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Abstract: We consider a dynamic pickup and delivery problem (DPDP) where loading and unloading operations 

must follow a last in first out (LIFO) sequence. A fleet of vehicles will pick up orders in pickup points and 

deliver them to destinations. The objective is to minimize the total over-time (that is the amount of time that 

exceeds the committed delivery time) and total travel distance. Given the dynamics of orders and vehicles, this 

paper proposes a hierarchical optimization approach based on multiple intuitive yet often-neglected strategies, 

namely what we term as the urgent strategy, hitchhike strategy and packing-bags strategy. These multiple 

strategies can dynamically adapt to dispatch orders to vehicles according to the status of orders and by 

considering the travel distance and overtime. To account for the LIFO constraints, block-based operators are 

designed to schedule the delivery routes, thereby enhancing the search efficiency. The result on real-world 

instances shows that our proposed hierarchical optimization approach outperforms the current practice and the 

winning approach in an international competition. Finally, the insights gained from generated instances shows 

the hierarchical optimization approach has broader applicability. 
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1. Introduction 

In urban logistics systems, dynamic dispatching of orders and route planning of vehicles are vital elements in 

ensuring timely customer service. In practical distribution applications, logistics companies will face different 

challenges due to differences in their product characteristics and service guidelines. 

The classical vehicle routing problem (VRP) is concerned with known orders and one pickup point 

(Christofides, 1976, Laporte, 1992), which is the fundamental problem for extensive studies given a central 

depot. Based on different individual characteristics, many variants have been proposed and applied to optimize 

the last mile delivery, such as open VRP (Ruiz et al., 2019), VRP with backhaul (Toth and Vigo, 2002), VRP 

with time windows (Lau et al., 2003), green VRP (Erdoğan and Miller-Hooks, 2012) and multi-echelon VRP 

(Chen, 2000, Hamdan and Diabat, 2019). In an urban logistics setting, there are often multiple locations, such 

as material supply points, factories, and warehouses, where the orders are picked up. Thus, the pickup and 

delivery problem (PDP) has been developed and applied in various contexts such as urban courier services, less-

than-truckload transportation, and door-to-door transportation services for the elderly and the disabled (Ropke 

and Cordeau, 2009). It is evident that PDP requires the vehicles to pick up the orders at origins and then deliver 

them to destinations. For instance, auto original equipment manufacturers (OEMs) need to pick up goods from 

different parts warehouses and deliver them to destinations to support production. 
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In the PDP described above, these orders are all known in one depot before planning, and the decision-making is only applicable
to single cycle problems. With the emergence of e-Commerce and on-demand deliveries, order requirements are unknown prior to
planning and occur over time as the plan is being executed. Hence, dynamic optimization problems recently become a challenging
topic for academics and logistics practitioners (Pureza and Laporte, 2008; Gholami-Zanjani et al., 2019). Due to new orders arriving
dynamically, the dynamic pickup and delivery problem (DPDP) needs to dispatch orders and design routes for each vehicle in each
timeslot or stage. Contrary to the static delivery problem, vehicles usually make several trips to pick up goods from one or more
origins and deliver them to customers per day. Thus, DPDP needs to consider not only the primary objectives in static PDP, but also
the viability and flexibility of coping with unknown orders in future (Pureza and Laporte, 2008).

In addition to designing the delivery routes, loading and unloading operations are also critical in the distribution process. Iori and
Martello (2010) combined the traveling salesman problem and loading constraints to obtain a better solution for the corresponding
logistics targets. When the vehicle has a single access point, the last-in-first-out (LIFO) policy need be observed for a feasible
distribution solution, i.e., the last pickup item that has been loaded has to be delivered first (Benavent et al., 2015). If the orders are
large, bulky, or fragile items, the load rearrangement on the vehicle may consume much time and increase handling costs. To the
best of our knowledge, the DPDP with LIFO constraint has received little attention. It has been recently studied by Li et al. (2021)
as well as Xu and Wei (2023).

The main objective of this paper is to propose a very simple to implement hierarchical optimization approach based on multiple
strategies and a local search algorithm to solve the DPDP with LIFO constraints. The problem setting is as followings. Each day
is divided into equal-duration intervals or epochs (i.e., each interval has a duration of say 10 min), as in Li et al. (2021). In our
dynamic environment, new orders are updated at each time interval and decisions need to be made on how the existing plan is
to be updated. Under the Markovian assumption that the next state of a dynamic system is related to the current state only, we
need to make decisions sequentially over time based on the current state of the system in each time slot (decision epoch). We have
developed a Markov decision process (MDP) formulation to describe this DPDP with LIFO constraints, where the constraints ensure
that routes respect the vehicle capacity and the LIFO policy. We propose multiple distribution strategies for dynamically dispatching
the orders to vehicles and then apply a local search to find a set of routes with minimum total distance and overtime penalty that
services all the requests. To validate our model, we perform experiments on the standard PDP dataset and well as instances based
on a detailed actual data taken from the International Conference on Automated Planning and Scheduling (ICAPS) 2021 DPDP
competition organized by Huawei (Hao et al., 2022, see also https://icaps21.icaps-conference.org/Competitions/). Experimental
results show that our proposed approach can often obtain better results under different distribution conditions than those produced
by the winning approach for the competition.

The contributions of this paper are as follows:

• We formulate the dynamic pickup and delivery problem with last-in-first-out constraints as a Markov decision process.
• An intuitive and easily implementable hierarchical optimization approach is proposed based on multiple strategies for order

dispatching, namely, urgent strategy, hitchhike strategy and packing-bags strategy.
• A computationally efficient local search method is developed based on block-path for route optimization.
• Experimental studies demonstrate the broad applicability and stability of our hierarchical optimization approach when

executed on large-scale real data sets.

The remainder of this paper is organized as follows. Section 2 summarizes the literature on dynamic pickup and delivery problem
and order dispatching strategies. Section 3 presents the formulation of DPDP with LIFO constraints. In Section 4, we present our
hierarchical optimization approach, including the dispatching strategies and local search. The case study and results are shown in
Section 5, followed by conclusions in Section 6.

2. Literature review

This section surveys previous works on DPDP and related problems.
According to Eksioglu et al. (2009) the VRP literature has been growing exponentially at a rate of 6% each year (Braekers et al.,

2016). Considering real-life requirements and characteristics, several variants of the VRP are proposed, such as multi-depot, multi-
echelon, open VRP, and VRP with diverse constraints. The open vehicle routing problem was first addressed by Schrage (1981),
which is suitable for meal delivery. The VRP with time windows indicates that the customers must be served within the specified
time windows (Desrochers et al., 1992; Spliet et al., 2018). Different constraints enable the VRP model to solve problems in different
scenarios. Braekers et al. (2016) conducted a classified review of the VRP literature published between 2009 and June 2015 and
analyzed the corresponding trends. Ritzinger et al. (2016) summarized the recent literature in dynamic and stochastic vehicle routing
problems. Although VRP is a classical optimization problem, there are many recent studies conducted on it different variants (such
as sustainable VRP, EVRP) as well as new solution methods (Nazari et al., 2018; Vidal et al., 2020; Mojtahedi et al., 2021; Sadati
et al., 2022). Nazari et al. (2018) developed a framework using reinforcement learning and a parameterized stochastic policy to
solve the VRP model. Vidal et al. (2020) summarized the exiting VRP variant and pinpointed current shortcoming and emerging
challenges. The VRP can solve the problem if all orders are picked up at the same point and these orders are known beforehand.
Due to the diversity of constraints in practical applications, general VRP research is the theoretical background and fundamental
that makes it challenging to solve practical problems. Many solutions that did not capture all relevant performance criteria turn out
to be impossible to apply in practice (Vidal et al., 2020).

https://icaps21.icaps-conference.org/Competitions/
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Pickup and delivery problem (PDP) is one of VRP variants, in which couriers have to collect orders in different origins and
deliver them to destinations, compared to VRP (Savelsbergh and Sol, 1995). Berbeglia et al. (2007) surveyed the rich PDP
literature until 2006 and divided PDPs into 3 classes according to structure: one-to-one, many-to-many, and one-to-many-to-one.
In early works, Dumas et al. (1991) presented an exact algorithm based on column generation scheme for PDP and investigated
the computational performance using eight problems with 19 to 55 requests; while Lau and Liang (2001) proposed a method to
generate good problem instances and benchmarking solutions for the PDP with Time Windows (PDPTW) and a tabu search approach
to solve large-scale instances. More recently, Harbaoui Dridi et al. (2020) proposed the use of particle swarm optimization to deal
with a challenging variant of PDP. Alyasiry et al. (2019) proposed an exact novel approach based on fragments for PDP with LIFO
constraints, taking less time on calculation compared to Cherkesly et al. (2015). However, there is a limit to the problem size that can
be solved by the exact algorithm. Dayarian and Savelsbergh (2020) introduced a form of crowdsourcing to increase the availability
of resources to address the uncertainty of the DPDP and designed an effective Tabu search heuristic to tackle this problem. Farazi
et al. (2022) proposes a deep reinforcement learning (DRL)-based approach to the dynamic on-demand crowdshipping problem.
DRL is a method that relies on historical data and cannot complete the solution when there is insufficient data.

In static optimization problems, the complete information about orders and locations is known a priori. In a dynamic optimization
problem or DPDP, part or all of the information is revealed dynamically over time (Pillac et al., 2013). For example, on the meal
delivery or dial-a-ride (DAR) platform, the customers are unknown until an order or requirement is submitted via mobile application
or internet website. Thus, in DPDP, decisions must be made dynamically over time as new information becomes available (Dayarian
and Savelsbergh, 2020). That is, at each decision epoch, the platforms need to decide whether to dispatch orders or not and design the
delivery routes for each vehicle. Various order distribution strategies have been proposed to explore the DPDP’s distinctive features in
recent years. The waiting strategy (Mitrović-Minić and Laporte, 2004; Branke et al., 2005) was one of the most researched strategies
for dynamic order dispatching problems. The idea behind this strategy was delaying the response of the dispatching new orders and
making decision together with the subsequent orders generated in the near future. This strategy was proposed and widely accepted
as an effective dynamic distribution strategy, because it implies more real data is being collected between consecutive decisions.
In particular, Mitrović-Minić and Laporte (2004) defined two simple waiting strategy (drive-first and waiting-first), then generated
two hybrid strategies (dynamic waiting and advanced dynamic) that are combinations of two simple strategies. Pureza and Laporte
(2008) applied a waiting strategy and a buffering strategy to vehicles and orders, respectively. However, if we continuously adopt
the same strategy in DPDP will not be able to cope with different scenarios because fluctuations in order distribution can affect the
effectiveness and efficiency of distribution strategies. In the prior works, the primary available effective strategy for DPDP is the
waiting strategy. This paper designs multiple strategies to adapt to changes in DPDP scenarios.

Last-in-first-out policy appeared in inventory management and other applications. In some industries, this policy is necessary for
vehicles with only one access door for loading and unloading goods. If the goods transported by the vehicle are hazardous, weighty
and/or fragile, the LIFO constraints of pick-up and delivery can reduce handling costs and protect these goods and enhance the
safety of the workers (Cordeau et al., 2010; Prasanti et al., 2018). Bombelli and Fazi (2022) research the LIFO constraints as a key
component of pickup and delivery problem. LIFO policy dramatically increases the difficulty of solving DPDP, because it directly
affects the order of item delivery. Recently, Xu and Wei (2023) developed a metaheuristic approach to solve a re-optimization
problem in a DPDP with LIFO constraints. However, the solution methods above cannot be applied to large-scale industrial dynamic
problems (like the problem in this paper) where the refresh rate of dynamic orders is short (e.g. every 10 min). For solving such
dynamic problems at scale, Ma et al. (2021) and Li et al. (2021) designed deep reinforcement learning approaches. However, their
methods require an enormous amount of historical data to train the policy. Besides, the trained policy can only solve problems with
similar demand distribution.

Table 1 provides a comparison of various PDP papers published more recently, with Dumas et al. (1991) as the baseline. To
our best knowledge, there is a lack of the relevant literature about large-scale dynamic pickup and delivery with LIFO constraints.
Hence, the research in this problem is beneficial for the real industrial dynamic logistics problems like supply chain in manufacturing
industry, furniture industry and other bulky goods delivery companies. Our work focuses on solving large-scale DPDP with LIFO
constraints by designing order dispatching strategies that are intuitive, yet often overlooked. To improve the quality of solution we
apply a local search for route optimization based on the concept of blocking.

3. Problem description and model formulation

3.1. Problem description

In this problem, a homogeneous fleet of vehicles serve dynamic orders which are generated throughout the planning horizon.
Each order has a pickup point (or node) and delivery point. Vehicle need to pick up orders in pickup points and deliver them to
destinations following the LIFO sequence. There is a committed delivery time associated with each order. If the vehicle delivers
later than this time, there will be a overtime penalty cost. Apart form this cost, we also consider the total travel distance of the
entire fleet in this problem.

Here, we formally introduce the notations. We use ℎ ∈ 𝐻 to represent the decision epoch (namely the time slot). In a dynamic
planning problem, the time slot can vary from a few seconds to a few minutes depending on the problem characteristics and
requirements, which directly affects the timeliness of response and the frequency of re-optimization. The vertex set is partitioned as
𝑁 = 𝑃 ∪𝐷 comprising all pick-up nodes 𝑃 = {1, 2,… , 𝑛} and delivery nodes 𝐷 = {𝑛+ 1, 𝑛+ 2,… , 2𝑛}. 𝑂 is the set for all the orders.
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Table 1
Literature review of PDP papers.
Paper Multi depots Time

windows
LIFO Dynamics

orders
Large-scale
(Orders>1000)

Cold start

Dumas et al. (1991) ✓ ✓

Cordeau et al. (2010) ✓ ✓

Häll et al. (2015) ✓ ✓ ✓ ✓

Zhu et al. (2016) ✓ ✓ ✓

Alyasiry et al. (2019) ✓ ✓ ✓ ✓

Harbaoui Dridi et al. (2020) ✓ ✓ ✓

Dayarian and Savelsbergh (2020) ✓ ✓ ✓

Li et al. (2021) ✓ ✓ ✓ ✓ ✓

Ma et al. (2021) ✓ ✓ ✓ ✓ ✓

Farazi et al. (2022) ✓ ✓ ✓ ✓ ✓

Bombelli and Fazi (2022) ✓ ✓ ✓

Xu and Wei (2023) ✓ ✓ ✓ ✓ ✓

This paper ✓ ✓ ✓ ✓ ✓ ✓

Table 2
Notations.
Notation Description

Indices

ℎ Index for decision epochs
𝑖, 𝑗 Index for nodes
𝑘 Index for vehicles

Sets

𝐻 Set of decision epochs
𝑃 Set of pick-up nodes, |𝑃 | = 𝑛
𝐷 Set of delivery nodes, |𝐷| = |𝑃 | = 𝑛
𝑁 Set of all nodes
𝑂 Set of all orders, |𝑂| = |𝑃 | = 𝑛
𝑂𝑈ℎ Set of all unassigned orders at decision epoch ℎ
𝑂𝐴ℎ Set of all assigned orders at decision epoch ℎ
𝐾 Set of all vehicles

Parameters

𝑄𝐶𝑘 Capacity of vehicle 𝑘
𝑡𝑒𝑖 Creation time for order 𝑖
𝑡𝑙𝑖 Commitment time for order 𝑖
𝑞𝑖 Demand for order 𝑖
𝑑𝑖𝑗 Distance from node 𝑖 to node 𝑗

Variables

𝑎𝑖ℎ𝑘 Binary variable. 1, if the order 𝑖 is assigned to vehicle 𝑘 at decision epoch ℎ; 0,otherwise.
𝑥𝑖𝑗𝑘 Binary variable. 1, if vehicle 𝑘 travels along arc (𝑖, 𝑗); 0, otherwise
𝑡𝑑𝑖 Integer variable for the delivery time of order 𝑖
𝑄𝑖𝑘 Integer or Continuous variable for the load of vehicle 𝑘 when it leaves node 𝑖

At the beginning of each decision epoch ℎ, we have a set of assigned orders to vehicles 𝑂𝐴ℎ and a set of unassigned orders 𝑂𝑈ℎ.
These sets of orders are updated dynamically.

To simplify the model, we use index 𝑖 to represent both orders and their corresponding pickup nodes. For example, 𝑖 = 1 is the
first order and its pickup node. Hence, the number of orders is the same as the number of pickup and delivery nodes, |𝑂| = |𝑃 | = |𝐷|.
For the same order, the demand in pick-up nodes and delivery nodes are negative to each other, i.e., 𝑞𝑖+𝑛 = −𝑞𝑖,∀𝑖 ∈ 𝑃 .

Let 𝐾 = {1, 2,⋯ , 𝑘} be the set of vehicles located at a depot in the first time slot. For each vehicle 𝑘, 𝑄𝐶𝑘 is the capacity, and
each vehicle 𝑘 begins its service at an initial position 𝐹 𝐼

𝑘 ∈ 𝑃 . Other notations can be seen in Table 2.
Each order 𝑖 ∈ 𝑂 has a creation time 𝑡𝑒𝑖 and a commitment delivery time 𝑡𝑙𝑖, which is a soft deadline. The goal is to assign newly

generated and previous unassigned orders to vehicles and update the planned route for each vehicle at each decision epoch until
all orders are delivered to their destinations. Within each route, the retrieval of orders should comply with the LIFO policy.

3.2. Model formulation

Dynamic problems can be modeled as sequential decision process with stochastic information (Powell, 2011). Here, we formulate
this DPDP problem as a Markov Decision Problem (MDP) model that enables us to generate the decisions of dispatching orders to
vehicles as well as planning routes for each vehicle.
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3.2.1. Decision epoch
The decision epoch in our model is time-based. Comparing with the event-based decision epoch (considering one order to dispatch

in one decision epoch), time-based approach is more suitable for dynamic vehicle routing problems as it can consider multiple orders
simultaneously to save travel cost. We discretize the planning horizon (for example, a day) into multiple time periods. Here, we use
ℎ = 1, 2… ,𝐻 to represent each decision point (for example, 144 decision epochs, where each step is 10 min).

3.2.2. State space
The system state contains the information necessary to assign unallocated orders to vehicles and schedule each vehicle’s route

at each decision epoch ℎ(ℎ ∈ 𝐻). We present the state 𝑆ℎ at decision epoch ℎ by a tuple (𝑡ℎ, 𝑂𝑈ℎ, 𝐾). Let 𝑡ℎ be the time of decision
epoch ℎ. 𝑂𝑈ℎ is the set of unassigned orders at epoch ℎ. The set 𝐾 contains the status of vehicles, which is updated at epoch ℎ.
Each order 𝑖 ∈ 𝑂𝑈ℎ has a pickup location (origin) 𝑝𝑖 and a drop-off location (destination) 𝑑𝑖 in set 𝑁 . Each order is associated
with demand 𝑞𝑖, creation time 𝑡𝑒𝑖 , committed delivery time 𝑡𝑙𝑖. Thus, we represent its attributes by the tuple (𝑞𝑖, 𝑝𝑖, 𝑑𝑖, 𝑡𝑒𝑖 , 𝑡

𝑙
𝑖) and the

attributes of vehicles 𝑘(𝑘 ∈ 𝐾) by the tuple (𝐹 𝑙𝑜𝑐
𝑘 , 𝐹 𝑑𝑒𝑠𝑡

𝑘 , 𝑡𝑑𝑒𝑠𝑡𝑘 , 𝑂𝑡𝑟𝑎𝑛𝑠𝑖𝑡
𝑘 ,ℜ𝑘). Let 𝐹 𝑙𝑜𝑐

𝑘 and 𝐹 𝑑𝑒𝑠𝑡
𝑘 respectively denote the current location

and destination of vehicle 𝑘, and 𝑡𝑑𝑒𝑠𝑡𝑘 is the time of the vehicle will arrival at the destination. Let 𝑂𝑡𝑟𝑎𝑛𝑠𝑖𝑡
𝑘 be the orders in transit,

being carried by vehicle 𝑘 when this vehicle leaves node 𝑖. Let ℜ denote the route plan for all vehicles and ℜ𝑘 denote the planned
route for vehicle 𝑘, which is composed of a sequence of nodes. Finally, combining all information,we get:

𝑆ℎ = (𝑡ℎ, 𝑂𝑈ℎ, 𝐾)

= (𝑡ℎ, {(𝑞𝑖, 𝑝𝑖, 𝑑𝑖, 𝑡𝑒𝑖 , 𝑡
𝑙
𝑖)|𝑖 ∈ 𝑂𝑈ℎ}, {(𝐹 𝑙𝑜𝑐

𝑘 , 𝐹 𝑑𝑒𝑠𝑡
𝑘 , 𝑡𝑑𝑒𝑠𝑡𝑘 , 𝑂𝑡𝑟𝑎𝑛𝑠𝑖𝑡

𝑘 ,ℜ𝑘)|𝑘 ∈ 𝐾})

3.2.3. Action
The action space is made up of a set of feasible actions 𝐴ℎ at each decision epoch ℎ of selecting and assigning orders 𝑖 ∈ 𝑂𝑈ℎ

to vehicles 𝑘 ∈ 𝐾. A specific action set 𝐴ℎ consists of 𝑎𝑖ℎ𝑘(𝑖 ∈ 𝑂𝐴ℎ, 𝑘 ∈ 𝐾) that represents the order 𝑖 is assigned to vehicle 𝑘 at
decision epoch ℎ. Apart from the order dispatching, the route plan ℜ for all vehicles is also part of the action. Thus, the action in
this MDP is 𝐴ℎ = (𝑎𝑖ℎ𝑘,ℜ).

At each decision epoch ℎ, all actions are subject to PDP constraints. To describe the feasible action space, we first define some
notations. The variable 𝑎𝑖ℎ𝑘 can be replaced by 𝑎𝑖𝑘 at this epoch ℎ. 𝑄𝑖𝑘 is the total demand of the orders on vehicle 𝑘 when it departs
from node 𝑖. In this problem, a feasible action must satisfy the following constraints:

∑

𝑘∈𝐾
𝑎𝑖𝑘 = 1,∀𝑖 ∈ 𝑂𝐴ℎ (1)

𝑄𝑗−1,𝑘 +
∑

𝑖∈𝑂𝐴ℎ

𝑞𝑖𝑎𝑖𝑘 ≤ 𝑄𝐶𝑘,∀𝑗 ∈ ℜ𝑘,∀𝑘 ∈ 𝐾 (2)

𝑄𝑗𝑘 =
∑

𝑖∈𝑂𝑡𝑟𝑎𝑛𝑠𝑖𝑡
𝑘

𝑞𝑖,∀𝑗 ∈ ℜ𝑘,∀𝑘 ∈ 𝐾 (3)

𝑄𝑖+𝑛,𝑘 = 𝑄𝑖,𝑘 − 𝑞𝑖,∀𝑖 ∈ 𝑃 (4)

𝑄𝑗𝑘 ≥ 𝑄𝑖𝑘 + 𝑞𝑗 −𝑄𝐶𝑘(1 − 𝑥𝑖𝑗𝑘),∀𝑖, 𝑗 ∈ 𝑁 and 𝑖 ≠ 𝑗,∀𝑘 ∈ 𝐾 (5)

Constraints (1) state that an order can only be assigned to one vehicle. Constraints (2) require that each vehicle always satisfies
the capacity constraint at each point 𝑗 in route ℜ𝑘. Constraints (3) calculate the weight when vehicle 𝑘 leave the node 𝑗. Constraints
(4) and (5) ensure the LIFO policy.

Although these constraints can limit the action space, the action space is still be combinatorial. Thus, to address the curse of
dimensionality, we design a heuristic approach. We discuss our proposed order dispatching strategies in Section 4.1. Details of
operators for local search can be found in Section 4.2.

When an action has been taken, the state will transit to the appropriate next state which captures the updated information.

3.2.4. Transition
The transition function maps state 𝑆ℎ to the next state 𝑆ℎ+1. The transition of this model comprises two components, including

stochastic demand (new orders denoted by 𝜔ℎ+1) in the next decision epoch and deterministic update for the current demand and
supply (unassigned orders 𝑂𝑈ℎ and vehicles 𝐾ℎ) given an action 𝐴ℎ described above. After this update, the vehicles serve a subset
𝑂𝑈−

ℎ of the 𝑂𝑈ℎ based on the ℜ given by the action 𝐴ℎ. Thus, the 𝑂𝑈ℎ+1 = (𝑂𝑈ℎ − 𝑂𝑈−
ℎ ) ∪ 𝜔ℎ+1.

3.2.5. Objective function
In this section, we describe the objective function of the MDP model, which is taken directly from Hao et al. (2022). The solution

for this MDP model is a decision policy 𝜋 which maps each state 𝑆ℎ to a routes planning ℜ for every vehicles. The objective is find
a policy 𝜋∗ to minimize the total cost which is made up of a weighted average of two components, namely travel distance and total
overtime of a given solution denoted by route plan ℜ. The objective function is defined in Eq. (6):

𝑚𝑖𝑛𝐹 (ℜ) = 𝜆𝑓1(ℜ) + 𝑓2(ℜ) (6)
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Fig. 1. Timeline of each order.

Fig. 2. Order pools.

𝑓1(ℜ) =
|𝑂|

∑

𝑖=1
𝑚𝑎𝑥(0, 𝑡𝑑𝑖 − 𝑡𝑙𝑖) (7)

𝑓2(ℜ) = 1
|𝐾|

|𝐾|

∑

𝑘=1

|𝑁|

∑

𝑖=1

|𝑁|

∑

𝑗=1
𝑑𝑖𝑗𝑥𝑖𝑗𝑘 (8)

where 𝑓1(ℜ) is the overtime cost for orders and 𝑓2(ℜ) is the average distance cost of a vehicle, associated with a route plan ℜ as
shown in Eqs. (7) and (8). 𝜆 is a weight (set to a large positive constant). In this paper, it is set to 10,000 (same as the value used
in the ICAPS 2021 competition).

4. Solution approach

In this section, we present a hierarchical optimization approach to solve DPDP, based on multiple order dispatching strategies
and local search. The reader may refer Section 4.3 that contains a picture of the overview of our approach.

Specifically, the general idea is to first assign orders to appropriate vehicles using our order dispatching strategies, which also
inserts the assigned orders into suitable positions on the current routes of vehicles. Then we further apply a local search procedure
to improve these delivery routes.

4.1. Order dispatching strategies

This section presents strategies applied to the hierarchical optimization approach for the DPDP, including urgent strategy,
hitchhiker strategy, and packing-bags strategy.

First, we define some notations used in the order dispatching strategies.
Latest departure time: Each order needs to depart before the latest departure time; otherwise, the order will incur an overtime

cost. This quantity can be calculated by Eq. (9) and illustrated by Fig. 1. The latest departure time is an essential parameter for
identifying the status of the orders.

𝑡*𝑖 = 𝑡𝑙𝑖 − 𝑡𝑝𝑖 − 𝑡𝑑𝑖 − 𝑡(𝑎𝑟𝑐(𝑝𝑖, 𝑑𝑖)) (9)

Earliest finish time: For each vehicle, we can calculate the vehicle’s earliest finish time based on the loaded orders and planned
routes.

Buffering pool: A buffering pool is used to postpone the assignment of some non-urgent new requests. We borrow the idea from the
work of Pureza and Laporte (2008). This buffering pool is designed to deal with the critical issue of this dynamic pickup and delivery
problem namely, how to assign orders which are dynamically generated during the planning horizon. Intuitively, we maintain a
buffering pool that contains orders of different types and place them in different sub-pools depending on the latest departure time
described below.
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4.1.1. Generate order buffering pool
All unallocated orders are divided into three order pools according to the latest departure time 𝑡𝑖 of each order, as shown in

Fig. 2. A detailed description of the algorithm for generating the order buffering pool is given in Figure 1, where 𝑡ℎ is the time at
decision epoch ℎ and the 𝑡ℎ+1 is the time at the next decision epoch ℎ + 1.

There are three categories of orders:
(1) Urgent order : if the latest departure time 𝑡*𝑖 < 𝑡ℎ, order 𝑖 is placed in the urgent order pool.
(2) Semi-urgent order : if the latest departure time 𝑡ℎ < 𝑡*𝑖 < 𝑡ℎ+1, order 𝑖 is placed in the semi-urgent order pool.
(3) Non-urgent order : if the latest departure time 𝑡ℎ+1 < 𝑡*𝑖 , order 𝑖 is placed in the non-urgent order pool. These three order statuses

are closely related to executing of multiple order dispatching strategies below.

Algorithm 1 Generate order buffering pool
Input: 𝑢𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑_𝑜𝑟𝑑𝑒𝑟𝑠,𝑒𝑝𝑜𝑐ℎ ℎ
Output: 𝑙𝑎𝑡𝑒𝑠𝑡_𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒_𝑡𝑖𝑚𝑒_𝑙𝑖𝑠𝑡, 𝑏𝑢𝑓𝑓𝑒𝑟𝑖𝑛𝑔 𝑝𝑜𝑜𝑙

1: check each 𝑜𝑟𝑑𝑒𝑟 and create 𝑙𝑎𝑡𝑒𝑠𝑡_𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒_𝑡𝑖𝑚𝑒_𝑙𝑖𝑠𝑡
2: sort 𝑢𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑_𝑜𝑟𝑑𝑒𝑟𝑠 by latest departure time from new to old
3: for each order in 𝑢𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑_𝑜𝑟𝑑𝑒𝑟𝑠 do
4: t∗𝑖 = 𝑡𝑙𝑖 − 𝑡𝑝𝑖 − 𝑡𝑑𝑖 − 𝑡(𝑎𝑟𝑐(𝑝𝑖, 𝑑𝑖))
5: T𝑖 = t

∗
𝑖

6: if t∗𝑖 > tℎ+1 then
7: assign order O𝑖 to O𝑛𝑜𝑛−𝑢𝑟𝑔𝑒𝑛𝑡
8: else if tℎ ≤ t∗𝑖 ≤ tℎ+1 then
9: assign order O𝑖 to O𝑠𝑒𝑚𝑖

10: else if t∗𝑖 < tℎ then
11: assign order Oi to O𝑢𝑟𝑔𝑒𝑛𝑡
12: end if
13: end for

4.1.2. Urgent strategy
At the end of Algorithm 1, the urgent order pool can be obtained, which includes orders that need to be allocated immediately.

The intuition is that for urgent orders, the sooner they are processed, the less overtime penalty will be incurred. It is inevitable that
urgent orders will continue to increase the cost in over time. Thus, the goal of the urgent strategy is to guarantee the priority of
processing those urgent orders when there are available vehicles. A high-level overview of the urgent strategy is represented below,
and the detailed pseudo code is given in Algorithm 2.

Step 1: Select an urgent order in the urgent order pool sorted by the latest departure time.

Step 2: Check the remaining capacity to obtain an available vehicle set 𝑉 ∗.

Step 3: Traverse each vehicle in set 𝑉 ∗ and calculate the cost of inserting the urgent order.

Step 4: Assign urgent order to a vehicle with minimum cost.

Step 5: If all urgent orders have been traversed, go to step 6; else go to step 1.

Step 6: Update the planned routes of vehicles.
In Algorithm 2, the urgent_orders contains the properties 𝑡∗𝑖 , 𝑝𝑖, 𝑑𝑖, 𝑞𝑖 of each urgent order. and the information of current fleet

and orders. 𝐹 𝑑𝑒𝑠𝑡
𝑘 and 𝑄𝑟𝑒𝑚𝑎𝑖𝑛

𝑘 indicate the destination and the remaining capacity of vehicle 𝑘, which are stored in the vehicles. The
functions get_dest() and get_remain() return the destination and remaining capacity of vehicles, respectively. The input of function
get_insert_overtime_pen is the vehicle 𝑘 and order 𝑖 and its output is the difference of overtime penalty after inserting order 𝑖. Similarly,
get_insert_dist() returns the detour distance. The value 𝐶𝑚𝑎𝑡𝑐ℎ

𝑖𝑘 , computed as the evaluation criteria, represents the cost when we insert
order 𝑖 to vehicle 𝑘.

The computational complexity of the urgent strategy algorithm (Algorithm 2) is O(𝑛2) in the worst case. For each urgent order,
O(𝑛) nodes are examined (across all vehicles) in the functions in lines 7 and 8, with constant time each. Appending an order to a
vehicle takes O(𝑛) time. Since the total number of orders (including urgent orders) is 𝑛, the computational complexity is the number
of orders 𝑛 times all the nodes existing on the routes (which is at most 𝑛).

4.1.3. Hitchhike strategy
In dynamic routing problems, it is necessary to consider whether an unallocated order can be inserted into a vehicle’s current

planned route. In our problem, the LIFO policy needs to be considered carefully, which makes insertion challenging. In ridesharing
literature, ‘‘hitchike’’ is a powerful strategy to reduce total traveling cost (Chan and Shaheen, 2012). Similarly, in this paper, we
borrow it to our logistics problem. In our case, for each unallocated order, the hitchhike strategy aims to select the most appropriate
vehicle and insert the pickup and delivery nodes consecutively of a given order to a suitable position in the planned route of this
vehicle. In order to accommodate different ratios of demand and supply, we design different levels of operators for the hitchhike
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Algorithm 2 Urgent strategy algorithm
Input: 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠; 𝑢𝑟𝑔𝑒𝑛𝑡_𝑜𝑟𝑑𝑒𝑟𝑠; 𝑙𝑎𝑡𝑒𝑠𝑡_𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒_𝑡𝑖𝑚𝑒_𝑙𝑖𝑠𝑡

1: for each order i in 𝑢𝑟𝑔𝑒𝑛𝑡_𝑜𝑟𝑑𝑒𝑟𝑠 do
2: Initial a empty list 𝑉 ∗

3: for each vehicle k in 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 do
4: F𝑑𝑒𝑠𝑡𝑘 = get_dest(𝑘)
5: Q𝑟𝑒𝑚𝑎𝑖𝑛

𝑘 = get_remain(𝑘)
6: if Q𝑟𝑒𝑚𝑎𝑖𝑛

𝑘 ≥ q𝑖 then
7: 𝛥𝑓1 = 𝑔𝑒𝑡_𝑖𝑛𝑠𝑒𝑟𝑡_𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒_𝑝𝑒𝑛(𝑘, 𝑖)
8: 𝛥𝑓2 = 𝑔𝑒𝑡_𝑖𝑛𝑠𝑒𝑟𝑡_𝑑𝑖𝑠𝑡(𝑘, 𝐹 𝑑𝑒𝑠𝑡

𝑘 , 𝑖))
9: C𝑚𝑎𝑡𝑐ℎ𝑖𝑘 = 𝜆Δf1 + Δf2

10: Append (k,C𝑚𝑎𝑡𝑐ℎ𝑖𝑘 ) 𝑡𝑜 V ∗

11: end if
12: end for
13: if V ∗ is not empty then
14: Find the vehicle 𝑘 with min C𝑚𝑎𝑡𝑐ℎ𝑖𝑘
15: Assign urgent order 𝑖 𝑡𝑜 𝑘
16: end if
17: end for

Fig. 3. Schematic of operators for the hitchhike strategy.

strategy, namely double matching, single matching, and double uneven. By these three levels of operators, our hitchhike strategy
can dynamically relax the condition of insertion. Thus, the higher this ratio, the less orders have more chance to be inserted as
hitchhike orders to avoid detour of vehicles. The definition is as follows, and the schematic is shown in Fig. 3. In this figure, the
dotted line is the original planned routes for vehicles, on which the square nodes with ‘L’ and ‘D’ are the nodes of the current
location and destination of the vehicles. The circle nodes with ‘p’ and ‘d’ are the pickup and delivery nodes for unassigned orders.
After dispatching those unassigned orders, new planning routes are represented by the solid line.

Double matching : Select order whose pickup and delivery nodes are matched with the two upcoming adjacent nodes in the
vehicle’s planned route.

Single matching : Select order whose pickup node is the same as the destination of a given vehicle and the distance between this
order’s delivery node and the next node in the planned route of this vehicle is acceptably short. Or the delivery node of this order
is the same as the next node after the destination of this vehicle and the distance between the order’s pickup node and destination
is short enough.

Double uneven: Select orders whose pickup and delivery nodes are close to but not identical to the two coming adjacent points.
We illustrate the different operators of the hitchhiker strategy in Fig. 3. Here the 𝑥-axis represents the different locations and

𝑦-axis is the time. In this figure, there are three unassigned orders and three vehicles in different positions. Fig. 3(a) denotes the
planned routes before the hitchhiker strategy; Fig. 3(b) represents the delivery routes after inserting the hitchhiker orders by using
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Fig. 4. Unallocated orders.

double matching, single matching, and double uneven operators, respectively. applying double matching operator to vehicle 1, only
unassigned orders are inserted into the corresponding locations, if its pickup point and delivery point are same as two adjacent
nodes in planned route. Vehicle 2 and vehicle 3 show the single matching and double uneven operators, respectively.

4.1.4. Packing-bags strategy
The intuition of the packing-bags strategy is to pack unassigned orders into bags based on order similarity and related constraints.

First, this strategy identifies one unassigned order from the order buffering pool which is sorted by the latest departure time. Then,
the information of the selected order is set as the base information of this bag. Finally, we compare the similarity of other orders
with the base information of the given bag to decide whether to combine them into it. The main consideration related the addition
is the available vehicle capacity, location, order demand, and the latest departure time. These orders in one bag will be complied
the LIFO policy.

To adapt to different situations, we have designed multiple levels of threshold of packaged operators: same pickup-delivery, same
pickup, and same delivery. The definition is as follows, and the schematic is shown in Fig. 4.

Same Pickup-Delivery (SPD): Identify and select orders with the same pickup and delivery points as the bag baseline. This is a
high level of threshold for packing-bags strategy leading to fewer bags packed, comparing with the following two levels.

Same Pickup (SP): Identify and select orders with the same pickup point with bag baseline, then decide whether to assign orders
to bag based on similarity.

Same Delivery (SD): Identify and select orders with different pickup and delivery points from the bag, but there is an acceptable
distance from the bag at both the pickup and delivery points.

Fig. 4 illustrates the pickup and delivery points and the latest departure time of five unallocated orders. In Fig. 5, subgraphs
(A), (B), and (C) are the planned routes generated by taking different packing operators for unallocated orders, respectively. Under
the Same Pickup-Delivery constraint, only orders 1 and 3 are packed successfully because they have the same pickup and delivery
points. The Same Pickup packing operator can assign order 2 and orders 1, 3 together. By contrast, the Same Delivery operator can
insert order 5 into the bag of order 1 and order 3.

4.2. Local search

These order dispatching strategies can quickly allocate a large number of orders, however, these strategies do not design the
optimal delivery route for each vehicle. In this section, we present the local search operators applied to minimize the travel distance
of the planned routes generated by the heuristic rules above. To improve the effectiveness of the local search under LIFO constraints,
we propose block-path-based operators.

Block-path: This refers to a sequence of nodes that must include both the origin and the destination of the orders that adhere to
the LIFO constraint. This idea of utilizing a block was proposed by Carrabs et al. (2007) for solving the Pickup and Delivery Traveling
Salesman Problem with LIFO Loading constraints. In our work, we design three types of block-path, type 1, type 2, and type 3, as
shown in Fig. 6. Correspondingly, the block-based operators preserve the feasibility of LIFO constraint, as shown in Carrabs et al.
(2007). In the following, we explain our block-based operators in detail.

4.2.1. Insert operator
OnePoint-Insert (𝑜, 𝑘,ℜ𝑘): Given an order 𝑜, a vehicle 𝑘, and planned route ℜ, the operator returns a new planned route, where

the order 𝑜 is inserted, and pickup and delivery points are adjacent. The OnePoint-Insert operator selects one order and a point in
the planned route, and insert the pickup point and delivery point of the selected order into the route. It compares the change in the
cost of routes to identify the optimal path, as shown in Fig. 7.
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Fig. 5. Schedule options for packing-bags strategy.

Fig. 6. Schematic diagram of three types of block-path.
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Fig. 7. OnePoint-insert representation.

Fig. 8. TwoPoint-insert representation.

Fig. 9. Exchange operator representation.

TwoPoint-Insert (𝑜, 𝑘,ℜ𝑘): Given an order 𝑜, a vehicle 𝑘, and planned route ℜ𝑘, the function can select one block, then insert one
order into the planned route. The pickup and delivery points are scattered at both ends of a block, as shown in Fig. 8.

Let ℜ𝑘 be a feasible route containing 𝑛 orders and 2𝑛 points (including pickup and delivery points). The TwoPoint-Insert operator
is described as follows. (1) Select an order (𝑝𝑖, 𝑑𝑖) from the order pool. (2) Select a block and insert 𝑝𝑖 in front of the beginning of
the block and insert 𝑑𝑖 at its end to produce a new route ℜ∗

𝑘, as shown in Fig. 8.
The TwoPoint-Insert operator can effectively reduce the computational time complexity compared to the general insert operator

that inserts the pickup and delivery points arbitrarily in a standard PDP problem, which is explained below.
Suppose there are 𝑛 orders in route ℜ𝑘, the length of ℜ𝑘 is 2𝑛. When one order is inserted into route ℜ𝑘 via the general insert

operator, the run time complexity is 2𝑛2 + 𝑛 because the pickup point has to be inserted before the delivery point. In the case of the
TwoPoint-Insert, the run time complexity is reduced to (𝑛2 + 𝑛)∕2, thereby reducing the run time complexity by (3𝑛2 + 𝑛)∕2.

4.2.2. Exchange operator
The exchange operator aims to generate a new route by exchanging the location of two block-path that conforms to the LIFO

policy because each block is LIFO-compliant. Note that, since the orders that have been picked cannot be moved, we first select the
pickup node and then read the corresponding delivery node to get the required block path. For the planned route in Fig. 9, we can
obtain the new route 1 by exchanging two block-path (P4D4 and P2D2) or the new route 2 by swapping the location of P4D4 and
P1 to D1.

4.3. Hierarchical optimization approach

In summary, the structure of our hierarchical optimization approach is given in Fig. 10. It also shows the interaction between
the hierarchical approach and simulator environment, which constantly updates dynamic information, including orders, vehicles,
and routes. When a new epoch is triggered or new orders are updated, the algorithm first performs order identification, sorts and
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Fig. 10. Hierarchical optimization approach for DPDP.

updates the order pool, and then uses each order dispatch strategy in turn to process orders with different states to minimize the
overtime quantity. After the order dispatching process, a local search is designed to minimize the total travel distance that does not
exceed the overtime quantity. This process is repeated until there is no more unfinished order in the simulator environment.

5. Computational experiments

In this section, we present computational experiments to demonstrate the effectiveness of the proposed solution approach.
Section 5.1 describes the test instances obtained from a competition in an international conference, which are realistic problems
built around real business scenarios of Huawei Technologies Ltd. To be more general, we randomly generate new instances to
compare the applicability of the proposed approach. Section 5.2 details the results of our proposed solution approach for both data
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Fig. 11. Results for small scale ICAPS competition instances.

sets, comparing with two benchmarks. Then we conduct the quantitative sensitivity analysis for the performance of our proposed
approach in Section 5.3.

5.1. Test instances

To our knowledge, there is no public benchmark available in the literature for the DPDP with LIFO constraints. To analyze the
performance of the hierarchical optimization approach and local search, we use the instances originated from the competition data
sets derived from the ICAPS 2021 DPDP competition (Hao et al., 2022), which contain order and location information. To test the
solution approach in more general settings, we also randomly generate new instances to further derive insights of the proposed
approach.

We use DPDP-i-j-n to name all instances. DPDP is the problem type, where indicates the order size, indicates the number of
vehicles, and denotes the serial number. For example, there are 100 orders and five vehicles in the instance DPDP-100-5-1. Likewise,
randomly generated instances are named DPDP-R-i-j-n. The computational experiment has the following attributes for each initial
or generated instance.

Time horizon: 𝑇 is the planning horizon (24 hours).
Time slot: 𝛥𝑡, is the time between consecutive decision epochs (e.g., every 𝛥𝑡 minutes).
Vehicle capacity: since the vehicles are homogeneous, the vehicle capacity is a fixed value for each instance.
Number of vehicles: the total number of available vehicles.
Average number of orders per vehicle: the number of total orders divided by the number of vehicles, which is the ratio of

demand and supply. It is abbreviated as avg.order per vehicle.

5.2. Computational results

This section presents the result of competition instances and randomly generated instances. We compare our proposed
hierarchical optimization approach with two benchmark approaches, including (1) the baseline (a greedy approach), (2) the winning
approach in the ICAPS 2021 competition (Hao et al., 2022).

Baseline: A greedy algorithm, where each new order is dispatched to the nearest available vehicle, is used to solve the DPDP,
and the result is used as the baseline.

Ye and Liang’s method (Ye and Liang 2022) (abbreviated Ye’s method): This method obtained the best results out of all the
competing methods in the ICAPS 2021 competition. It mainly works by waiting for enough orders and then assigning the set of
orders to vehicles.

5.2.1. Results for ICAPS 2021 competition instances
In this section, we conduct the experiments for three approaches on the ICAPS competition instances. Note that a higher value

of the objective function means higher cost in the following results.
(1) Small instances
There are 50 orders and 5 vehicles in the first instance sets that are named DPDP-50-5-n (n here is the instance identification

number). We perform our experiments on eight small instances, and the results are as shown in Fig. 11 (A). The 𝑥-axis shows the
instance number n, and the 𝑦-axis shows value of the objective function (Score).

Instances DPDP-100-5-n contain 100 orders and five vehicles. Fig. 11 (B) shows the objective function of the eight small instances
solved by three different methods. In Fig. 11 (B), the logarithmic scale provides a better and more precise picture of the advantages
and disadvantages of different methods.

In Figs. 11 (A) and 11 (B), the blue bar indicates the greedy approach, the yellow bar indicates the approach in competition, and
the gray bar indicates the proposed hierarchical optimization approach. For all the instances with 50 or 100 orders, our approach
obtains the best results.

(2) Mid-sized instances
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Fig. 12. Results for middle scale ICAPS competition instances.

Table 3
Results for large instances.
Instance Greedy Ye’s method Hierarchical Improvement

DPDP-1000-50-1 3 365 810 30 136 28121 6.69%
DPDP-1000-50-2 3 413 342 22252 24 013 −7.91%
DPDP-1000-50-3 3 639 247 24 261 23338 3.8%
DPDP-2000-50-1 81 679 118 124253 126 292 −1.64%
DPDP-2000-50-2 87 302 720 190 604 185288 2.79%
DPDP-2000-50-3 82 961 747 181170 185 909 −2.62%
DPDP-3000-100-1 919 884 573 1 184 048 1082139 8.61%
DPDP-3000-100-2 911 166 177 1 629 783 1619514 0.63%
DPDP-3000-100-3 897 217 929 729 537 678125 7.05%
Average 1.93%

Next, we experiment on two groups of mid-sized instances. One group of instances have 300 orders with 20 vehicles and the
other group of instances contain 500 orders with 20 vehicles. For each group, we compare the solution and results, which are shown
in Figs. 12 (A) and 12 (B).

In Fig. 12(A), we observe that the proposed hierarchical optimization approach obtains the best results in six out of the eight
instances, while Ye’s approach achieves the best results in two instances. The greedy approach gets two similar results as ours in
fifth and the seventh instances. Nevertheless, the greedy approach is not stable, i.e., the value of the objective function is very large
in instance 6. In Fig. 12(B), we observe that the hierarchical optimization approach obtains the best results for five out of eight
instances. Ye and Liang’s approach obtains the best result in three instances.

(3) Large instances
These are instances with the number of orders equal to or greater than 1000. We experiment on nine large instances with

1000 orders, 2000 orders, and 3000 orders, each having three different instances respectively. Table 3 shows the results of these
experiments. In this table, column two to column four are the results for greedy, Ye’s method, and our proposed hierarchical method.
The last column show the improvement of our results compared with Ye’s method, calculated by

𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑌 𝑒′𝑠 𝑚𝑒𝑡ℎ𝑜𝑑 − 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙
𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑌 𝑒′𝑠 𝑚𝑒𝑡ℎ𝑜𝑑

We observe that our hierarchical optimization approach is superior to a greedy approach and Ye and Liang’s approach.

5.2.2. Results for randomly generated instances
Based on the analysis of the ICAPS 2021 competition instances, we found that the distribution of pickup and delivery points

of the majority of the orders are concentrated in a small portion of all the locations. This enables specialized algorithms (such as
Ye’s method) to exploit to produce good solutions. In order to verify the generalizability of the various solution approaches, we
generate two groups of random instances. These two groups are small (50 orders) and large (2000 orders) instances with randomly
selecting pickup and delivery points for orders among all the points. These instances are named as DPDP-R-i-j-n which are available
on GitHub here.2

We apply three approaches to solve these two groups (small and large) of generated instances. Fig. 13 shows the results for these
randomly generated instances. In this figure, the bar charts represents the objective function values. Fig. 13(A) and (B) show that
our proposed method has the best performance for all randomly generated instances with no matter 50 orders (small) instances or

2 https://github.com/123zhangzq/TRE2023DPDPLIFO

https://github.com/123zhangzq/TRE2023DPDPLIFO
https://github.com/123zhangzq/TRE2023DPDPLIFO


15

J. Du et al.

Fig. 13. Results for randomly generated instances.

2000 orders (large) instances. Although The Ye and Liang’s approach outperforms the greedy approach for all large instances, which
can be seen in Fig. 13(B), their approach is not stable for small instances, as shown in Fig. 13(A).

5.2.3. Discussion
For instances with different sizes, we observe that each approach may have different performance. Our proposed approach can

achieve the best performance among the most instances. For small instances, the result of the greedy approach is better than Ye and
Liang’s approach, while the opposite is true for large instances. Specifically, for small instances, Figs. 11(A) and 11(B) shows the
greedy approach and hierarchical approach can obtain a good result. However, Ye and Liang’s approach cannot get a good solution
due to large overtime penalty. For larger instances, Table 3 shows that Ye and Liang’s method is better compared to the greedy
approach as their method focusses on optimizing travel distance.

The performance of the proposed hierarchical approach can achieve best results among all random generated instances showed in
Fig. 13. Therefore, our proposed approach has broader applicability than methods designed explicitly for ICAPS 2021 competition.

From the above computational results, we see that heuristic solution approaches may be sensitive for the feature of the problem
instances, such as scale. When the size of the problem changes, some methods may become ineffective. Next section will show more
sensitivity analysis on our proposed algorithm.

5.3. Sensitivity analysis

5.3.1. Run time analysis
In this section, we study the effect of problem size on the computation time of our proposed algorithm. We implement the

algorithm in python and run the tests on a Windows personal computer of 64-bit with AMD Radeon R7-4800U.
Fig. 14 shows the average run time of our hierarchical optimization approach at each time slot when solving different sizes

of instances. The horizontal and vertical axes represent the scale of the problem and the run time in seconds. It confirms our
computational complexity analysis that the run time scales quadratically with the order volume. In absolute terms, we see that our
proposed method is able to respond to new orders in 5 s when the number of orders is less than 500. Even though the run time
increases with the problem scale, the average run time for one time slot is still less than 30 s, which is much smaller than the time
slot itself (10 min). Even for the largest instances, the average run time is still acceptable for the implementation of the algorithm
to the real industrial scale problems. The run time of our method can be further improved on more powerful machines.

5.3.2. Impact of time slot interval
In this section, we analyze the influence of the interval length of the time slot on the performance of our proposed solution

approach. To quantitatively study this influence, we examine the impact of different time slots on objective function and travel
distance.

Fig. 15 shows the trend of the result for different size instances as time slot changes, respectively. In this figure, the x-axis
represents four different time slots including 2, 5, 10, and 15 min. The left y-axis shows the values for the bar chart, which represents
the objective function for three different instances. The right y-axis is for line graph showing the travel distance cost.

For all these three instances, the bar chart shows that objective function values (including overtime penalty cost and travel
distance cost) tend to increase with a longer time slot. However, the travel distance cost tends to decrease as the time slot increases,
which can be seen in the line graph.

Managerial insight: The natural expectation is that the larger the time slot (decision epoch), the more information is available
for planning, which results in the less total travel distance. On the other hand, a large time slot also means that fewer decisions
are made (or late response for the dynamic orders) resulting in larger overtime cost. A small time slot means that we can be more
responsive leading to a higher chance to identify matches between orders and vehicles. Therefore, in practice, managers should set
the time slot based on the considerations from overtime penalty cost and travel distance cost in their specific problem.
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Fig. 14. Average run time per time slot.

Fig. 15. Proposed algorithm performance under different time slot.

5.3.3. Impact of order distribution
Another impact on the performance of the proposed algorithm is the distribution of the orders in terms of location and time. As

we have studied the former in Section 5.2.2, this section will investigate the latter (i.e. percentage of orders generated over time).
Here, we select two 50-order instances (DPDP-50-5-1 and DPDP-50-5-7) and two 300-order instances (DPDP-300-20-1 and DPDP-

300-20-7) on which our proposed algorithm has the best and the worst performance in terms of objective value. The distribution of
order arrival time is shown in Figs. 16 and 17. In these two figures, the horizontal axes are time horizon (a day), while the vertical
axes are the distribution of the orders represented by the ratio of the number of the orders in a given one-hour period to the total
number of orders. We compare the time distribution by counting the peak periods where the dynamic orders arrive in a short time.
For example, from Fig. 16, we can see that the instance with the worst result has eight peaks with fluctuating distributions, whereas
the instance with the best result has five peaks.

Hence, the distribution of orders over time has influence on the number of orders available for assignment in each decision
epoch, which in turn affects the quality of solution generated by our solution approach.
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Fig. 16. Order distribution of small instances with the best and worst results.

Fig. 17. Order distribution of middle instances with the best and worst results.

6. Conclusion

This paper proposed an effective hierarchical optimization approach for dynamic pickup and delivery problem (DPDP) with last
in first out (LIFO) constraints. This work can be considered the first attempt to design hierarchical order dispatching strategies
in DPDP. We design and define the urgent strategy, hitchhike strategy, and packing-bags strategy. The local search block-based
operators can reduce the search space compared with operators designed for general routing problems. The results show that the
proposed hierarchical optimization approach in this paper can effectively solve cases of different sizes, and the results are better
than the winning approach on real world instances provided in an international programming competition. Moreover, we verify the
wide applicability of the method proposed in this paper with randomly generated instances. Finally, we analyze the effect of the
distribution pattern of orders on the results of instances and analyze the impact of time slot interval on DPDP.

There are many possibilities of extension from this work. First, in a real-world logistics system, the objective is more complicated,
and involves soft constraints such as driver preferences (which is increasingly prevalent in a gig economy). While our problem can
be extended from a bi-objective (purely based on cost) to a multi-objective setting involving other soft constraints, the problem is
much more complicated and require a new approach to cope with generating a single solution for the actual assignment amidst
the non-dominated solutions on the pareto front. Second, we have not included stochasticity in this problem. While there has been
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papers that deal with both dynamism and stochasticity in VRP (see for example the survey in Ritzinger et al. (2016)), many do not
consider LIFO and other realistic constraints. Furthermore, many papers are model-based, which do not make use of historical data
to address both the dynamic and stochastic aspects satisfactorily. We see a lot of potential in developing new (data-driven) models
and algorithms to cope with such problems in view of the rising need in logistics planning.
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