymity, blindness, traceability and non-frameability.
The security model is defined following the works in [7], [14],
[15], [21], and we provide formal definitions of security require-
ments. All security definitions use the following global variables
and oracles.

Global Variables: In the security games, global variables are
maintained by the challenger and can be accessed by all oracles.
HU : the set of honest users identities;CU : the set of corrupt users
identities; CRED: the set that stores (id, {mj}qj=1, cred, usk)
each time a credential is issued for user id; T K: the set that
stores (id, tok) each time a user id computes a token tok of
credential; T R: the set that stores (id, tok) each time a tok is
opened by tracers.

Oracles: Let A be a probabilistic polynomial time (PPT)
adversary.
OObtIss(id, I, {mj}qj=1). It is an oracle that can be

used to issue a credencial for an honest users id with
the attribute set {mj}qj=1. If id ∈ CU or I � [1, nI],
it returns ⊥. Otherwise, it generates key pair for
id by running: (usk, upk)← UKeyGen(id, pp), and
tI issuers issue partial credentials to id by running:
{〈Obtain(id, usk, upk {mj}qj=1, ipki, {tpkj}nT

j=1, pp) ↔
Issue(iski, ipki, pp)〉 → credi}i∈I . After obtaining tI
partial credentials, it aggregates credentials by running:
CredAgg({credi}i∈I , pp)→ cred: It adds id to HU and
appends (id, {mj}qj=1, cred, usk) to CRED.
OObtain(id, I, {mj}qj=1). It is an oracle that can be used

to play the corrupt issuers jointly issue a credential for
an honest user id with the attributes set {mj}qj=1. If
id ∈ CU , it returns ⊥. Otherwise, it generates key pair
for id by running: (usk, upk)← UKeyGen(id, pp) and
obtains tI partial credentials by running: {〈Obtain(id, usk,
upk, {mj}qj=1, ipki, {tpkj}nT

j=1, pp)↔ A(·)〉 → credi}i∈I ,
where the issuer’s side is executed by the adversary. After
obtaining tI partial credentials, it aggregates credentials by
running: CredAgg({credi}i∈I , pp)→ cred. It adds id to HU
and appends (id, {mj}qj=1, cred, usk) to CRED.
OIssue(id, I, {mj}qj=1). It is an oracle that can be used to

play the honest issuers jointly issue a credential for a cor-
rupt user id with the attributes set {mj}qj=1. If id ∈ HU ,
it returns ⊥. Otherwise, it obtains tI partial credentials by
running: {〈A(·)↔ Issue(iski, ipki, pp)〉 → credi}i∈I , where
the user’s side is executed by the adversary. After obtaining
tI partial credentials, it aggregates credentials by running:

Fig. 2. Anonymity Security Game.

CredAgg({credi}i∈I , pp)→ cred. It adds id to CU and ap-
pends (id, {mj}qj=1, cred, ∗) to CRED, where ∗ indicates the
unknown private key.
OCU(id). It is an oracle that can be used to corrupt an

honest user id. If id ∈ CU , then it returns ⊥. If i ∈ HU ,
then it removes id from HU and adds id to CU , and returns
(id, {mj}qj=1, cred, usk).
OShow(id,D). It is an oracle that can be used to

play a malicious verifier verify a token for an hon-
est user id. If id /∈ HU , it returns ⊥. Otherwise, it
runs 〈Show(usk, {mj}qj=1,D, cred, pp)↔ A(·)〉 → (1, tok),
where the verifier’s side is executed by adversary. It adds
(id, tok) to T K.
OTrace(tok, T). It is an oracle that can be used to play the

honest tracers jointly trace an honest user. It runs the tracing al-
gorithm: 〈Trace(tski, tok)〉i∈T → id, and appends (id, token)
to T R.
OAnChb

(id0, id1,D). It is an oracle that takes as inputs
the identity of two honest users who have the same user’s
attributes. It runs: 〈Show(uskb, {mj}qj=1,D, credb, pp)↔
A(·)〉 → (1, tokb), and returns tokb, where b ∈ {0, 1}.
OBlChb

(id, {m0
j}

q
j=1, {m1

j}
q
j=1, I). It is an oracle

that takes as inputs two different sets of attributes
{m0

j}
q
j=1, {m1

j}
q
j=1 for the honest user id. It runs: {〈

Obtain(id, usk, upk, {mb
j}

q
j=1, ipki, {tpkj}nT

j=1, pp)↔
Issue(iski, ipki, pp)〉 → credi,b}i∈I . It aggregates credentials
by running: CredAgg({credi,b}i∈I , pp)→ credb, and returns
credb, where b ∈ {0, 1}.

Anonymity: Anonymity can protects the user’s privacy as long
as fewer than tT tracers collude; in such case, no verifier can
learn any information about the user’s attributes and secret key
during the execution of the credential verification algorithm,
except for the disclosed attributes. We even allow a token to
be opened without affecting the anonymity of other tokens,
thus ensuring both backward and forward unlinkability. Without
loss of generality, we assume that the first 1, . . . tT − 1 tracers
and the first 1, . . . , tI issuers are controlled by adversary in the
anonymity game.

Definition 1: Theanonymity is defined by gameExpanon−b

in Fig. 2. Our scheme is anonymous, if for any PPT adversary

Fig. 3. Blindness Security Game.

Fig. 4. Traceability Security Game.

A, there is a negligible function ε(λ) such that

Advanon = |Pr
[
Expanon−1(A, λ) = 1

]
− 1

2
| � ε(λ)

Blindness: Blindness ensures that issuers cannot learn any
information about the user’s private attributes during the execu-
tion of the credential issuing algorithm, except for the fact that
the user has knowledge of these attributes. We define blindness
in the malicious issuer model [15], [41] so that the adversary
controls all issuers in the blindness security game.

Definition 2: The blindness is defined by game Expblind−b

in Fig. 3. Our scheme is blind, if for any PPT adversaryA, there
is a negligible function ε(λ) such that

Advblind = |Pr
[
Expblind−1(A, λ) = 1

]
− 1

2
| � ε(λ)

Traceability: Traceability ensures that the tracing algorithm
cannot return ⊥ for any valid token. Following Camenisch et
al.’s [14] definition, in traceable security games, the number of
corrupt tracers can exceed tT , allowing the adversary to trace
arbitrary users, and the number of corrupt issuers is less than
tI , preventing the adversary from issuing credentials to honest
users.

Definition 3: The traceability is defined by game Exptrace

in Fig. 4. Our scheme is traceable, if for any PPT adversary A,

Fig. 5. Non-frameability Security Game.

there is a negligible function ε(λ) such that

Advtrace = |Pr
[
Exptrace(A, λ)

]
= 1| � ε(λ)

Non-frameability: Non-frameability ensures that even if more
than tI issuers and tT tracers collude, they cannot falsely claim
that any honest user generated any valid token but in fact the users
did not generate the token by themselves. This notion captures
the unforgeability property required for threshold credentials
and guarantees that only honest users can compute valid tokens.

Definition 4: The non-frameability is defined by game
Expnon−frame in Fig. 5. Our scheme is framing-resistance, if
for any PPT adversaryA, there is a negligible function ε(λ) such
that

Advnon−frame = |Pr
[
Expnon−frame(A, λ)

]
= 1| � ε(λ)

IV. OUR CONSTRUCTION

A. High-Level Overview

As shown in Fig. 1, the working flow of our scheme is
described as follows. TTP sets up the system parameters (1©),
and generates private/public keys fornI issuers (2©). Each tracer
Ti (i ∈ [1, nT]) generates a private/public key pair to trace user
identities (3©). When joining the system, U should generate a
private/public key pair (4©), and then U initiates a request to
nI issuers to obtain an attribute-based credential. Each issuer
(online) issues a partial credential (5©) and stores the user’s
registration information in L. After receiving credentials from
tI issuers, U aggregates them to form into a single credential
(6©). When U needs to show the credential, U can re-randomize
it and efficiently disclose a subset of attributes (7©). If illegal
tokens generated by U need to be traced, any tT tracers (online)
jointly trace the user’s identity (8©). If a user is discovered with
malicious behavior, tT tracers (online) jointly revoke the user’s
credentials (9©) and store the revocation information in L.

Our scheme is inspired by the concepts in Sanders’s URS
signature [7], Camenisch et al. ’s threshold dynamic group
signature [14], Shamir’s secret sharing scheme [23] and El-
Gamal encryption [22]. The challenge is to combine and
adapt them such that our scheme supports threshold tracing
of users’ identities, threshold revocation of users’ credentials,
threshold issuing of private attributes, and efficient selective
disclosure.

First, we adopted the threshold idea of Camenisch et al.
and adapted it to make the tracing algorithm and revocation
algorithm of our scheme more efficient. (1) In credential issuing
algorithm, a user divides their private key into nT shares using
Shamir’s secret sharing scheme and encrypts each share using
ElGamal’s encryption scheme, then the ciphertexts of all shares
are sent to all issuers as part of the registration information. (2)
In the credential showing algorithm, the user has to compute
the signature of knowledge of their private key. (3) In tracing
algorithm, the tracers use a pairing-based equation to determine
whether the private key hidden in the signature of knowledge
matches the private key hidden in the registration information.
(4) In revocation algorithm, the tracers decrypt the share of the
user’s private key and jointly recover the complete revocation
information, from which the verifier can determine whether the
user’s credentials have been revoked according to a pairing-
based equation.

Second, our scheme incorporates Sander’s polynomial-based
URS signature in credential issuance. Sander’s URS signature
is chosen because it is highly efficient for selective disclosure
of attributes, it supports relationship proofs of hidden attributes,
and its public key is linear in q. To support threshold issuance, our
scheme relies on Shamir’s secret sharing scheme, which implies
that all issuers’ key generation is performed by TTP. This
limitation can also be mitigated by performing key generation
in a distributed manner [24], [25] instead of TTP, but this is
inefficient.

Finally, ElGamal’s encryption scheme is also used to imple-
ment the issuance of private attributes because of its homo-
morphic and supporting efficient zero-knowledge proof. In the
credential issuing algorithm, a user uses the ElGamal algorithm
to encrypt each private attribute and computes the signature of
knowledge of each ciphertext to prove the correctness of all
ciphertexts. After receiving the signature of ciphertexts, the user
uses its homomorphism to unblind the signature and obtain the
credential of private attributes.

B. Concrete Construction

Setup(1λ, nI , tI , nT , tT , q)→ pp: TTP takes a security
parameter λ, a number nI of issuers and threshold value
tI , a number nT of tracers and threshold value tT ,
and a number q of user’s attributes as inputs to cre-
ate the system parameters pp. TTP generates Type-III bi-
linear pair parameters (G1,G2,GT , g, g̃, p, e) and selects
(h1, h2, . . . , hq+1)←− RG1. The system parameters are pp =
(G1,G2,GT , g, g̃, p, e, nI , tI , nT , tT , q, h1, h2, . . . , hq+1).

TTPKeyGen(pp)→ (pk, {iski, ipki}nI
i=1): As shown in

Fig. 6, TTP takes pp as input to generate verification key pk

Fig. 6. TTP Key Generation Algorithm.

Fig. 7. Credential Issuing Algorithm.

andnI public and private key pairs {iski, ipki}nI
i=1.TTP selects

(x, y) as the private key and computes the verification key pk
of URS signature. TTP then selects 2(q + 2) polynomials of
tI − 1 degrees with coefficients in Zp and uses the Shamir secret
sharing scheme to computes a private key iski and public key
ipki for each issuers Ii (i ∈ [1, nI]). TTP then publishes pk and
(i, ipki)

nI
i=1, and transmits iski to the corresponding Ii through

the secure channel.
TraceKeyGen(pp)→ (tski, tpki): T i takes pp as input and

generates ElGamal private key tski and public key tpki. Ti

selects a random tski ←− RZp, and computes tpki = g̃tski . Ti

stores tski and publishs (i, tpki).
UKeyGen(id, pp)→ (usk, upk): U takes their identity id

and pp as inputs, then U selects usk ←− RZp and computes
h = H2(id) and public key upk = husk.

〈Obtain(id, usk, upk, {mj}qj=1, ipki, {tpkj}nT
j=1, pp)↔

Issue (iski, ipki, pp)〉 → credi: As shown in Fig. 7, U and
Ii generate a user’s partial attribute-based credential credi
through the following interaction:
− U takes the following steps to generate registration infor-

mation: (1) To perform blind signatures on the set {mj}qj=1 of
private attributes, U generates the ElGamal private key z and
public key Z = gz , and computes the ciphertext (αj , βj) for
each attribute mj (j ∈ [1, q]). (2) To aggregate tI partial creden-
tials from different issuers into single, each issuer must operate
on the same random element h = gr where r is unknown,
thus U generates h = H2(id) using the collision-resistant hash
function. (3) To support threshold tracing/revocation, U selects
a polynomial fusk(x) of degree tT − 1 with coefficients in
Zp, which is used to divide usk into nT shares (s1, . . . , snT

)

Fig. 8. Credential Showing Algorithm.

Fig. 9. Tracing Algorithm.

using the Shamir’s secret sharing scheme. U use the ElGamal
encryption scheme to encrypt each share si of usk. And then
U computes verification values {Dj}tT−1j=1 as in the Feldman
verifiable secret sharing scheme [26] to verify the correctness
of the private key usk sharing. (4) To prove to the issuer that
all computations are correct, U needs to construct a proof of
knowledge Π1, and send registration information reg to all
issuers.
−After verifyingΠ1, Ii signsupk and ciphertexts (αj , βj)

q
j=1

of private attributes, and sends the blind signature (α′i, β
′
i) to U.

Ii stores the registration information reg in L.
− After receiving (α′i, β

′
i), using the homomorphism of the

ElGamal encryption scheme, U can unblind the signature and
get a partial credential credi of private attributes.

CredAgg({credi}i∈I , pp)→ cred: The algorithm can be ex-
ecuted after U receives tI partial credentials. For each i ∈ I,
U computes λi = [

∏
j∈I,j �=i(j)][

∏
j∈I,j �=i(j − i)]−1, and then

computes σ =
∏

i∈I σ
λi
i . If e(σ, g̃) = e(h, X̃

∏q
j=1 Ỹ

mj

j Ỹ usk
q+1),

U keeps cred = (h, σ), otherwise returns ⊥.〈
Show(usk, {mj}qj=1,D, cred, pp)↔ Verify(pk, pp)

〉
→

(0/1, tok): As shown in Fig. 8, U interacts with V to show
credentials anonymously. In this protocol, U is allowed to
disclose a subset of attributes. First, U derives credential cred
as in the URS signature. In addition, U need to construct a proof

of knowledge Π2 to prove to V that he knows usk. Finally, U
sends the token tok to V. If the proof and signature are verified
and the user’s credentials have not been revoked, then V returns
1 and stores tok, otherwise returns 0. It should be noted that it is
inefficient to directly apply the formula to compute σ̃′, because
it requires |D′|(q + 2− |D′|) exponentiations, but fortunately,
in [7], Sanders gives a way that only requires 2(q + 1)− 1
exponentiations.
〈Trace(tski, tok)〉i∈T → (id/⊥): As shown in Fig. 9, tT

tracers jointly perform identity tracing operations. To trace the id
of the user who generated tok, tracers traverse the latest ledgerL,
read the registration information of each user in it, and determine
whether the usk hidden in tok is the same as the one restored
by their tT shares. If it is the case, the algorithm returns the
corresponding id. If L is traversed and the id is not determined,
it returns ⊥.
〈Revoke(tski, id, pp)〉i∈T → rev: As shown in Fig. 10, tT

tracers jointly perform user revocation operations. For the ma-
licious user id whose identity has been traced, each Ti (i ∈ T)
retrieves their registration information in L, and decrypts the
revocation information share Rid,i = C̃2,iC̃

−tski
1,i = Ỹ si

q+1. The

complete revocation information rev =
∏

j∈T R
λj

id,j = Ỹ usk
q+1

can be recovered by using the t shares {Rid,j}j∈T . Finally, Ti

stores the revocation information rev in L.

Fig. 10. Revocation Algorithm.

TABLE II
FEATURES COMPARISON (

√
: SUPPORTED FEATURE; −: UNSUPPORTED FEATURE)

C. Correctness and Security

The details of the signature of knowledge of the proposed
scheme are shown in Supplemental Material C, available online.
The correctness of the our scheme is analyzed in Supplemental
Material D, available online. We define the following theorems
to formalize that our construction from Section IV-B satisfies
all the desired security guarantees defined in Section III-C. The
formal proofs are given in Supplemental Material E, available
online.

Theorem 1: Our scheme achieves anonymity if DDH assump-
tion holds in G1.

Theorem 2: Our scheme achieves blindness if ElGamal en-
cryption is IND-CPA secure.

Theorem 3: Our scheme achieves traceability if the URS is
unforgeable.

Theorem 4: Our scheme achieves non-frameability if DL
assumption holds in G1.

D. Applications

Our scheme retains all the excellent features of the Coconut
and supports all the applications introduced by Sonnino et al. [4].
In Supplementary Material A, available online, we show two
application scenarios: accountable anonymous reporting system
and permissioned token system, that leverage our scheme to offer
improved fine-grained authentication, traceability, and privacy
properties.

V. PERFORMANCE ANALYSIS

A. Theoretical Analysis and Comparison

Table II makes a features comparison of our scheme with
typical anonymous credential schemes. The CL [10], [40] and

BBS [12], [40] support threshold issuing, threshold tracing and
threshold revocation, PS [13], [14] schemes support threshold
issuing and threshold tracing, but they are not attribute-based
credentials. The schemes in [16], [39] support blind issuance and
re-randomization, and they use SPS-EQ signature and ART-sign,
respectively, to replace the complex zero-knowledge proof to
achieve efficient attribute disclosure proof. Still, their scheme
does not support relation proofs for hidden attributes and thresh-
old functions. Coconut [4] supports threshold issuing, blind
issuance, re-randomization, and relational proof. However, it
does not support threshold tracing and threshold revocation;
another issue of Coconut is that it relies on zero-knowledge
proof to achieve attribute disclosure proof, which is not highly
efficient. Our scheme achieves all the features listed in Table II.
In particular, it relies on URS to achieve attribute disclosure
proof more efficiently than Coconut.

Table III provides a security comparison of our scheme with
other threshold anonymous credential schemes. The scheme
in [40] supports anonymity, traceability, and non-frameability,
but does not support blind issuance of private attributes and does
not provide a formal security definition. The scheme in [14]
supports anonymity, traceability, and non-frameability, and pro-
vides a formal definition of security, but does not support blind
issuance of private attributes. The scheme in [4], [5] supports
anonymity, blindness, and non-frameability, but it doesn’t sup-
port traceability.

In Table IV, our scheme is compared with the Coconut [4] in
terms of storage and computational complexities, where |G1|,
|G2|, |Zp| are the element sizes in group G1, G2 and Zp,
respectively; te1 , te2 , tp are the time cost for the exponential
in group G1, G2 and pairing computations, respectively. The
main overheads of these two schemes are essentially the same
(constant credential size, O(q) public key storage complexity

TABLE III
SECURITY COMPARISON (

√
: SUPPORTED FEATURE; −: UNSUPPORTED FEATURE)

TABLE IV
STORAGE AND COMPUTATION COMPARISON (q/k: NUMBER OF USER/DISCLOSED ATTRIBUTES)

Fig. 11. Execution Time of Algorithms.

and credential showing complexity, etc) except for the verifica-
tion cost and token size. The verification cost of credentials in
Coconut is O(q) operations, while it is O(k) operations in our
scheme. The token size in Coconut is O(q) elements, while it is
O(k) elements in our scheme. The improvements of our scheme
are significant in practice where q is usually much larger than k.

B. Experimental Analysis

In order to evaluate the performance in objective tests, we im-
plement our scheme and measure its performance on a personal
laptop with an AMD Ryzen-5 4600H with Radeon Graphics
3.00 GHz CPU, 16 GB RAM, 512 GB SSD running Ubuntu
Kylin 16.04 operating system. The experiments are conducted
using MIRACL1 and Type-III pairing. We use SHA256 to im-
plement the hash functionsH1,H2 required by our scheme (see
Figs. 7, 8). In order to accurately evaluate the computational
overhead of algorithms in our scheme, we use the Barreto-
Naehrig curve (BN-256) [42] to test the system’s performance
under AES-100 b security level.

Fig. 11(a) shows the computation costs of our scheme. We test
the execution time of the scheme under nI = 5, tI = 3, nT =
5, tT = 3, q = 10, and k = 3. The computation costs of Setup,
TTPKeyGen,TraceKeyGen,UKeyGen andCredAgg are 1.5 ms,

1https://github.com/miracl/

179.1 ms, 1.47 ms, 1.29 ms, 35.7 ms, respectively. For credential
issuing, it costsU and Ii for 77.53 ms and 207.6 ms, respectively.
For credential showing, it costsU andV for 22.3 ms and 54.4 ms,
respectively. It takes 44.5 ms for Ti to check whether a user
satisfies the conditions in the Trace algorithm, and it takes
5.67 ms for Ti to compute the revocation information of a user
in theRevoke algorithm. Fig. 11(b) shows the computation costs
of the credential aggregation algorithm when the number of
issuers nI = 30 and the threshold value tI changes. It costs
36.3 ms, 37.1 ms, 38.1 ms, 40.1 ms, 42.3 ms and 43.5 ms
for tI = 5, 10, 15, 20, 25 and 30, respectively. In Fig. 11(c), we
show the computation costs of the credential issuing algorithm.
When nI = 5, tI = 3, nT = 5, tT = 3, and k = 3, the compu-
tation time increases linearly with q. Fortunately, the credential
issuing algorithm is executed only once for each new user.

In practice, the number q of a user’s attributes is usually much
larger than the number k of a user’s disclosed attributes. For
example, the user may havename, id, student,driver, license,
social, security, number, occupation, home, address, and
many other attributes. If the user buys a student discount ticket,
they only need to disclose the student attribute. Therefore, we
compare the performance of our scheme with Coconut [4] under
the conditions of a large q and a small k. Note that the following
experiment does not include the revocation checking operations,
since Coconut does not support user revocation.

Fig. 12. Overheads of Credential Showing (k is kept constant).

Fig. 13. Overheads of Credential Showing (q is kept constant).

As shown in Fig. 12, we compare the communication and
computation cost of the user (performing Show) and verifier
(performingVerify) for the credential showing algorithm, where
k is fixed to be 10 and q linearly increases. In Fig. 12(a), we
compare the sizes of the token tok between our scheme and
Coconut [4]. The communication cost of Coconut grows linearly
with the number q of user’s attributes. Since the size of tok
in our scheme is independent of q, when k is constant, our
communication consumption is constant and substantially less
than Coconut. When q = 100 (resp. q = 700), the communica-
tion cost of our scheme is approximately 24.8% (resp. 4.3%)
of that in Coconut. In Fig. 12(b), we compare the credential
verification time between Coconut [4] and our scheme. The
computation cost of Coconut grows linearly with the number
q of user’s attributes. Since the operations of credential verifica-
tion in our scheme is independent of q, when k is constant,
our computation cost is constant and substantially less than
Coconut. When q = 100 (resp. q = 700), the computation cost
of our scheme is approximately 71.3% (resp. 12.7%) of that
in Coconut. In Fig. 12(c), we compare the credential showing
time between Coconut [4] and our scheme. The computation
cost of both our scheme and Coconut grows linearly with q.
Although our scheme requires more computation than Coconut
when showing credentials, there is no significant gap between
them.

As shown in Fig. 13, we compare the communication and
computation cost of the user and verifier for the credential
showing algorithm, where q is fixed to be 100 and k linearly
increases. In Fig. 13(a), we compare the sizes of the token
tok between our scheme and Coconut [4]. The communication
cost of both our scheme and Coconut grows linearly with the
number k of disclosed attributes, but the size of our scheme is

significantly smaller than that of Coconut. When k = 2 (resp.
k = 20), the communication cost of our scheme is approxi-
mately 19.7% (resp. 30.2%) of that in Coconut. In Fig. 13(b), we
compare the credential verification time between Coconut [4]
and our scheme. The computation cost of our scheme grows
linearly with the number k of disclosed attributes, but the time
consumption in our scheme is still lower than that of Coconut.
When k = 2 (resp. k = 20), the computation cost of our scheme
is approximately 52.2% (resp. 91.3%) of that in Coconut. In
Fig. 13(c), we compare the credential showing time between Co-
conut [4] and our scheme. The computation cost of our scheme
decreases linearly with the number k of disclosed attributes
while the computational cost of Coconut remains constant. The
execution time of our scheme is higher than that of Coconut, but
they are still in the same order.

The above analysis and comparison indicate that our scheme
enjoys low communication and computation overheads.

C. Evaluation of Smart Contract

As shown in Fig. 14, we present the smart contract of
our scheme to demonstrate the feasibility of deploying our
scheme on the blockchain. The contract has the following
functions: Create, AddIssuer, AddTracer, uploadReg, getReg,
uploadCred,getCred,uploadToken,getToken,uploadTi,getTi,
uploadID, getID, uploadQi, getQi, uploadRev and getRev. First,
TTP deploys the smart contract and calls the Create function
setting system parameters, including nI , tI , nT , tT , and then
calls the AddIssuer and AddTracer functions to publish the
public keys (address) of all issuers and tracers. To obtain
attribute-based credentials, a new user uploads their registration
information to the smart contract via the uploadReg function.

Fig. 14. Smart Contract in our Scheme.

The issuer (online) is then responsible for monitoring the smart
contract and getting the user’s registration request via the getReg
function and uploading a partial credential via the uploadCred
function if the registration request is valid. The user can obtain
the aggregated credential after downloading the partial creden-
tials issued by t issuers via the getCred function. When a verifier
applies to trace the identity of the user who created an illegal
token, the verifier uploads the token to the smart contract via
the uploadToken function. Then the tracer is responsible for
monitoring the smart contract and getting the token via the
getToken function. For cooperative execution of the tracing
algorithm, the tracer (online) uploads the calculated tracing
information Ti to the smart contract via the uploadTi function
and obtains the tracing information of other tracers via the
getTi function. After the tracer gets the t shares of the tracing
information and verifies them, it uploads the user’s identity to
the smart contract via the uploadID function, and broadcasts
the tracing success message to other tracers. The verifier can
get the tracing result via the getID function. To revoke the
credentials of the malicious user id, the tracer uploads the cal-
culated revocation information Qi to the smart contract via the
uploadQi function and gets revocation information from other
tracers via the getQi function. After the tracer receives t shares of
revocation information and verifies them, it uploads the complete
revocation information of the user id to the smart contract,
and broadcasts the revocation success message to other tracers.
The verifier can get the updated revocation list via the getRev
function.

The smart contract was implemented using Solidity lan-
guage.2 The algorithm of the smart contract is shown in Sup-
plementary Material F, available online, where the public keys
of all participants are represented by the type address, and the
input data is represented by the type string.

Then, we evaluate the gas consumption of each function on the
Ethereum test chain (Remix VM Merge) using the Remix.3 For
nI = 5, tI = 3, nT = 5, tT = 3, q = 10, and k = 3, we list the
gas consumption and the corresponding Ether cost and US dollar
cost for each function call in Table V. The gas consumption
covers the transaction cost of Ethereum and the execution cost
of our smart contract. The most expensive operation is the

2https://soliditylang.org/
3http://remix.ethereum.org/

TABLE V
THE GAS CONSUMPTION FOR OUR SCHEME (GASPRICE = 1 GWEI, 1 ETH

= 1605 USD)

uploadReg function, which costs 8.6 dollar and fortunately only
needs to be called once for each new user. Calling uploadToken
costs 1.3 dollar, but this function is only called for illegal tokens.
It costs less than 1 dollar for each of the remaining function calls.

VI. CONCLUSION

In this article, we proposed a threshold attribute-based anony-
mous credential scheme that has three significant practical con-
sequences. First, it supports threshold tracing of user identities
and threshold revocation of user credentials, making it bet-
ter suited in anonymous-yet-accountable distributed scenarios.
Second, it relies on the polynomial-based URS signatures for
credential verification, making it more efficient. Finally, formal
security proofs of our scheme are provided for anonymity, blind-
ness, traceability, and non-frameability. However, the revocation
of attributes in anonymous credentials is still a challenging issue,
and we leave it as our future work.

REFERENCES

[1] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger[J],” Ethereum Project Yellow Paper, vol. 151, pp. 1–32, 2014.

[2] C. Cachin, “Architecture of the hyperledger blockchain fabric,” Proc.
Workshop Distrib. Cryptocurrencies Consensus Ledgers, vol. 310, no. 4,
pp. 1–4, 2016.

[3] M. Al-Bassam et al., “Chainspace: A sharded smart contracts platform[J],”
2017, arXiv: 1708.03778.

[4] A. Sonnino et al., “Coconut: Threshold issuance selective disclosure cre-
dentials with applications to distributed ledgers,” 2018, arXiv:1802.07344.

[5] A. Rial and A. M. Piotrowska, “Security analysis of coconut, an attribute-
based credential scheme with threshold issuance,” Cryptol. ePrint Arch.,
vol. 2022, 2022, Art. no. 11.

[6] IRMA, “Privacy by design foundation,” 2016. Accessed: Jun. 5, 2023. [On-
line]. Available: https://privacybydesign.foundation/attribute-index/en/

[7] O. Sanders, “Improving revocation for group signature with redactable
signature[J],” IACR Cryptol. ePrint Arch., vol. 2020, 2020, Art. no. 856.

[8] M. H. Au, W. Susilo, and Y. Mu, “Constant-size dynamic k-TAA,” in
Proc. 5th Int. Conf. Secur. Cryptogr. Netw., R. De Prisco and M. Yung,
Eds., Springer, Heidelberg, Sep. 2006, pp. 111–125.

[9] J. Camenisch and A. Lysyanskaya, “A signature scheme with efficient
protocols,” in Proc. Int. Conf. Secur. Cryptogr. Netw., S. Cimato, C. Galdi,
and G. Persiano Eds., Springer, Heidelberg, Sep. 2003, pp. 268–289.

https://privacybydesign.foundation/attribute-index/en/

[10] J. Camenisch and A. Lysyanskaya ., “Signature schemes and anonymous
credentials from bilinear maps,” in Proc. 24th Annu. Int. Cryptol. Conf.,
M. Franklin Ed., Springer, Heidelberg, Aug. 2004, pp. 56–72.

[11] D. Boneh and X. Boyen, “Short signatures without random oracles and
the SDH assumption in bilinear groups,” J. Cryptol., vol. 21, no. 2,
pp. 149–177, Apr. 2008.

[12] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,” in Proc.
Annu. Int. Cryptol. Conf., M. Franklin Ed., Springer, Heidelberg, Aug.
2004, pp. 41–55.

[13] D. Pointcheval and O. Sanders, “Short randomizable signatures ,” Proc.
Cryptogr. Track RSA Conf., Springer, Cham, 2016, pp. 111–126.

[14] J. Camenisch, M. Drijvers, A. Lehmann, G. Neven, and P. Towa, “Short
threshold dynamic group signatures,” in Proc. Secur. Cryptogr. Netw.: 12th
Int. Conf., Amalfi, SA, Italy, Sep. 14–16, 2020, pp. 401–423.

[15] G. Fuchsbauer, C. Hanser, and D. Slamanig, “Practical round-optimal
blind signatures in the standard model,” in Proc. Adv. Cryptol.–CRYPTO:
35th Ann. Cryptol. Conf., Santa Barbara, CA, USA, Aug. 16–20, 2015,
pp. 233–253.

[16] G. Fuchsbauer, C. Hanser, and D. Slamanig, “Structure-preserving signa-
tures on equivalence classes and constant-size anonymous credentials[J],”
J. Cryptol., vol. 32 no. 2, pp. 498–546, 2019.

[17] E. C. Crites and A. Lysyanskaya, “Delegatable anonymous credentials
from mercurial signatures,” in Proc. Topics Cryptol.–CT-RSA: Cryptogr.
Track RSA Conf., San Francisco, CA, USA, Mar. 4–8, 2019, pp. 535–555.

[18] E. C. Crites and A. Lysyanskaya, “Mercurial signatures for variable-
length messages,” Proc. Privacy Enhancing Technol., vol. 2021, no. 4,
pp. 441–463, 2021.

[19] J. Camenisch, M. Dubovitskaya, K. Haralambiev, and M. Kohlweiss,
“Composable and modular anonymous credentials: Definitions and prac-
tical constructions,” in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur.,
Springer, Berlin, Heidelberg, 2015, pp. 262–288.

[20] J. Groth and A. Sahai, “Efficient non-interactive proof systems for bilinear
groups,” in Proc. Annu. Int. Conf. Theory Appl. Cryptogr. Techn., Springer,
Berlin, Heidelberg, 2008, pp. 415–432.

[21] O. Sanders, “Efficient redactable signature and application to anonymous
credentials,” in Proc. IACR Int. Conf. Public-Key Cryptogr., Springer,
Cham, 2020, pp. 628–656.

[22] T. Elgamal, “Public key cryptosystem and a signature scheme based
on discrete logarithms[J],” IEEE Trans. Inf. Theory, vol. 31, no. 4,
pp. 469–472, Jul. 1985.

[23] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[24] R. Gennaro et al., “Secure distributed key generation for discrete-log
based cryptosystems,” in Proc. Int. Conf. Theory Appl. Cryptogr. Techn.,
Springer, Berlin, Heidelberg, 1999, pp. 295–310.

[25] A. Kate, Y. Huang, and I. Goldberg, “Distributed key generation in the
wild[J],” IACR Cryptol. ePrint Arch., vol. 2012, 2012, Art. no. 377.

[26] P. Feldman, “A practical scheme for non-interactive verifiable se-
cret sharing,” in Proc. 28th Annu. Symp. Found. Comput. Sci., 1987,
pp. 427–438.

[27] S. D. Galbraith, K. G. Paterson, and N. P. Smart, “Pairings for cryptogra-
phers[J],” Discrete Appl. Math., vol. 156, no. 16, pp. 3113–3121, 2008.

[28] J. Katz, Digital Signatures, Berlin, Germany: Springer Science and Busi-
ness Media, 2010.

[29] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to iden-
tification and signature problems,” in Proc. Conf. Theory Appl. Cryptogr.
Techn., Springer, Berlin, Heidelberg, 1986, pp. 186–194.

[30] M. Chase and A. Lysyanskaya, “On signatures of knowledge,” in Proc.
Annu. Int. Cryptol. Conf., Springer, Berlin, Heidelberg, 2006, pp. 78–96.

[31] J. Camenisch and M. Stadler, “Efficient group signature schemes for large
groups,” in Proc. Annu. Int. Cryptol. Conf., Springer, 1997, pp. 410–424.

[32] H. Wang, D. He, Z. Liu, and R. Guo, “Blockchain-based anonymous re-
porting scheme with anonymous rewarding[J],” IEEE Trans. Eng. Manag.,
vol. 67, no. 4, pp. 1514–1524, Nov. 2020.

[33] E. B. Sasson et al., “Zerocash: Decentralized anonymous payments from
bitcoin,” in Proc. IEEE Symp. Secur. Privacy, 2014, pp. 459–474.

[34] S. F. Sun et al., “RingCT 2.0: A compact accumulator-based (linkable ring
signature) protocol for blockchain cryptocurrency monero,” in Proc. Eur.
Symp. Res. Comput. Secur., Springer, Cham, 2017, pp. 456–474.

[35] E. Androulaki et al., “Privacy-preserving auditable token payments in a
permissioned blockchain system,” in Proc. 2nd ACM Conf. Adv. Financial
Technol., 2020, pp. 255–267.

[36] C. Diaz et al., “Privacy preserving electronic petitions[J],” Identity Inf.
Soc., vol. 1, no. 1, pp. 203–219, 2008.

[37] C. Garman, M. Green, and I. Miers, “Decentralized anonymous creden-
tials,” Cryptol. ePrint Arch., vol. 2014, 2013, Art. no. 622.

[38] R. Yang et al., “Decentralized blacklistable anonymous credentials with
reputation[J],” Comput. Secur., vol. 85, pp. 353–371, 2019.

[39] C. Hébant and D. Pointcheval, “Traceable constant-size multi-authority
credentials,” in Proc. Secur. Cryptogr. Netw.: 13th Int. Conf., Amalfi, SA,
Italy, Sep. 12–14, 2022, pp. 411–434.

[40] R. Gennaro, S. Goldfeder, and B. Ithurburn, “Fully distributed group sig-
natures,” 2019. Accessed: Jun. 5, 2023. [Online]. Available: https://www.
orbs.com/assets/docs/white-papers/Crypto_Group_signatures-2.pdf

[41] M. Abdalla, C. Namprempre, and G. Neven, “On the (Im) possibility of
blind message authentication codes,” in Proc. Cryptogr. Track RSA Conf.,
Springer, Berlin, Heidelberg, 2006, pp. 262–279.

[42] J. Fan, F. Vercauteren, and I. Verbauwhede, “Faster fp-Arithmetic for
cryptographic pairings on barreto-naehrig curves,” in Proc. Int. Workshop
Cryptogr. Hardware Embedded Syst., Springer, Berlin, Heidelberg, 2009,
pp. 240–253.

[43] EU Whistleblower, “Protection directive,” 2019. Accessed: Jun. 5, 2023.
[Online]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/
PDF/?uri=CELEX:32019L1937

Rui Shi is working toward the PhD degree under the
supervison of prof. Huamin Feng and prof. Yang Yang
with the school of Cyberspace Security, Beijing Uni-
versity of Posts and Telecommunications, Beijing,
China. He is also a research engineer with Beijing
Electronic Science and Technology Institute. His re-
search interests are in the area of privacy protection
and cryptography.

Huamin Feng is currently a professor with Beijing
Electronic Science and Technology Institute and Bei-
jing University of Posts and Telecommunications. His
research interests include information security and
cyberspace security.

Yang Yang (Member, IEEE) received the BSc degree
from Xidian University, Xi’an, China, in 2006, and
the PhD degrees from Xidian University, China, in
2011. She is a full professor with the College of Com-
puter Science and Big Data, Fuzhou University. She
is also a research fellow with the School of Comput-
ing and Information System, Singapore Management
University. Her research interests are in the area of
information security and privacy protection. She has
published more than 60 papers in IEEE Transactions
on Information Forensics and Security, IEEE Trans-

actions on Dependable and Secure Computing, IEEE Transactions on Services
Computing, IEEE Transactions on Cloud Computing, IEEE Transactions on
Industrial Informatics, etc.

Feng Yuan received the PhD degrees from Xidian
University, Xi’an, China, in 2010. Now, he is a assis-
tant researcher with Beijing Electronic Science and
Technology Institute. His research interests are in the
area of cryptography and information security.

https://www.orbs.com/assets/docs/white-papers/Crypto_Group_signatures-2.pdf
https://www.orbs.com/assets/docs/white-papers/Crypto_Group_signatures-2.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019L1937
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019L1937

Yingjiu Li received the PhD degree from George Ma-
son University, in 2003. He had been a faculty mem-
ber with Singapore Management University from
2003 to 2019. Now, He is ripple professor with the
Department of Computer and Information Science,
University of Oregon. His research interests include
IoT security and privacy, mobile security, and data
security and privacy. He has published more than
130 papers in Cybersecurity, and co-authored two
academic books.

Hwee Hwa Pang received the BSc (first class honors)
and MS degrees from the National University of Sin-
gapore, in 1989 and 1991, respectively, and the PhD
degree from the University of Wisconsin-Madison,
in 1994, all in computer science. He is a professor
with the School of Computing and Information Sys-
tems, Singapore Management University. His current
research interests include database management sys-
tems, data security, and information retrieval.

Robert H. Deng (Fellow, IEEE) is AXA chair pro-
fessor of cybersecurity with the School of Computing
and Information Systems, Singapore Management
University. His research interests include data secu-
rity, network and system security. He has served/is
serving on the editorial boards of many international
journals in security, such as IEEE Transactions on In-
formation Forensics and Security, IEEE Transactions
on Dependable and Secure Computing, etc.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

