
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

2-2023

Planning and learning for Non-Markovian negative side effects Planning and learning for Non-Markovian negative side effects

using finite state controllers using finite state controllers

Aishwarya SRIVASTAVA

Sandhya Saisubramanian

Praveen Paruchuri

Akshat KUMAR
Singapore Management University, akshatkumar@smu.edu.sg

Shlomo Zilberstein

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons

Citation Citation
SRIVASTAVA, Aishwarya; Saisubramanian, Sandhya; Paruchuri, Praveen; KUMAR, Akshat; and Zilberstein,
Shlomo. Planning and learning for Non-Markovian negative side effects using finite state controllers.
(2023). Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023, Washington,
February 7-14. 37, 15144-15151.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8092

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8092&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8092&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Planning and Learning for Non-markovian Negative Side Effects
Using Finite State Controllers

Aishwarya Srivastava1, Sandhya Saisubramanian2, Praveen Paruchuri1,
Akshat Kumar3, Shlomo Zilberstein4

1IIIT Hyderabad
2Oregon State University

3Singapore Management University
4University of Massachusetts Amherst

aishwarya.srivastava@research.iiit.ac.in, sandhya.sai@oregonstate.edu, praveen.p@iiit.ac.in,
akshatkumar@smu.edu.sg, shlomo@cs.umass.edu

Abstract

Autonomous systems are often deployed in the open world
where it is hard to obtain complete specifications of ob-
jectives and constraints. Operating based on an incomplete
model can produce negative side effects (NSEs), which af-
fect the safety and reliability of the system. We focus on
mitigating NSEs in environments modeled as Markov deci-
sion processes (MDPs). First, we learn a model of NSEs us-
ing observed data that contains state-action trajectories and
severity of associated NSEs. Unlike previous works that asso-
ciate NSEs with state-action pairs, our framework associates
NSEs with entire trajectories, which is more general and cap-
tures non-Markovian dependence on states and actions. Sec-
ond, we learn finite state controllers (FSCs) that predict NSE
severity for a given trajectory and generalize well to unseen
data. Finally, we develop a constrained MDP model that uses
information from the underlying MDP and the learned FSC
for planning while avoiding NSEs. Our empirical evaluation
demonstrates the effectiveness of our approach in learning
and mitigating Markovian and non-Markovian NSEs.

Introduction
As autonomous systems are increasingly deployed in open-
world environments, obtaining perfect description of the tar-
get environment becomes practically infeasible (Dietterich
2017). Model incompleteness may arise in the form of un-
derspecified objectives or missing constraints due to the lim-
ited availability of information or unintentional overlook-
ing of details, especially those considered unrelated to the
agent’s primary task during system design (Saisubramanian,
Zilberstein, and Kamar 2022). Operating based on such
models may produce negative side effects (NSEs)—which
are unintended, undesired consequences of agent actions
that occur in addition to the intended effects, often discov-
ered after deployment (Amodei et al. 2016; Alizadeh Alam-
dari et al. 2022; Krakovna et al. 2019; Saisubramanian,
Roberts, and Zilberstein 2021).

Addressing NSEs is gaining increased attention since it
affects the safety and reliability of deployed AI systems.
The NSEs may be Markovian or non-Markovian, depending

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Non-Markovian NSE in a driving domain, NSE is
associated with frequency of driving fast through puddles.

on the problem setting (Saisubramanian, Kamar, and Zilber-
stein 2022). Markovian NSEs are those associated with the
immediate execution of an action in a state. Non-Markovian
NSEs are associated with a sequence of actions. Many real-
world domains are characterized by non-Markovian NSEs.

For example, consider an autonomous vehicle (AV) that
aims to quickly navigate to a goal location while complying
with the traffic rules (Figure 1). While the AV’s model may
include all the details relevant to this task, it may lack su-
perfluous details, such as the impact of driving fast through
puddles. Based on this model, the AV may drive fast through
puddles, producing an NSE. While the user may tolerate this
behavior occasionally, they may not be willing to tolerate the
AV frequently splashing water on nearby pedestrians. Since
the model has no information about NSE, the AV’s state rep-
resentation may not include a feature indicating the number
of times it drove fast through puddles. Thus the severity of
NSE occurrence in this case depends on the agent’s trajec-
tory and is therefore non-Markovian for its state representa-
tion, which is Markovian for the navigation task.

Prior works mitigate Markovian NSE through model
and policy updates (Saisubramanian, Kamar, and Zilber-
stein 2020), by constraining actions (Zhang, Durfee, and
Singh 2018, 2020), by minimizing deviations from a base-
line (Krakovna et al. 2019), by incentivizing the agent to
preserve the ability to perform future tasks in the environ-
ment (Krakovna et al. 2020), and by considering the in-
fluence of actions on other agents in the environment (Al-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

15144

izadeh Alamdari et al. 2022). In the real world, however,
NSE may be associated with a trajectory and the state repre-
sentation may not be sufficient for the NSE to be Markovian,
particularly when the features determining NSEs are unre-
lated to the agent’s primary task. It is not straightforward to
extend the existing approaches to mitigate non-Markovian
NSEs since the NSE penalty for a trajectory may not be
decomposable into additive penalties associated with each
state-action pair (Saisubramanian, Kamar, and Zilberstein
2022). In addition, it is often computationally expensive to
expand the state representation for the NSEs to be Marko-
vian, as the expanded representation may make the primary
planning task intractable.

We propose controller-assisted safe planning (CASP), a
paradigm to mitigate the impact of non-Markovian NSEs—
the state representation is assumed to be Markovian for the
agent’s primary task but the NSEs may be non-Markovian
for this representation. The problem is formulated as a con-
strained Markov decision process (CMDP), with constraints
on NSE occurrences and deviation from the initial objective
value, denoted by the slack. The slack indicates the max-
imum allowed deviation from the optimal expected value
when the agent updates its policy to mitigate NSEs. Since
the agent has no prior knowledge about NSEs, it must learn a
predictive model of NSEs which is then used to avoid them.
Specifically, our approach uses a three-step method to detect
and mitigate NSEs (Figure 2): (1) the agent gathers infor-
mation about the side effects of its trajectories through or-
acle (typically human) feedback; (2) the gathered informa-
tion is used to learn a predictive model of (non-Markovian)
NSEs, using a finite state controller (FSC) and the EM algo-
rithm (Dempster, Laird, and Rubin 1977); and (3) the agent
replans to mitigate NSEs using the learned model, given a
tolerance threshold and a slack, by solving a CMDP using a
variant of the standard dual linear program for MDPs (Put-
erman 1990) to factor the learned FSC and NSE constraints.

FSCs have been previously used to take actions in a par-
tially observable MDP (POMDP) where the next action can
depend on the agent’s action-observation history (Hansen
1998). In our framework, a controller representation is
learned to summarize the history for NSE prediction. As
learned FSC node transitions are Markovian, it is easy to in-
tegrate them into MDP solution techniques such as the dual
LP (Puterman 1990). FSCs also provide a more explainable
model of NSEs than black-box methods.

Empirical evaluations on two domains show that our ap-
proach efficiently learns to mitigate Markovian and non-
Markovian NSEs from a limited amount of historical data,
outperforming the previous best method (Saisubramanian,
Kamar, and Zilberstein 2020, 2022).

Problem Formulation
Consider an agent operating based on a MDP, defined by
the tuple ⟨S,A,T, r, γ, b0⟩. Being in state s ∈ S and taking
action a ∈ A causes the agent to stochastically transition to
a new state s′ with probability Pr(s′|s, a) = T(s, a, s′), and
receive reward r(s, a). We assume an infinite-horizon setting
with discount factor γ < 1 and start state distribution b0(s).
The agent’s policy is represented by π(a|s) = Pr(a|s).

Figure 2: Overview of CASP framework.

We assume the planning setting with known transition and
reward functions. The primary objective of the agent is to
find a policy π that maximizes V (π) = E

[∑∞
t=0 γ

trt|π
]
,

with the optimal value denoted by V ∗. We assume that the
state representation has all the necessary features required to
complete the primary task. A solution obtained by optimiz-
ing the primary task alone may result in NSEs.
Negative side effects (NSEs) We define NSEs similar
to Saisubramanian, Zilberstein, and Kamar (2022). We con-
sider episodic tasks where each complete trajectory τ =
⟨s0, a1, s1, . . . , aH , sH⟩ can be of arbitrary, but finite length,
terminating in some state sH .
Definition 1. Let Λ denote a partition of the space of all pos-
sible complete trajectories for the given MDP into mutually
exclusive sets of categories of NSEs: Λ = λ1∪λ2∪. . .∪λK .

Intuitively, each λi defines a NSE category. We assume
that one set λj represents the absence of NSE in correspond-
ing trajectories. Without loss of generality, we assume that a
trajectory is associated with a single NSE category, which is
generally the most severe form of NSE that occurs in the tra-
jectory. When a trajectory τ ∈ λi is encountered during plan
execution, we say the NSE i has been observed. We consider
NSEs that are non-Markovian as the category may depend
on the entire trajectory, in contrast to Markovian NSEs that
depend on a single state-action pair (Saisubramanian, Ka-
mar, and Zilberstein 2022). Non-Markovian NSEs are sig-
nificantly richer than Markovian NSEs, and can model com-
plex NSEs without expanding the state representation.

Practically, it is infeasible to define such partitions accu-
rately. For example, in Figure 1, a λi may correspond to driv-
ing fast through puddles at least k times. This can happen in
multiple ways; listing all such trajectories is infeasible. One
can only observe some representative samples for different
partitions and learn to generalize from observed data.
Objective We aim to mitigate NSEs by allowing for some
loss (also called slack) in the agent’s primary objective. Let
E = {λ1, . . . , λK} denote the set of all trajectory partitions,
E∈{1, . . . ,K} denote the corresponding NSE category and
Et denote the category at time t. The optimization problem
is noted below.

max
π

∑
s

b0(s)V
π(s) (1)

V π(s) = E
[∞∑

t=0

γtrt|s, π
]

(2)∑
s

b0(s)[V
∗(s)− V π(s)] ≤ ζ (3)

∞∑
t=0

γtPr(Et = c;π) ≤ αc ∀c = {1, . . . , |E|} (4)

15145

ζ denotes the allowed slack on the agent’s primary objective
(V ∗), obtained by ignoring NSEs, and Eqn. (4) constrains
the expected frequency of NSE occurrence. The threshold
αc denotes the tolerance for NSE category c. The parame-
ters ζ and αc are typically specified by the user based on
their tolerance and are used to balance the trade-off between
optimizing the primary objective and avoiding NSEs.

The above problem is challenging because the constraints
in Equation (4) are non-linear and non-convex in policy pa-
rameters π. In addition, it is impractical to enumerate all tra-
jectories τ that define an NSE category. Therefore, the agent
learns to estimate the probability of different categories of
NSEs from historical data, as described below.

Controller Design and Learning for NSE
When the agent has no prior knowledge about the side ef-
fects of its actions, it must learn a predictive model of NSEs.
Learning about NSEs We assume that the agent has ac-
cess to a dataset that contains trajectories for different NSE
categories i ∈ E. Let Êi denote the collection of trajecto-
ries for NSE category i. In general, Êi ⊆ λi, that is, the
available data does not exhaustively list all the trajectories
constituting the category i. Such data can be collected using
various forms of feedback, such as by exploring the environ-
ment, from human feedback, or the past deployment of the
system (Saisubramanian, Zilberstein, and Kamar 2022). For
our empirical results, we used an ϵ-greedy policy using the
optimal primary value function V ⋆ to collect this data.

Our goal is to learn a classifier f , using the available
dataset, that takes any trajectory τ as input and predicts the
NSE category for τ . We assume no-NSE is also a category.
Note that trajectories τ can be of variable length. We focus
on using FSCs as the classifier representation for this multi-
class classification problem.
NSE representation using FSC The existing approaches
use a tabular representation for NSEs. However, this ap-
proach suffers from two key limitations: (1) it is not scalable
to large problems with Markovian NSE; and (2) it cannot
represent non-Markovian NSEs. To overcome these draw-
backs, we propose using an FSC to learn about and com-
pactly represent both Markovian and non-Markovian NSEs.

An FSC can compactly summarize information in a state-
action trajectory and can be easily integrated into solution
methods for MDPs by defining a joint-state space over the
environment states and FSC nodes, also called the cross-
product MDP (Meuleau et al. 1999a). This decoupled rep-
resentation eliminates the need for updating the MDP to
represent NSEs, which may require extensive testing to en-
sure no new risks are introduced. Furthermore, FSCs provide
an explainable form for learning NSEs; empirically, a small
dataset was sufficient to learn their structure.

Let [L] denote the set {1, . . . , L} for any positive integer
L. We assume there are K NSE categories, |E| = K.

Definition 2. An NSE controller for a given MDP is denoted
by C = ⟨Σ, E, U, us, u⊥, δ, ω⟩:
• Σ is a finite set of propositions representing high-level

features of the problem;

Figure 3: 2-Slice dynamic Bayesian net representing the
FSC classifier. The state-action trajectory (bottom row) is
observed; ut, ut+1 denote the controller nodes at time t,
t + 1; σt+1 is the high-level observation, Et+1 is the out-
put symbol representing the observed NSE category for the
input trajectory. The ω and δ are the parameters to learn.

• E = [K] ∪ ρ is a finite set of output symbols that denote
various NSE categories, with an empty output symbol at
intermediate nodes to handle non-Markovian NSE;

• U is a finite set of nodes, with us as the initial node and
u⊥ as the terminal node;

• δ : U × 2Σ → ∆U is the transition function, denoting
the probability of transitioning between the nodes after
receiving an observation σ ∈ 2Σ, with ∆U denoting the
distribution over successor controller nodes; and

• ω : U × 2Σ × U → ∆E denotes the probability of an
NSE category, given the nodes and input symbol.

Figure 3 shows the relationship between different vari-
ables. The propositions, Σ, represent the high-level features
of a state-action pair. The high-level observation σ corre-
sponding to an experience (s, a, s′) is determined via a la-
beling function L : S×A × S→ 2Σ. The labeling function
assigns truth values to propositions Σ, given (s, a, s′).

Intuitively, the observation σ is a high-level view of low-
level environment states and actions and is important for the
generalizability of the learned FSC. Such labeling functions
have been used for learning controllers for POMDPs (Ro-
drigo et al. 2019). Similar to their work, we assume a label-
ing function is provided as part of problem definition.

Predicting the NSE associated with an agent trajectory us-
ing an FSC involves three steps: (1) each (s, a, s′) in the
trajectory is mapped to an observation σ using the label-
ing function L; (2) the controller transitions from the cur-
rent node to a successor node upon receiving σ; and (3) the
controller node outputs a symbol that indicates the NSE cat-
egory associated with the trajectory. For Markovian NSE,
each node in the controller may be able to predict the NSE
category associated with each (s, a, s′) experience. For non-
Markovian NSEs, all the states and actions in the trajectory
must be accounted for before determining the NSE. There-
fore, all intermediate nodes output ρ deterministically, and
the terminal node u⊥, corresponding to the end of the tra-
jectory, will determine the NSE category.

15146

!! !"#$!%

E"

#! #"#$ #"

Figure 4: Markov chain representing the controller based
classification of a trajectory.

Example We briefly describe the NSE prediction using FSC
for the AV domain in Figure 1. Let controller nodes track
the number of times the AV navigated through a puddle
w/ and w/o pedestrians nearby, along with the speed and
whether the goal state has been reached. The proposition
set is Σ = {puddles pedestrians, puddles no pedestrians,
high speed, goal reached}. Let us first consider a Markovian
setting where mild NSE occurs when driving fast through a
puddle w/o nearby pedestrians, and severe NSE occurs when
driving fast through a puddle w/ pedestrians nearby. When
the AV follows the red trajectory and drives fast through the
first puddle, the corresponding label is σ = (T, F, T,¬g),
where T and F denote whether the proposition is true or
false in the current state-action pair, which the controller
uses to track the number of times the AV drove fast through
puddles. The σ causes a controller transition from u0 to
δ(u0, σ). The output symbol ω(u0, σ, δ(u0, σ)) is severe
NSE. Let us now consider a non-Markovian version where
navigating fast through puddles w/o nearby pedestrians for
> 25% of its trajectory length results in a mild NSE, and
driving fast through puddles with pedestrians nearby results
in severe NSE. Given σ= (T, F, T,¬g), the output symbol
ω(u0, σ, δ(u0, σ)) = ρ, as it is not the end of the trajectory.
However, at the end of the red trajectory, σ = (F, F, T, g),
δ(u, σ)=u⊥, and the output ω(u, σ, u⊥) is severe NSE.

Since NSEs are often discovered after deployment, defin-
ing associated FSC during design is impossible. Hence, the
agent must gather information about NSE to learn the FSC.

Training data Let Êc denote the set of state-action trajecto-
ries of NSE category c. The training data for the classifier is
of the form {(x, y)} where x is the input to the classifier, and
y is the true label. In our case, it is {(τ, ⟨u⊥, c⟩) ∀τ ∈ Êc},
where the trajectory τ is the input and ⟨u⊥, c⟩ is the true la-
bel indicating that control must terminate in terminal node
u⊥ and the output symbol in the terminal node is c, denot-
ing the NSE category associated with Êc. Training data can
be generated for all Êc.
Learning controller parameters Given a training data
point (τ, ⟨u⊥, c⟩), the trajectory τ is converted into a se-
quence of high-level observations σ0:T using the labeling
function L. The Markov chain connecting observed and hid-
den variables for the FSC is shown in Figure 4. Observed
values are represented using square nodes, hidden variables
using ellipses. Assume τ is a T -step trajectory. In our set-
ting, the node at the last time step T must be terminal node
u⊥, and output symbol ET = c. Using the principle of max-

imum likelihood estimation (MLE), our goal is (to avoid no-
tation clutter, we formulate for a single training data point):

max
δ,ω

p(σ0:T , us, u⊥, ET | δ, ω). (5)

As u0:T−1 are hidden variables, we can treat (5) as an MLE
problem with missing data and use the well-known EM algo-
rithms to estimate parameters δ, ω (Dempster, Laird, and Ru-
bin 1977). The EM algorithm has a particularly well suited
structure for exponential family distributions (Bishop 2006)
with the MLE often solvable analytically. An exponential
family is a set of probability distributions with a probability
density function of the form:

log p(x, y | θ) = D(θ) · T (x, y)− C(θ) +B(x, y),

where T (x, y) is the sufficient statistic of the data (x, y).
Assume that variables x are hidden, and y are observed

(i.e., the missing data setting). Let the expected sufficient
statistic be given as T (x, y) = Ep(x|y;θ)

[
T (x, y)

]
, where

θ is the current parameter estimate. The EM algorithm pro-
vides the next improved estimate θ⋆ by solving the problem:

θ⋆ = argmax
θ′∈Ω

[
D(θ′) · T (x, y)− C(θ′)

]
. (6)

Next, we show that the joint-distribution for the model in
figure (4) belongs to the exponential family and characterize
its sufficient statistic to formulate the equivalent optimiza-
tion problem as (6). For our case, θ = (δ, ω). Let M denote
the total nodes in our FSC, including terminal and start node.
Let indices m,n ∈ [M] be used to index over FSC nodes.
Using an overcomplete representation, we define:
• ut as M -dimensional one hot vector, with um

t = 1
means controller node is m at time t.

• Let i ∈ [2|Σ|] index over all observations. Let σt be a
2|Σ|-dimensional one hot vector; σi

t = 1 indicates obser-
vation i is true at time t.

• Let c ∈ [|E|] index over output symbols. Let ET be |E|-
dimensional one hot vector defined analogously to σt.

FSC parameters The parameters to learn are δ, ω;
δ(n|m, i) denote the probability of transitioning to node n
given current node is m, and observation received is i. For
non-Markovian NSE, the output symbol is only received
when the current node is u⊥. Let ω(c|m, i, u⊥) denote the
probability of receiving output symbol c given last node was
m, current observation is i and current node is u⊥. We use
shorthand ω(c|m, i) by omitting u⊥.
Theorem 1. Let u = (us, u0:T−1, u⊥), σ = σ0:T . The com-
plete data distribution p(u,σ, ET ; δ, ω) for model in Fig-
ure 4 belongs to the exponential family, specified using:
• D(δ, ω)← log[δ(n|m, i)], log[ω(c|m, i)] ∀n,m, i, c
• Sufficient statistic vector is:

T (u,σ, ET)← [um
0 σi

0] ∀m, i; , [um
T−1σ

i
T] ∀m, i;[T−2∑

t=0

um
t un

t+1σ
i
t+1

]
∀m,n, i; [Ec

Tu
m
T−1σ

i
T] ∀c,m, i

• B(u,σ, ET)←
∑T

t=0 log p(σt); C(δ, ω)← 0

Using the above terms, the equivalent optimization prob-
lem to (6) for FSC learning is given in table 1. To avoid clut-
ter, we show terms only for a single training data point; fi-

15147

max
δ,ω

∑
m,i

E
[
um
0 σi

0

]
log[δ(m|us, i)] +

∑
m,n,i

E
[T−2∑

t=0

um
t un

t+1σ
i
t+1

]
× log[δ(n|m, i)] +

∑
m,i

E
[
um
T−1σ

i
T

]
log[δ(u⊥|m, i)]

+
∑
c,m,i

E
[
Ec

Tu
m
T−1σ

i
T

]
log[ω(c|m, i)] (7)

∑
n∈[M]

δ(n|m, i) = 1 ∀m ∈ [M], i ∈ [2|Σ|] (8)

∑
c∈[|E|]

ω(c|m, i, u⊥) = 1 ∀m ∈ [M], i ∈ [2|Σ|] (9)

δ(u⊥|u⊥, i) = 1 ∀i ∈ [2|Σ|] (10)

δ(us|m, i) = 0 ∀m ∈ [M], ∀i ∈ [2|Σ|] (11)

ω(ρ|u⊥, i, u⊥) = 1 ∀i ∈ [2|Σ|] (12)

Table 1: Optimization problem for FSC parameter learning

nal optimization problem involves summation of analogous
terms for all the training data points.

The constraints (8) and (9) are standard probability nor-
malization constraints. Constraint (10) ensures that u⊥ is
an absorbing node without any outgoing transitions. Con-
straint (11) ensures that there is no incoming transition to the
starting node us. Constraint (12), along with constraint (10),
ensure that we only receive a valid output symbol c ̸= ρ
when the control reaches the terminal node u⊥ for the first
time; when the last node is u⊥ and the current node is also
u⊥, we receive a null output symbol (ρ). We also note that
although total observations are 2|Σ|, often many observa-
tions are infeasible in a domain. Therefore, the complexity
of above program is often much lower than exponential in
the number of propositions.

We show in the supplement how to compute the expected
sufficient statistics using a forward-backward algorithm,
similar to the well-known Baum-Welch algorithm (Bishop
2006) adapted to our setting, and use the KKT condi-
tions (Bertsekas 1999) to solve the problem in table 1 an-
alytically to obtain improved estimates of δ, ω parameters.

NSE Mitigation Using Dual LP for MDPs
We now show how the learned FSC can be integrated into the
dual LP formulation (Altman 2021). The optimization for-
mulation we develop approximates the problem (Eqn. (1))
as the learned FSC may not be fully accurate. We first define
the cross-product MDP over the joint space U×S (Meuleau
et al. 1999b). We also develop additional constraints to take
into account NSE limits in (4). The transition function over
the cross product MDP’s state space is:

P (u′, s′|u, s, a) = T(s, a, s′)δ(u′|u, σ = L(s, a, s′)),

where L(·) is the labeling function. The reward function is
unaffected by the controller state and remains the same as
r(s, a). The probability of NSE Et = c is:

P (Et = c|ut−1, ut = u⊥, st−1, at−1, st) =

ω
(
c|ut−1, u⊥, σt = L(st−1, at−1, st)

)
. (13)

max
{y(·)}

∑
u,s,a

r(s, a)y(u, s, a) (14)

//Dual LP flow constraints∑
a

y(u′, s′, a)=b0(u
′, s′)

+γ
∑
u,s,a

P (u′, s′|u, s, a)y(u, s, a)∀(u′, s′) (15)

y(u, s, a) ≥ 0 ∀(u, s, a) (16)

//NSE frequency computation

y(c) =
∑
u,s,a

y(u, s, a)
∑
s′

P (u′ = u⊥, s
′|u, s, a)×

ω(c|u, u⊥, σ = L(s, a, s′)) ∀c ∈ E (17)

//NSE satisfaction constraints

y(c) ≤ αc ∀c ∈ E (18)

//Primary objective slack∑
s

b0(s)V
∗(s)−

∑
u,s,a

r(s, a)y(u, s, a) ≤ ζ (19)

Table 2: Dual Linear Program for Safe Policy Optimization

The dual LP for the cross-product MDP incorporating
NSE constraints is given in Table 2. The structure and in-
terpretation of this dual LP is similar to the standard dual LP
for MDPs (Puterman 1990), with the occupancy measures
defined over the cross-product state space U ×S. The occu-
pancy measures y(u, s, a) denote the total expected number
of times controller state is u, MDP state is s, and action taken
is a (represented by ‘dual LP flow constraints’). b0(u, s)
denotes the probability of starting in controller state u and
MDP state s. We assume the agent observes the joint state
(u, s). The policy π can be extracted from the optimal so-
lution y⋆ as follows: π⋆(a|u, s) = y⋆(u, s, a)/

∑
a′ y

⋆(u, s, a′).
Constraints (17)-(19) are the major differences from the
standard dual LP. Constraint (17) compute the probability
of different NSEs c ∈ E as per our learned FSC. Following
results show the correctness of constraints (17), (18).
Definition 3. Let y(c;π) be the total expected number of
times NSE c is encountered as per policy π:

y(c;π) =

∞∑
t=0

γtP (Et+1 = c;π) (20)

In the above, we assume that it takes at least one time step
to emit an output symbol, as it takes at least one step to reach
the terminal node u⊥ from the start node us.
Proposition 1. The occupancy measure y(c;π) for an NSE
c ∈ E as per the policy π can be computed as:

y(c;π) =
∑
u,s,a

y(u, s, a;π)
∑
s′

P (u′ = u⊥, s
′|u, s, a)×

ω(c|u, u⊥, σ = L(s, a, s′)) (21)
Proof in Appendix. As a result, constraints (17), (18)

model the constraint (4) in our original problem, and con-
straint (19) models the constraint (3). Thus program in Ta-
ble 2 approximately solves the problem (1) (up to accuracy

15148

afforded by the learned FSC). We empirically run simula-
tions to estimate y⋆(c) to test if the final policy avoids NSEs.

Empirical Evaluation
We evaluate the effectiveness of our approach, controller-
assisted safe planning (CASP), in learning to predict and
mitigate Markovian and non-Markovian NSEs. We assume
Markov state representation for the primary objective. In the
interest of clarity, we test with three NSE categories: mild
NSE, severe NSE, and no NSE. Each action/trajectory can
result in a mild, severe, or no NSE.
Baselines We compare the performance of our approach
with three baselines: (1) executing the Initial policy that
optimizes the primary objective, with no NSE learning in-
volved; (2) a multi-objective approach to mitigate NSEs
(LMDP) (Saisubramanian, Kamar, and Zilberstein 2020)
with a perfect model of NSE (LMDP Optimal); and (3)
LMDP with a predictive model of NSE learned using ap-
proval feedback (LMDP Learned). Since the LMDP can
handle only Markov NSEs, we calculate the non-Markovian
NSEs encountered by simulating the policy for comparison.

In our experiments, we optimize costs, which are nega-
tions of the reward. We solve the planning problem us-
ing Advanced Process Optimizer (APOPT) solver,
with the controller learned using EM algorithm and γ =
0.99. All experiments were conducted on an Ubuntu ma-
chine with 80GB RAM. Following the planning, we com-
pute average NSE values by performing 10K simulations
(e.g., average NSE = 0.5 implies 50% of 10K simulations
encountered NSE). Our code is publicly available1.
Boxpushing In this domain, the agent aims to push a box
as quickly as possible to a goal location (Saisubramanian,
Kamar, and Zilberstein 2020). The state is represented by
⟨x, y, bx, by, b, c⟩, with x, y denoting the agent’s position,
bx, by denoting the box position, b is a Boolean variable in-
dicating whether the agent is pushing the box, c indicates
the type of surface: rug or plain. The agent can move in all
four directions, each costing +1. The agent can also load
the box with ‘pick up box’ action that costs +2, and wrap
the box with a protective sheet using ‘wrap box’ action that
costs +5. ‘Pick up’ and ‘wrap box’ actions are determin-
istic. The ‘move’ actions succeed with probability 0.9 and
slide to a neighboring cell with probability 0.1. Markovian
NSE occurs when the agent pushes the box over the rug. In
Non-Markovian NSE, the effects are mild when 1−25% rug
area is dirtied, and severe if > 25% is dirtied when the agent
completes its task. We experiment with grid size 15× 15.
Navigation Our second domain is the AV navigation de-
scribed in Figure 1, where the AV aims to navigate quickly
to a goal location (Saisubramanian, Kamar, and Zilber-
stein 2020). The AV can move in all four directions and
navigate at two speeds: slow and fast. Driving slow costs
+2, driving fast costs +1. Each state is represented by
⟨x, y, speed, pedestrian, puddle⟩. Pedestrian and puddle are
Boolean variables. The AV’s move actions succeed with
probability 0.9 or fail with probability 0.1 and slide to
a neighboring cell. The agent can transition between any

1https://github.com/SriAish/NSE PlanningAgent

Domain #Nodes F-1 scores Accuracy
No NSE Mild Severe (%)

Boxpushing
(15× 15)

4 0.65 0.48 0.45 67.00
5 0.67 0.49 0.52 68.00
6 0.68 0.52 0.54 69.00
7 0.80 0.75 0.76 86.00
8 0.86 0.84 0.83 91.40
9 0.89 0.89 0.89 91.30

Navigation
(15× 15)

4 0.51 0.51 0.67 67.03
5 0.47 0.48 0.65 66.69
6 0.52 0.67 0.70 74.32
7 0.85 0.85 0.87 89.28
8 0.90 0.90 0.91 92.78
9 0.87 0.86 0.88 91.70

Table 3: F-1 scores for each NSE category and overall accu-
racy with varying controller sizes (# nodes) on two domains.

speed deterministically. Markovian NSE occurs when driv-
ing fast through puddles. Non-Markovian NSE: mild NSE
occurs when the AV drives fast through puddles, without
pedestrians in the vicinity, for > 25% of its route. Driving
fast through puddles with pedestrians nearby results in se-
vere NSE. We experiment with grid size 15× 15.

Results and Discussion
Learning FSC We evaluate the effectiveness of our ap-
proach in learning a FSC to predict NSEs using F-1 scores
for each NSE category and overall prediction accuracy, as
we vary the controller size (Table 3). We use 75 trajectories
for training and 305 for testing in the boxpushing domain,
and 300 for training and 1155 for testing the navigation do-
main. We use more trajectories for navigation domain, since
the trajectories are relatively longer and the NSE condition
is more complex. While the accuracy may improve as we
increase the controller size, it also increases the training
time (Fig. 6 in Appendix). Hence, we choose the smallest
size that achieves comparable performance across NSE cat-
egories and ∼ 90% accuracy. Based on these results, we use
a controller size of eight nodes for the boxpushing domain
and seven nodes for the navigation domain.
Effectiveness in slack utilization Consider two simple
boxpushing instances (4× 1 and 4× 2), where the shaded
area denotes the rug, B denotes box location, S and G de-
note start and goal respectively (Figure 5). We evaluate with
Markovian NSE, slack ζ = 5, and NSE threshold α = 0.
The Initial policy always produces NSE. To avoid the NSE,
the agent can wrap the box, incurring an additional cost +5,
which matches the allowed slack. While our approach with
a learned FSC avoids NSE by wrapping the box, LMDP can-
not avoid NSE even with a perfect NSE model (LMDP Op-
timal). This is because of the fundamental difference in how
the two approaches distribute the slack. The agent can only
execute actions within the allowed slack in each state. Our
approach allows the slack to be used in whole in any state,
so the agent can use the wrap action to avoid the NSE. How-
ever, LMDP distributes the global slack to each state using
η=(1 − γ)ζ, where η is the slack for each state, which can
lead to harsh pruning of the policy space and result in poor
performance (Pineda, Wray, and Zilberstein 2015). In our

15149

(a) Instance (4× 1) (b) Instance (4×2)

(c) Average Markovian NSE with standard deviation.

Figure 5: Simple boxpushing instances, with ζ =5, demon-
strate limitation of LMDP approach in mitigating Markovian
NSE, due to its slack distribution; CASP has zero NSE

Domain Approach Slack Average NSE

Boxpushing

Initial Policy - 0.9700± 0.1626

LMDP Learned
15% 0.9729± 0.1623
20% 0.9720± 0.1649
25% 0.9708± 0.1683

LMDP Optimal
15% 0.9735± 0.1606
20% 0.9715± 0.1663
25% 0.9688± 0.1738

CASP (#Nodes: 4)
15% −
20% 0
25% 0

Navigation

Initial Policy - 1.00± 0

LMDP Learned
15% 1.0000± 0
20% 1.0000± 0
25% 1.0000± 0

LMDP Optimal
15% 1.0000± 0
20% 1.0000± 0
25% 1.0000± 0

CASP (#Nodes: 4)
15% 0.0005± 0.0223
20% 0.0005± 0.0223
25% 0.0005± 0.0223

Table 4: Effect of varying slack on Markovian NSE, when
NSE threshold α=0.

setting, the agent cannot avoid NSE as the wrap action vi-
olates the slack allotted to any state. This slack distribution
method is a fundamental limitation in LMDP that affects its
performance. This experiment demonstrates effective slack
utilization by our approach to mitigate NSEs, when feasible.
Mitigating Markovian NSE All Markovian NSEs are as-
sumed to have same severity. Results in Figure 5 and Table 4
show average Markovian NSE, along with standard devia-
tion, for α = 0 when slack is varied as % of primary ob-
jective value. Since Markovian NSEs are relatively easier to
predict, they can be avoided with a smaller controller size.
Mitigating non-Markovian NSE Tables 5 and 6 show the
results on non-Markovian NSEs for both the domains, with
NSE threshold α = 0 for both mild and severe NSE, and

Approach Slack Average NSE
Mild Severe

Initial Policy - 0.02± 0.16 0.95± 0.23

LMDP Learned
15% 0.02± 0.16 0.95± 0.23
20% 0.03± 0.16 0.95± 0.23
25% 0.03± 0.16 0.94± 0.23

LMDP Optimal
15% 0.95± 0.22 0.02± 0.16
20% 0.03± 0.16 0.95± 0.22
25% 0.03± 0.16 0.95± 0.23

CASP (#Nodes: 8)
15% - -
20% 0 0
25% 0 0

Table 5: Effect of varying slack on non-Markovian NSE in
boxpushing domain with α=0 for mild and severe NSE.

Approach Slack Average NSE
Mild Severe

Initial Policy - 0 1

LMDP Learned
15% 0 0.99± 0.017
20% 0 0.99± 0.014
25% 0 0.94± 0.241

LMDP Optimal
15% 0 0.99± 0.009
20% 0 0.99± 0.009
25% 0 0.99± 0.014

CASP (#Nodes: 7)
15% 0 0
20% 0 0
25% 0 0

Table 6: Effect of varying slack on non-Markovian NSE in
navigation domain with α=0 for mild and severe NSE.

varying slack. Controller sizes were selected based on Ta-
ble 3. For the boxpushing domain, CASP approach did not
find a solution with 15% slack but could avoid NSE when
the slack increased. LMDP could not avoid the NSE, despite
increasing the slack. This shows that besides its limitation
in effectively using the slack, LMDP cannot mitigate non-
Markovian NSEs. We also test the effect of varying NSE
thresholds and controller sizes on the performance (Fig. 7
in Appendix). Results with seven nodes for navigation and
eight nodes for the boxpushing domain avoid all NSEs, for
the three (mild, severe) threshold configurations we tested.

Summary and Future Work
We present CASP, a paradigm to learn and mitigate Marko-
vian and non-Markovian NSEs, with bounded-performance
guarantees for the primary objective value and NSE occur-
rence. We use an FSC to learn about, compactly represent,
and predict NSEs, using EM algorithm. The problem of mit-
igating NSEs is formulated as a constrained MDP, and an
NSE-minimizing policy is computed by integrating the FSC
with our planning model. Our results with varying slack,
controller sizes, NSE thresholds on Markovian and non-
Markovian NSEs demonstrate the benefits of our approach.
In the future, we aim to extend our technique to partially
observable settings and to handle noise in the training data.
Extending our approach to handle continuous state space is
another interesting direction for future research.

15150

Acknowledgments
This research/project is supported by the National Research
Foundation, Singapore and DSO National Laboratories un-
der the AI Singapore Programme (AISG Award No: AISG2-
RP-2020-017), US National Science Foundation USDA-
NIFA grant number 2021-67021-35344, and Kohli Center
on Intelligent Systems, IIIT Hyderabad.

References
Alizadeh Alamdari, P.; Klassen, T. Q.; Toro Icarte, R.; and
McIlraith, S. A. 2022. Be Considerate: Avoiding Negative
Side Effects in Reinforcement Learning. In Proceedings
of the 21st International Conference on Autonomous Agents
and Multiagent Systems, 18–26.
Altman, E. 2021. Constrained Markov Decision Processes.
ISBN 9781351458245.
Amodei, D.; Olah, C.; Steinhardt, J.; Christiano, P.; Schul-
man, J.; and Mané, D. 2016. Concrete problems in AI safety.
CoRR, abs/1606.06565.
Bertsekas, D. 1999. Nonlinear Programming. Athena Sci-
entific.
Bishop, C. M. 2006. Pattern Recognition and Machine
Learning (Information Science and Statistics). Springer-
Verlag. ISBN 0387310738.
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Max-
imum Likelihood from Incomplete Data via the EM Algo-
rithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1): 1–38.
Dietterich, T. G. 2017. Steps toward robust artificial intelli-
gence. AI Magazine, 38(3): 3–24.
Hansen, E. A. 1998. Solving POMDPs by Searching in Pol-
icy Space. In International Conference on Uncertainty in
Artificial Intelligence, 211–219.
Krakovna, V.; Orseau, L.; Martic, M.; and Legg, S. 2019.
Penalizing Side Effects using Stepwise Relative Reachabil-
ity. In AI Safety Workshop, IJCAI.
Krakovna, V.; Orseau, L.; Ngo, R.; Martic, M.; and Legg, S.
2020. Avoiding Side Effects By Considering Future Tasks.
In Advances in Neural Information Processing Systems.
Meuleau, N.; Kim, K.; Kaelbling, L. P.; and Cassandra, A. R.
1999a. Solving POMDPs by Searching the Space of Finite
Policies. In Laskey, K. B.; and Prade, H., eds., International
Conference on Uncertainty Artificial Intelligence, 417–426.
Meuleau, N.; Peshkin, L.; Kim, K.-E.; and Kaelbling, L. P.
1999b. Learning Finite-State Controllers for Partially Ob-
servable Environments. In International Conference on Un-
certainty in Artificial Intelligence, 427–436.
Pineda, L. E.; Wray, K. H.; and Zilberstein, S. 2015. Re-
visiting Multi-Objective MDPs with Relaxed Lexicographic
Preferences. In Proceedings of the AAAI Fall Symposium
Series.
Puterman, M. L. 1990. Markov Decision Processes. Hand-
books in operations research and management science, 2:
331–434.

Rodrigo, T. I.; Waldie, E.; Klassen, T.; Valenzano, R.; Cas-
tro, M.; and McIlraith, S. 2019. Learning reward machines
for partially observable reinforcement learning. In Advances
in Neural Information Processing Systems.
Saisubramanian, S.; Kamar, E.; and Zilberstein, S. 2020.
A Multi-Objective Approach to Mitigate Negative Side Ef-
fects. In Proceedings of the 29th International Joint Confer-
ence on Artificial Intelligence, 354–361.
Saisubramanian, S.; Kamar, E.; and Zilberstein, S. 2022.
Avoiding Negative Side Effects of Autonomous Systems in
the Open World. Journal of Artificial Intelligence Research,
74: 143–177.
Saisubramanian, S.; Roberts, S. C.; and Zilberstein, S. 2021.
Understanding User Attitudes Towards Negative Side Ef-
fects of AI Systems. In Extended Abstracts of the CHI Con-
ference on Human Factors in Computing Systems, 368:1–
368:6.
Saisubramanian, S.; Zilberstein, S.; and Kamar, E. 2022.
Avoiding negative side effects due to incomplete knowledge
of AI systems. AI Magazine, 42(4): 62–71.
Zhang, S.; Durfee, E. H.; and Singh, S. 2020. Querying
to Find a Safe Policy Under Uncertain Safety Constraints
in Markov Decision Processes. In Proceedings of the 34th
AAAI Conference on Artificial Intelligence, 2552–2559.
Zhang, S.; Durfee, E. H.; and Singh, S. P. 2018. Minimax-
Regret on Side Effects for Safe Optimality in Factored
Markov Decision Processes. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence,
4867–4873.

15151

	Planning and learning for Non-Markovian negative side effects using finite state controllers
	Citation

	Planning and Learning for Non-markovian Negative Side Effects Using Finite State Controllers

