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NODEMEDIC: End-to-End Analysis of Node.js
Vulnerabilities with Provenance Graphs

Darion Cassel
Carnegie Mellon University
Pittsburgh, USA
darioncassel @ cmu.edu

Abstract—Packages in the Node.js ecosystem often suffer
from serious vulnerabilities such as arbitrary command
injection and code execution. Existing taint analysis tools
fall short in providing an end-to-end infrastructure for
automatically detecting and triaging these vulnerabilities.

We develop NODEMEDIC, an end-to-end analysis in-
frastructure that automates test driver creation, performs
precise yet scalable dynamic taint propagation via algorith-
mically tuned propagation policies, and exposes taint prove-
nance information as a provenance graph. Using provenance
graphs we develop two post-detection analyses: automated
constraint-based exploit synthesis to confirm vulnerabilities;
Attack-defense-tree-based rating of flow exploitability.

We demonstrate the effectiveness of NODEMEDIC
through a large-scale evaluation of 10,000 Node.js packages.
Our evaluation uncovers 155 vulnerabilities, of which 152
are previously undisclosed, and 108 were confirmed with
automatically synthesized exploits. We have open-sourced
NODEMEDIC and a suite of 589 taint precision unit tests.

1. Introduction

JavaScript has been widely used on server, desktop,
and IoT platforms. The vehicle for JavaScript deployment
on these platforms is the Node.js runtime, which ranks as
the most widely used web framework in Stack Overflow’s
developer survey [75] and features a diverse ecosystem
of more than 1 million packages. The widespread deploy-
ment of Node.js makes it attractive to attackers. Recent
years have seen a surge in attacks that target Node.js
packages [65]. Several studies have measured the secu-
rity of the Node.js ecosystem and found that it is rife
with packages that have vulnerabilities [33], [92], [105].
The Node.js runtime lacks mechanisms for sandboxing
or moderating third-party packages and thus a single
vulnerability in a package’s dependencies can compromise
the security of the entire package [22].

Two vulnerabilities of particular interest to this paper
are arbitrary code execution (ACE) and arbitrary com-
mand injection (ACI) [17], [18]. These vulnerabilities
allow attackers to run arbitrary code and commands and
access the underlying operating system.

One effective method of detecting such vulnerabilities
is dynamic taint analysis [81]. This technique tracks the
flow of attacker-controllable data during program execu-
tion and has been applied to client-side JavaScript pro-
grams to identify cross-site scripting vulnerabilities [50],
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[61], [76], [77]. Critically, these tools integrate the taint
analysis into a comprehensive infrastructure for automat-
ically detecting and confirming vulnerabilities.

Dynamic taint analysis has also been applied to server-
side Node.js packages [32], [41], but, compared to client-
side tools, server-side tools lack end-to-end infrastructure.
Existing work relies on manually-crafted test drivers to run
the analysis, and requires manual triage and confirmation
of vulnerabilities based on reported potentially vulnerable
flows. Not coincidentally, existing work has been eval-
uated on a small number of packages (e.g., 22 and 21
packages for Ichnaea [41] and Affogato [32] respectively).

Desirable properties of an end-to-end infrastructure.
To be practically useful, a taint analysis should be inte-
grated into an end-to-end analysis infrastructure that has
the following capabilities:

: Automatic package driver generation. Unlike web
applications, Node.js packages need drivers to call the
exported APIs for dynamic analysis. Prior analyses require
manual construction of test drivers [32], [41], [67], [91],
making analyzing large sets of packages labor intensive.

: Precise analysis of JavaScript. Precisely tracking
taint is necessary to limit false positives, an important
consideration for Node.js vulnerability detection [92].
However, prior work shows precise tainting of primitives
values and built-in functions is challenging [41].

: Scalable analysis that supports packages with
many dependencies. Since the average Node.js package
has 79 dependencies [105], scalability is critical for a tool
to be useful for analyzing packages in the wild. Scaling
analysis to large dependency sets is also challenging [67].

: Automated confirmation of exploitable flows. To
eliminate false positives, potential vulnerabilities reported
by the taint analysis need to be confirmed to be ex-
ploitable. Manual confirmation is time consuming, which
can cause exploitable flows to be ignored. Automating the
confirmation process can significantly reduce the burden
of analysts. Unfortunately, prior tools [32], [41], [67],
[79], [91] all require manual confirmation.

: Triage of tainted flows. When automatic confirma-
tion fails, a rating indicating how exploitable a potential
vulnerability is can help analysts triage and prioritize re-
ported tainted flows for manual examination. Researchers
have proposed approaches to quantify exploitability and
help prioritize review in other domains (x86 binaries [66],
Java bytecode [56]). However, existing Node.js analy-
ses [32], [41], [67], [79] give minimal feedback: tainted



data reached a sink or not, providing little to aid triaging.
Our goal is to implement an end-to-end analysis in-
frastructure for Node.js with these 5 properties in mind.

End-to-end analysis. We develop NODEMEDIC, a dy-
namic taint provenance tracking infrastructure for end-to-
end analysis of ACE and ACI vulnerabilities in Node.js
packages. (We abbreviate “taint provenance” to prove-
nance.) NODEMEDIC takes as input an npm package name
and version, installs the package, and to address , gen-
erates a driver program to run our analysis (Section 4.1).

NODEMEDIC leverages source-to-source rewriting to
instrument packages with mechanisms that track prove-
nance within the package and its dependencies. To ad-
dress , it implements propagation policies that allow
precise provenance analysis (Section 3.2.1). To address
, NODEMEDIC provides an algorithm that adjusts prop-
agation precision (Section 3.3), allowing it to scale to
packages with hundreds of dependencies.

As output, the provenance analysis produces a prove-
nance graph, a data structure that stores a history of all
of the operations a tainted value passed through. Prove-
nance graphs’ comprehensiveness makes them suitable to
serve as the foundation of diverse post-detection analyses.
To address , we implement a novel constraint-based
synthesis algorithm to produce candidate exploits from
provenance graphs (Section 4.2). To address , we con-
nect provenance graphs to Attack-defense trees [45] to
estimate flow exploitability (Section 4.3).

We evaluate NODEMEDIC on a set of 10,000 Node.js
packages (Section 5.5) and uncover 155 vulnerabilities, of
which 152 are previously undisclosed, and 108 are auto-
matically confirmed by our exploit synthesis methodology.

Contributions. In summary, our key contributions are:
o End-to-end infrastructure design for dynamic taint
analysis of Node.js packages.
o Precise taint provenance analysis producing prove-
nance graphs that can aid vulnerability triage.
o Scalable analysis of large numbers of dependencies
via automatically tuned propagation precision.
o Constraint-based automated exploit synthesis and
confirmation using provenance graphs.
o An Attack-defense-tree—based approach to quantify
flow exploitability using provenance graphs.
o Discovery of 152 new vulnerabilities.
We have open-sourced NODEMEDIC along with our
suite of 589 taint precision unit tests: https://github.com/
NodeMedicAnalysis/.

Responsible disclosure. We are in the process of contact-
ing package maintainers and reporting vulnerabilities. We
detail our disclosure process in Appendix D.3.

2. Threat Model and Overview

We describe the scope of NODEMEDIC’s threat model
in Section 2.1. Then, in Section 2.2, we provide an
overview of NODEMEDIC’s provenance analysis and de-
scribe the components of its end-to-end infrastructure.

2.1. NODEMEDIC Threat Model

Node.js is a JavaScript runtime built on top of the V8
JavaScript engine. Node.js developers combine code into

<exploit>

3 ©3 &3

exec(<exploit>)
Figure 1. Arrows represent a depends on relationship. A victim ap-
plication (Server) passes attacker-controllable input (exploit) to its
vulnerable dependency, Dep 4 (dataflow indicated by dashed red arrows).

packages, which can import other packages as dependen-
cies to use their public APIs (exported functions). Node.js
provides powerful sensitive APIs [63], [64], [69], [71] that
can dynamically generate code and access operating sys-
tem functionality (e.g., process creation, file management).

Real-world attacks. In a real-world attack scenario (e.g.,
Figure 1), a Node.js package that unsafely uses sensitive
Node.js APIs is included as a dependency of a victim
application. An attacker, ATK, can be any user commu-
nicating with the victim application through its public
interface. ATK-controlled input is passed, unsanitized!,
from the victim application to the dependency’s public
API. We consider an attack to be successful if a payload
from ATK’s input is included in arguments to sensitive
API (e.g., exec [69]) calls made by the dependency.

Attacker model. We utilize an idealized model of the
above scenario that echoes trust assumptions in prior
work [91]. In our attacker model, ATK directly passes
input to the dependency. We consider all public APIs of
the dependency to be the attack surface of the package.
This model assumes that every public API can realistically
be called with attacker-controllable input. Like prior work,
we rely on this assumption because realistic usage is
difficult to predict; it is safer to over-approximate possible
attacks. Finally, we scope this work to focus on two types
of severe attacks: arbitrary code execution (ACE) [18]
and arbitrary command injection (ACI) [17]. An attacker
capable of these can launch other attacks, e.g., directory
traversal [19], by extension.

2.2. NODEMEDIC Overview

NODEMEDIC is an end-to-end infrastructure for dis-
covery and analysis of ACE and ACI vulnerabilities in
Node.js packages. NODEMEDIC consists of a multistage
pipeline (Figure 2) that includes driver generation ((1)),
provenance analysis ((2)), precision tuning ((3)), and auto-
mated confirmation ((3)) and triage ((5)) of vulnerabilities.
We detail the provenance analysis first and then describe
how it fits into the end-to-end pipeline.

NODEMEDIC’s provenance analysis. The infrastructure
applies source-to-source rewriting of a Node.js package’s
(and dependencies’) source code using Jalangi2 [82],
[83], modified to support ECMAScript 6+ features (Sec-
tion 3.4). Jalangi2 inlines instrumentation hooks that
the analysis interfaces with (Section 3.1) to track data
provenance, which is an extension of binary taint where
a history of operations on the data is also maintained
(Section 3.2). The analysis associates provenance nodes

1. Dependencies typically provide sanitization. Packages requiring
caller sanitization are marked as false positives (Section 5.5).
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Figure 2. NODEMEDIC system diagram. Blue-shaded, numbered components are pieces of the infrastructure. Orange-shaded boxes are key outputs.

with each object and primitive value (via wrapping with
proxies [4], [95]).

Since NODEMEDIC focuses on analyzing public APIs
(Section 2.1), the taint sources—variables holding poten-
tially attacker-controlled data—are inputs to these APIs.
Optionally, analysts can annotate additional sources like
network or file-system sources (Section 3.2.1). Direct taint
flows in operations such as variable assignment, primitive
operations, and function calls propagate provenance ac-
cording to propagation policies (Section 3.2.2).

Detecting vulnerable provenance flows consists of
checking whether data associated with a tainted prove-
nance node reaches a sink. ACE vulnerabilities’ sinks are
eval [63] and the Function constructor [64], both of
which allow for execution of code. ACI vulnerabilities’
sinks are exec [69] and execSync [71], both of which
allow for a new process to be spawned. Beyond this pre-
defined list of common sinks, analysts can specify custom
sinks via annotation (Section 3.2.1). Upon reaching a sink
with tainted data, a provenance graph is produced that can
be used for further analysis (Section 4).

End-to-end infrastructure. We describe NODEMEDIC’s
end-to-end analysis infrastructure (Figure 2) using a case
study, font-converter. It is a Node.js package with more
than 7.8K downloads that provides a JavaScript interface
to the tool FontForge for font file format conversion; it can
be imported by a parent web application server to convert
a user-provided font file. NODEMEDIC identifies and con-
firms an ACI vulnerability in font-converter. Through our
reporting, it was assigned a CVE and a CVSS score of
9.8 [89], indicating critical severity.

The input of NODEMEDIC is a list of one or
more Node.js packages to be analyzed; to analyze font-
converter, an analyst provides NODEMEDIC the package
name and version. NODEMEDIC automatically downloads
and installs font-converter from npm in a sandboxed en-
vironment, and automatically generates a driver program
(Section 4.1) that will import font-converter and execute
its public APIs with values, passed for all arguments, that
are marked as tainted (potentially attacker-controllable).

During provenance analysis instrumentation, depen-
dencies can be tuned for over-approximated analysis (Sec-
tion 3.3). NODEMEDIC then executes the instrumented
code with off-the-shelf Node.js, which completes in 0.6
seconds, and outputs potentially vulnerable flows from
tainted inputs to sinks as a provenance graph (Appendix
Figure 18). In the provenance graph, leaf nodes are
program inputs or constants. The remaining nodes are
operations that data passes through, terminating at the
sink, exec. The flow of tainted data is indicated by red

var PUT = require( 'font—converter ');
var X = "$(touch success);# ";

try { new PUT(x,x,x,x); }

catch (e) { console.log(e); }

AL =

Figure 3. Auto-generated font-converter exploit driver.

var command = 'fontforge —script "' +
forgeScriptPath + '" "'+src+'" " '+dst+'""
exec (command, callback);

LN =

Figure 4. Vulnerable code snippet from font-converter.

edges. We detail the construction and interpretation of
provenance graphs in Section 3.2.1.

Provenance graphs can be used for further automated
analysis. We define two: 1) Synthesizing a candidate
exploit for a potentially vulnerable flow (Section 4.2).
The candidate exploit is executed to test whether the
flow is exploitable. 2) Rating the exploitability of a flow
(Section 4.3). Operations in the provenance graph natu-
rally match actions of an attacker (providing input) and
defender (e.g., sanitization). We can use Attack-defense
trees [45] to probabilistically model exploitability. The
derived ratings can help prioritize the order in which
tainted flows are reviewed or fixed by an analyst.

NODEMEDIC analyzes the provenance graph with its
triage rating model and predicts that the flow is highly ex-
ploitable, signaling to analysts its high priority for review
and mitigation. Next, NODEMEDIC synthesizes a candi-
date exploit, generates a driver to call the package with the
exploit (Figure 3), and executes it. NODEMEDIC checks
for the desired effect of the exploit (creation of the file
success) and finds that it was successful. NODEMEDIC
outputs a report for font-converter, indicating the discov-
ered flow and successful exploit.

The analyst can review the provenance graph and find
that the call to FontForge happens via execution of the
Node.js exec API [69] with a shell command that inter-
polates font-converter’s src argument (path to the font file
to convert) without sanitization (Figure 4). The possibility
of a vulnerability is confirmed by the candidate exploit
NODEMEDIC generated (Figure 3); if font-converter is
passed a user-controllable font file name, then a user can
launch an ACI attack.

3. Provenance Analysis Methodology

The provenance analysis (Figure 2, component (2)) of
NODEMEDIC adopts a layered architecture that separates
provenance label bookkeeping instrumentation (Jalangi2
and wrapper layers; Section 3.1) from provenance track-
ing and graph construction (provenance layer; Sec-
tion 3.2). We explain the architecture and then discuss
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1 function grep(query) I| 1 function grep(query) {
2 exec(“grep “ + query) 2 varr1= binaryPre(+,"grep “,query); 3
3] 13 varr2 =r1.0 + r1.1;
4 var r3 = binary(r1.0, r1.1, r2);
( Y| 5 var r4 = invokeFunPre(exec,r3);
Driver Program 6 var r5 = exec(r4.0);
7 var r6 = invokeFun(exec,r4.0,r5);
8
E 1 var PUT = require(“toygrep

12 var x = "tainted”; // (0: "0}
13 __set_taint__(x);
1 4 try { PUT.grep(x); }

-1 IDS =[] | M,, = {“grep ": 1Dy, query: D, }
2 U(“grep”) | IDS =
‘| 2 U(query) | IDS = [IDy, ID] | M,, = {}
|4 W(rL1) | IDS = [ID] | M,, = {r1.1:1D;}
|4 W(1.0)1 IDS = []| M,, = {r1.1:1D;, r1.0: ID,}
|4 W(3) I IDS =[]
| 1 M, = {r1.1:1D;,r1.0: IDy, r3: ID,}
) |5 U(r3) | IDS = [ID,] | M,, = {r1.1:1D;,r1.0: 1Dy}
|7 W(r4.0)| IDS =[]
| I My, = {r1.1:1D;,r1.0: 1Dy, r4.0: ID,}
| 7w@s) 1 IDS =]
o I My, = {r1.1:1D,,r1.0: 1Dy, r4.0: I D,,r5: 1D}

1ne.t= {U,U,U,U,U}
In.t= {T,T,T,T,T,T, T}
I My = {IDg:no, ID1:m;}
4 M2 =Mo Y24 M
: | My = {IDy:Mo,1D1:M1,1D5: Mz}
| 7 halt; tainted(n,.7)

(5) call:grep ™\
‘tainted" f

(2) string.concat
‘grep tainted'

[IDo] | M, = {query:ID,}

(3) Untainted
[String: ‘grep ']

E 5 catch (e) { console.log(e) }

(1) call:exec
‘grep tainted"

Figure 5. NODEMEDIC provenance analysis layers and example. Line numbers in the wrapper and provenance layers correspond to line numbers

from the Jalangi2 layer. Panels are indicated by circled numbers.

key features that enable scalability: tunable propagation
policy precision (Section 3.2.2) with automatic tuning of
dependency analysis precision (Section 3.3); and compat-
ibility: support for ES6+ (Section 3.4).

Architecture overview. We demonstrate the architecture
via a running example (Figure 5): A toy package that
exports a function called grep that takes a query and
executes a shell command to run the grep command line
utility on the query without sanitization. While simplistic,
this is conceptually similar to the vulnerable code of font-
converter. Figure 5 is split into four panels. (1): Code for
the toy package and driver program (dashed border) that
executes it with a tainted string, "tainted" passed as
the query argument. (2): Idealized result of Jalangi2 layer
instrumentation on the package code. (3): Runtime state of
the wrapper layer at relevant lines of the Jalangi2 layer.
(®): Runtime state of the provenance layer and a subset of
the generated provenance graph (dashed border).

3.1. Instrumentation for Provenance Tracking

The first layer of the provenance analysis, the Jalangi2
layer, provides instrumentation hooks that the second
layer, the wrapper layer, uses to assign unique identifiers
to primitive values such as strings.

Jalangi2 layer instrumentation. NODEMEDIC utilizes
Jalangi2 [82], [83] for source-to-source rewriting that
injects instrumentation hooks into JavaScript code, as seen
on lines 2, 4, 5, and 7 of Figure 5, panel (2). These
hooks enable our analysis to execute arbitrary JavaScript
code before and after each operation of the instrumented
program, and thereby implement the semantics of the
subsequent layers (panels (3), (4)). However, not all code
is instrumented by Jalangi2; uninstrumented code appears
in the following two ways. 1) Native (built-in) func-
tions which are implemented internally in C++. 2) In
dependencies manually marked to not be instrumented
by NODEMEDIC users. Within uninstrumented code we
cannot track provenance. This is a source of imprecision
that is handled via propagation policies (Section 3.2.2).

Wrapped primitive values via proxies. Tracking taint
for primitive values is critical for identifying vulner-
abilities because primitive strings are the usual attack
vector for ACE and ACI attacks on Node.js packages.
However, JavaScript primitive values cannot have new
properties, e.g., taint tags, attached to them, so prior

Unique Ids ID ==
IDStack IDS =
Wrapper Map M, ==

{ctr : number}

.| ID,IDS

- | Proxy(v) — ID

v | wrap(v) | unwrap(v)
| Proxy(v)

Wrapper Expr. w =

IDS, M, >w — IDS', M >w'

(WRAP-A)
IDS =ID :: IDS' M, = M,[Proxy(v) — ID]

IDS, M, > wrap(v) — IDS', M > Proxy(v)

(WRAP-B)
IDS = - M, = M, [Proxy(v) — freshID]
IDS, M,, > wrap(v) —> IDS, M, > Proxy(v)
(UNWRAP)
IDS' = ID, :: IDS M|, = M,,/[Proxy(v) — ID,]

IDS, M, > unwrap(Proxy(v)) —s IDS', M), > v

Figure 6. Simplified wrapping and unwrapping semantics.

work does one of the following. 1) Modify the JavaScript
engine’s primitive values [12], [37], [46], [47], [61].
This requires deep engine modification and is not robust
to engine updates. 2) Implement shadow variables and
fields [41]. Careful replication of semantics is required
to keep the original and shadow copies synchronized. 3)
Box primitives and attach taint as a field [14], [76], [77].
JavaScript allows code to inspect object properties (e.g.,
Object.getOwnPropertyNames and Object.keys);
added fields can alter program semantics.

In the wrapper layer, NODEMEDIC uses proxies [4],
[95] to create boxed (wrapped) values; primitives are
wrapped in an object. Unlike 3), NODEMEDIC maintains
a key-value map, the wrapper map, M,,, to associate
each wrapped value with a unique identifier. This can be
seen in Figure 5 (panel (3), line 1); the strings "grep "
(with a space) and query are assigned identifiers IDg, ID1,
respectively. The provenance layer reads M, and asso-
ciates provenance data with identifiers, rather than directly
to objects and wrapped values (Section 3.2), as seen in
Figure 5 (panel (3), line 1).

Wrapper layer semantics. We present key syntactic con-
structs of the wrapper layer and rules for the wrapping
and unwrapping operations in Figure 6. We write v to
denote primitive (stack-allocated) values, such as strings,



numbers, booleans, and symbols. Unique identifiers are
denoted ID, which is simply an object containing a nu-
meric field. Proxied values are denoted Proxy(v). The
wrapper map, M,,, maps each proxied value to an ID.

The rule UNWRAP is invoked before values are passed
to uninstrumented code. The value’s identifier is placed
on the stack IDS. The rules WRAP-A and WRAP-B are
invoked such that during re-wrapping the value receives
its previous identifier from IDS (or a fresh identifier).
The behavior of these operations on the toy example can
be seen in panel (3) of Figure 5. For each relevant line
of instrumented source code from panel (2) we present
the corresponding wrap (W) and unwrap (U) operations
performed, alongside their effect on IDS and M,,.

Line 1 shows wrapper layer state at the start of the
function. Line 2 shows the effect of UNWRAP. For ex-
ample, unwrapping "grep " places its identifier /Dy on
IDS and removes it from M,,. After the concatenation
is performed, on line 4 we wrap (WRAP-A) ri1.1 (pre-
viously the query) first, and then wrap r1.0 (previously
"grep "), taking its previous identifier, /D from IDS and
re-adding it to M,,. The last operation on line 4, wrapping
r3, uses rule WRAP-B and generates a fresh identifier
ID, for the result of the concatenation. This pattern of
unwrapping and wrapping is repeated for /D> on lines 5
and 7, and another fresh identifier is introduced in the
last wrapper-layer operation on line 7. The full semantics
include bookkeeping of function stack frames to maintain
consistency of IDS during implicit coercion.

3.2. Policy-based Taint Provenance Tracking

We describe how the provenance layer uses the wrap-
per map, M,,, to implement provenance tracking in Sec-
tion 3.2.1. Then, we introduce precision for provenance
policies and discuss policies for built-in JavaScript data
types in Section 3.2.2.

3.2.1. Provenance tracking. We use an idealized
JavaScript semantics, pJS, inspired by NanolS [92] to
demonstrate provenance tracking. The core syntactic el-
ements of pJS are described below. Here, s € Strings,
x € Variables, f € Functions.

Values v s| fl {s1:v,--+ 850}
Expressions e == wv| x| et+e]| ee| ee
Commands ¢ == e| varz| z:=e

| ze:=e] ¢c

Provenance propagation is layered on top of pJS as
follows. Taint tags can be boolean, b (though we will use
T, U rather than T, F' to indicate Tainted and Untainted),
for tracking taint of structureless primitive values (e.g.,
numbers), or compound mappings of object properties or
string indices to taint tags. In Figure 5 (panel (4), line 1) we
show tags (omitting indices) for two strings, the untainted
literal, "grep " and the tainted input, "tainted". Com-
mands are extended to include annotations for indicating
tainted data and sinks.

Taint Tags T b | {s1:7, ,8,:7T}
Taint Cmds ¢, taint(v) | sink(v)
The goal of provenance tracking is, for a tainted value
v’, to be able to identify all of the input and constant

values v1,...,v,, and all of the operations with which
they were combined to produce v’. Considering the toy
example (Figure 5, panel (1)), the value reaching the sink,
exec, can be described as a concatenation of the constant
"grep " and the input query. This information is tracked
via a richer notion of taint; provenance nodes, which are
used to form provenance graphs.

Definition 3.1 (Provenance Node). A provenance node
is a four-tuple n = (o,v,7,¢) where o is either a taint
command ¢, built-in operation op, a function f, or an
object property access e.e, or nothing (literal); v is a
JavaScript object or primitive value; 7 is the taint tag for
v; ¢ is a (possibly-empty) set of parent provenance nodes.

In the toy example, the provenance node for the un-
tainted string "grep " is: (-, "grep ", {U,U,U,U,U},
{}). A taint map, M, associates IDs (from M,,) of prim-
itive values and objects to provenance nodes. Compound
structures’ (e.g., objects) fields have their own entries in
M, so we can precisely record which fields are tainted.

Taint Map M, == - | My, ID— 7

The general form of the taint propagation judgement
is M,,, My = ¢ — M]. Tt describes an update to the taint
map based on operations in c.

Provenance propagation semantics. We categorize op-
erations that combine two or more values as joins. For
example, the string concatenation on line 2 of the toy
example (Figure 5, panel (1)) is a join operation. Prove-
nance propagation for join operations is defined as a join
of provenance nodes: 11 W[, 5 72. It is parameterized by the
resulting value, v, and the JavaScript operation performed,
o. Below is its over-approximative form, which does not
apply specific policies depending on o:

m = (_a — Tl7_) e = (_, — 7-2’_)
3 = (O,'U,Tl G} T2, {77177]2})
m H'J[v,o] 2 = 13

JOIN

The join operation is used to compute taint map up-
dates. Considering our toy example, propagation for the
concatenation operation is shown in Figure 5 (panel (4),
line 4), and results (7; W 72 merges tags) in the node:

(string.concat, "grep tainted",

{U7 Ua U7 U7 Ua T7 T7 T7 Ta Ta Ta T}’ {7707 Th})

Here, 19 and 7; are provenance nodes for the "grep "
and "tainted" strings. The taint map update for this
new node is also seen on line 4 of panel (4). In practice,
the implementation is optimized by storing references to
existing nodes rather than duplicating them in the join.

Provenance graphs. During execution of the package,
provenance is propagated until the execution terminates
naturally (i.e., as it would behave without provenance
tracking), or until a sink is reached.

(SINK-CONTINUE)
Mi[Myv]] = (,,_,7,_) —tainted(r)

Mu”Mt ': (31nk(v)) — Mt

If sink(v) is reached with a non-tainted value, execu-
tion continues (SINK-CONTINUE). On the other hand, if
tainted(r) holds execution halts (e.g., Figure 5, panel
(&), line 7). At that point we take the tainted node
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Precise
Imprecise

Figure 7. Precise and imprecise policies for strings, objects, and arrays.
Orange arrows indicate what is assigned a taint tag for each policy type.

n=(_,_,_,¢) and transform it into a provenance graph
by recursively associating an edge w; between 7 and each
parent node 7,,, € ¢. In other words, the provenance graph
will link together all of the provenance nodes generated
along the path to the sink into a single graph.

Definition 3.2 (Provenance Graph). A provenance graph
is a directed acyclic graph G = (N, ) where n € N is
a provenance node; w € £ is a directed edge indicating
taint propagation from 7; to 772, where 11,72 € N.

Provenance graph example. A provenance graph is gen-
erated by analyzing package execution with a tainted
string, "tainted", (Figure 5, panel (3), lower box). The
graph illustrates how input passes through the grep func-
tion call (node 5) and is concatenated with the string
"grep " (node 2) before reaching the sink, exec (node
1). A vulnerability is apparent: an exploit payload can be
passed via the query input.

3.2.2. Propagation policies. The provenance analysis re-
lies on propagation policies to specify propagation for na-
tive (uninstrumented) data types’ operations. We demon-
strate precision levels of common data types in Figure 7:
For compound structures such as strings, objects, and ar-
rays the analysis provides precise propagation: character-
level for strings, field-level for objects, and element-level
for arrays; or imprecise propagation: at the whole string,
object, or array-level. More precise policies lead to less
over-tainting and fewer false positive reports, but higher
analysis runtime. NODEMEDIC’s policies are summarized
below, with details for all policies in Appendix A.

Objects. NODEMEDIC uses two invariants to relate pre-
cise object-level and field-level information: 1) If obj
is tainted, then its fields are tainted; intuitively, if obj
is attacker-controlled, then its fields are too. 2) If all
ob7j fields are tainted, then ob is tainted; if an attacker
controls every field, then they control the entire object.

Strings. NODEMEDIC provides precise taint models for
common string operations and a method of encoding taint
information directly into a string using unused bits in the
unicode representations of characters, allowing taint to au-
tomatically propagate for some operations (Appendix B).

Function calls. Imprecise: The return value of a function
call, if any, receives the join of call arguments’ provenance
nodes (see >-CALL in Section 3.3). Precise: Provenance
is propagated via the function body’s statements.

User-defined policies for compositional analysis.
NODEMEDIC allows module-specific propagation poli-
cies, module policies, to be added. This is desirable for
compositional analysis where these policies serve as sum-
maries for APIs in large modules. For example, we define
policies for the popular library lodash’s commonly used
for and forEach functions, allowing precise propagation
without full instrumentation of lodash (26K LoC).

Algorithm 1 Dependency Propagation Policy Tuning

1. F+ {-}, ¥ < ROOT(tq)
2: if SIZE(tq) > maeps then

3: TUNE(%), 0)

4: end if

5. procedure TUNE(%), d)

6: for f € EXPORTED(¢)) do

ik F 4 F,(f = —(d > maepen))
8: end for

9: for )’ € CHILDREN(¢)) do

10 TUNE()', d + 1)

11: end for

12: end procedure

3.3. Auto-tuning of Propagation Policies

While NODEMEDIC is an offline analysis, perfor-
mance does aid scalability. Provenance tracking incurs
additional analysis time compared to traditional taint
tracking (Section 5.3). To remain performant for Node.js
packages with tens to hundreds of dependencies (Ap-
pendix Figure 17), we apply the observation that not every
dependency needs precise analysis [67]. We define an
algorithm for auto-tuning of propagation policies (Fig-
ure 2, component (3)) that decides what subset of the
dependencies will remain uninstrumented and be replaced
by an over-approximative policy. We first describe how we
compute a package’s dependency tree, and then introduce
our tuning algorithm.

Dependency trees. We start from a root package and
read the "dependencies" key of the package’s manifest,
package.json. We add edges from the root to each
dependency. We then recurse on each dependency as the
new root. This results in a dependency graph, which we
convert to a dependency tree, t4, by breaking cycles and
duplicating nodes with multiple incoming edges so each
node has a single incoming edge. The size is the number
of dependencies; the depth is the longest path length.

Deciding propagation policies. We define an algorithm
(Algorithm 1) that, given a dependency tree, ¢4, produces
a marked function context F that maps functions f to
boolean values, i.e., F ::=-| F, f + b. The boolean b
indicates whether precise (b = true) or imprecise (b =
false) policies should be used in the analysis of f.

For packages with enough dependencies, the algorithm
walks the dependency tree and marks dependencies below
a certain depth to be over-approximately analyzed. The
algorithm is parameterized by two analyst-chosen param-
eters: (1) the minimum number of dependencies, mgeps and
(2) the minimum depth, myeprn. On line 2, if the tree’s
number of dependencies meets mgeps, the algorithm will
walk the tree and track the current depth. On line 7, if the
current depth at package ¢ meets mgepen, all of 7)’s public
functions f will be marked f — false. Dependencies
marked with false will be over-approximately analyzed
as described below.

An example execution of the algorithm is shown in
Appendix Figure 16. There is an alternate configuration
of the second parameter: minimum depth set to dynamic
(dyn). In this case, f — false will be applied (at varying
depth) to all leaf nodes. We provide parameter selection
recommendations in Section 5.4.2.



Over-approximated function analysis. We extend our
provenance analysis to access the marked function context
F during propagation. During analysis, if f +— false,
we over-approximate propagation for f by propagating
purely on the basis of the provenance nodes of the argu-
ments to f [67]. Below, we present the rule for an over-
approximated call.

(>-CALL)
MiMyvi]]=m ... Mi[Mylv,]] =nn
Flfl =false ' =mWn g, Y 1 o
F, My, My = (2 := f v1,...,05) < M[My[z] — 7]

The provenance node assigned to the result of the
function call is the join of the provenance nodes of the
function call arguments. This is a safe over-approximation
assuming taint commands c¢; are not present in f, as is the
case for taint sources in our attacker model (Section 2.1).

3.4. Supporting ECMAScript 6+

NODEMEDIC uses Jalangi2 [82], [83], which only
supports ECMAScript 5.1. We use the transpiler Babel [5]
to rewrite ES6+ code for Jalangi2. We intercede Babel
in Jalangi2’s instrumentation process; before Jalangi2 at-
tempts to parse the program, we transpile that program
into ECMAScript 5.1. However, this is not sufficient to
support new APIs such as promises, maps, and sets.

Promises and promisify. Provenance propagation for
promises can be separated into three cases: 1) Within
promise bodies; 2) Upon promise resolution or rejec-
tion; 3) During promise function wrapping (promisify).
NODEMEDIC handles case 1 as regular function bod-
ies. Case 2 cannot be handled by NODEMEDIC or
other instrumentation-based work because resolve and
reject are native, anonymous functions. To support case
3, NODEMEDIC implements a generalized policy: sink
propagation. Sink propagation works as follows: If f
is an uninstrumented function that accepts a sink as an
argument and returns a function f’, then f’ is a sink.
Support for this allows NODEMEDIC to find flows that
otherwise would be missed (Section 5.5).

Maps and sets. NODEMEDIC supports both precise and
imprecise policies for maps and sets that mirror array
policies. Imprecise: A single provenance node is used for
the entire map (or set). Precise: Individual elements of the
map (or set) have their own provenance nodes.

4. End-to-End Analysis Methodology

In order to execute packages with provenance analysis
we implement automated package setup and driver gener-
ation (Figure 2, component (1)), explained in Section 4.1.
Using the analysis output, provenance graphs, we imple-
ment two post-analyses: exploit synthesis (component (2)),
described in Section 4.2, and triage rating (component (5)),
described in Section 4.3.

4.1. Automated Setup and Driver Generation

NODEMEDIC applies a lightweight pre-analysis to
generate a JavaScript program (driver) that can execute the

package. The core technique is to import the package and
enumerate all properties defined on its exported interface.
We gather properties that correspond to functions and
constructors and extract formal parameters, including rest
parameters. Since JavaScript is dynamically typed we do
not determine their types.

A driver is generated (Figure 5, panel (1), dashed box)
that executes each exported function and constructor with
the appropriate number of arguments (line 4), automat-
ically annotated as taint sources (line 3). For maximum
compatibility, the driver provides as arguments (line 2) an
object with a single property, 0, which maps to a string?.
This leverages JavaScript’s generous coercion features; it
is coerced to a string if used in string operations and can
be indexed like an array due to the property 0.

4.2. Exploit Synthesis with Provenance Graphs

Provenance analysis can produce numerous potentially
vulnerable flows which must be manually reviewed to
confirm true positives. We reduce this burden by deriving
SMT constraints from provenance graphs to synthesize
candidate ACE and ACI exploits and automatically check
if flows are exploitable. We explain each step using the
toy example’s provenance graph (Figure 5, panel (¥)).

Processing provenance graphs. ACE and ACI are typi-
cally string-based exploits. From a provenance graph, we
extract nodes concerning strings (s): 1) untainted constant
string literals; 2) tainted input strings, treated symboli-
cally; 3) operations that join multiple s (H); 4) operations
that modify strings: functions with manually modeled
taint propagation fy,,, and automatically precisely, f,, and
imprecisely, f;, taint propagated functions; 5) sinks, fs.
Below, we define an operation tree to store this infor-
mation. We use a context, I', to store mappings between
strings and taint types, p; T: Tainted; U: Untainted.

Taint types p = T |U

String context T == -| T, s—p

Functions o= ful fol fil fs
Operation tree t, == s| t,Bt,| fto, - 1o,

Rules for transforming a provenance node to an oper-
ation tree are of the form I'>n = T7, ¢,. Below we present
an example transformation for a string concatenation node.

¢={n,ne} Tem=T1,1t,
F>772:>F2,t02 F’:IHUF

s> (+7_7_a (b) = F/atol EHtOQ

2 (TRANSFORM-+)

This rule transforms instances of concatenation opera-
tions into operation trees by recursively transforming each
parent node into an operation subtree and emitting a new
B node that joins the subtrees.

Toy Ex. Step 1: The operation tree is t, =
(exec (“grep” B “tainted”)) with string context I' =
{“grep 7 — U, “tainted” — T'}.

Deriving SMT constraints. Synthesizing a candidate
exploit requires finding attacker-controllable inputs that
result in an exploit string, varg, reaching the sink. Given

2. In the toy example, we use the string “tainted” for illustrative
purposes; the actual argument can be seen in the adjacent comment.
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eval(“data.” + “__proto__+payload();//” + “= value”);

@[ data._proto__ - {_payload0 |@
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Figure 8. Example evaluation of an ACE concrete exploit string.

t,, we generate an SMT formula to solve for assignments
to SMT string constants that will make up varg. This is
done via a rewriting system that transforms elements of
t, to SMT statements.

The subset of SMT grammar we are concerned with
consists of SMT statements z which are either string lit-
erals s,, SMT operations o,, or string constants s.. Given
s € t,, the rewriting rules query I' to translate s either to
a literal (I'[s] = U) or constant (I'[s] = T"). We maintain a
context 3 that stores declarations of SMT constants. The
form of the rewriting judgement is I, B> t, = 3/, z. We
present the rule for concatenation below.

F?Bbtol :>61721 F7/8[>t02:>62722
B =1 U B
[, B> (to, Bty,) = B, (strt++ 21 22)

(REWRITE-H)

As we see above, an instance of H is rewritten by
recursively rewriting each subtree t,, into SMT formulae
that are given as arguments to the Z3 str.++ method.
Sink functions map to the Z3 str.contains method,
called with the exploit string, varx. Mappings of other
functions are done per-function. For example, the Array
join function (€ f,,,) is modeled via successive concate-
nation of the (literal or constant) elements of the array.

Toy Ex. Step 2: ¢, is rewritten (using I'), resulting in
z = (str.contains (str.++ “grep ” i0) vark) with

8 = {i0}.

Concrete exploit strings. The formula z contains con-
straints from operations but varx needs to be instantiated
with a concrete exploit, which we construct next. The
attacker’s input typically ends up interpolated into a con-
crete string, so +varx + S1, during package execution. For
example, for ACI with exec, sp may be the command to
run and s; stores command flags. Executing an exploit
payload amounts to constructing wvargx such that varg
completes the prefix sg and obviates the suffix s; [50].

We treat varx as a compound string consisting of
Spre + Spay + Ssus. The goal of sy, is to complete sg.
The goal of s,y is to deliver the exploit payload. Finally,
the goal of sgue is to cause the suffix s; to not be
executed. Selections of Spre, Spay, and sgus are dictated by
the vulnerability type and sourced from known exploits.
Below, we use fy to indicate a fresh global function with
a stateful effect (e.g., print to stdout), and sy to indicate
a shell command with a stateful effect (e.g., file creation).
Stateful effects indicate attack success and ATK’s ability
to execute arbitrary code or commands.

For ACIL: spre = 7, an empty space that separates the
payload from prior commands; spay = “sy”, in practice,
we use the command “touch” with a file path “success",
wrapped in evaluation; “$(touch success)", which results in
file creation and indicates ATK can execute commands;
Ssur = “#”, a bash comment delimiter to prevent execution
of s; after the payload. For ACE: s,. = “__proto_~,
prototype access, which is defined for almost all objects;
Spay = “+ (fv +);”, addition with RHS calling fv,
which prints a string to stdout and indicates ATK can

1 (declare-const i0 String)
2 (assert (str.contains
3 (str.++ "grep " i0)
4 " S (touch success);#"))
5 (check-sat)
6 (get-model)
Figure 9. Toy Example SMT statement 2"/
1 var PUT = require ("toygrep");
2 var x = " $(touch success);#";
3 try { PUT.grep(x); }
4 catch (e) { console.log(e); }

Figure 10. Auto-generated exploit driver for the toy example.

execute code. sgys = “//”, a JavaScript comment delimiter
to prevent execution of si.

An evaluation of an ACE exploit string is in Figure 8;
first evaluated is the LHS (box 1) which is a valid access,
next the RHS, payload (), which represents an instance
of fy (box 2), and finally the addition operation (box 3).
Nothing else is evaluated due to the comment delimiter.

Toy Ex. Step 3: z is augmented with a concrete ACI ex-
ploit string; z = (str.contains (str.4++ “grep ” i0)
“ $(touch success);#").

Solving with Z3. We now have a final context 3’ and a
concretized SMT statement z. Next, the string constants
S¢; € (' are each prepended to z’ = (assert z) with the
73 statement: (declare—const s., String).

This results in the final SMT formula z”, which is
given to Z3 for solving. We use (get—model) to request
assignments for s., (if z” is satisfiable). Each s, assign-
ment represents a string literal value the attacker will pass
to the package for execution.

Toy Ex. Step 4: We wrap z in 2/ = (assert 2)
and declare constants according to /', resulting in the
SMT statement z” (Figure 9). Finally, z” is given
to Z3, which returns the trivial satisfying assignment:
i0 = “ $(touch success);#".

Exploit driver. To determine exploit success we extend
the package driver (Section 4.1) to invoke package APIs
with the SMT-derived input and check for the desired
stateful effects, e.g., file creation, to determine if the
exploit payload is successfully executed. We generate
different exploit drivers for arbitrary code execution and
arbitrary command injection.

The ACE driver injects function fyv, defined to print
a unique string to standard output. The driver attempts
execution of fy, detectable by monitoring process output.
The ACI driver attempts execution of the shell command
sv (Figure 10, lines 2-3), defined to cause file creation at
a particular path, detectable by monitoring that path.

Toy Ex. Step 5: The generated exploit driver is shown
in Figure 10; sy is in the generated payload iO.

Running the exploit driver. After the driver executes
each package API with the exploit string, a check is
performed to determine if exploit’s effect was detected.
If so, the exploit is confirmed. If all APIs execute without
a detected effect, the exploit could not be confirmed.
Persistent stateful effects are cleaned up between runs.

Toy Ex. Step 6: The exploit driver is executed and
creation of the file, success, is observed, confirming the
ACI vulnerability.
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Figure 11. Extended toy example Provenance-AD-tree.

4.3. Triage Ratings with Provenance Graphs

Next, we use provenance graphs to characterize the
exploitability of a tainted flow. Exploitability means “ease
of exploitation”; a high-exploitability flow is easier for
an attacker to exploit, e.g., unsanitized dataflow to a
sink. Exploitability ratings can provide analysts a way to
prioritize review of discovered flows, before exploits are
manually confirmed. Prioritization is often necessary for
organizations with limited resources for timely security
review; attacks may happen via “weakest links” (i.e.,
easiest to exploit dependencies) first [25]. Exploitability
ratings can be viewed as pre-confirmation analogues of
CVSS scores [21], but they are not the same. CVSS scores
measure severity of a confirmed exploit; a difficult exploit
(low-exploitability) could be high-severity.

Provenance Attack-defense trees. We compute ex-
ploitability by transforming provenance graphs into
Attack-defense trees (AD-trees) [2], [29], [34], [45], [100],
modeling probabilistic attacker and defender actions. An
AD-tree ¢ is specified inductively as t ::= p| tAL|tVE]| ~t
where A, are attacker actions, Ay are defender actions,
and pe A, U Ag.

In our setting, the attacker’s action set, A,, is a single
action: providing input varg to a package public API, f;.
Defender’s actions, Ay, consist of JavaScript operations:
Oy: Built-in operations, e.g., substr. Og: Sanitization
operations, e.g., escape. O4: Object field accesses. Og:
Sinks. O,: All other operations (unmodeled) and literals.

A provenance graph is transformed into a Provenance-
AD-tree by mapping provenance nodes 1 = (0,v,T, )
to Provenance-AD-tree nodes p, = (p,v,7) where p €
Aq U Ay, Tainted nodes from the parent nodes ¢ =
{m,...,nn} represent alternative ways an attacker’s input
can reach a program point, thus naturally represented as
a disjunction of nodes, p,, V ---V py,, . Operations p link
to previous p,, as in the provenance graph.

Definition 4.1 (Provenance-AD-tree). A Provenance-AD-
tree ¢, is specified inductively as t,, ::= p, | t, Vt, where
A, = {fi(UATK)}, A =0; U0 U0, UQO,, and Dy =
(p,v,7) with p € A, U Ay.

To illustrate, in Figure 11 we show a Provenance-AD-
tree for an extended version of the toy example (Figure 5,
panel (1)) where grep now takes a second argument,
flags, that will be passed to the grep utility. Attacker and
defender actions are shown with their code and labeled
with their category (in A, and Ay, respectively).

Probabilistic ATK model. Modeling attacker behavior
with AD-trees has been done with temporal automata [29],
[34] and Markov chains [2]; given the fixed probability
of success of each action, a graph is produced linking
defender actions and attacker actions. The probabilities

Figure 12. Example ATK probabilistic automata.

are typically expert-provided, however, this can be error-
prone and difficult to validate [2], [29]. We also construct
a (probabilistic) automata, but we instead derive probabil-
ities from the Provenance-AD-tree structure.

We use the automata to simulate the effectiveness of
attacker’s submitted inputs on the package (i.e., A,), given
the defender actions in the Provenance-AD-tree, (i.e., Ag).
Intuitively, the automata is constructed such that starting
states correspond to original attacker inputs, and defender
actions result in transitions with some probability to states
representing modifications of the attacker’s input, with
final states representing attacker input reaching a sink and
successfully deploying a payload or failing.

We model the attacker’s input via families of strings,
Vi,...,V, € V. Each family represents different ex-
ploit payloads that rely on different operations. For the
extended toy example, |]7| < 2 due to the two-subtree
disjunction node (Figure 11). An automata suitable for that
Provenance-AD-tree is in Figure 12. The automata starts
at ¢o, representing two V. It probabilistically remains there
while receiving o € O, until a built-in (Oj) or sanitizing
(Og) operation is received. At that point it can transition
to ¢ (one V) with pr = % or a final failure state (¢qy). At g2
or g1, if the sink exec is received, the automata transitions
to the final success state (¢s;). To increase legibility, we
only include transitions for mentioned operations. Details
of automata construction are in Appendix C.

Probability of ATK success. Following prior work, we
estimate attacker success (Pr[Fs,,]) via Bernoulli tri-
als [34]. Intuitively, this simulates the behavior of an
attacker repeatedly submitting exploit payloads to a pack-
age, and estimates the frequency of successful exploits,
i.e., those remaining intact through the package opera-
tions. We traverse the Provenance-AD-tree and feed de-
fender actions as input to the automata until it halts at a
final success or failure state, and count successes.

We instantiate the automata given a particular ¢,,, €. We
then randomly select an attacker-controllable node from ¢,
and begin a graph traversal of ¢,, following the direction
of taint propagation. At each step, p from the current p,, =
(p,v,7) is given as input to the automata. This process
continues, randomly selecting a next p}, from the set of p;,
in the valid (p;, p;,) edges of t,, until the automata either
halts at g, or g¢. The frequency of halting at ¢, estimates
the probability of ATK success (Appendix Algorithm 2).

Triage ratings. Once Pr[Eg,, | has been estimated,
we bucket the result into three intervals: “Low™: [0, 1];
“Medium™: (1, 2]; “High”™: (2,1]. These ratings can be
used to inform a priority queue (High — Low) ordering
the sequence in which potentially vulnerable flows are

reviewed by an analyst.



5. Evaluation

We first describe our setup and the datasets used
(Section 5.1), and then explore the following questions:
RQ1: Precision compared to prior work (Section 5.2).
RQ2: Performance compared to prior work (Section 5.3).
RQ3: Precision of propagation policies (Section 5.4.1).
RQ4: Efficacy of auto-tuning precision (Section 5.4.2).
RQS5: Discovery of new vulnerabilities (Section 5.5).
RQ6: Efficacy of exploit synthesis (Section 5.5.1).

RQ7: Triage rating safety and precision (Section 5.5.2).

5.1. Evaluation Setup and Datasets

Setup. All evaluations were performed within Docker
containers running on a Ubuntu machine with an Intel
Core 19-9900K @3.60GHz and 128GB of memory (though
memory utilization is around 2GB per analysis container).
The total analysis timeout is 15 minutes. For exploit
synthesis, the Z3 timeout is 60 seconds.

Prior work dataset. We gather a set of packages with
analysis results presented by prior work. We attempt to
replicate the evaluation of every package analyzed by
both Ichnaea [41] and Synode [91]. However, this was
not possible for all packages; some no longer exist or are
incompatible with newer versions of Node.js, while others
use input sources, e.g., command-line, outside the threat
model (Section 2.1). We are left with 21 packages.

10K package dataset. We gather a set of 10K packages
from the npm repository in January, 2022 with the goal
of selecting a wide, unbiased sample. Querying the npm
index API provides an alphabetically-ordered list of reg-
istered packages. To avoid selection bias from similarly-
named packages, we divide the index into 10 equally-sized
ranges. From each range we select 1000 packages accord-
ing to the following criteria. The package must: 1) Be
downloadable and importable (e.g., no broken or missing
packages). 2) Contain a sink checked by NODEMEDIC;
lack thereof produces no true or false positives. 3) Not
be client-side (e.g., no browser APIs); such packages are
outside our attacker model (Section 2.1).

5.2. Precision Compared to Prior Work

We use NODEMEDIC in its default (precise) policy
configuration to analyze packages analyzed by prior work.
The results are presented in Table 1. In the table, TP =
True positive, TN = True negative, execS = execSync,
execFS = execFileSync, SY = Synode [91], and IC
= Ichnaea [41]. NODEMEDIC does not introduce false
negatives, matching prior work’s results in every case,
and for the package systeminformation, finding a true
vulnerability that past work missed. Ichnaea described
that package as a true negative, however, a vulnerability
affecting that version of the package has since been dis-
covered [88]. NODEMEDIC correctly reports a taint flow
for this vulnerability. Triage and exploit synthesis results
for these packages are shown in Appendix D.1.

Result 1: NODEMEDIC’s provenance analysis is suffi-
ciently precise to find vulnerabilities uncovered by prior
work, as well as a vulnerability missed by prior work.

TABLE 1. ANALYSIS OF PACKAGES FROM PRIOR WORK

Package Version LoC Sink Result  Source
fish 0.0.0 55 exec TP SY
git2json 0.0.1 228 exec TP SY
gm 1.20.0 3517 exec TP SY
growl 1.9.2 323 exec TP SY
kerb_request 0.0.2 30716  exec TP SY
m-log 0.0.1 1164 eval TP SY
mixin-pro 0.6.6 449 eval TP SY
mobile-icon-resizer ~ 0.4.2 4648 eval TP SY
mol-proto 0.0.15 5983 eval TP SY
mongo-parse 1.0.5 1835 eval TP SY
mongoosemask 0.0.6 34259  eval TP SY
mongoosify 0.0.3 26365 eval TP SY
node-libnotify 1.0.3 78 exec TP SY
node-os-utils 1.0.7 1097 exec TP IC
node-wos 0.2.3 535 execS TN IC
office-converter 1.0.2 113 exec TP IC
osenv 0.1.5 266 exec N IC
pidusage 1.1.4 526 exec TP 1C
pomelo-monitor 0.3.7 259 exec TP IC
system-locale 0.1.0 61 execFS TN IC
systeminformation 3424 22102 exec TP* IC
TABLE 2. NODEMEDIC PERFORMANCE
Configuration Runtime (s) vs. Baseline | vs. Jalangi2
min avg max ‘ avg avg
Baseline 0.03 0.04 0.09s - -
Jalangi2 0.27 046 1.15s 12.1x -
NODEMEDIC | 027 0.79 3.47s 20.3x 1.68x

5.3. Performance Compared to Prior Work

NODEMEDIC is intended to be run offline; it does
not have strict performance requirements. Nonetheless,
performance is tightly connected to scalability. We record
execution time (mean of 10 runs after 3 warmup runs)
of analysis under three configurations: 1) Baseline: With-
out instrumentation. 2) Jalangi2: With Jalangi2’s instru-
mentation hooks, but without provenance analysis. 3)
NoODEMEDIC: With NODEMEDIC’s provenance analy-
sis (default configuration) using Jalangi2 instrumentation
hooks. We list the runtimes (rounded) and relative average
overhead of each configuration in Table 2.

NODEMEDIC incurs an average 1.7x runtime overhead
over the inherent overhead of Jalangi2, for a total of 20x
runtime overhead. This is larger than the most performant
comparable dynamic analyses, e.g., the 10x overhead of
Ichnaea [41]. While static and dynamic analyses face
different scalability challenges, NODEMEDIC’s runtime is
fast compared to static Node.js analyses such as Nodest,
which has a 30 minute timeout per analysis iteration [67].

Jalangi2’s instrumentation hooks account for 59% of
the overhead. However, NODEMEDIC’s provenance track-
ing does not inherently depend on Jalangi2; it uses the
hooks to inject provenance tracking logic.

Result 2: Precise provenance tracking incurs an average
1.7x slowdown over Jalangi2 for a total 20x slowdown.
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Figure 13. Precision (PPV) and false discovery rate (FDR) with precise
string and array taint policies. PPV + FDR = 99% due to rounding.

TABLE 3. POLICY EFFECTS ON TRUE AND FALSE POSITIVES
\ +TP -TP +FP -FP  Overlap w/ Object
String | 1 3 0 1 23

Array | 3 1 0 0 26

5.4. Tuning Propagation Policies

We use a randomly-selected quarter of our 10K dataset
(termed the “baseline” set) for the following experiments.

5.4.1. Effect of precise propagation policies. We vary
propagation policy precision in four experiments. (1)
Just precise object tainting, which is as precise as prior
work [41]; (2) Just precise string tainting; (3) Just precise
array tainting; (4) The combination of (2) and (3). For
each, we record true and false positives; independently
validated by two security researchers. Every experiment
was run without auto-tuning of policy precision. The
results are presented in Figure 13.

We evaluate the precision (PPV = ') and the false
discovery rate (FDR = zf); neither measure relies on
ground truth for false negatives. We find that having just
object precision performs the worst; with the lowest PPV
(88%) and highest FDR (11%). Using both the string and
array precise taint policies at the same time performs the
best; resulting in the highest PPV (91%) and the lowest
FDR (8% tied with using just the precise string policy).

In Table 3 we examine the sets of true and false
positives of the string and array precise policies compared
to just object precision. The precise string taint policy re-
duces false positives at the expense of a few true positives.
The precise array taint policy is able to generally increase
true positives when array operations are present.

Intuitively, imprecise policies over-taint and precise
policies under-taint; however, this is not entirely true for
NODEMEDIC, which is why we see new true positives
with the precise policies. More concretely, using just
object precision can result in under-tainting during string
and array operations due to their native (uninstrumented)
implementations; array.push of a tainted value would
not affect taint of the array itself.

Result 3: Precise taint policies reduce false positives
and increase true positives. Different policies uncover
different vulnerabilities due to policy-specific models.

5.4.2. Configuring precision tuning. Automated prove-
nance propagation precision tuning is parameterized by
two variables, the minimum depth and the minimum num-
ber of dependencies (Section 3.3). In a series of experi-
ments we independently vary these parameters and record
the number of flows to sinks, the number of timeouts,
and the number of vulnerabilities found, relative to the
baseline (no tuning).

120

100

Percent
o
3

; Result
20 i —e— Sink Flows

/' dyn Timeout Reduction
o

- Vulnerabilities
0 1 2 3 4 5 baseline
Minimum Depth

Figure 14. Percent of sink flows, reduction in timeouts, and vulnerabil-
ities found at varying depths (x-axis) and the baseline (no auto-tuning).
The vertical red line marks dyn results.

TABLE 4. LARGE-SCALE EVALUATION TAINTED FLOW METRICS

Metric All Avg. TP Avg.
Last Year DLs 19585 21310
Code Size (KB) 465 502
LoC 5202 5268
Num. Deps. 5.88 6.31
Dep. Depth 1.07 1.12
Prov. Nodes 507.34 266.99
Prov. Depth 36.91 36.17
Vuln. Deps. - 1.46
Vuln. Depth - 0.04

As the minimum depth increases, more sink flows are
detected at the cost of more timeouts (Figure 14). We
find a balanced point—our dynamic (dyn)—configuration
(indicated with a red dotted vertical line). Here we obtain a
41% reduction in timeouts and find the maximum number
of vulnerabilities. As we increase the minimum number of
dependencies we find there is a continuous increase in
the number of timeouts and that the depth configurations’
timeout rates begin to converge. Thus, an analyst using
a low minimum depth (e.g., 1) should pair it with a low
minimum number of dependencies.

Result 4: Automatic policy tuning’s dynamic configu-
ration balances sinks executed and timeouts to uncover
the most vulnerabilities. The difference in effectiveness
of each depth configuration decreases as the configured
minimum number of dependencies increases.

5.5. Large-Scale Evaluation

We use NODEMEDIC to analyze the packages in our
full 10K package dataset (Table 5). Informed by our
small-scale experiments (Section 5.4), for this evaluation
we configure NODEMEDIC to use the most precise taint
policies, and use the dyn precision tuning setting with no
minimum number of dependencies.

Out of the 10,000 packages in the dataset, 125
packages had inherent issues that prevented them
from being analyzed: 37 with removed or broken de-
pendencies, 88 with JavaScript errors (SyntaxError,
ReferenceError, Or TypeError). 269 packages had
timeouts without instrumentation (e.g., waiting for user
or network input). 258 packages had timeouts with our
instrumentation due to large code size (including de-
pendencies). In the remaining set of 9348 packages,
NODEMEDIC detected 173 tainted flows.

Two security researchers independently manually re-
view the 173 tainted flows to determine true and false
positives. We define a true positive as a flow for which
an exploit could be constructed and run successfully.
Conversely, a false positive is a flow for which an exploit
could not successfully be constructed. True positives could



TABLE 5. LARGE-SCALE EVALUATION BREAKDOWN

NODEMEDIC Result

Package Failure 125
Package Timeout 269
Instrumentation Timeout 258

No tainted flows 9175
Tainted flow 173

Total 10000

# of Packages

TABLE 6. EXPLOIT SYNTHESIS RESULTS BREAKDOWN

Type Count Confirmed Percent
ACI 133 102 77%
ACE 22 6 27%
Total 155 108 70%

be missed if neither researcher could construct an exploit,
SO our measure is a conservative lower-bound.

Through manual analysis of those flows we determine
that 15 were false positives (8.7%) due to sanitization or
flows to non-exploitable parameters of the sink (e.g., a
flow to the “options” argument of exec), 3 are techni-
cally exploitable but we conservatively mark them as not
vulnerable (e.g., the exploitable function is clearly marked
as unsafe). This leaves 155 true vulnerabilities, of which
22 are ACE and 133 are ACIL

In Table 4, column 1 summarizes characteristics of
all tainted flows; column 2, just of vulnerabilities. On
average, vulnerable packages had 21K downloads in 2022.
They had a mean of 6.31 dependencies with a tree depth
of 1.12, and had on average 5.3K lines of code. Their
provenance graphs were large, with 267 nodes and a
depth of 36 nodes. Vulnerable packages executed 1.46
dependencies in the vulnerable execution trace, and sinks
were typically found in the package itself. In general,
complex vulnerabilities had larger provenance graphs and
executed more dependencies. Detailed characteristics are
in Appendix D.6, with case studies in Appendix D.5. In
Appendix D.2 we show runtime per pipeline stage.

We performed responsible disclosure for the true vul-
nerabilities. At the time of publication, we have received
four CVEs, and responses from 7 developers confirming
vulnerabilities. We discuss our disclosure process in Ap-
pendix D.3 and developer response in Appendix D.4.

Result 5: NODEMEDIC scalably analyzes 10k pack-
ages, finding 173 flows (8.7% FP); 155 vulnerablities.

5.5.1. Exploit synthesis and confirmation. Next, we
examine the effectiveness of our methodology for exploit
synthesis and automatically confirming tainted flows. We
present a summary of the results in Table 6. Overall, 70%
of the true positives were automatically confirmed via our
exploit synthesis technique. 77% of ACI vulnerabilities
are automatically confirmed. On the other had, only 27%
of ACE vulnerabilities could be automatically confirmed.
This matches the intuition that ACE vulnerabilities, requir-
ing the injection of a payload that is valid in the context
of existing JavaScript code, are harder to exploit than ACI
vulnerabilities, which utilize simpler shell code payloads.

Causes of exploit synthesis and confirmation failure.
In order to understand limitations, we survey the vul-
nerabilities that failed to be automatically confirmed and
categorize the reasons; presented in Table 7.

TABLE 7. CAUSES OF SYNTHESIS AND CONFIRMATION FAILURE

Category #ACE #ACI  Total
Requires structured object 2 13 15
Driver insufficient 8 6 14
SMT unsatisfiable 2 10 12
Malformed payload 4 2 6
Total 16 31 47

The most common reason for failure is due to the
package requiring a structured object to be supplied as an
argument, with a property that contains the payload. This
is beyond the capability of our exploit synthesis, which
only supports the creation of exploits as strings.

The second most common issue is that our generated
driver is insufficient. For example, a valid file path must
be supplied or a callback function must be provided.

Finally, we have twelve cases of unsatisfiable SMT
formulae and six cases where the synthesized exploit
payload fails to be well-formed JavaScript or shell code,
e.g., SMT-derived assignments to some inputs are not
syntactically legal, indicating more constraints are needed.

Result 6: Automated exploit synthesis using prove-
nance graphs confirms 70% of encountered vulnerabil-
ities. It is most effective for ACI vulnerabilities (77%).

5.5.2. Triage model ratings. We measure safety (Defini-
tion 5.1) and precision (Definition 5.2) of the triage rating
model on the (173) packages with tainted flows from our
large-scale evaluation.

Safety of ratings. The model must avoid under-
approximation of exploitability; it is undesirable for an
analyst to deprioritize a flow that may be easily exploited.

Definition 5.1 (Triage Safety). Given Provenance-AD-
trees {tp,,--- ,tp,}. a triage model Ry, and an expert
REg, we compute v, the fraction of unsafe disagreements,
Ru(tp,) < Rp(ty,). We say a model is safe if v < .

We select 79 = 0.05 (5% unsafe), which is typically
used to assign statistical significance [26].

Precision of ratings. Safety by itself would permit a triv-
ial model that always assigns a “High” rating. Precision
ensures triage model ratings are close to expert ratings.

Definition 5.2 (Triage Precision). Given Provenance-AD-
trees H = {t,,, - ,tp,}, a triage model Ry, and an
expert Ry, we compute R; = {R;(t,,) Vt,, € H} for
J € M,E. We compute the agreement using an infer-
rater reliability scoring function, « : (Rys, Rg) — [0,1].
We say the model is precise if kK > kg.

Krippendorff’s alpha [48] is «; “substantial”, “strong”
agreement (ko = 0.61) indicates precision [49], [60].

Expert ratings. We derive ratings from a panel of three
experts with several combined years of experience uncov-
ering, diagnosing, and repairing Node.js package vulner-
abilities, in two steps: 1) Calibration; 2) Full rating.
During the calibration step we follow standard proce-
dure for ensuring inter-rater reliability between the expert
ratings [10], [30]. First, we select a random subset (20%)
of the 173 tainted flows. Independently, all three raters
provide a “High”, “Medium”, or “Low” exploitability
rating for each package. Following independent rating of



the 20% subset, the raters compare their ratings. We find
that there is an “almost perfect” agreement amongst the
three raters (0.97, measured with Krippendorff’s alpha).
The raters then resolve disagreements (only one).

Finally, the raters develop a shared rubric for evalu-
ating package exploitability: “High”: No particular input
structure or configuration; lacks sanitization. “Medium”:
Structured input formats or implicit sanitization. “Low”:
Complex setup, comprehensive sanitization, or requires
complex exploit payload construction. During the full rat-
ing step, ratings are assigned using the rubric by an expert
to the remaining packages; in aggregate, 173 ratings.

Triage model ratings. We then apply the triage rating
model to all 173 Provenance-Ad-trees. The model assigns
a rating of “High” to 113 packages, “Medium” to 36
packages, and “Low” to 24 packages. The average time
to compute a model rating is 0.07 seconds.

Triage safety. We find that there are just 4 unsafe dis-
agreements between the expert ratings and the triage
model ratings, amounting to 2.3% of all ratings. This
meets our required threshold for Triage Safety (Defini-
tion 5.1), indicating that the triage model is safe. We
examine the 4 packages (all of which are true positives)
with unsafe disagreements to determine their causes and
find that the general cause of unsafe model ratings is
due to packages with long paths from attacker-controlled
sources to vulnerable sinks.

Triage precision. Krippendorff’s alpha, &, is 0.74, indi-
cating “substantial” agreement [49], [60] between expert
and model ratings. This exceeds our threshold for triage
precision (kg = 0.61), indicating that the model is precise.

We explore two cases where there are disagreements
(both safe): 1) Expert rates low-exploitability, model rates
high-exploitability (9 packages; 5.2%). This discrepancy is
because these flows reach non-exploitable sink arguments.
The model can be improved with heuristics accounting
for which sink argument is reached. 2) Expert rates low
or medium, model rates medium or high-exploitability,
respectively (12 packages; 6.9%). The cause is packages
requiring a particular input format (e.g., certain object
fields). The model can be improved with heuristics as-
signing weight to particular object fields.

Result 7: Provenance-graph—based triage rating has
2.3% unsafe disagreements and substantial agreement
(k = 0.74) with expert ratings.

6. Limitations and Future Work

Scope. NODEMEDIC focuses on two server-side dataflow
vulnerabilities; ACE [18] and ACI [17]. Other prevalent
dataflow vulnerabilities for Node.js packages are proto-
type pollution and hidden property attacks [42], [51], [84],
[102]. As future work, NODEMEDIC can be extended to
detect these via additional taint policies (Appendix A).

NODEMEDIC, like related analyses [41], [90], [91],
does not consider implicit flows; related work demon-
strates they provide little utility in detecting vulnerabilities
in server-side JavaScript [92].

Like related tools [41], [91], NODEMEDIC relies on
policies for precise analysis of native operations. This

is a limitation of instrumentation-based dynamic analy-
ses [32], [41], [76], [77]. NODEMEDIC provides policies
for common native operations (Section 3.2.2).

While intended for offline use and faster than heavy-
weight analysis (e.g., [67]), NODEMEDIC does have 20x
overhead, making it unsuitable for runtime monitoring. We
leave provenance analysis optimization for future work.

Automation. Auto-tuning of propagation policies is
coarse-grained (fully imprecise or precise). Fine-grained
tuning requires manual work. As future work, auto-tuning
can be extended to support fine-grained policy selection.

Discovering all vulnerable flows requires full cover-
age of a package. NODEMEDIC does not measure or
adapt to coverage. This can be addressed by incorporating
techniques such as fuzzing (e.g., SoFi [35]) or dynamic
symbolic execution (e.g., ExpoSE [53]).

NODEMEDIC’s generated driver may execute the
package with semantically invalid input, and does not
mock up external configuration (e.g., environment vari-
ables) or dependencies (e.g., a database). As future work,
static analysis could be used to generate better drivers.

Just 27% of ACE vulnerabilities had successful ex-
ploits synthesized. This is due to the difficulty of synthe-
sizing well-formed JavaScript objects and code that satisfy
constraints implied by the provenance graph, which we
leave as future work.

Threats to validity. The triage model is evaluated against
experts because Node.js package exploitability lacks quan-
titative measurement. We ensured agreement amongst
raters with a consistent rubric (Section 5.5.2), but had a
small sample of ratings. As future work, larger studies
should be conducted.

7. Related Work

We first discuss work on the general security issues of
Node.js. Then, we cover dynamic taint analysis [81] for
JavaScript (for a survey, see [1]), focusing on tools similar
to NODEMEDIC, then discussing its formal foundations,
and concluding with JavaScript taint analyses in other
settings. Finally, we discuss connections to existing end-
to-end infrastructures, analyses conceptually similar to
provenance, and tools generating JavaScript exploits.

Node.js platform and ecosystem security. Several stud-
ies measure Node.js ecosystem security [25], [33], [92],
[103], [105] and find serious architectural issues with
Node.js [74] and issues in its packages [92]. Node.js
lacks mechanisms for sandboxing or moderating third-
party packages; to remedy these issues, changes to the
Node.js architecture have been proposed [22], [96], but
lack wide adoption.

In contrast, many analyses improve security without
architectural changes [42]-[44], [52], [53], [55], [68],
[78], [79], [90], [91], [96], [101], [102]; we compare work
related to NODEMEDIC’s provenance analysis below.

Taint analysis of Node.js packages. Several tools, in-
cluding NODEMEDIC, perform taint analysis of Node.js
packages [32], [41], [51], [62], [67], [79], [90]. The
closest to NODEMEDIC is Ichnaea [41] which also uses
Jalangi2 [82], [83] for dynamic taint analysis. Unlike
NODEMEDIC, Ichnaea does not track provenance, instead



tracking boolean taint and providing minimal feedback
(i.e., existence of a flow). Ichnaea utilizes a separate
abstract stack-based machine to propagate taint and is less
precise than NODEMEDIC likely due to the difficulty of
replicating JavaScript semantics in the abstract machine.

Affogato [32] also implements dynamic taint analysis,
but performs taint propagation for string operations via an
inference mechanism based on string similarity; it does not
support precise tainting of strings like NODEMEDIC.

Nodest [67], unlike NODEMEDIC, performs static taint
analysis and uses abstract interpretation. Nodest achieves
scalability by not precisely analyzing every dependency.
This is similar to NODEMEDIC’s approach of automati-
cally tuning propagation policies.

JavaScript information flow monitoring techniques.
Multiple works formalize foundational techniques for
JavaScript information flow analysis [3], [13]-[15], [36],
[40], [80]. Chudnov et al. proposed taint tracking by box-
ing primitive values [14]; this is used by other works [4],
[24], [95]. Like NODEMEDIC, Chudnov et al. perform
source-to-source rewriting of JavaScript programs. Unlike
Chudnov et al., NODEMEDIC tracks provenance and does
not store taint as properties on boxed values.

JavaScript taint analysis in other settings. In the client-
side web setting, multiple works perform taint analy-
sis [50], [61], [76], [77], [94], [97], [99]. Dexter]S [76],
[77] has an analysis methodology similar to NODEMEDIC.
Like NODEMEDIC, they perform precise (character-level)
tainting of strings. Unlike NODEMEDIC, they store taint
information as properties on boxed values. For browser
extensions analysis, some works modify the JavaScript
engine to perform taint analysis [12], [23].

New JavaScript interpreters for taint tracking have also
been created [7], [36], [37], [46], [47]. JSFlow [37], like
NODEMEDIC, uses modeling to support precise analysis.
However, unlike NODEMEDIC, JSFlow does not support
character-level tainting of primitive strings, nor Node.js’s
built-in APIs. Kreindl et al. [46], [47] build a tool that
performs taint analysis for multiple languages. While it
is applicable to JavaScript analysis, it lacks support for
Node.js-specific functionality.

End-to-end analysis infrastructure. Several client-side
dynamic taint analyses are integrated into end-to-end
infrastructures supporting automated discovery and con-
firmation of tainted flows [50], [61], [76]. In contrast,
existing Node.js dynamic taint analyses require manual
driver creation and exploit confirmation [32], [41].

The closest end-to-end infrastructure analyzing
Node.js packages is MalOSS [98], Unlike NODEMEDIC,
MalOSS’s integrated taint analyzer, JSPrime [79], is static
and imprecise, but does not require a driver. Additionally,
MalOSS’s vulnerability confirmation is semi-automated;
heuristics flag packages for manual review. NODEMEDIC
can synthesize and test exploits automatically.

Triage and provenance. Measuring exploitability has
been discussed in other contexts. Newsome et al. measure
influence with a precise static analysis that quantifies the
set of feasible values for attacker-controllable data in x86
binaries [66]. Masri et al. quantify Java bytecode dataflow
strength by measuring flow characteristics such as data
dependence and length [59]. The data structures used in

their work for triage contain information about dataflow,
similar to NODEMEDIC’s provenance graph. However,
neither capture all operations performed on tainted data
like NODEMEDIC. Consequently, we can use the prove-
nance graph for both triage and exploit synthesis.

Data provenance is used for debugging database and
logic programming query systems [8], [9], [104], where
one may want to know all of the inputs that affect the
outcome of a query. Similarly, the analysis techniques of
dynamic dependence analysis and program slicing can ex-
tract paths of program points responsible for an issue [28],
[56]-[58], [85]. Finally, works detecting Advanced and
Persistent Threats (ATPs) perform kernel-level logging of
system events to produce a causal graph that explains
a threat [38], [39], [54]. While these are conceptually
similar, they do not share the provenance graph structure,
nor notions of triage rating or exploit synthesis.

JavaScript exploit generation. To the best of our knowl-
edge NODEMEDIC is the first to synthesize exploits from
taint provenance data based on package inputs, string
constants, and operations. Most prior work targets cross-
site scripting vulnerabilities [6], [27], [31], [50], [77] and
parses the AST of the statement reaching the sink to
construct an exploit [6], [50], [77]. This works in the
web setting because global input sources (e.g., URL) are
accessed near the time of sink execution, but cannot be
directly applied to Node.js packages, where inputs are not
global and can be processed well before sink execution.

PMForce [93] synthesizes ACE exploits for the
client-side postMessage API’s event object. Unlike
NODEMEDIC, forced execution is performed, where par-
ticular branches are forced to be taken with proxied
objects to gather path constraints. NODEMEDIC handles
input types that cannot easily be proxied, and gathers con-
crete runtime traces; not path constraints. PMForce uses
constraints to fill exploit templates to use for event .data
field values. NODEMEDIC also uses templates, but these
encode ACE or ACI-specific breakouts. The provenance
graph encodes constraints that solve for the construction
of inputs that ensure the exploit payload reaches the sink.

Lynx [102] targets hidden property abuse in Node.js
packages and uses symbolic execution to find sinks in-
fluenced by hidden properties. If found, the symbolic
hidden property is replaced by an indicator that signals
exploitability. As future work, NODEMEDIC could be
extended to support symbolic values in generated exploits
to allow for symbolic execution.

8. Conclusion

We present NODEMEDIC, an end-to-end dynamic taint
provenance analysis infrastructure for detecting ACE and
ACI vulnerabilities in Node.js packages. NODEMEDIC’s
analysis generates provenance graphs that contain valu-
able information about how attacker-controllable data
reaches a sink. NODEMEDIC reduces analysts’ manual
burden with automated package driver creation, and post-
detection analyses that use provenance graphs: synthe-
sizing candidate exploits for automated confirmation and
Attack-defense-tree—based rating of flow exploitability.
Our large-scale evaluation of 10,000 npm packages shows
that NODEMEDIC is effective at detecting and confirming
vulnerabilities in real Node.js packages.



Data Availability

NODEMEDIC is released as open-source software, in-
cluding setup scripts and documentation required to repro-
duce the large-scale analysis presented in this paper, along
with a suite of 589 taint precision unit tests. Available
here: https://github.com/NodeMedicAnalysis/.
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A. Precise Propagation Policies

String module policies. For strings, in addition to the
precise string encoding, precise policies are implemented
for common string operations like substring, slice,
split, charCodeAt, fromCharCode. Implementation of
policies can be very simple using our framework. For
example, the precise taint policy for toLowerCase is
written in just 10 lines of code, not counting boilerplate
for accessing taint information.

The most complex string taint policy is that of split.
The difficulty stems from the fact that split is a cross-
type policy; split converts a string into an array, and the
precision level of the string and array policies may not
be the same. For example, if strings are precisely tainted
while arrays are imprecisely tainted then the resulting
array needs to be tainted if any character of the original
string was tainted. However, if both are using precise poli-
cies then the taint of characters need to correspond one-
to-one with the taint of the resulting array elements that
contain those characters. NODEMEDIC enables a complex
policy like this to be written in about 100 lines of code.

Array module policies. Imprecise: Each array element
shares the provenance node of the array. Precise: Ev-
ery element has its own provenance node, allowing for
precise propagation for many for array functions and
operations without additional policies. Policies are needed
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// Policy for setting a field

TPutField(s, vl1, v2, v3) {

// Check if v3 is tainted

// u2 is unwrapped v2

if (v3tainted && !isUndefinedOrNull (u2)) {
let pollution = false;
// Case 1: Overwriting prototype chain
let pr = ['prototype', '__proto__'l;
if (pr.indexOf (u2.toString()) != -1) {

pollution = true; }

// Case 2: Setting a prototype property
if (ul == Object.prototype) {

2 pollution = true; }

14 o))
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Figure 15. Example object policy for prototype pollution.

for the higher-order functions, e.g., join, map, reduce,
reduceRight. As pointed out by prior work, precise
propagation can be difficult for these because of the poten-
tial interleaving of native and non-native callbacks [41].
Our framework makes handling these higher-order
functions simpler. The policy for reduce is implemented
in around 30 lines of code and is precise. The reason
is due to our underlying representation of precise array
tainting; since individual array elements have their only
entries in the taint map, M;, propagation can be handled
by our regular provenance propagation semantics. This
holds except in the case where an uninstrumented callback
is passed to reduce. In this case, the reduce policy steps
in to imprecisely propagate provenance (since the behavior
of the function body is unknown to the instrumentation).

Object and global module policies. For objects, pre-
cise function policies are not necessary except for the
defineProperty function. This function defines a new
property on an object. It accepts a PropertyDescriptor
object that contains the value of the new property. The
fields of the PropertyDescriptor must not be wrapped
in order for setting the property to work correctly. In this
case we perform additional bookkeeping to ensure that the
provenance of PropertyDescriptor is preserved and
the new property is defined correctly.

Policies for PRP and HPA. NODEMEDIC supports the
addition of new policy definitions, scoped to particular
objects and modules. Below, we describe what would be
needed to add support for policies for detecting prototype
pollution (PRP) and hidden property abuse (HPA). For
PRP, one would have to add new policy code to the
base Object policy that would flag a write with tainted
values to the prototype (Figure 15). For HPA, following a
similar code pattern, policies could be added for functions
such as Object .assign to check whether tainted values
are being assigned to known-sensitive fields. The set of
known-sensitive fields would have to be separately user-
annotated or determined via a pre-analysis.

Finally, as future work, additional investigation is still
needed to develop methodology that enables triage and
exploit synthesis for these vulnerabilities, and additional
engineering effort would be required to implement this in
NODEMEDIC’s end-to-end infrastructure.

B. String Taint Encoding

The unicode code point range has hexidecimal values
that are designated as “private use” [16]; this range can
be used without concern for collision with other uni-
code code-points. NODEMEDIC performs a transformation

SEnc : S xT — S from a string, S, and an array
indicating which characters of the string are tainted, 7', to
a new string, S’, that includes the taint bits in the unicode
private use area. The encoded string can then be used for
native taint propagation in JavaScript operations that trans-
form strings: str — str, including string concatenation,
slicing, substring, and indexing.

Operations that take a string and produce a non-string
data type (e.g., charCodeAt) do not retain their semantics
with this encoding. Operations that attempt to perform
character-level comparisons also produce incorrect results
without encoding the compared string as well; for exam-
ple, str.indexOf (x), unless x is also encoded.

C. ATK Automata Construction

Below we present details on the construction of ATK
automata for triage rating.

Definition C.1 (Probabilistic Attacker Automata). Let
ATK be a five-tuple (Q, E,d, F, P) where @ is a set of
finite states in 2. F is a finite set of input symbols
corresponding to the elements of Ay. § is a transition
function Q x E — (@ that assigns edges according to
tp. Fis the set of final states; success or failure: {gs, g5}
P is a function Q x E — [0,1] assigning the probability
of transition from ¢ — ¢’ for each a € E, under the
constraint that  , Pr(q L ¢ =1.

As described in Section 4.3, we represent the at-
tacker’s input via families of strings, Vi,...,V,, under
the assumption that different implicit and explicit sani-
tizations will cover different exploits. The behavior for
an attacker during one execution of the program is to
try many exploits. For example, an attacker with control
over two independent inputs vy, vy of f; that both reach
a sink should provide a different exploit for v; and vy
during one run of f;. The set of attacker’s exploits is
thus V = {Vi,..., Vi } where k is stochastically-sampled,
proportional to the number of attacker-controllable inputs.

P uses the constant €, which characterizes the average
Provenance-AD-tree. Given a population of trees it is
inversely proportional to the average path length, D, and
average number of nodes in attacker-controlled paths, u:
€= M%' P is defined over failure of defender actions:

Or: I\ﬂ_}*‘l; At least one V; € V succeeds. Og: ﬁ; At
most one V; € V succeeds. O 4: 1 — €|V|; The probability
is proportional to |V|, and scaled by e. O,: 1 — ¢; The
probability is constant.

Next, we must instantiate each of (Q,E,d, F, P),
given a particular ¢,,. We call this process compiling ATK:

1) Q is drawn from 2. In practice the ordering of the
set {V1,---,Vx} does not matter so we have a group (of
unique sets) of size [V, i.e., Q@ = {q1,q2,---,qy|}-

2) E is the set of 0 € t,, (0 € O).

3) § assigns an edge ¢; — g;j for g;,q; € |V| according
to the categories of a € E:

e a € Or: ¢ N q;—1 for success; g; N qy for
failure.

e a€Og:q = q for success; ¢; — qy for failure.

e a€0UO0,: ¢ 5 g for success; ¢ — qy for
failure.



Algorithm 2 Bernoulli Estimation of Pr[Eg,_ ]

1: ATK < COMPILE(tp, €)
2: success < 0, failure < 0,7 < 0
3: while ¢ < SIMULATIONS do

4: while ATK.q ¢ {gs, g5} do
5. P <= NEXT(tp, py)

6: ATK.q < ATK(py.p)

7: end while

8: if ATK.q = g5 then

9: success <— success + 1
10: else if ATK.q = ¢y then
11: failure <— failure + 1
12: end if

13: i i+1
14: end while

15: return SUCCess

success -+ failure

Figure 16. Ex: Algorithm 1 with mgeps = O and mgeptn = 3. Functions
of dependencies below the dashed line are over-approximately analyzed.

. aEOs:qi%qsifaeSNlandﬂﬂzlor
a € SNy and |V| > 1 otherwise ¢; = q;.

The intuition is that an implicit sanitization O; is not com-
prehensive; we model it as only successful at eliminating
one of ATK’s payloads, while an explicit sanitization Op
will render ineffective all-but-one of the ATK’s payloads.
Other nodes do not cause reduction of payloads, but can
still transition to a failure state (e.g., if the program
halts at that point). Finally, we model success and fail-
ure for separately ACI and ACE: {exec,execSync} €
SNi,{eval,Function} € SN,; ACI sinks are typically
easier to exploit than ACE (Section 5.5.1).

4) F is the set of two final states: g, representing a
successful attack, i.e., f;(vark) succeeded; ¢ representing
the failure state, i.e., f;(varx) failed.

5) Finally, P is as described previously.

The compiled automata can then be used for esti-
mation of Pr[Eg, ]. We presented the methodology in
Section 4.3 but include pseudocode here: Algorithm 2.

D. Additional Evaluation Details

D.1. Additional Results for Prior Vulnerabilities

In Table 8 we present additional results for the prior
vulnerabilities dataset, namely triage and exploit synthe-
sis. Note that only true positives are included in this table
because true negatives do not produce provenance graphs
for these packages (NODEMEDIC has no false positives
for this set, as previously discussed in Section 5.2). Only
packages with generated provenance graphs can be used
with our triage and exploit synthesis techniques.

Since we already have provenance graphs for these
packages, we do not run them with the full end-to-end
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Figure 17. Number of dependencies and depth of dependency trees of
packages from large-scale evaluation.

TABLE 8. ANALYSIS OF PACKAGES FROM PRIOR WORK
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pipeline, rather, we only programmatically run triage and
exploit synthesis for them. To run our triage model, we
invoke the model with the provenance graph for each
package and record the result (as described in Section 4.3).
To run exploit synthesis on these packages, we pass
the previously generated provenance graph to our SMT
formula generator. As described in Section 4.2, we solve
the generated formula with Z3, extract the solved strings
(if sat), and rerun the existing driver, substituting the
solved strings for the tainted inputs, and check to see if
the generated exploit was successful.

D.2. End-to-End Analysis Runtime Breakdown

Our large-scale evaluation completed in four days
of parallelized execution across 16 Docker containers,
each hosting an instance of our end-to-end pipeline. The
average (per package) runtime in seconds per end-to-
end pipeline stage is listed in Table 9. “Package setup”
indicates the time spent downloading and installing the
package from npm. “Driver generation” is the time spent
pre-analyzing the package to gather its public functions
and generating driver code (Section 4.1). “Precision tun-
ing” includes the time spend building the package de-
pendency tree and applying the auto-tuning algorithm
to it (Section 3.3). “Execution” is the total time spent



TABLE 9. AVERAGE RUNTIME PER PIPELINE STAGE

Stage Runtime (s)
Package setup 1.24
Driver generation 0.24
Precision tuning 19.64
Execution 60.88
Triage rating 0.07
Exploit synthesis 32.88

executing the package, including time spent analyzing
every public function of the package, as well as time spent
executing the package without instrumentation, and using
Jalangi2 without our provenance analysis (for benchmark-
ing). “Triage rating” measures the average time spent ex-
ecuting the triage rating model on a generated provenance
graph (Section 4.3). “Exploit synthesis” includes the time
required to run the exploit and check whether it succeeded
or failed (Section 4.2). Note that not every stage includes
every package: 1) packages that timed out in a previous
stage are not included in the subsequent one; 2) packages
without a tainted flow also did not have triage rating or
exploit synthesis performed.

D.3. Coordinated Vulnerability Disclosure

We follow a coordinated vulnerability disclosure pro-
cess (i.e., responsible disclosure) [11] for the vulnerabili-
ties discovered in our large-scale evaluation. This process
is as follows: For potentially high-impact vulnerabilities,
e.g., packages receiving around 100 downloads per week,
we work with Snyk [87] to perform vulnerability disclo-
sure. Snyk maintains its own disclosure timeline [86]; they
contact package maintainers and work with us to explain
and suggest remediation for vulnerabilities.

For packages with less than 100 downloads per week
we directly contact package maintainers to explain the
discovered vulnerabilities and suggest mitigations. Since
many of these packages are unmaintained, we provide a
30 day response deadline with reminders sent to package
maintainers. If we do not receive any communication
from package maintainers within 30 days we report the
vulnerability to CVE (MITRE) [20]. We allow package
maintainers to request extensions of this timeline if they
need additional time to patch the vulnerability.

D.4. Developer Response

In our coordinated vulnerability disclosure process
(Appendix D.3), we directly or indirectly (through Snyk)
contact developers to make them aware of discovered
vulnerabilities. Developer responses have been minimal,
even for packages with many downloads.

At the time of publication, we have received 7 re-
sponses from developers. All 7 developers have confirmed
the reported vulnerability. Two developers chose to depre-
cate their package as a result of our reporting. Deprecating
a npm package causes the package to be marked in the
npm repository as “Deprecated”, displaying a warning to
users who attempt to install the package, but the package
can still be installed and used [72]. Two developers chose
to unpublish their package as a result of our reporting.
Unpublishing a package delists it from the npm repository,
making it impossible for new downloads of the package
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Figure 18. Provenance graph output for font-converter. Red arrows indi-
cate tainted dataflow. Blue boxes and arrows are explanatory annotations.
Attacker input flows (starting from nodes 21 and 33) along the red paths
and is concatenated (at nodes 5, 4, 3, 2) with string constants from the
package (nodes 8, 9, 22, 34) before reaching the sink (node 1).

to occur [73]. Three developers attempted to produce a fix
for the discovered vulnerability and asked for our review
of the changes. These were cases of ACI where exec
was used. In all cases, we guided the maintainers towards
using execFile instead of exec as it does not spawn a
shell by default [70].

D.5. Case Studies

Next, we present a selection of case studies of pack-
ages sourced from our large-scale evaluation.

Jont-converter. We presented this package previously in
Section 2. Below we provide additional details to charac-
terize this vulnerability, which is a straightforward exam-
ple of arbitrary command injection (ACI) and has been
recognized as a high-severity vulnerability with a CVSS
score of 9.8, indicating critical severity?.

The package provides a wrapper for the tool Font-
Forge which allows for conversion between various font
formats. The package consists of 13 lines of code with
a total code size of 0.7 KB, and includes 1 dependency.
NODEMEDIC’s provenance analysis completed in 0.6 sec-
onds and resulted in a provenance graph with 34 nodes
and a depth of 16 nodes (Figure 18).

The provenance graph of this package showcases a
typical pattern we see amongst ACI exploits; inputs to
public APIs are passed unsanitized throughout the pack-
age, concatenated with package constant strings, and then
directly given as a command to exec. Since exec spawns
a shell [69], attacker-injected shell meta-characters in the
command will be evaluated.

3. https://security.snyk.io/vuln/SNYK-JS-FONTCONVERTER-
2976194



Figure 19. accesslog provenance graph.

Both the expert and model rating gave the package a
high-exploitability rating. The package was able to be au-
tomatically confirmed by the exploit synthesis technique.
The package was found to be vulnerable with arbitrary
command injection because unsanitized user input was
passed to the sink exec.

The automatically-generated exploit and driver were
shown previously in Figure 3. The package’s exported
function accepts as its first two arguments a source and
destination filepath (line 3). These arguments are passed
directly to the call to exec, as shown previously in
Figure 4, resulting in the aforementioned vulnerability.
This vulnerability could be exploited if font-converter is
used as a dependency of another package that accepts font
files from users. If the user controls the name of the font
file, that user will be able to inject arbitrary commands.

We reported this vulnerability to Snyk, who contacted
the package maintainers but did not receive a response.
Snyk disclosed this vulnerability as CVE-2022-21165 and
gave it a CVSS score of 9.8, signaling critical severity.

accesslog. This package presents an example of an ar-
bitrary command execution vulnerability that has been
recognized as high-severity, with a CVSS score of 7.1%.
Unlike the font-converter vulnerability, exploiting this
vulnerability is not as straightforward, as shown below.
Like many of the ACE vulnerabilities discovered by
NODEMEDIC, this one could not be automatically con-
firmed because it requires careful setup of the package
driver — in this case to simulate handling a HTTP request.

The package is intended to provide customizable log-
ging middleware for HTTP request libraries. The package
consists of 412 lines of code for a total code size of 13.6
KB, and includes 3 dependencies with a dependency tree
depth of 1. NODEMEDIC’s provenance analysis took 1.1
seconds to analyze the package. The provenance graph
generated by the analysis is shown in Figure 19. It consists
of 29 nodes with a depth of 14 nodes.

4. https://security.snyk.io/vuln/SNYK-JS-ACCESSLOG-2312099

1 const accesslog = require("accesslog");
2 var handler = accesslog ({

3 format: '\\\" + global.CTF();//"',

4

5 var req = {};

6 var res = { end: function() {} };

7 handler (req, res, function() {});

8 res.end () ;

Figure 20. accesslog proof-of-concept driver.

1 var render = compile (options.format,

2 {options: options});

3 c.

4 function compile (format, context) {

5 .

6 var js = ' return "' +

7 format.replace (/% (>2\w|{[\w=]+}1i) /g,

8 function(_, name) {

9 return '"\n +
1o (tokens["' + name + '"]
1 .call (this, req, res) | "y
2 + o,
13 ) ey
14 return new Function (
s 'tokens, req, res', js).bind(context);

Figure 21. accesslog vulnerable code.

Both the expert and model ratings gave this package
a rating of low-exploitability. Nonetheless, it was deter-
mined manually that this package is vulnerable to arbi-
trary code execution because the Function constructor
is called with unsanitized user input.

This vulnerability occurs because the package accepts
through its constructor a format string that is used in
code generation (line 3 of Figure 20). When the resulting
handler is generated by the package and then used to
handle a (mock) request on line 7, the code generated
from the format string is evaluated when the request’s
overwritten end function is called (line 8).

Inspecting the vulnerable code within the package
(Figure 21), we see that the format string option value
is passed, unsanitized, to the function compile (line 1),
which interpolates it into a string (lines 6-13) used to
construct a new function (lines 14-15). This vulnerability
could be exploited if user input is used to inform the
content of the format string, such as in the case of a
server that exposes a web interface that allows for user-
customizable formatting of monitored logs.

We reported this vulnerability through Snyk, who
contacted the package maintainers but did not receive a
response. Snyk disclosed this vulnerability as CVE-2022-
25760 with a CVSS score of 7.1, signaling high severity.

comsvr-memory. In contrast to the accesslog case study,
this package provides an example of an arbitrary code
execution vulnerability that could be automatically con-
firmed by our exploit synthesis technique. Although both
packages share a similar exploit string structure, save for
the prefix of the string, what differentiates them is driver
construction. comsvr-memory is able to be confirmed with
the automatically-generated driver that directly calls the
package’s public APIs with the synthesized exploit.

The package provides a library of functions that cache
data to local storage. The package consists of 507 lines
of code for a total code size of 19.5 KB. The package has
two dependencies and has a dependency tree depth of 1.

NODEMEDIC’s analysis completed in 33.2 seconds
for this package and produced a large provenance graph
(Figure 22) with 142 nodes and a depth of 72 nodes. Both



Figure 22. comsvr-memory provenance graph.

==

1 var PUT = require ('comsvr-memory');
2 var x = "__proto__+global.CTF();//";
3 try {

4 var put = new PUT();

5 put.commit (x,x);

6 } catch (e) { console.log(e); }

Figure 23. Auto-generated comsvr-memory exploit driver.

the expert and model ratings for this package were low-
exploitability, yet the exploit synthesized for the package
successfully executed, confirming that an arbitrary com-
mand execution vulnerability was present.

The automatically generated exploit and driver code
can be seen in Figure 23. On line 2, we see the exploit,
which consists of the object prototype field name followed
by binary addition and a call to our injected function
global.CTF, whose execution indicates a successful ex-
ploit. On line 5, the package’s commit function is called,
which takes a name (key) and value to store.

The vulnerable code within comsvr-memory is
show in Figure 24. On line 5 the package directly
interpolates the name and value arguments into
a string that is used to construct and evaluate a
setter function on the data. Because the arguments
are interpolated without sanitization, the exploit
payload in the name argument gets interpreted as
return data._ proto__+global.CTF();//. Since

1 commit (name, value) {

2

3 } else if (typeof value === "string") {
4 new Function ("data",

5 “return data.${name} = "${value}""

6 ) (this.data);

Figure 24. Vulnerable code within comsvr-memory.

every object has the field _ proto__, the field access
succeeds. Subsequently, the attacker-controlled code
(in this case the call to global.CTF) evaluates. This
vulnerability could be exploited if another package uses
comsvr-memory to cache user-submitted values.

When we went to report this vulnerability, we found
the package had been unpublished after our large-scale
evaluation completed; no further action was taken.

D.6. 10K Package Evaluation Tainted Flows

Tables 10 - 14 have anonymized® tainted flows from
the 10K package evaluation. Columns descriptions follow.

Package characterization. “Name”: Package’s name in
npm. “Version”: Version at the time of gathering. Two
metrics to measure maintenance and popularity: “Up-
dated”: Year the package last received an update. “LY-
DLs”: Number of downloads in the past year (2022).

To quantify the complexity of the package: “Code
Size (KB)”: Size of JavaScript source files (including
dependencies) in kilobytes. “LoC”: Lines of code in
JavaScript source files (including dependencies). “Num.
Deps”: Number of dependencies in dependency tree.
“Dep. Depth”: Depth of dependency tree.

Analysis output. We included metrics to quantify anal-
ysis runtime and output: “Analysis Time”: Total analysis
runtime in seconds. “Rating”: Triage rating model ouput
(Section 4.3). “Auto-conf.”: Whether automatic confirma-
tion succeeded (Section 4.2).

We also quantify the flow complexity with provenance
graph metrics: “Prov. Nodes”: Number of nodes in the
provenance graph. “Prov. Depth”: Depth of the provenance
graph (length of longest path).

Vulnerability characterization. “Vuln.”: Type of vulner-
ability found, if any. “Vuln. Deps.”: Number of depen-
dencies with code executed in the vulnerability trace.
“Vuln. Depth”: Depth of vulnerable sink in dependency
tree (package itself is depth 0).

The above metrics, in addition to the previously de-
scribed “Prov. Nodes” and ‘Prov. Depth’, quantify vul-
nerability complexity. “Vuln. Depth” does not necessarily
indicate complexity, but shows where sinks are located in
the package’s dependency tree.

Finally, we report on the disclosure process at the
time of this paper’s publication. “Status”: The disclosure
status with values: R: Report filed to Snyk or the pack-
age maintainer. D: Vulnerability disclosed. U: Package
unpublished [73] from npm. “CVE”: The CVE assigned
to the vulnerability, if any. CVEs marked with 1 were not
disclosed by our work.

5. Responsible disclosure (Appendix D.3) is ongoing at the time of
publication; only disclosed vulnerabilities are deanonymized.



TABLE 10. 10K PACKAGE TAINTED FLOW RESULTS (1/5)

Name Version Updated LY- Code  LoC Num. Dep. Analysis Prov.  Prov.  Rating Auto- Vuln. Vuln.  Vuln. Status CVE
DLs Size Deps. Depth Time ~ Nodes Depth conf. Deps.  Depth
ik 002 2012 1361 75 360 2 1 422 101 28 L - ACE 0 0 R -
accesslog 0.02 2013 3865 13.6 412 3 1 1.1 29 14 L - ACE 2 0 D CVE-2022-
ik 0.0.1 2013 133 243 1097 3 2 12.4 35 33 H ACI 2 0 R —25760
ik 1.03 2020 258 0.4 13 1 0 0.5 6 6 H ACI 0 0 R -
aikEEE 1.03 2016 989 22 99 1 0 0.9 33 21 H - ACI 0 0 R -
ik 149 2019 133 2.6 75 1 0 1.0 73 71 H ACI 0 0 R -
ik 1.00 2020 110 1.9 1 1 0 1.0 78 24 M ACI 0 0 R -
aikEEE 0.03 2021 199 14435 45116 3 1 29 12 12 H - ACI 2 0 R -
ik 0.1.14 2020 4337 3133 367 14 4 6.1 137 61 L v ACI 0 0 R -
ik 1.0.1 2021 140 8.7 240 1 0 3.6 24 24 L - ACE 0 0 R -
ik 0.0.8 2015 73318 2.7 73 1 0 0.8 31 28 H v ACI 0 0 R -
ik 1.04 2016 303 90.4 3179 2 1 1.0 12 9 H v ACI 0 0 R -
ik 1.0.8 2015 568 1.3 34 1 0 0.8 12 9 H v ACI 0 0 R -
ik 1.0.7 2017 283 4.4 136 1 0 0.8 12 9 H v ACI 0 0 R -
ik 1.02 2017 257 2164 7418 5 2 9.7 49 39 H v ACI 2 0 R -
ik 0.1.0 2016 113 33 95 1 0 0.8 8 7 H v ACI 0 0 R -
ik 1.1.0 2017 33509 2.8 52 1 0 1.7 41 37 H v ACI 0 0 R -
atat 12,12 2021 740 49.1 1095 1 0 123.6 6724 77 M - - - - - -
ik 1.04 2018 270 12.4 65 1 0 0.8 33 16 H - ACI 0 0 R -
ik 1.02 2016 260 1.5 50 2 1 0.5 20 10 H v ACI 1 0 R -
ik 0.1.3- 2013 419 7.3 222 1 0 0.7 11 11 H - ACI 0 0 R -
[ %.0.0 2021 96 3151 8280 21 6 239.8 26 26 H v ACI 12 1 R -
bk 1.0.0 2013 111 359 1178 2 1 0.8 34 18 H v ACI 1 0 R -
btk 0.0.3 2014 175 0.6 18 1 0 0.5 26 14 H - ACI 0 0 R -
bk 0.1.0 2018 159 7.5 216 1 0 1.0 36 13 M - ACE 0 0 R -
bk 1.0.0 2019 99 1.2 22 1 0 0.6 20 11 M v ACI 0 0 R -
blue- 1.02 2018 O 21.6 619 1 0 44.7 12 10 H - ACE 0 0 U -
data-
model
brainfuck- 1.0.6 2016 459 10.5 393 1 0 1.5 208 33 H - - - - - -
compiler
broccoli- 024 2015 669 505.7 1898 19 5 158.1 29 19 H v ACI 17 0 D CVE-2023-
compass 27848
S 0.1.0 2012 390 1909 4343 5 2 0.7 11 11 H - ACI 1 0 R -
S 1.1.0 2016 259 1.2 44 1 0 0.6 6 6 H v ACI 0 0 R -
[ 152 2015 647 16.1 765 2 1 4.1 51 30 M - ACE 1 0 R -
Sk 0.0.7 2014 386 144 545 3 2 2.3 8 8 H v ACI 2 0 R -
comsvr- 010 2022 0 19.5 507 2 1 33.2 142 72 L v ACE 1 0 U -
memory
(e 0.3.10 2016 601 17.3 544 1 0 3.8 30 29 M v ACI 0 0 R -
[k 1.3.0 2014 354 1003.3 38157 37 5 76.7 68 34 L - ACE 2 0 R -
enpeem 220 2016 55872 17.8 360 3 2 1.6 705 22 H - ACI 2 0 D 10(;&1(2)ﬁ019-

Sl 1.04 2016 239 5.1 119 1 0 1.8 20 20 H v ACI 0 0 R -




TABLE 11. 10K PACKAGE TAINTED FLOW RESULTS (2/5)

Name Version Updated LY- Code  LoC Num. Dep. Analysis Prov.  Prov.  Rating Auto- Vuln. Vuln.  Vuln. Status CVE
DLs Size Deps. Depth Time ~ Nodes Depth conf. Deps.  Depth
error- 0.1.0 2014 121 2.5 54 1 0 0.7 58 20 H - - - - - -
foundry-
Js
ek 002 2016 168 7917 21752 19 7 28.6 9 9 H ACI 11 0 R -
[ 1.02 2016 192 6.1 145 1 0 12 30 30 L ACE 0 0 R -
Sl 220 2015 335 74.5 2420 2 1 2.4 42 40 H - ACI 1 0 R -
ek 1.02 2023 424 1.9 71 1 0 0.7 14 14 M - ACI 0 0 R -
[ 1.0.1 2016 20018 1.1 30 1 0 0.5 6 6 H v ACI 0 0 R -
Sl 1.0.0 2016 4759 0.6 18 1 0 0.5 8 8 H - ACI 0 0 R -
ek .12 2022 378 2.0 28 1 0 0.8 32 32 M v ACI 0 0 R -
extra- 0.0.51 2023 23862 11.0 237 1 0 35 4 4 H - - - - - -
function
S 19.6.0 2018 810 3.8 91 1 0 2.4 210 39 L - ACI 0 0 R -
ek 0.0.31 2016 363 21894 61428 58 6 2.6 16974 91 M v ACI 0 0 R -
oo 1.0.1 2015 224 0.5 5 1 0 0.5 24 13 H v ACI 0 0 R -
font- 1.1.1 2015 1779 0.7 13 1 0 0.6 34 16 H v ACI 0 0 D CVE-2022-
converter 21165
fool-node 1.0.0 2021 124 1.1 48 1 0 0.9 4 4 H - - - - - -
frowkE 0.02 2013 147 1.8 27 1 0 0.5 12 10 H - ACI 0 0 -
o 1.0.0 2020 103 1.0 21 1 0 0.7 10 9 M v ACI 0 0 R -
oo 1.0.8 2021 398 11.6 258 2 1 12.6 94 85 H - ACI 0 0 R -
frowkE 0.02 2012 139 4.3 59 1 0 0.7 56 29 M v ACI 0 0 R -
future- 120 2021 212 29.7 487 2 1 8.1 40 34 M - - - - - -
proxy
gk 0.0.7 2014 510 62.9 1439 2 1 0.8 8 8 H v ACI 0 0 R -
gk 1.0.0 2015 227 6.3 183 2 1 1.0 48 22 H v ACI 0 0 R -
gep 3.00 2016 424 17.8 464 1 0 6.7 18 17 M - - - - - -
gk 0.02 2015 116 46.8 928 2 1 2.0 17 17 H v ACI 0 0 R -
gk 1.0.3 2018 120234 4754 11012 55 10 83 408 54 M - ACI 8 2 R -
gk 0.0.1 2018 130 340.7 9586 52 10 63 408 54 M - ACI 8 2 R -
ek 0.2.1 2016 33187 758 1256 4 3 5.5 43 43 M - ACE 3 0 R -
ik 0.0.1 2014 117 1.4 52 1 0 0.7 4 4 H v ACI 0 0 R -
|l 0.02 2015 125 41.1 1307 2 1 5.4 27 27 H v ACI 1 0 R -
ek 1.5.12 2019 1618 12.8 302 1 0 2.3 37 37 L v ACI 0 0 R -
ik 1.02 2017 159 60.5 2857 9 2 316.1 128 38 L - ACE 8 0 R -
hoopoe 1.03 2021 317 3.1 73 1 0 0.7 19 18 H v ACI 0 0 6] -
ek 0.0.1 2018 104 232 923 4 2 2.0 6 6 H v ACI 3 0 R -
hot 0.0.7 2013 9764  26.5 288 1 0 1.8 340 46 L - - - - - -
huedawn-  0.3.3 2019 177 99.7 3699 12 4 36.4 749 26 H v ACI 11 0 U -
tesseract
ik 1.0.10 2019 403 33 57 1 0 0.8 16 16 H v ACI 0 0 R -
R 1.02 2018 150 17.5 598 1 0 22.1 14 14 H v ACI 0 0 R -
o 1.02 2017 5066 184 466 2 1 0.8 24 16 H v ACI 1 0 R -
[k 1.04 2017 246 49.2 908 9 4 1.6 1540 1538 M v ACI 4 0 R -
[k 0.0.5 2014 513 3.7 122 1 0 0.9 24 22 H v ACI 0 0 R -
Jskskokok .02 2019 159 3.8 28 1 0 0.6 8 7 H v ACI 0 0 R -




TABLE 12. 10K PACKAGE TAINTED FLOW RESULTS (3/5)

Name Version Updated LY- Code  LoC Num. Dep. Analysis Prov.  Prov.  Rating Auto- Vuln. Vuln.  Vuln. Status CVE
DLs Size Deps. Depth Time ~ Nodes Depth conf. Deps.  Depth
[k 1.00 2018 352 0.8 39 1 0 0.6 17 16 M ACI 0 0 R -
[k 1.06 2016 267 32.4 1360 2 1 0.8 20 20 M ACI 0 0 R -
Jskskokok 1.0.0 2019 117 1.2 32 1 0 0.9 16 16 H v ACI 0 0 R -
[k 0.04 2015 165 1435 5207 15 4 7.7 101 27 H - ACI 6 0 R -
[k 0.0.1 2017 208 27.2 376 1 0 1.5 168 26 H - ACI 0 0 R -
list-git- 1.0.0 2017 3021 2.0 94 3 2 1.0 149 42 H - - - - - -
branches
list-git- 1.0.1 2017 42760 2.2 111 3 2 0.8 2 2 H - - - - - -
remotes
[k 0.0.16 2020 456 1327 4636 14 5 199.1 316 216 L ACI 13 0 R -
Jskskokok 1.0.0 2016 102 10.5 234 3 1 1.0 14 14 H ACI 2 0 R -
loda 0.1.3 2014 399 64.8 2070 1 0 1412 933 105 L - - - - - -
[k 1.50 2019 146 1.8 35 1 0 0.6 20 20 H v ACI 0 0 R -
Jskskokok 0.1.0 2017 160 18.1 600 2 1 1.0 11 11 H v ACI 0 0 R -
[k 1.1.2 2018 223 1.0 18 1 0 0.6 12 11 H v ACE 0 0 R -
[k 0.04 2015 193 6132 16233 3 2 12 26 14 H v ACI 0 0 R -
1zc-node 1.0.7 2019 259 109.2 3502 8 2 45.8 144 144 L - - - - - -
i 0.1.0 2019 98 87.7 2444 8 3 2.6 26 25 M ACI 2 0 R -
macfromip  1.1.1 2015 6639 6.7 170 1 0 12 30 28 H ACI 0 0 D %\;]2}2020—
macos 0.0.1 2016 1290 55 106 1 0 0.8 55 17 L - - - - - -
i 0.1.0 2016 133 2.7 37 1 0 0.7 26 13 L ACE 0 0 R -
R 0.1.0 2017 173 0.9 30 1 0 0.5 22 10 H ACI 0 0 R -
i 1.0.1 2017 49145 6.0 165 1 0 1.1 20 18 M - ACE 0 0 R -
i 0.04 2018 178 6.7 146 1 0 2.6 50 37 M v ACI 0 0 R -
kR 0.0.7 2014 398 6053 16983 2 1 10.6 874 173 H v ACI 0 0 R -
i 1.0.7 2021 274 1405.2 32039 131 6 0.5 12 7 H v ACI 73 0 R -
i 0.1.7 2017 1443 488 1225 1 0 9.2 61 59 M - ACE 0 0 R -
R 205 2016 260 5.0 144 1 0 1.1 5 5 H - ACI 0 0 R -
mgform— 1.1.7 2022 0 9.1 1 1 0 35 60 59 M v ACE 0 0 U -
?r?*l:*** 0.1.1 2015 335 1.2 47 1 0 0.6 20 19 H v ACI 0 0 R -
R 1.0.1 2016 151 2.7 69 1 0 1.1 28 23 H v ACI 0 0 R -
R 0.0.1 2013 116 0.9 28 1 0 0.6 50 18 H v ACI 0 0 R -
node-atpl 1.1.5 2017 255 52.0 1812 1 0 7.6 52 34 M - - - - - -
R 0.0.5 2017 195 2.6 81 1 0 0.6 9 8 H - ACI 0 0 R -
A 1.0.0 2017 112 0.9 22 1 0 0.6 14 13 M v ACI 0 0 R -
R 0.2.0 2020 128 14582 45495 3 1 13.3 2 2 H - ACI 0 0 R -
R 1.0.7 2018 339 2.5 44 1 0 1.4 20 15 M - ACI 0 0 R -
A 0.1.3 2015 187 1.0 17 1 0 0.9 61 23 H v ACI 0 0 R -
R 0.03 2014 254 5479 14736 2 1 1.1 22 13 H v ACI 0 0 R -
R 0.0.1 2015 118 1.3 34 1 0 0.6 27 13 H v ACI 0 0 R -
A 0.0.5 2019 358 1.5 50 1 0 0.7 14 11 H v ACI 0 0 R -
prEFEE 1.0.0 2020 444 3.0 86 1 0 0.8 58 30 M v ACI 0 0 R -




TABLE 13. 10K PACKAGE TAINTED FLOW RESULTS (4/5)

Name Version Updated LY- Code  LoC Num. Dep. Analysis Prov.  Prov.  Rating Auto- Vuln. Vuln.  Vuln. Status CVE
DLs Size Deps. Depth Time  Nodes Depth conf. Deps.  Depth
rails- 1.0.0 2017 124 3.1 95 1 0 0.9 14 14 H v ACI 0 0 D CVE-2023-
?outes—to— 27849
json
R 1.1.0 2018 160 4.6 154 1 0 2.7 14 14 H v ACI 0 0 R -
o 0.14 2014 405 239 373 1 0 2.6 11100 65 L - ACE 0 0 R -
R 1.0.3 2019 13898 1.0 26 1 0 0.6 55 27 M v ACI 0 0 R -
R 040 2016 233 6.8 132 1 0 1.3 190 26 L - ACE 0 0 R -
o 1.0.1 2018 151 3748.6 90388 3 1 1.7 106 16 M - ACI 0 0 R -
R 1.02 2017 181 4.0 179 1 0 5.4 117 34 H - ACI 0 0 R -
redux- 2.1.0 2018 1137 22904 72391 9 3 72.1 37246 176 L - - - - - -
?’E’E**“ 047 2014 249 589.1 16137 2 1 17.4 36 19 H v ACI 0 0 R -
R 0.04 2017 201 2.6 83 1 0 0.5 65 27 L - ACE 0 0 R -
R 1.0.1 2017 159 2.1 64 1 0 0.8 6 6 H ACI 0 0 R -
o 1.0.0 2018 152 0.4 7 1 0 0.5 6 6 M ACE 0 0 R -
Rk 0.12 2018 172 296.7 10862 62 8 12 2 2 H - ACI 1 0 R -
Nl 0.1.1 2014 10348 123 193 1 0 16.7 40 40 H v ACI 0 0 R -
Nl 1.02 2016 173 1468.2 45864 3 1 1.8 71 53 H v ACI 2 1 R -
gk 1.0.1 2018 141 45 154 1 0 3.1 12 12 H v ACI 0 0 R -
Nl 1.02 2018 181 17.5 382 1 0 24.6 2 2 H - ACI 0 0 R -
Nl 1.0.1 2018 122 0.5 16 1 0 0.5 8 8 H v ACI 0 0 R -
Rk 0.04 2014 207 68.1 1421 3 1 1.0 625 79 M v ACI 0 0 R -
gk 0.0.6 2014 232 109.9 3885 3 1 35.2 26 24 H v ACI 1 0 R -
N 1.021 2021 684 2.9 90 1 0 0.7 72 21 H - ACI 0 0 R -
Rk 0.0.1 2014 86731 1.0 31 1 0 0.5 26 14 H v ACI 0 0 R -
Nl 2.0.0 2014 167 114 234 1 0 1.7 186 32 H - ACI 0 0 R -
N 0.0.1 2017 123 0.7 10 1 0 0.7 8 7 M ACI 0 0 R -
Rk 0.1.0 2014 1482 1.3 55 1 0 0.6 10 9 H ACI 0 0 R -
Nl 0.02 2019 97 2346.0 73114 3 1 3.4 88 44 H - ACI 1 0 R -
N 0.14 2014 200 681.3 18981 7 2 21.7 46 32 H v ACI 5 0 R -
gk 1.1.8 2019 640 1035 3843 7 2 49.6 96 96 M v ACI 4 0 R -
Nl 0.02 2011 681 22.5 1004 2 1 3.4 34 18 H v ACI 0 0 R -
gk 1.3.0 2018 297 1.1 40 1 0 0.5 53 16 H - ACI 0 0 R -
smartct] 1.0.0 2015 124 4.1 123 1 0 0.9 26 24 H v ACI 0 0 D CVE—ZTO22-
Nl 0.0.1 2018 133 1.7 43 1 0 0.8 9 9 H v ACI 0 0 R -21810
gk 140 2016 900 1.1 53 1 0 0.6 106 20 H v ACI 0 0 R -
Rk 1.02 2018 242 6.8 86 1 0 1.0 278 62 H v ACI 0 0 R -
gk 0.1.6 2020 348 49392.9 37 51 7 0.8 30 16 M v ACI 0 0 R -
gk 1.3.3 2021 5437 38 105 1 0 8.0 16 16 H v ACI 0 0 R -
Rk 1.02 2020 159 1.7 43 2 1 1.0 9 9 H v ACI 0 0 R -
Nl 0.0.1 2016 94 1.1 16 1 0 0.7 14 13 H v ACI 0 0 R -
sk 0.1.6 2011 2107 149.8 3305 2 1 25.6 2079 210 L v ACI 1 0 R -




TABLE 14. 10K PACKAGE TAINTED FLOW RESULTS (5/5)

Name Version Updated LY- Code  LoC Num. Dep. Analysis Prov.  Prov.  Rating Auto- Vuln. Vuln.  Vuln. Status CVE
DLs Size Deps. Depth Time  Nodes Depth conf. Deps.  Depth

ks 0.1.0 2014 122 621.1 16683 7 3 59 10 10 H v ACI 4 0 R -

sk 0.1.0 2014 127 10354 28569 4 2 2.7 142 39 H - ACI 2 0 R -

[ 1.0.1 2018 126 1.2 47 1 0 0.6 12 12 H v ACI 0 0 R -

ks 0.08 2019 307 22 94 1 0 0.7 6 6 H - ACI 0 0 R -

sk 1.00 2013 289 1.1 38 1 0 0.6 33 16 H v ACI 0 0 R -

text- 1.0.0 2018 123 1.1 18 1 0 23 404 20 H - - - - - -

privacy-

converter

the-first- 0.0.1 2018 113 2.6 123 2 1 0.5 2 2 H - - - - - -

commit

ko 0.02 2018 178 3.0 106 1 0 0.7 12 9 M v ACI 0 0 R -

sk 0.1.1 2016 123 2618.5 91608 145 14 1.6 20 19 H v ACI 2 0 R -

[ 1.3.0 2022 27073722762 7057 27 6 1.6 34 34 L v ACI 0 0 R -

ks 1.0.0 2016 106 36.2 1178 2 1 0.9 34 18 H v ACI 1 0 R -

sk 202 2020 26225 282 231 1 0 9.0 24 24 H v ACI 0 0 R -

[ 0.1.0 2013 172 2.5 54 1 0 1.3 19 18 H v ACI 0 0 R -

ks 1.0.1 2021 146 41.5 179 2 1 0.8 26 12 L - ACE 0 0 R -

to- 02.0 2016 169 0.9 49 1 0 0.6 2 2 H - - - - - -

clipboard-

android

sk 1.1.2 2020 1003 14.0 296 1 0 0.7 35 25 L - ACE 0 0 R -




	NodeMedic: End-to-end analysis of Node.js vulnerabilities with provenance graphs
	Citation

	Introduction
	Threat Model and Overview
	NodeMedic Threat Model
	NodeMedic Overview

	Provenance Analysis Methodology
	Instrumentation for Provenance Tracking
	Policy-based Taint Provenance Tracking
	Provenance tracking
	Propagation policies

	Auto-tuning of Propagation Policies
	Supporting ECMAScript 6+

	End-to-End Analysis Methodology
	Automated Setup and Driver Generation
	Exploit Synthesis with Provenance Graphs
	Triage Ratings with Provenance Graphs

	Evaluation
	Evaluation Setup and Datasets
	Precision Compared to Prior Work
	Performance Compared to Prior Work
	Tuning Propagation Policies
	Effect of precise propagation policies
	Configuring precision tuning

	Large-Scale Evaluation
	Exploit synthesis and confirmation
	Triage model ratings


	Limitations and Future Work
	Related Work
	Conclusion
	References
	 A: Precise Propagation Policies
	 B: String Taint Encoding
	 C: Atk Automata Construction
	 D: Additional Evaluation Details
	Additional Results for Prior Vulnerabilities
	End-to-End Analysis Runtime Breakdown
	Coordinated Vulnerability Disclosure
	Developer Response
	Case Studies
	10K Package Evaluation Tainted Flows


