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Patrol Dispatching and Rescheduling via Reinforcement Learning
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Abstract
We address the problem of coordinating multiple
agents in a dynamic police patrol scheduling via a
Reinforcement Learning (RL) approach. Our ap-
proach utilizes Multi-Agent Value Function Ap-
proximation (MAVFA) with a rescheduling heuris-
tic to learn dispatching and rescheduling policies
jointly. Often, police operations are divided into
multiple sectors for more effective and efficient op-
erations. In a dynamic setting, incidents occur
throughout the day across different sectors, disrupt-
ing initially-planned patrol schedules. To maximize
policing effectiveness, police agents from different
sectors cooperate by sending reinforcements to sup-
port one another in their incident response and even
routine patrol. This poses an interesting research
challenge on how to make such complex decision
of dispatching and rescheduling involving multi-
ple agents in a coordinated fashion within an op-
erationally reasonable time. Unlike existing Multi-
Agent RL (MARL) approaches which solve sim-
ilar problems by either decomposing the problem
or action into multiple components, our approach
learns the dispatching and rescheduling policies
jointly without any decomposition step. In addi-
tion, instead of directly searching over the joint ac-
tion space, we incorporate an iterative best response
procedure as a decentralized optimization heuristic
and an explicit coordination mechanism for a scal-
able and coordinated decision-making. We eval-
uate our approach against the commonly adopted
two-stage approach and conduct a series of ablation
studies to ascertain the effectiveness of our pro-
posed learning and coordination mechanisms.

1 Introduction
This research work is motivated by a real-world problem in-
volving coordination of patrol operations across multiple po-
lice sectors. Police patrol serves the following two key func-
tions: to project presence (proactive patrol) and to respond to
incidents in a timely manner (reactive patrol). Often, police
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operations are divided into multiple sectors for more effec-
tive and efficient operations. In real-world operations, inci-
dents occur throughout the day across different sectors, dis-
rupting initially-planned patrol schedules and necessitating
re-planning decisions. To maximize policing effectiveness,
police agents from different sectors cooperate by sending re-
inforcements to support one another in their incident response
and even routine patrol.

We term this problem as the Multi-Agent Dynamic Police
Patrol Dispatching and Rescheduling Problem (MADPRP).
This is the multi-agent variant of a Dynamic Police Patrol
Dispatching and Rescheduling Problem (DPRP) introduced
in [Joe et al., 2022]. Both problems can be modelled as a se-
quential decision problem [Powell, 2019] where the arrival of
one or more dynamic events triggers a decision-making pro-
cess which happens sequentially in response to such events.

In MADPRP, agents need to make complex decision con-
sisting of event-handling (which patrol team needs to be dis-
patched to respond to the incident) and re-planning actions
across space and time (rescheduling of existing patrol sched-
ules). This problem is particularly challenging as the complex
action includes both rerouting the sequence of locations to pa-
trol (spatial) and rescheduling the time spent at each location
(temporal). Such decision-making process is made even more
challenging in the presence of multiple agents. Here, we de-
fine an agent as a higher-order decision-making entity that is
capable of executing complex action (police sector) and usu-
ally consists of multiple sub-agents (patrol teams). This is
unlike the classical examples of multi-agent settings which
come in the form of multiple vehicles or machines. In this
paper, we use the terms sector and agent interchangeably.

Learning-based approaches particularly Reinforcement
Learning (RL) is popular in solving sequential decision prob-
lem as RL facilitates offline learning of policies and val-
ues which are computed beforehand and can be quickly ex-
ecuted during run-time for instantaneous decision-making.
However, current Multi-Agent RL (MARL) approaches deal
with problems with simple actions (either discrete or continu-
ous). Thus, to solve problems with complex action similar to
MADPRP, current MARL approaches either decompose the
problem into two stages (see [Chen et al., 2021]) and/or dis-
cretize the actions (see [Chen et al., 2019]).

In this paper, we propose a new cooperative MARL ap-
proach that combines Multi-Agent Value Function Approxi-
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mation (MAVFA) with a planning heuristic to solve MAD-
PRP directly without any decomposition step. In our ap-
proach, the learned value function is utilized by the heuristic
to search for better rescheduling decision during execution.
To improve scalability and to induce coordination among
agents, we propose an iterative best response procedure as
a decentralized optimization heuristic and an explicit coordi-
nation mechanism in this proposed approach.

This paper makes the following contributions:

• We define MADPRP as a multi-agent sequential deci-
sion problem with complex action and model it as a
route-based Markov Decision Process (MDP).

• We propose a solution approach that combines MAVFA
with a rescheduling heuristic to solve MADPRP that
will learn policies for making dispatching and reschedul-
ing jointly. Our proposed approach incorporates itera-
tive best response procedure to serve as decentralized
optimization heuristic and as an explicit coordination
mechanism for a scalable, coordinated decision-making
amongst multiple agents.

• We show experimentally that our approach outperforms
the commonly used two-stage approach on a real-world
problem setting and through a series of ablation studies,
ascertain the effectiveness of our proposed learning and
coordination mechanisms.

2 Related Works
Police Patrol Problem. Dynamic police patrol routing and
scheduling problem shares many similarities with Dynamic
VRP (DVRP) and existing solution approaches to DVRP
could potentially be used to solve this problem [Dewinter
et al., 2020]. However, no prior work directly addresses
dynamic police patrol problem as DVRP except for [Joe et
al., 2022]. Moreover, existing approaches to solve multi-
agent version of DVRP are very specific to transportation
or logistics problem scenario (see [Wang and Kopfer, 2013;
Los et al., 2020]).

Most existing works in the literature solve police patrol
routing and scheduling problem or other similar problems in-
volving emergency response in a static manner, without con-
sidering the disruption to existing plans due to occurrences of
dynamic incidents [Mukhopadhyay et al., 2016; Pettet et al.,
2022; Wang et al., 2019; Wang et al., 2022]. Only [Joe et al.,
2022; Rumi et al., 2020] consider the impact of dynamic inci-
dents to existing patrol schedules. On the other hand, existing
works on multi-agent patrolling such as [Santana et al., 2004;
Tkach and Amador, 2021] define agent as lower-order entity
such as a robot or a vehicle unlike the definition used in this
paper.

Cooperative MARL. The research in cooperative MARL
has been to address the following two main challenges
namely partial observability and scalability. The concept of
Centralized Training Decentralized Execution (CTDE) was
introduced to address the partial observability and since have
been leveraged by many popular MARL algorithms such
as COMA [Foerster et al., 2018] and MADDPG [Lowe et
al., 2017]. To further address scalability, many works such

as Value Decomposition Network (VDN) [Sunehag et al.,
2018], QMIX [Rashid et al., 2018] and QTRAN [Son et al.,
2019] propose value function factorization based on Individ-
ual Global Max (IGM) assumption on top of CTDE to learn
decentralized policies.

However, the current cooperative MARL approaches fall
short in addressing problems with complex action directly.
For instance, VDN, QMIX and COMA only solve problems
with discrete actions while MADDPG addresses problems
with continuous actions. Current MARL approaches solve
problems with complex action by either decomposing the ac-
tion into two stages and learn the policy in one of the stages,
defining the actions to be either discrete or continuous, or
combining both approaches.

Two-Stage Approach. Chen et al. [2021] propose
DeepFreight, a model-free DRL-based approach to solve
multi-transfer freight delivery. To solve the problem, the au-
thors decompose the problem into two stages: truck-dispatch
and request-matching and leverage on QMIX to learn
the dispatch policy while implement a separate matching
algorithm for the second stage. Similarly, Chen et al. [2022]
solve a same-day delivery problem with vehicles and drones
by decomposing the problem into two stages: learning
assignment policy via DQN and rerouting via heuristic.
Meanwhile, Chen et al. [2019] decomposes a dynamic
courier dispatch problem into two stages namely dispatch
and routing stage. The authors propose an MARL approach
to learn the dispatch policy and define a discrete action space
consisting of a cartesian product of the next grid to visit and
the corresponding period of stay in the grid. Ma et al. [2021]
propose a hierarchical approach to solve dynamic pickup
and delivery problems by introducing two levels of agent.
The first agent learns a policy to decide which orders to be
released while the second agent learns a policy to choose
a local search operator to reroute the vehicles. Both stages
involve discrete actions.

Communication. To coordinate amongst agents, various
works focus on the aspect of learning to communicate in co-
operative setting (see [Jiang and Lu, 2018; Das et al., 2019;
Jiang et al., 2020]). However, communication alone does not
guarantee coordination especially when agents act simulta-
neously [Ruan et al., 2022]. Acting simultaneously in the
context of MADPRP is not ideal because it may cause unco-
ordinated actions resulting in poor event-handling decision.
For e.g. there may be scenarios where no agent or more than
one agent respond(s) to an incident and this would result in
an unattended incident or delays as agents may be waiting for
incidents that have already been responded by other agent.

Arising from the above-mentioned gaps in current works,
we propose a cooperative MARL approach to address com-
plex action directly with an explicit coordination mechanism
in place of communication network (which is implicit in na-
ture). Currently, there exist works that solve single-agent se-
quential decision problem with complex action directly [Joe
and Lau, 2020; Joe et al., 2022]. Inspired by these works,
this paper extends the proposed idea to address multi-agent
settings.
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Notation Description

I A set of agents / sectors, I ∈ {1, 2, ..., |I|}
J A set of patrol areas, J ∈ {1, 2, ..., |J |}
Ii A set of patrol teams in sector i
Ji A set of patrol areas in sector i where∑

i∈I |Ji| = |J |
T A set of time periods, T ∈ {1, 2, ..., |T |}
k Decision epoch
tk Time period where k occurs

δi(k) A schedule of agent i at k
δ(k) A joint schedule of all agents at k

where δ(k) = (δi(k))i∈I

δ−i(k) A joint schedule of all agents
except for agent i at k

(δi(k), A joint schedule where agent i follows δi(k)
δ−i(k)) while the rest follows δ−i(k)
δx(k) A joint schedule of all agents

after executing action x at k
ui(δ(k)) Payoff/utility of agent i when all agents

follows δ(k)
Bi(δ−i(k)) Best response of agent i when

all other agents follow δ−i(k)
xk,i Action by agent i at k

xk,−i Joint action by all agents except agent i at k
xk Joint action by all agents at k
Sk Joint pre-decision state at k

Sk,i Local pre-decision state of agent i at k
Sx
k Joint post-decision state at k

Sx,i
k,i Local post-decision state at k

Table 1: Set of key notations used in this paper.

3 Problem and Model Formulation
Table 1 provides key notations and the corresponding descrip-
tions used in this paper.

3.1 Problem Description
In MADPRP, there are |I| police sectors in charge of pa-
trolling |J | patrol areas. We define each police sector as an
agent; a higher-order decision-making entity which are capa-
ble of executing complex decision. Each police sector i con-
sists of |Ii| patrol teams that patrol |Ji| patrol areas within
its sector and each patrol shift has a duration of |T | time pe-
riods. At the start of the shift, each agent is assigned to an
initial patrol schedule. Throughout the shift, incidents occur
dynamically and a patrol team from a certain sector is dis-
patched to respond to the incident which results in the need
to reschedule its own and/or even the schedules of all other
agents. Coordination amongst the agents is crucial as patrol
teams can cross over to other sectors to respond to an inci-
dent and perform routine patrol so as to ensure that incidents
are responded within target time and all patrol areas across all
sectors are sufficiently patrolled.
Schedule. Each patrol schedule includes the sequence of
patrol areas to visit (routes) and when and how long to pa-
trol each areas (schedule). It is similar to a university time-
table with an additional key constraint whereby in between

two different patrol areas, there must be sufficient time pe-
riods to cater for travel time. At the start of the shift, each
agent is assigned to an initial patrol schedule, δi(0). In this
problem, we assume that the initial joint schedule is available
and computed independently.
Incident. A dynamic incident, ωk occurs at decision epoch
k and is described as the following tuple: ⟨ωi

k, ω
j
k, ω

t
k, ω

s
k⟩

where ωi
k refers to the sector in which the incident takes place,

ωj
k ∈ Jωi

k
refers to the location of the incident, ωt

k ∈ T refers
to the time period when the incident occurs and ωs

k refers to
the number of time periods needed to resolve the incident.
Patrol Presence. A study by Doyle et al. [2016] has shown
that patrol presence invokes feelings of safety in people. We
define patrol presence as a function of the number of effec-
tive time periods each patrol area is being patrolled in a shift.
Each patrol area j needs to be patrolled for at least Qj time
periods in a given shift. We propose a presence utility func-
tion of a patrol area j, Up(j) where the utility factor of any ad-
ditional patrol time periods beyond the minimum patrol time
requirement decreases exponentially with a parameter βp (see
Eq. 1). This is to simulate that any additional patrol time pe-
riods beyond the minimum requirement are less effective in
projecting presence. σj refers to the total patrol time peri-
ods in patrol area j by all teams across the patrol sectors in a
given joint patrol schedule, δ(k).

Up(j) = min(σj , Qj) + 1A ×
σj−Qj∑
i=1

i× e−βpi (1)

where 1A =

{
0, σj −Qj ≤ 0

1, σj −Qj > 0

We define a fitness function, fp(δ(k)) to quantify the good-
ness of a given schedule δ(k) in terms of its ability to project
presence. We represent fp(δ(k)) as a ratio of total effective
patrol time of to the total time in a shift across all agents and
their patrol teams (see Eq. 2). Thus, a schedule is deemed to
have good patrol presence if the patrol teams spend most of
the time patrolling rather than travelling between patrol areas
and each patrol area is being patrolled sufficiently.

fp(δ) =

∑
j∈J Up(j)

|T | × |I|
(2)

Response Time. The response time to an incident at deci-
sion epoch k, τk is computed as the time taken by the assigned
patrol team, xm

k to act upon the dispatch call from the point
where incident occurs (xt

k − ωt
k) plus the travel time from its

current location to the incident location. A successful inci-
dent response happens when τk ≤ τtarget. We assume that
any dispatch call must be acted upon within τmax.

τk = (xt
k − ωt

k) + d(j
xm
k

t′ , ωj
k) (3)

where xt
k − ωt

k ≤ τmax, t
′ = xt

k

Problem Objective. The objective is to make dispatching
and rescheduling decisions at every epoch that maximize the
number of successful incident responses while minimizing
the reduction in patrol presence within and across all sectors.
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3.2 Route-Based MDP Formulation
We use a route-based MDP modelling framework introduced
by Ulmer et al. [2020] because, unlike in the conventional
MDP, the solution to MAPDRP is an updated joint schedule
and not partial schedule or planned action in the next time
period. Thus, the model needs to capture the complex action
and its impact in both the state and action spaces.

State. A state consists of two parts, pre-decision state Sk

and post-decision state Sx
k . Sk captures the necessary in-

formation required to make dispatching and rescheduling de-
cisions. Each state can be further categorized as local and
global states. Local state refers to information unique to an
agent while global state refers to shared information across
the agents which may be useful to induce coordination. Each
local post-decision state, Sk,i is represented as the following
tuple:

⟨δi(k),
σi(k)

Qj
, futil(δi(k))⟩ (4)

where σi(k)
Qj

is the ratio of total patrol time of each patrol area
covered in δi(k) over its minimum patrol requirement and
futil(δi(k)) is a function that computes the ratio of the to-
tal patrol time over the total shift time of all patrol teams.
The shared global state includes the current time, tk and
(
σj(k)
Qj

)j∈J which represents the ratios of total patrol time of
each patrol area in all sectors over its minimum patrol require-
ment when all agents follow a joint schedule, δ(k). Mean-
while, the post-decision state Sx

k captures the changes to the
state upon executing a decision.

Action/Decision. xk is the action of assigning a patrol sec-
tor/agent to dispatch one of their patrol teams to an inci-
dent and updating the joint schedule of all agents at de-
cision epoch k. xk is represented as the following tuple:
⟨xi

k, x
m
k , xt

k, δ
x(k)⟩ where xi

k ∈ I is the sector/agent as-
signed to respond to the incident, xm

k ∈ Ixi
k

is the dispatched
patrol team belonging to the assigned agent, xt

k ∈ T the time
period which the assigned patrol team starts to act upon the
dispatch call and δx(k) the resulting joint schedule after exe-
cuting action xk.

Transition. There are two main transitions in the model
namely, from pre-decision state, Sk to post-decision Sx

k and
from Sx

k to the next pre-decision state, Sk+1. The transition
from Sk to Sx

k takes place after executing action xk. Mean-
while, during transition from Sx

k to Sk+1, a realization of a
dynamic event, ωk+1 takes place and Sk+1 = (Sx

k , ωk+1).
There are |I| possible realizations of Sk+1 corresponding

to the number of agents that can be assigned to the handle the
new dynamic event.

Sk+1 =
(
(Sxk,i

k,i , ωk+1), (S
xk,−i
k,−i , ∅)

)
=
(
(Sxk,i

k,i , ωk+1), (Sk+1,−i)
)

(5)

Reward Function. The reward function, R(Sk, xk) is de-
signed in such a way that high reward is given to a successful
incident response while minimizing the reduction in patrol

presence at the same time. We introduce fr(xk) to quantify
the response utility after executing xk. We propose the use of
exponentially decreasing function to represent the response
utility similar to the one proposed by [Amador et al., 2014]
and [Nelke et al., 2020]. In other words, the later the incident
is being responded, the more severe the impact of the incident
and the less effective a response would be in resolving the in-
cident. Thus, patrol teams have more incentives to respond to
the incident as early as possible.

R(Sk, xk) = fr(xk)× fp(δ
x(k))− fp(δ(k)) (6)

fr(xk) = e−βr×max(0,τk−τtarget) (7)

Objective Function. The objective at every decision epoch
k is to select joint action x∗

k which maximizes the immediate
reward and the expected future reward from yet-to-realized
dynamic events which is represented by the approximated
value function, V̂ (Sx

k ).

x∗
k = argmax

xk∈X(Sk)

{R(Sk, x) + γV̂ (Sx
k )} (8)

4 Solution Approach
To solve the optimization problem in Eq. (8), we propose an
approach that combines MAVFA based on value function fac-
torization with rescheduling heuristic based on ejection chain
heuristic, where the former learns to approximate the joint
value function and the latter is used to compute the argmax.
Furthermore, we incorporate an iterative best response proce-
dure that provides a scalable, decentralized scheme for coor-
dination among agents. We propose the use of VFA because
the decision variable, xk is complex and multi-dimensional.
Off-policy Temporal Difference (TD) learning method like
Q-learning and policy gradient method may not be applica-
ble directly since the action space changes depending on the
current state [Zhang and Dietterich, 2000].

Our proposed cooperative MARL approach learns the
value function of joint schedule of all agents after a patrol
team from a particular sector has been dispatched to attend
to an incident and rescheduling actions have been performed
across all sectors. In other words, the learned value function
will guide the rescheduling heuristic to find dispatching and
rescheduling decisions that are anticipatory and coordinated.

4.1 MAVFA based on Value Function
Factorization

We assume that the joint value function approximate, V̂ (Sx
k )

can be factorized into the value function approximates of each
agent as shown in Eq. 9. Similar to other value function fac-
torization approaches like VDN and QMIX, we assume an
IGM principle. This assumption is reasonable because MAD-
PRP is not a zero-sum game. An agent which is assigned to
respond to an incident may gain certain utility score but this
does not directly result in other agents suffering a loss in their
utility scores. IGM assumption is also valid because the total
number of incidents and the total effective patrol time across
all police sectors are positively correlated to the incidents re-
sponded within every sector and the effective routine patrol
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Figure 1: Given |I| realizations of pre-decision state Sk, there are
correspondingly |I| possible variations of V̂ (Sx

k ).

time of each patrol sector respectively.

V̂ (Sx
k ) =F

(
V̂ (S

xk,1

k,1 ), V̂ (S
xk,2

k,2 ), ..., V̂ (S
xk,|1|
k,|I| )

)
=F

(
(V̂ (S

xk,i

k,i ))i∈I

)
(9)

Combining with Eq. 9, Eq. 8 can be rewritten as follows.

x∗
k = argmax

xk∈X(Sk)

{
R(Sk, xk) + γF

(
(V̂ (S

xk,i

k,i ))i∈I

)}
(10)

As each pre-decision joint state can be represented by |I|
different realizations (see Eq. 5), the objective function can
be further rewritten as follows:

x∗
k = argmax

xk∈X(Sk)

argmax
i∈I

{
R
(
(S

xk−1,i
k−1,i , ωk+1, xk,i),

(Sk,−i, xk,−i)
)

+ γF
(
(V̂ (S

xk,i

k,i ))i∈I)
)}

(11)

We propose to represent V̂ (Sx
k ) as neural networks with

parameters θ and its architecture can be found in Fig.1. Our
approach learns the policy to execute complex action di-
rectly because the learned value function represents the value
of a post-decision state, a state after executing both event-
handling and re-planning actions.

Local Value Network. The architecture of the local value
network, V̂ (S

xk,i

k,i , θi) can be found in Fig.2. For scalabil-
ity and simplicity, (homogeneous) agents share the same lo-
cal network parameter θi. We propose an encoder network
in the form of multilayer perceptrons to extract the key fea-
tures of the plan in its raw form and encoding it into a lower-
dimensional vector representation. Handcrafted features de-
scribed in the above model formulation (Eq. 4) are concate-
nated to enhance the learning process.

Mixing Network. We represent F in Eq. 9 as fully-
connected neural networks and we loosely refer this network

Figure 2: Local Value Network

as a ”Mixing Network”. We use the term ”mixing” in its gen-
eral definition and it does not refer to the specific mixing net-
work structure as proposed in QMIX. The key feature of this
network is that the global state information is passed into the
network to enhance coordination. Rashid et al. [2018] in their
ablation study have shown that providing extra state informa-
tion does improve performance.
Learning Algorithm. To learn the parameter θ, we propose
to use an on-policy TD learning with experience replay (see
[Joe and Lau, 2020]) with the main differences lie in how de-
cision is being computed in line 11 and how the value func-
tion is being represented.
VFA-Guided Heuristic. To compute argmaxxk∈X(Sk)

in
Eq. 8, we propose to use rescheduling heuristic based on
ejection chain [Joe et al., 2022]. In this heuristic, the ejection
chain consists of a sequence of defect-checking and repair
operations. Insertion of an incident into a schedule poten-
tially introduces a defect to the schedule. Repairing a defect
at one part of a schedule may introduce a defect in another
part. Thus, a chain of check and repair operations is formed
until termination condition is met or until no defect is present.
The learnt value function V̂ (Sx

k ) is used to search for a repair
decision that result in a repaired schedule that maximises both
immediate and future rewards. More detailed descriptions of
this rescheduling heuristic can be found in [Joe et al., 2022].

4.2 Iterative Best Response Procedure
To compute argmaxxk∈X(Sk)

in a decentralized manner, we
propose an iterative best response procedure. The purpose
of incorporating this procedure is twofold. Firstly, it acts
as a scalable, decentralized optimization heuristic. To com-
pute this argmax directly is akin to solve the multi-agent op-
timization problem centrally (as a single-agent) which will
be computationally expensive. Secondly, this procedure pro-
vides an explicit coordination mechanism amongst agents via
asynchronous actions.
Optimization Heuristic. Lambert Iii et al. [2005] propose
a sampled fictitious play algorithm as an optimization heuris-
tic to solve large-scale optimization problems. Optimization
problem can be formulated as a n-player game where every
pure-strategy equilibrium of a game is a local optimum since
no player can change its strategy to improve the objective
function. The premise of this algorithm is that the problem
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must meet the criteria of being a potential game. Potential
game possesses a pure-strategy equilibrium and has the Finite
Improvement Property (FIP) [Monderer and Shapley, 1996].
Having the FIP means that every path generated by a best re-
sponse procedure will converge to an equilibrium.

We formulate the optimization problem found in Eq. 11 as
an I-player game Γ with agents represented as players hav-
ing a finite set of strategies ∆i and sharing the same payoff
function. We define the payoff function, ui(δ) as the utility of
agent i when all agents follow a joint plan δ. We deliberately
remove the index k to simplify the notation. Here, we make
the assumption that the payoff of each agent is not dependent
on other agents’ payoff such that we can define a function,
P (δ) =

∑
i∈I u

i(δ). This assumption is consistent with the
earlier IGM assumption. P (δ) is an ordinal potential function
for Γ since for every i ∈ I and for every δ−i ∈ ∆−i

ui(δi, δ−i)− ui(δ′i, δ−i) > 0 iff

P (δi, δ−i)− P (δ′i, δ−i) > 0 for every δi, δ
′
i ∈ ∆i. (12)

An equilibrium of Γ is a local optimum since no player
can improve its payoff by changing its individual plan. Con-
versely, every optimal solution, δ∗ of Γ is an equilibrium
since ui(δ∗) ≥ ui(δi, δ

∗
−i) for all i ∈ I where δi ∈ Bi(δ

∗
−i).

To search for a local optimal solution of the optimization
problem in Eq. 11, we propose an iterative best response al-
gorithm proposed by Joe and Lau [2023].
Explicit Coordination. Unlike communication network,
the iterative best response procedure induces a more explicit
form of coordination as agents take turn to respond to the
other agents’ actions. We note that combining communica-
tion network and iterative best response is not feasible. The
presence of communication network means that an agent’s
state and action are dependent of other agents’ states and ac-
tions. Best response procedure may not converge because
other agent’s payoffs will change the moment an agent per-
forms a best response action and the inequality in Eq.12 is no
longer valid.

5 Experiments
We evaluate our approach on a problem scenario involving
3 police sectors in the North-Central region of a city-state
that we reside in. There are a total of |J | = 62 patrol ar-
eas. Each sector represents different problem complexities in
terms of the ratio of patrol team per patrol area, the diversity
of the patrol areas and the spatial distribution of dynamic in-
cidents (see Table 2). Due to the classified nature of the data,
synthetically-generated data based on publicly-available data
source are used in this experiment1.

5.1 Experimental Setup and Design
We divide our experiment into two phases to evaluate the im-
pact of each of the components of our proposed approach on
the solution quality and computational time through a series
of ablation studies. For a fairer comparison, we use the same
reward function and rescheduling heuristic.

1Detailed descriptions of the data, the experiments and the im-
plemented codes can be found in: https://github.com/waldyjoe/
MADPRP.

Sector Parameter Description

1 |I1| = 4, High patrol team-to-area ratio,
|J1| = 14 relatively homogeneous

patrol densities (medium)
2 |I2| = 4, Low patrol team-to-area ratio,

|J2| = 23 relatively homogeneous
patrol densities (low)

3 |I3| = 4, Low patrol team-to-area ratio,
|J3| = 25 more diverse patrol densities

(low to high)

Table 2: Different patrol sectors representing different problem
structures and complexities.

Phase 1. We evaluate the performance of our joint learn-
ing mechanism against a two-stage approach where another
popular value-based RL algorithm, DQN is used to learn the
dispatch policy in the first stage. We also evaluate the ef-
fect of iterative best response as a coordination mechanism
by comparing it with a communication network. We run a
total of 10,000 training episodes where each episode repre-
sents a given initial joint schedule and a set of dynamic events
occurring throughout the planning horizon. We evaluate the
solution quality based on the resulting cumulative rewards in
terms of the average % improvement of incident success rate
over myopic approach. Here are the models being run in this
phase:

• MAVFA-BR-H. This is our proposed approach where
BR refers to iterative best response procedure and H
refers to heuristic.

• MAVFA-C-H. This is a model that incorporates com-
munication network as an implicit coordination mecha-
nism. We adapt a Attention-Based Convolutional Com-
munication Network proposed by Jiang et al. [2020].

• MAVFA-H. This is an MAVFA model without any com-
munication mechanism amongst agents.

• MADQN-BR-H. This is the two-stage approach similar
to Chen et al. [2021]. In order to evaluate solely on the
joint vs. two-stage learning mechanisms, we retain the
same components, BR and H.

Phase 2. We evaluate the impact of our proposed MAVFA
algorithm and iterative best response procedure in making
anticipatory and coordinated decision-making during execu-
tion. We run 30 experiments to simulate one month’s worth of
daily operations and for each experiment, we run 20 different
set of realizations of dynamic incidents to simulate different
possible daily scenarios; representing a sufficiently substan-
tial sample size for statistical evaluation. We evaluate the im-
pact of our approach against the absence of coordination and
anticipation (myopic) by running the following baseline mod-
els for comparison on top of MAVFA-BR-H and MAVFA-H:

• VFA-H. This model assumes each sector runs its own
independent single-agent VFA without any form of com-
munication and collaboration amongst agents.

• BR-H. This is a version of our approach without VFA
i.e. myopic approach.
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Figure 3: Average cumulative rewards over last 600 training
episodes.

We evaluate our approach on overall success rate (% of in-
cidents responded within a target time) across all sectors and
the success rate of the worst performing agent. For compu-
tational time, we evaluate based on the time taken per deci-
sion (dispatch and reschedule). We include results in terms
of mean and 95% Confidence Interval (CI) of the mean since
the problem and the heuristic used are stochastic in nature.

5.2 Experiment Results and Discussion
Phase 1. We observe that the cumulative rewards (repre-
sented as % improvement over myopic) stabilize after around
6000 training episodes (see Fig. 3). We assume stability
where the standard deviation of the cumulative rewards are
kept within 20% of the sample mean for at least 600 consec-
utive episodes. Fig. 3 shows that our explicit coordination
mechanism results in a better overall success rate.

We also observe that our approach seems to only outper-
form the two-stage approach by a slight margin. However, as
indicate by the symbol * beside MADQN-BR-H, this model
has been pre-trained with one additional round of training.
This is because we observe that 10,000 episodes were not
sufficient for this model to learn effectively as it is only able
to achieve an −2% improvement over myopic. Thus, given
the same number of training episodes, our proposed approach
will outperform it by a bigger margin.

Phase 2. Our proposed approach is statistically able to pro-
duce decisions that result in higher overall success rate and
success rate of the worst-performing agent as compared to
the other baselines except for VFA-H (see Table 3). Our
proposed coordination mechanism account to about 13% in-
crease in overall success rate (vs. MAVFA-H) while collab-
oration amongst agent significantly increases the success rate
of the worst performing agent by > 18% (vs. VFA-H).

The overall success rate of VFA-H is higher because Sec-
tor 1 has a higher patrol team-to-area ratio which increases
its ability to respond to local incident quickly, skewing the
average result. Cooperation in light of limited resources in-
evitably means that some sort of compromise is needed which
in this, our approach is able to ensure that every sector’s suc-
cess rate is at least of a certain reasonable threshold (> 50%).

Although our proposed approach is slower than the other
models, it is able to compute the decision within an oper-
ationally realistic time of < 30s (see Table 3). In fact,

Model Success Rate Time Per
Decision(s)

MAVFA-BR-H (O) 65.0± 0.7% 24.1± 2.1
(W) 52.4± 0.9%

MAVFA-H (O) 57.3± 0.6% 9.3± 1.0
(W) 44.0± 0.8%

VFA-H (O) 67.6± 0.6% 1.4± 0.2
(W) 44.2± 1.0%

BR-H (O) 62.2± 0.8% 23.7± 2.1
(W) 47.9± 1.0%

Table 3: Our approach statistically outperforms the other models in
terms of overall success rate (O) and the success rate of the worst-
performing agent (W).

our value function approximation steps and iterative best re-
sponse procedure account for < 1s and < 15s of additional
computation time per decision respectively.

Discussion. The magnitude of our improvements may not
seem substantial (about 5%). In reality however, a 5% im-
provement translates into 3 more incidents responded within
target time, which is quite significant in the law enforce-
ment context. Given the additional complexity of our prob-
lem (routing and scheduling) and multi-agent setting, an im-
provement of 5% is comparable with the performances of var-
ious offline methods in the literature that solve DVRP with
stochastic customers (see [Ritzinger et al., 2016]).

Although the comparison against existing cooperative
MARL approaches would strengthen our evaluation attempt,
such comparisons are not so straightforward. Given that these
approaches require the problem or action to be decomposed
into two stages, the rescheduling heuristic chosen would have
to be different. In addition, these approaches assume simulta-
neous actions by all agents which mean that additional step is
needed to ensure proper handling of dynamic event to prevent
incident being ignored or more than one agent responding to
one incident. Thus, modifications to these approaches such
as action-masking are needed and these may result in devi-
ations from these approaches’ original design. The eventual
solution quality of these modified approaches need to be as-
sessed more carefully as any improvement may come from
the rescheduling heuristic used.

6 Conclusion and Future Works
We presented a pioneering effort on a cooperative MARL ap-
proach to solve MADPRP, an instance of multi-agent sequen-
tial decision problem with complex action, directly. Moving
forward, there are many opportunities to further evaluate and
build upon the ideas proposed. For example, our proposed
approach can be evaluated on other multi-agent sequential
decision problem settings. This will require exploration of
more context-specific network architecture. It would also be
interesting to compare our approach with existing coopera-
tive MARL approaches. However, as mentioned earlier, ad-
ditional care is required in designing the experiment to ensure
fair comparison, which we hope to address in the future.
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Ethics Statement
AI and data-driven approaches in law enforcement context
can be a double-edged sword; they may result in significant
benefits in maintaining law and order but also possible ethical
and adverse societal impacts. Any initiative that is driven by
data is inevitably vulnerable to data manipulation and abuse
by human operators [Richardson et al., 2019]. The existing
public reputation of the law enforcement agency itself would
also determine how the proposed initiative is perceived and
the impact to the society prior to implementation. These fac-
tors exist with or without AI and their impacts may vary from
country to country, city to city.

Although our approach aims to achieve better operational
efficiency and service quality for public good, we acknowl-
edge that, for this approach to be adopted into an operational
system, there could be unintended harms caused by inherent
biases in the data. Police may patrol certain areas more often
due to historical bias (for e.g. based on past police operations)
and they can be heavily influenced by how the authority per-
ceives those areas. In addition, the training data may also rely
on incident reporting through police public hotline (such as
911 calls) which is triggered by the public rather than by the
law enforcement agency itself. Such data is also very much
influenced by the inherent biasness that exists in the society
for e.g. such calls, more often than not come from segments
of society who are more privileged or educated. This may re-
sult in overpolicing areas that are poor, marginalized or of a
certain demographic. Thus, there is a need for decision mak-
ers to work with various community stakeholders to address
these concerns prior to implementation of such data-driven
approaches. For example, should there be a risk of data bias,
such (historical crime) data could be removed or preprocessed
from the training dataset with the aim to have a learnt policy
that will discount or downplay certain biasness that exists in
that particular dataset.

That being said, we acknowledge that AI does not replace
human operators totally but it should be used to inform hu-
man decision-makers. Sound policies and tight processes still
need to be in place and human operators ultimately should be
accountable in applying AI and data-driven approaches for
the good of society.

References
[Amador et al., 2014] Sofia Amador, Steven Okamoto, and

Roie Zivan. Dynamic multi-agent task allocation with spa-
tial and temporal constraints. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 28, 2014.

[Chen et al., 2019] Yujie Chen, Yu Qian, Yichen Yao, Zili
Wu, Rongqi Li, Yinzhi Zhou, Haoyuan Hu, and Yinghui
Xu. Can sophisticated dispatching strategy acquired by re-
inforcement learning? In Proceedings of the 18th Interna-
tional Conference on Autonomous Agents and MultiAgent
Systems, pages 1395–1403, 2019.

[Chen et al., 2021] Jiayu Chen, Abhishek K Umrawal, Tian
Lan, and Vaneet Aggarwal. Deepfreight: A model-free
deep-reinforcement-learning-based algorithm for multi-
transfer freight delivery. In Proceedings of the Interna-

tional Conference on Automated Planning and Scheduling,
volume 31, pages 510–518, 2021.

[Chen et al., 2022] Xinwei Chen, Marlin W Ulmer, and Bar-
rett W Thomas. Deep q-learning for same-day delivery
with vehicles and drones. European Journal of Opera-
tional Research, 298(3):939–952, 2022.

[Das et al., 2019] Abhishek Das, Théophile Gervet, Joshua
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