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How to Resuscitate a Sick VM in the Cloud

Xuhua Ding

xhding@smu.edu.sg

Singapore Management University

Abstract—A guest virtual machine in a cloud platform may
fall “sick” when its kernel encounters a fatal low-level bug or
is subverted by an adversary. The VM owner is hence likely to
lose her control over it due to a kernel hang or being denied
of remote accesses. While the VM can be rebooted with the
assistance from the cloud server, the owner not only faces service
disruption but also is left with no opportunity to make an in-
depth diagnosis and forensics on the spot, not to mention a live
rectification. Currently, the cloud service provider has neither
incentive nor the technology to assist owners to resuscitate their
falling VMs. In this paper, we propose a new cloud service
termed VMCare-As-A-Service (VaaS) with the vision that the
owner of a sick VM applies her tools running on a special VM
to repair it. VaaS demands innovative cloud technologies for the
unique infrastructure support as well as new software security
techniques for attacks neutralization and runtime rectification
upon a running and corrupted kernel. We examine the ensuing
research challenges and present several preliminary approaches
to kindle the interests from the community.

I. INTRODUCTION

According to a recent report from Gartner1, the worldwide

market for public Infrastructure-As-A-Service (IaaS) Cloud

will reach more than $150 billion in 2023. The surge of IaaS

subscription is unsurprisingly companied with the growth of

attacks against guest VMs. A sophisticated attack can subvert

and control the victim’s kernel. As a result, neither the guest

owner’s programs in the VM nor commands sent to the VM

can be properly executed as expected. Even without attacks,

the guest kernel may hang or crash due to fatal bugs triggered

during its execution. In both cases, the guest VM with kernel

failure or compromise becomes undependable.

A straightforward and seemingly effective solution to an

undependable VM is just to restart it. Unfortunately, this

approach is not desirable in many scenarios because it does

not eradicate the root cause of VM failure. The attacker may

leave malicious code persistently in files so that the subsequent

launch, even with a new kernel image, is still susceptible to

kernel compromise. If the failure is due to kernel bugs, there is

no guarantee whether the bug will not be triggered any longer.

For tenants using the VM to host servers, the termination-

restart method incurs service disruption. Furthermore, the

reset obliterates the important runtime data, which hinders

kernel bug troubleshooting and live forensics for attack traces.

Thus, an ideal solution is not to kill the the undependable

virtual machine but to resuscitate it with dependability and

trustworthiness.

1Gartner Forecasts Worldwide Public Cloud End-User Spending to Reach
Nearly $600 Billion in 2023, https://www.gartner.com/en/newsroom/, Oct 31
2022

In the rest of the paper, we first explain the hurdles

encountered by VM owners and CSPs when coping with an

undependable VM. We then propose a new type of cloud

service and show that existing cloud security techniques are in-

sufficient to enable it. Next, we present the research challenges

from three angles. Lastly, we explore different parameters

when designing solutions to overcome those challenges.

II. A NEW CLOUD SERVICE

To explain the demand for a new cloud service, we shed

light on the difficulty of handling an undependable VM

through the lens of the owner and the CSP, respectively, and

remark that neither of them can resolve the problem alone.

A. A Tale of Two Predicaments

VM Owner. When an on-premise computer becomes unde-

pendable, its owner may use special hardware devices or Intel

Management Engine (IME) to gain a foothold in it and carry

out the necessary tasks. In contrast, for an undependable VM

hosted in the cloud, its owner does not have that foothold. The

sole way for the owner to access the VM is via the network

channel which often becomes unreliable/unavailable when the

VM kernel fails. Hence, it is infeasible for the owner to revive

the VM without the CSP’s assistance.

Cloud Service Provider. To rectify an undependable VM is

obviously beyond the conventional service scope of IaaS. With

the privilege of managing all hardware resources in the cloud,

the Virtual Machine Monitor (VMM) can directly read/write

the VM’s physical memory and disk files. Nonetheless, its

capability is crippled by the absence the semantics of the

kernel and applications running inside the VM. As noted by

Jain et al. [1], how to bridge the semantic gap is the key

challenge in out-of-VM2 introspection schemes [4], [5], [6],

[7]. Even if the semantic gap challenge was overcome, existing

VMI techniques only collect data and help to diagnose the

VM. They are incapable of neutralizing attacks or amending

the VM runtime. Besides the technical challenge, any CSP

based rectification, if technically feasible, unavoidably intrudes

the owner’s VM which may result in legal and privacy related

implications.

B. VMCare-As-A-Service

Since the existing cloud services cannot resolve the issue,

we propose a new cloud service termed VMCare-as-a-Service

2Those in-VM introspection schemes [2], [3] are infeasible as their security
relies on the guest kernel.



or VaaS. Under this computing paradigm, the CSP provisions

the hardware infrastructure for an authorized agent (e.g., the

VM owner or a third party hired by the owner) to run its

chosen software against the undependable VM. In specific,

the CSP sets up a special virtual machine (denoted as the

Responder VM) and the agent runs the diagnose and repairing

tools of her own choice inside the Responder VM. The key

feature of the Responder VM is that the agent tools therein are
empowered by the VMM to introspect and modify any virtual
memory in the target VM as if they run inside the target’s
kernel. Figure 1 below illustrates the vision of VaaS.

The VaaS model resolves the aforementioned predicaments

of the VM owner and the CSP. On the one hand, the owner

is accessible to a wide range of toolkits to rectify her un-

dependable VM, which could turn out to be more flexible

and versatile than handling an on-premise computer using a

hardware tool. On the other hand, the CSP’s service remains

agnostic and non-intrusive to its tenants VMs as it still centers

around resource management and access control.

Fig. 1. Illustration of VMCare-As-A-Service. The target VM is undependable
due to attacks subverting the kernel.

Analogously, the Responder VM is the “operation theatre”

that provides the needed facility and equipments to save a

sick VM whereas the agent is the “surgeon” who undertakes a

surgical operations by using his VMCare tools deployed inside

the facility.

III. RESEARCH CHALLENGES

Enabling and supporting VaaS requires innovations of sys-

tem and software technologies for the CSP and for the VM

owners to overcome the following challenges.

A. The Architecture of Responder VM

The primary goal of the Responder VM is to provide

the desired system support to the VMCare tools, so that

tool developers only focus on their software functionalities.

Different from a normal program, the tool is expected to

make native virtual memory accesses to processes of the target

VM. Hence, the Responder VM needs to satisfy the following

requirements.

• Its page tables should not only define the tool’s virtual

memory, but also embody the same address mappings as

those used in the target VM. This requirement is to allow

for native target memory accesses.

• It should resist attacks launched by the adversary in the

target VM. In other words, the tool’s security should not

be undermined because of execution in the Responder

VM (except its own software vulnerability exploited by

the target’s data).

• It should not give either the (malicious) tool or the

adversary in the target any higher advantage to jeopardize

the VMM or other VMs over attacks from a regular guest

VM. This requirement is to rule out possible undesirable

security side-effects of VaaS.

B. Capability of VMCare Tools

Although there are techniques proposed for forensics, guest

kernel object extraction (e.g., [8], [9]) and kernel live patch or

update [10], [11], [12], their capabilities are not sufficient for

VaaS due to the environment mismatch. We envisage a suite of

tools with various capabilities running in the Responder VM.

• Attack Termination We need tools to recognize and

terminate ongoing attacks. While traditional anti-virus or

intrusion detection systems are able to do so within the

affected system, the tools for the VaaS are expected to

achieve the same from the outside.

• State Cleansing We need tools capable of correctly

identifying and gracefully cleansing the corrupted parts

of the target kernel. It is more challenging to design such

tools than for forensics and VMI. Besides the demand

for fine-grained knowledge of code and data semantics,

no existing techniques is universal enough to remove an

arbitrary chunk of instructions and/or data during kernel

execution without breaking its consistent state.

• Repairing We need tools capable of live updating or

patching the kernel. For the target VM to resume nor-

malcy, it is necessary to fix the vulnerability. Most exist-

ing kernel patching techniques [10] are only applicable

to kernels which are not compromised yet. While Kshot

[12] addresses this issue using SGX, it does not match

the VaaS setting in the cloud.

C. Privacy Protection

The VaaS service may tigger entangled privacy concerns

among the CSP, the VM owner, and the entity providing and/or

operating VMCare tools. From the VM owner’s perspective,

the service exacerbate her privacy concern against the CSP.

Although a rogue CSP can always peek at the VM memory,

it faces the difficulty of locating critical data and extracting

its semantics. Nonetheless, the problem is made easier to

overcome when the CSP observes the operations made the

VMCare tools. Hence, one privacy challenge is how to prevent

the CSP from gaining advantages of invading tenant privacy

from the VaaS service. Moreover, the VMCare tools may

enclose proprietary techniques from their vendors. A rogue

CSP may attempt to infringe on their copyrights by copying

them, observing their activities or even hacking them. Hence,

the second privacy challenge is how to protect the VMCare

tools’ copyright against various attacks from the CSP.

In short, the VaaS service gives rise to challenges in system

architecture design, automated software repairing and privacy

protection. Although similar ones have been studied in other



system and application settings and some may even have

mature solutions, the VaaS introduces these research problems

with unique demands and constraints.

IV. DESIGN PARAMETERS

In the following, we examine a few preliminary approaches

that address the aforementioned challenges from different

angles. These approaches apply different design parameters

with respective pros and cons. We do not claim that they

satisfactorily answer the aforementioned research problems.

Instead, they serves as teasers that are expected to inspire

deeper studies leading to innovative solutions.

A. Live VM vs. Frozen VM

A critical design parameter is whether to keep the VM alive

or pause it when the VMCare tool in the Responder VM

conducts its diagnosis and repairing work. The former means

that all or most of the threads in the target VM continue their

executions whereas the latter means that no thread in the target

VM is active and all CPU cores are trapped to the VMM.

Keeping the VM full or partially alive can be an application

demand from the VM owner. For instance, the VM may

host a heavy computation workload (e.g., machine learning

model training). It is against the owner’s interests to terminate

or even temporarily pause the execution. From the security

perspective, the benefit can be a revealing of adversarial

activities to a fuller extent, which contributes to more effective

attack analysis and evidence collection. Clearly, it is difficult

to fulfill the requirement because the incurred transparency,

race-condition, data consistency issues, to name a few.

It is much easier to deal with a paused VM. The tool in this

approach works with static memory data and CPU context of

the target. There is no concerns regarding transparency or race

conditions. Nonetheless, we emphasize that it still required to

preserve the target VM’s ability to resume execution after the

repairing work. In an ideal scenario, the VaaS empowers the

tools to flexibly control the target VM in the pause-resume

cycles.

B. Remapping vs. Reusing

There are two approaches to realizing the paging hierarchy

for the Responder VM. Note that the objective is to provide the

mappings for the VMCare tools to access the target kernel’s

virtual memory.

One approach is to leverage LibVMI [13], a software-based

address translation, as used in out-of-VM introspection. The

VMM allocates for the Responder VM an additional GPA

region with the same size as the target VM’s physical memory.

It then creates the Extended Page Tables (EPTs) to map the

GPA region to the target VM physical memory. When the

tool needs to reference of a virtual address of a target process,

LibVMI parses the target’s page tables, locates the physical

page, and remaps it to the tool’s virtual address space. The

main benefit of this method is its universal applicability for

all architectures. Its drawback is its lower speed than native

memory access. Hence, it suits scenarios involving a frozen

VM since the captured target memory is not updated during

analysis. Figure 2(a) illustrates the remapping approach.

(a) Physical Page Remapping (b) Paging Table Reusing

Fig. 2. Illustration of two difference methods of providing target mappings
to the tool in the Responder VM.

The other approach is to reuse the CR3 as proposed in

OASIS [14]. OASIS builds a special execution environment

inside which a user space program can executes within the

target kernel’s virtual memory. The VMCare tool can directly

reference a target VA with the MMU traversing the paging

tables. In view of its native speed support and consistent

mapping assurance, this approach is suitable for live VM

repairing. However, the technique of CR3 reusing is only

applicable for x86-64 guest VMs and the environment requires

an update when the tool changes its target from one thread

to another. More importantly, OASIS launches the tool as a

regular application in the host OS (i.e., the VMM), instead

of a guest VM. This unfortunately conflicts with the rationale

behind the VaaS service because the VMM is directly involved

and exposed to the tool. Figure 2(b) illustrates the paging

hierarchy reusing approach.

A combination of the two approaches seems more appeal-

ing. The former can be applied for read-only memory in the

target while the latter is applied for a specific thread for the

tool to make fine-grained and more calibrated operations.

C. External Execution vs. Injected Execution

Another dimension of design is whether a VMCare tool

or a fraction of its code is injected to the target kernel and

executes therein. Running the tool strictly inside the Responder

VM is surely a safe approach as threads in the target VM

does not have the paging support to access the Responder

VM memory. Nonetheless, its capability is constricted by the

imposed system setting. For instance, the tool can not change
the CPU contexts (including MSRs) of the target’s vCPU cores

which may affect the I/O handling and low-level system states.

Another issue is related to caches especially translation caches

as they could be different from the corresponding page table

entries. Keeping the tool outside of the target VM cannot

satisfactorily deal with these issues.

An injected execution resembles the kernel’s exception

handling which heals itself to some extent. It can in the form

of an interrupt handler or a hook on a kernel function. In

the extreme case, it can be a self-contained kernel thread in

the target VM. The obvious benefit is its effectiveness since

it is equipped with sufficient system and software semantics

and directly operates on the target. Equally oblivious is its



limitation, i.e., the insecurity of tool execution inside the

ailing target VM contaminated by malware. That said, it

is not entirely infeasible to secure the tool’s execution by

exploring virtualization-based isolation techniques [15], [16],

[17]. Nonetheless, these isolation techniques require the VMM

involvement at runtime, which does not appear appealing to

the CSP. Hence, the feasibility of an injected execution largely

hinges on the feasibility of an isolation mechanism controlled

by one VM upon another VM.

D. Hardened Application vs. Hardened VM

Existing hardware based TEE technologies include Intel

Software Guard Extension (SGX), AMD Secure Encrypted

Virtualization (SEV) and ARM TrustZone, with Intel Trust

Domain Extensions (TDX) [18] and ARM Confidential Com-

pute Architecture (CCA) emerging on the horizon. The pop-

ularity of TEE are largely attributed to the growing privacy

concern in cloud services. It is thus compelling to explore the

TEEs to tackle privacy challenges in VaaS.

a) Enclave: SGX enclaves isolate a virtual address space

segment of an application against all system software accesses,

including the VMM. A VMCare tool vendor can shield its

proprietary code and data using an enclave while use its non-

proprietary code outside the enclave to read and/or write the

target’s memory pages. Since instructions inside an enclave

are in user-mode only, they cannot directly reference code or

data pages under the target kernel’s mappings. Thus, it cannot

execute on top of OASIS in harmony. While it may overcome

the privilege barrier by proactively inducing context switches

with software interrupts, the incurred overhead especially due

to exiting from the clave and re-entering it is prohibitively

high. Nonetheless, the enclave approach works well with the

page remapping approach, since target kernel pages can be

remapped to the non-supervisor pages. Note that enclave code

accesses VA regions outside of the enclave in the same as

regular memory operations.

b) Secure VM: Since enclaves are application centric, it

is inconvenient for a VM responding services who may use

legacy tools that can not be hardened using enclaves. The

hardware based secure VM technology such as Intel TDX

and AMD SEV offers a more deployable alternative. Since the

Responder VM is protected as a whole by the hardware, the

respondent can upload any tool at its disposal without making

efforts to harden it individually. In Intel TDX, a Trust Domain

(TD) accesses to its private memory protected under Intel’s

multi-key, total-memory-encryption (MKTME) technology as

well as its shared memory in plaintext. With LibVMI, the

target VM memory can be mapped to the shared memory of a

TD holding the Responder VM for the tools to read and write.

Nonetheless, it is unclear whether the CR3 reusing technique

in OASIS is compatible with TDX.

E. Direct Access vs. Oblivious Access

The hardware TEE techniques, be it for an application

or for an entire VM, only thwart direct accessing from the

rogue VMM. The adversary can find out which target page

is modified and use cache side channels to determine which

page is read. With the patten, the adversary can possibly

infer the algorithm or objectives of the VMCare tool. As

mentioned earlier, the attack also helps the adversary to have

an easier semantic extraction from the target memory. It is

hence desirable to stall information leakage from the pattens

when accessing the target memory.

Oblivious RAM (ORAM) [19] and its derivatives such as

Path ORAM [20] are the well-known cryptographic tech-

niques dealing with access patten privacy. Those algorithms

can potentially be applied in tandem with a TEE-hardened

Responder VM or VMCare tool. Only the accesses to the target

VM memory follow the ORAM-style algorithm to generate a

randomized patten.

Despite of recent improvement on efficiency, ORAM algo-

rithms still take a heavy performance toll due to its inherent

working mechanism (i.e., to pad an intended access with

random-looking accesses to make it appear in a uniform

distribution). To reduce the overhead, the VMCare tool may

apply ORAM for a pool of pages (e.g., kernel objects) instead

of the entire target VM. We also note that the algorithms incur

frequent write-access to the target memory. Hence, it is more

suitable for scenarios using frozen VMs.

V. SUMMARY

To summarize, we envision a new cloud service named as

VMCare-as-a-Service (VaaS) to cope with situations where a

guest virtual machine hosted in a cloud environment encoun-

ters fatal system failures due to attacks or kernel crashes. The

spirit of VaaS is for the CSP to provision the infrastructure in

the form of a Responder VM and for a third-party VMCare

service provider or the VM owner to run their own tools to

attend to the concerned virtual machine. This role-splitting

approach suits the interests of all stakeholders.

We identify the challenges related to the VaaS service from

the system, software and privacy perspectives, and discuss an

array of design parameters with preliminary analysis upon the

pros and cons. In general, it is a research area with abundant

exciting problems. While some of them are related to known

problems, they do present fresh demands due to the unique

system setting in VaaS.

We also note that the VaaS model can be generalized for

other applications. For instance, the technology can be used

by law enforcement to carry out forensics against VM-based

vice and crime. It can also be applied to personal computers,

phones, and servers since modern commodity operating sys-

tems such as Windows 11, Linux and Android 13 have built-in

VMM functionality. The VaaS approach could be more flexible

and versatile than existing hardware based tool chains.
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