
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2023

Learning feature embedding refiner for solving vehicle routing Learning feature embedding refiner for solving vehicle routing

problems problems

Jingwen LI

Yining MA

Zhiguang CAO
Singapore Management University, zgcao@smu.edu.sg

Yaoxin WU

Wen SONG

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the OS and Networks Commons

Citation Citation
LI, Jingwen; MA, Yining; CAO, Zhiguang; WU, Yaoxin; SONG, Wen; ZHANG, Jie; and CHEE, Yeow Meng.
Learning feature embedding refiner for solving vehicle routing problems. (2023). IEEE Transactions on
Neural Networks and Learning Systems. 1-13.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8087

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8087&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Jingwen LI, Yining MA, Zhiguang CAO, Yaoxin WU, Wen SONG, Jie ZHANG, and Yeow Meng CHEE

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/8087

https://ink.library.smu.edu.sg/sis_research/8087

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/371034010

Learning Feature Embedding Refiner for Solving Vehicle Routing Problems

Article in IEEE Transactions on Neural Networks and Learning Systems · May 2023

DOI: 10.1109/TNNLS.2023.3285077

CITATIONS

0
READS

262

7 authors, including:

Some of the authors of this publication are also working on these related projects:

Coding for flash memories View project

Framework for Rapid Simulation of Complex Business Systems View project

Li Jingwen

NUS

9 PUBLICATIONS 147 CITATIONS

SEE PROFILE

Yining Ma

National University of Singapore

16 PUBLICATIONS 237 CITATIONS

SEE PROFILE

Zhiguang Cao

Singapore Management University

78 PUBLICATIONS 2,252 CITATIONS

SEE PROFILE

Wen Song

Shandong University

63 PUBLICATIONS 1,136 CITATIONS

SEE PROFILE

All content following this page was uploaded by Li Jingwen on 09 June 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/371034010_Learning_Feature_Embedding_Refiner_for_Solving_Vehicle_Routing_Problems?enrichId=rgreq-362b41712bf3bda7db1af0dd75c354dc-XXX&enrichSource=Y292ZXJQYWdlOzM3MTAzNDAxMDtBUzoxMTQzMTI4MTE2NjU4MDQxMkAxNjg2MzE1ODM2OTU2&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/371034010_Learning_Feature_Embedding_Refiner_for_Solving_Vehicle_Routing_Problems?enrichId=rgreq-362b41712bf3bda7db1af0dd75c354dc-XXX&enrichSource=Y292ZXJQYWdlOzM3MTAzNDAxMDtBUzoxMTQzMTI4MTE2NjU4MDQxMkAxNjg2MzE1ODM2OTU2&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Coding-for-flash-memories?enrichId=rgreq-362b41712bf3bda7db1af0dd75c354dc-XXX&enrichSource=Y292ZXJQYWdlOzM3MTAzNDAxMDtBUzoxMTQzMTI4MTE2NjU4MDQxMkAxNjg2MzE1ODM2OTU2&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Framework-for-Rapid-Simulation-of-Complex-Business-Systems?enrichId=rgreq-362b41712bf3bda7db1af0dd75c354dc-XXX&enrichSource=Y292ZXJQYWdlOzM3MTAzNDAxMDtBUzoxMTQzMTI4MTE2NjU4MDQxMkAxNjg2MzE1ODM2OTU2&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-362b41712bf3bda7db1af0dd75c354dc-XXX&enrichSource=Y292ZXJQYWdlOzM3MTAzNDAxMDtBUzoxMTQzMTI4MTE2NjU4MDQxMkAxNjg2MzE1ODM2OTU2&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Li-Jingwen-6?enrichId=rgreq-362b41712bf3bda7db1af0dd75c354dc-XXX&enrichSource=Y292ZXJQYWdlOzM3MTAzNDAxMDtBUzoxMTQzMTI4MTE2NjU4MDQxMkAxNjg2MzE1ODM2OTU2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Li-Jingwen-6?enrichId=rgreq-362b41712bf3bda7db1af0dd75c354dc-XXX&enrichSource=Y292ZXJQYWdlOzM3MTAzNDAxMDtBUzoxMTQzMTI4MTE2NjU4MDQxMkAxNjg2MzE1ODM2OTU2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Li-Jingwen-6?enrichId=rgreq-362b41712bf3bda7db1af0dd75c354dc-XXX&enrichSource=Y292ZXJQYWdlOzM3MTAzNDAxMDtBUzoxMTQzMTI4MTE2NjU4MDQxMkAxNjg2MzE1ODM2OTU2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yining-Ma-7?enrichId=rgreq-362b41712bf3bda7db1af0dd75c354dc-XXX&enrichSource=Y292ZXJQYWdlOzM3MTAzNDAxMDtBUzoxMTQzMTI4MTE2NjU4MDQxMkAxNjg2MzE1ODM2OTU2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yining-Ma-7?enrichId=rgreq-362b41712bf3bda7db1af0dd75c354dc-XXX&enrichSource=Y292ZXJQYWdlOzM3MTAzNDAxMDtBUzoxMTQzMTI4MTE2NjU4MDQxMkAxNjg2MzE1ODM2OTU2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National-University-of-Singapore?enrichId=rgreq-362b41712bf3bda7db1af0dd75c354dc-XXX&enrichSource=Y292ZXJQYWdlOzM3MTAzNDAxMDtBUzoxMTQzMTI4MTE2NjU4MDQxMkAxNjg2MzE1ODM2OTU2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yining-Ma-7?enrichId=rgreq-362b41712bf3bda7db1af0dd75c354dc-XXX&enrichSource=Y292ZXJQYWdlOzM3MTAzNDAxMDtBUzoxMTQzMTI4MTE2NjU4MDQxMkAxNjg2MzE1ODM2OTU2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhiguang-Cao-2?enrichId=rgreq-362b41712bf3bda7db1af0dd75c354dc-XXX&enrichSource=Y292ZXJQYWdlOzM3MTAzNDAxMDtBUzoxMTQzMTI4MTE2NjU4MDQxMkAxNjg2MzE1ODM2OTU2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhiguang-Cao-2?enrichId=rgreq-362b41712bf3bda7db1af0dd75c354dc-XXX&enrichSource=Y292ZXJQYWdlOzM3MTAzNDAxMDtBUzoxMTQzMTI4MTE2NjU4MDQxMkAxNjg2MzE1ODM2OTU2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Singapore_Management_University?enrichId=rgreq-362b41712bf3bda7db1af0dd75c354dc-XXX&enrichSource=Y292ZXJQYWdlOzM3MTAzNDAxMDtBUzoxMTQzMTI4MTE2NjU4MDQxMkAxNjg2MzE1ODM2OTU2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhiguang-Cao-2?enrichId=rgreq-362b41712bf3bda7db1af0dd75c354dc-XXX&enrichSource=Y292ZXJQYWdlOzM3MTAzNDAxMDtBUzoxMTQzMTI4MTE2NjU4MDQxMkAxNjg2MzE1ODM2OTU2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wen-Song-16?enrichId=rgreq-362b41712bf3bda7db1af0dd75c354dc-XXX&enrichSource=Y292ZXJQYWdlOzM3MTAzNDAxMDtBUzoxMTQzMTI4MTE2NjU4MDQxMkAxNjg2MzE1ODM2OTU2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wen-Song-16?enrichId=rgreq-362b41712bf3bda7db1af0dd75c354dc-XXX&enrichSource=Y292ZXJQYWdlOzM3MTAzNDAxMDtBUzoxMTQzMTI4MTE2NjU4MDQxMkAxNjg2MzE1ODM2OTU2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Shandong-University?enrichId=rgreq-362b41712bf3bda7db1af0dd75c354dc-XXX&enrichSource=Y292ZXJQYWdlOzM3MTAzNDAxMDtBUzoxMTQzMTI4MTE2NjU4MDQxMkAxNjg2MzE1ODM2OTU2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wen-Song-16?enrichId=rgreq-362b41712bf3bda7db1af0dd75c354dc-XXX&enrichSource=Y292ZXJQYWdlOzM3MTAzNDAxMDtBUzoxMTQzMTI4MTE2NjU4MDQxMkAxNjg2MzE1ODM2OTU2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Li-Jingwen-6?enrichId=rgreq-362b41712bf3bda7db1af0dd75c354dc-XXX&enrichSource=Y292ZXJQYWdlOzM3MTAzNDAxMDtBUzoxMTQzMTI4MTE2NjU4MDQxMkAxNjg2MzE1ODM2OTU2&el=1_x_10&_esc=publicationCoverPdf

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, X 2023 1

Learning Feature Embedding Refiner for Solving
Vehicle Routing Problems

Jingwen Li, Yining Ma, Zhiguang Cao, Yaoxin Wu, Wen Song, Jie Zhang, Yeow Meng Chee

Abstract—While the encoder-decoder structure is widely used
in the recent neural construction methods for learning to solve
vehicle routing problems, they are less effective in searching
solutions due to deterministic feature embeddings and deter-
ministic probability distributions. In this paper, we propose the
Feature Embedding Refiner (FER) with a novel and generic
encoder-refiner-decoder structure to boost the existing encoder-
decoder structured deep models. It is model-agnostic that the
encoder and the decoder can be from any pre-trained neural
construction method. Regarding the introduced refiner network,
we design its architecture by combining standard GRU cell with
two new layers, i.e., an accumulated graph attention (AGA)
layer and a gated nonlinear (GNL) layer. The former extracts
dynamic graph topological information of historical solutions
stored in a diversified solution pool to generate aggregated pool
embeddings that are further improved by the GRU, and the
latter adaptively refines the feature embeddings from the encoder
with the guidance of the improved pool embeddings. To this
end, our FER allows current neural construction methods to not
only iteratively refine the feature embeddings for boarder search
range but also dynamically update the probability distributions
for more diverse search. We apply FER to two prevailing neural
construction methods including AM and POMO to solve the
travelling salesman problem (TSP) and the capacitated vehicle
routing problem (CVRP). Experimental results show that our
method achieves lower gaps and better generalization than the
original ones, and also exhibits competitive performance to the
state-of-the-art neural improvement methods.

Index Terms—Vehicle routing problems, neural combinatorial
optimization, encoder-decoder structure, reinforcement learning

I. INTRODUCTION

DUE to the NP-hard nature, vehicle routing problems
(VRPs) including the travelling salesman problem (TSP)

This work was supported by the National Natural Science Foundation of
China under Grant 62102228, the Natural Science Foundation of Shandong
Province under Grant ZR2021QF063, and the Agency for Science Technology
and Research Career Development Fund under Grant C222812027. (Jingwen
Li and Yining Ma contributed equally to this work.) (Corresponding author:
Wen Song.)

Jingwen Li is with the Department of Computer Science, Sichuan Normal
University, Chengdu 610101, China (lijingwen@sicnu.edu.cn).

Yining Ma and Yeow Meng Chee are with the Department of Indus-
trial Systems Engineering and Management, College of Design and Engi-
neering, National University of Singapore, Singapore (yiningma@u.nus.edu,
ymchee@nus.edu.sg).

Zhiguang Cao is with the School of Computing and Information Systems,
Singapore Management University, Singapore (zhiguangcao@outlook.com).

Yaoxin Wu is with the Faculty of Industrial Engineering and Innovation
Sciences, Eindhoven University of Technology, Eindhoven 5600 MB, The
Netherlands (wyxacc@hotmail.com).

Wen Song is with the Institute of Marine Science and Technology, Shan-
dong University, Qingdao 266237, China (wensong@email.sdu.edu.cn).

Jie Zhang is with the School of Computer Science and Engineering,
Nanyang Technological University, Singapore (zhangj@ntu.edu.sg).

(a) (b)

Fig. 1: Structures of neural heuristics. (a) Existing encoder-
decoder structure; (b) Our encoder-refiner-decoder structure.

and the capacitated vehicle routing problem (CVRP) are
intractable to solve optimally through exact solvers [1]. As
desirable alternatives, heuristic methods (e.g., [2], [3]) which
hinge on certain hand-crafted rules to simplify the search,
are always adopted in industry to find near-optimal solutions
with much less computational costs. On the other hand, given
the remarkable success of deep neural networks in computer
vision and natural language processing, it is commonly known
that deep models without much human guidance could sig-
nificantly outperform the hand-crafted ones [4]. Inspired by
this superiority, more and more endeavours have been carried
out to explore neural heuristics for VRPs [5]–[8], which
apply feature learning strategy [9] to leverage deep models
to automatically learn the rules in heuristics rather than using
the hand-crafted ones.

In such neural heuristics, the encoder-decoder structure is
widely exploited by the deep models to parameterize the prob-
ability distribution for sampling a solution. Further trained in
the fashion of advanced reinforcement learning or supervised
learning, the encoder-decoder structure performs fairly well
for solving VRPs, especially in learning neural construction
heuristics [10], which sequentially decides the next node to
visit. Typically, as shown in Fig. 1(a), the encoder learns
the representation based on the problem-specific information
and produces feature embeddings for all nodes, and the
decoder produces a probability distribution over nodes based
on the feature embeddings. Given the probability distribution,
multiple solutions could be sampled, and the best one will

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, X 2023 2

be retrieved as the final output. However, as the search
space may exponentially increase with the problem scales,
an effective and diverse exploration is crucial to find high-
quality solutions with limited computation time [11], [12].
To this end, the currently used encoder-decoder structure is
not optimal for the neural construction methods in our views.
Specifically, it suffers from two limitations, i.e., deterministic
feature embeddings and deterministic probability distribution.
Regarding the former, the feature embeddings are fixed during
the whole sampling process, which narrows the search range
and ignores the impacts of the sampled solutions. Regarding
the latter, although multiple solutions are sampled, most of
them might be intrinsically identical in light of the unchanged
distribution, which may seriously impair the search diversity.

To address the two limitations, we propose the Feature
Embedding Refiner (FER) with a novel and generic encoder-
refiner-decoder structure, where the refiner is added between
the encoder and decoder to better synergize them as depicted
in Fig. 1(b). Given a (pre-trained) neural construction model,
FER iteratively refines the feature embeddings generated from
the encoder and reconstructs a solution(s) with dynamic prob-
ability distributions accordingly via the decoder. Specifically,
the refiner is composed of an accumulated graph attention
(AGA) layer, a gated recurrent units (GRU) layer and a gated
nonlinear (GNL) layer. At each step, the AGA first extracts
the dynamic graph topological features of historical solutions
stored in a diversified solution pool to derive aggregated pool
embeddings. The pool embeddings are further improved by the
GRU to absorb more instructive and mroe global information
from previous steps. Afterwards, the GNL learns to adaptively
refine the pre-trained feature embeddings (from the construc-
tion encoder) using the improved pool embeddings for more
exploration. In doing so, our FER is not only able to exploit the
historical solutions seen so far to effectively refine the feature
embeddings at each step for broader search range, but also
dynamically update the probability distribution accordingly for
more diverse search. We also note that there is another line of
works, i.e., neural improvement methods [13]–[15], which also
leverage deep models to iteratively improve a complete initial
solution through neighbourhood search. However, they usually
need to select the operator(s) depending on the problem-
specific properties, and only update the solution locally which
requires a large amount of iterations. While our FER is more
generic, and could reconstruct a complete solution at each
step more freely. The experimental results also demonstrate
that our FER performs favorably against the state-of-the-art
neural improvement methods, especially with limited number
of iterations.

Our contributions are summarized as follows: 1) We propose
the Feature Embedding Refiner (FER) with a novel and
generic encoder-refiner-decoder structure for boosting existing
encoder-decoder structured neural construction models for
routing problems. It is designed to be model-agnostic, so that
the encoder and the decoder can be from any pre-trained
models; 2) We design the architecture of the newly added
refiner network by combining standard GRU cell with two new
layers, i.e., an AGA layer and a GNL layer. Given the sampled
historical solutions in a diversified pool, the former effectively

extracts dynamic graph topological information to generate
the aggregated pool embeddings that are further improved by
GRU cell. The latter adaptively refines the feature embeddings
from the encoder with the guidance of the improved pool
embeddings for more exploration. In doing so, the refiner
enables the policy to achieve dynamic feature embeddings for
broader search range and further dynamic probability distri-
butions for more diverse search; 3) We evaluate our FER by
applying it to two prevailing neural construction models, i.e.,
AM [16] and POMO [10]. Extensive experimental results on
both synthesized and benchmark instances of routing problems
(TSP and CVRP) well verify the superiority of our FER to
existing encoder-decoder structured construction models as
well as other state-of-the-art learning-based baselines.

The remaining of this paper is organized as follows. Sec-
tion II reviews related works. Section III presents problem
formulations. Section IV introduces our FER method in detail.
Section V reports the experimental results. Finally, Section VI
concludes the paper.

II. RELATED WORK

In this section, we briefly review recent works in learning
neural construction and improvement heuristics for routing
problems, as well as some other learning based methods.

A. Neural Construction Methods

Starting from an empty solution, neural construction meth-
ods learn to iteratively add node to a partial solution to
construct a complete one, where deep neural networks are
exploited to produce a distribution over the permutation of
nodes. Among the seminal works, Vinyals et al. [17] presented
the first attempt where Pointer Network was proposed to
solve TSP with supervised learning. It was then extended
to reinforcement learning [18] and CVRP [14]. Other than
RNNs used in the Pointer Network, graph neural networks
were also leveraged in [19], [20]. For example in [20], graph
conventional network (GCN) was exploited to compute the
probability of each edge appearing in the optimal TSP tour.
With recent developments of the self-attention mechanism
[4], the Attention Model (AM) [16] adopted a Transformer-
style network which follows the encoder-decoder structure to
learn a construction model. It exhibited favorable performance
in solving various routing problems, and was recognized as
one of the milestones in this field. Different from the single
decoder used in AM, Xin et al. [21] proposed a Multi-
Decoder AM (MDAM) to learn multiple decoding policies to
improve the solution quality. In another work, POMO (Policy
Optimization with Multiple Optima) [10], which is recognized
as the current state-of-the-art, improved AM by forcing diverse
rollouts and explored data augment techniques. Although con-
suming short time for inference, these methods usually require
post-processing procedures to ensure more desirable solution
quality, such as sampling [14], [16], [22], active search [18],
beam search [20], [21], or data augmentation [10]. However,
they may suffer from limited efficiency and diversity since
the feature embeddings and probability distributions are fixed
during the whole process.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, X 2023 3

B. Neural Improvement Methods

As another line of research, neural improvement methods
learn to search high-quality solutions by iteratively improving
a complete initial solution until reaching a step limit. In [23], a
neural heuristic was proposed which learns to pick local search
operations as well as the local components of the current solu-
tion to perform rewriting. A neural large neighbourhood search
(NLNS) method was proposed in [24] which learns to repair
solutions following the idea of neighbourhood search. Wu et
al. [13] proposed a Transformer based improvement heuristic
to pick node pairs for a given local operator. It was extended
to Dual-Aspect Collaborative Transformer (DACT) [15] to
better combine embeddings of the node and positional features.
Together with a novel cyclic positional encoding method,
DACT has achieved the state-of-the-art performance among
existing neural improvement methods. However, it still suffers
from long computational time caused by large numbers of
iterative steps. Different from the above works that need less
domain expertise, Lu et al. [25] introduced the L2I framework
based on a number of problem-specific features and operators.
Though the solution quality found by L2I outperforms LKH,
one of the strongest traditional solver, in solving CVRP, its
computation time could be prohibitively longer than other
improvement methods (e.g., DACT [15] and Wu et al. [13]).

C. Other Learning-based Methods

The CVAE-opt-DE in [26] leveraged conditional variational
autoencoder to learn a latent search space for routing prob-
lems, based on which differential evolution (DE) was adopted
to search high-quality solutions. A fully convolutional network
(FCN) was adopted to solve TSP with up to 12 customers in
[27] with the optimal solutions as the labeled data, which is
limited to solve large-scale instances and more constrained
routing problems, e.g., CVRP. More recently, the LCP (learn-
ing collaborative policies) proposed in [28] combined both
construction and improvement methods to solve routing prob-
lems, which leveraged a seeder to construct diverse candidate
solutions and a reviser to improve each candidate solution.
However, their performance is still inferior to POMO [10] in
terms of solution quality and inference time.

Different from above neural works that usually take an
encoder-decoder structure, in this paper, we propose the FER
with a novel encoder-refiner-decoder structure to iteratively
improve an encoder-decoder structured construction method.
It allows the neural construction methods to not only iteratively
refine the feature embeddings based on sampled historical
solutions for boarder search range, but also dynamically update
the probability distributions for more diverse search.

III. PROBLEM FORMULATION

In this section, we introduce the studied vehicle routing
problems, i.e., TSP and CVRP, and formulate the process of
applying our FER to solve them as a Markov Decision Process.

Given a set of customer nodes V indexed by i = 1, 2, ..., N ,
TSP aims to optimize a tour to visit each node exactly once
with the objective of minimizing the total travel cost (length).
With an additional depot node 0 in V , CVRP aims to optimize

routes for a fleet of identical vehicles with capacity to serve
a set of customers with demands under the constraints that:
1) each customer must be visited exactly once while the
depot could be visited multiple times; 2) for each vehicle, the
total demands from customers on its route cannot exceed its
capacity. Formally, we define the solution to a target routing
problem (i.e., TSP or CVRP) as a directed graph δ=(V,E),
where each element {i, j} ∈E is a directed edge from node
i to node j. Let C = C(δ) =

∑
{i,j}∈δ dij be the objective

value (cost) of solution δ, where dij refers to the Euclidean
distance between node i and node j.

Given an encoder-decoder based construction model, our
task is to sample it for T steps, and retrieve the best solution
found in the process. To better exploit the sampled historical
solutions at step t, we maintain a solution pool denoted
as Pt = {δt1, ..., δtK , Ct

1, ..., C
t
K} which includes at most K

solutions and their costs. We model the above search process
as a Markov Decision Process (MDP) defined as follows.
State. The state st defined in Eq. (1) consists of static and
dynamic components. The former refers to node embeddings
{hi, i ∈ V } directly attained from the construction encoder.
The latter includes features of the solution pool at step t, which
is defined as a function Φ(Pt) = {Et

k, C
t
k}Kk=1 that outputs the

edges and costs of solutions in Pt.

st = ({hi}Ni=1,Φ(Pt)) (1)

Action. The action is to construct y complete solutions at step
t, i.e., at = {δt1, δt2, ..., δty}. Note that y depends on the decoder
of the construction model. If AM [16] is used, then y = 1.
For some other construction models that generates multiple
solutions with different decoding setting, it is possible that
y > 1 (e.g., POMO [10], which considers taking each node as
the first node of the solutions, generates y = N solutions at
each step). In the experiments, we show that FER can improve
performance in both of the aforementioned scenarios.
Reward. We record the best-so-far objective value at step t
as Ct

bsf ∈ R, where C0
bsf is the objective value of the initial

solution. The reward is defined as rt = Ct−1
bsf − Ct

bsf which
means the decrease in the best-so-far objective value. Note
that the reward can also be applied when multiple solutions
(i.e., y > 1) are constructed at each step. In such case,
we independently record y best-so-far objective values of the
solutions to calculate the reward.
Transition dynamic. At each step t, we update the solution
pool following the designed diverse solution pool scheme
introduced later in Section IV-D.

IV. METHODOLOGY

Given an existing encoder-decoder structured neural con-
struction model, our FER adds a new component called refiner
between the encoder and the decoder. Intuitively, the refiner
aims to leverage more diverse information during search
process by dynamically refining the feature embeddings from
the encoder. As illustrated in Fig. 2, the refiner uses the
sampled historical solutions stored in the diversified pool to
iteratively refine the given node embeddings (obtained from
the encoder) and improve the diversity and the efficiency for

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, X 2023 4

Fig. 2: An illustration of our policy network with solution pool size K = 3.

solution reconstruction (performed by the decoder). Specific to
the architecture of the refiner network, it mainly comprises an
accumulated graph attention (AGA) layer, a gated recurrent
units (GRU) layer and a gated nonlinear (GNL) layer. The
detailed architecture of these layers in our refiner is displayed
in Fig. 3(a). At each step, the AGA first leverages the useful
information of historical solutions with their corresponding
costs from current pool to derive the aggregated pool embed-
ding. Then the GRU further improves the pool embeddings
by fusing more instructive and more global information from
previous steps. Afterwards, the GNL adaptively refines the
node embeddings from the construction encoder with the
guidance of the improved historical embeddings for more
exploration. Finally, the refined node embeddings are flowed
into the construction decoder for generating solutions, and
then the solution pool is updated accordingly. This process
is iterated until reaching the step limit T . Below we formally
introduce them in detail.

A. The Encoder

In our method, the encoder could be from any pre-trained
neural construction model. Here we focus on the Transformer-
styled encoder in AM [16] and POMO [10], which deliv-
ers state-of-the-art performance. In both AM and POMO,
the encoder first embeds problem-specific features to higher-
dimensional space, then passes them to stacked attention layers
to extract useful information for better representation. Let fi
be the problem-specific features of node xi, i ∈ V , which
contains 2-dimensional location coordinates (for both TSP and
CVRP) and 1-dimensional demand vector (for CVRP only).
Specifically, fi is linearly projected to initial node embedding
h0
i of 128-dimension [16]. Then it is processed through L (3

and 6 for AM and POMO, respectively) attention layers with
different parameters to final node embedding hL

i , where each
attention layer is composed of a multi-head attention (MHA)
sub-layer and a feed-forward (FF) sub-layer. Following the
original design of the Transformer model [4], both the outputs

of the MHA sub-layer and the FF sub-layer are followed by
a skip-connection layer [29] and a batch normalization (BN)
layer [30], as shown in Eq. (2) and Eq. (3), respectively,

h̃i = BN(hl
i + MHA(hl

i)), (2)

hl+1
i = BN(h̃i + FF(h̃i)). (3)

MHA sub-layer. The MHA sub-layer uses a multi-head self-
attention mechanism [4] with M = 8 heads to compute the
attention weights between each two nodes. Specifically, the
query/key/value proposed in [4] are defined with dk = d/M
dimension as shown in Eq. (4).

ql,mi = W l,m
Q hl

i, kl,mi = W l,m
K hl

i, vl,mi = W l,m
V hl

i, (4)

Then the attention weights are computed by using the Soft-
max activation function in Eq. (5) to represent the influence
between each two nodes.

ul,m
ij = softmax

(
(ql,mi)⊤(kl,mi)√

dk

)
, (5)

Finally, the l-th MHA sub-layer first computes the new con-
text vectors by doing an element-wise multiplication of the
attention weights with value in Eq. (6), and then aggregates
the information from M heads in Eq. (7),

hl,m
i =

∑
j

ul,m
ij vl,mj , m = 1, 2, ...,M, (6)

MHA(hl
i) = [hl,1

i ;hl,2
i ; ...;hl,M

i]W l
O, (7)

where W l,m
Q , W l,m

K , W l,m
V ∈ Rd×dk , W l

O ∈ Rmdk×d are
learnable parameters, and [;] denotes the concatenate operator.

FF sub-layer. The FF sub-layer processes the node embed-
dings {h̃i, i ∈ V } through a hidden sub-layer with dimension
512 and a ReLU activation function, as shown in Eq. (8),

FF(h̃i) = W 1
F ReLU(W 0

F h̃i + b0F) + b1F, (8)

where W 0
F ,W

1
F , b

0
F , b

1
F are trainable parameters.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, X 2023 5

(a) (b)

Fig. 3: Our proposed refiner network for routing problems. (a) The overall architecture; (b) Illustration of the multi-head
accumulated graph attention with 3 solutions in the pool.

Finally, the encoder outputs a set of node embeddings in the
L-th layer hL

i , i ∈ V . These embeddings will be preserved as
a part of the input to the refiner in each iteration for producing
better embeddings, as shown in Fig. 2 and Fig. 3(a).

B. The Refiner

We now elaborate the architecture of the three main layers
in our refiner, i.e., the AGA, the GRU and the GNL layer.
AGA layer. To extract the graph topological information from
all solutions in the pool Pt = {δtk, Ct

k}Kk=1, we design a
novel accumulated graph attention (AGA) layer based on a
proposed multi-head accumulated attention mechanism. Let
etijk ∈ {0, 1} be a binary variable that indicates whether the
edge {i, j} exists in the solution δtk at step t. For the edge
{i, j}, we define E-left and E-right as the node embeddings
of its two endpoints, respectively. Our AGA collects queries
(from E-left) and keys (from E-right) to perform the multi-
head accumulated graph attention as shown in Fig. 3(b). Given
the node embeddings {hi, hj}, the multi-head accumulated
attention first linearly projects the node embeddings to form
queries (qi = hiw

m
1) and keys (kj = hjw

m
2) in the M heads of

dimension dk, where wm
1 , wm

2 ∈Rd×dk are learnable param-
eters. Then it processes them via an element-wise production
and concatenates the output with the distance dij of the edge
{i, j} to compute initial weights, which are further fine-tuned
through a Feed-Forward Tuning (FFT) sub-layer1 to generate
the fused weights wt

ijk by gathering information from M
heads. Note that the weight of the edge {i, j} equals to 0
if it does not exists in Pt. In doing so, the network could
automatically learn the best fusion with multiple heads from
different perspectives. Below, we summarize the formulation
of the above process as Eq. (9),

amijk =

{
FFT

([
qi·kj√

dk
; dij

])
, if etijk = 1

0, otherwise

wt
ijk = [a1ijk; a

2
ijk; ...; a

M
ijk]wo,

(9)

where wo∈RM×1 are learnable parameters.

1The FFT includes a feed-forward network with 3-layers (dimensions are
2, 16 and 1, respectively) and a ReLU activation function.

Based on the fused weights, we define a matrix Z̃t ∈
RN×N , where each element z̃tij (initialized as negative in-
finity) stores the accumulated compatibility weights of the
corresponding edge {i, j}. More specifically, z̃tij defined in
Eq. (10) is accumulated by summing up the fused weights of
the edge {i, j} (after being scaled by the corresponding cost
of the solution) appearing in all solutions in the current pool,

z̃tij =

K∑
k=1

etijkw
t
ijk/C

t
k. (10)

The logic of dividing the weight by Ct
k (i.e., the solution cost

δtk) is that solutions of higher quality in the pool should have
greater impacts. In doing so, the accumulated compatibility
vector z̃ti = {z̃ti1, ..., z̃tiN} stores all edge information con-
cerning node i in the pool at step t. Specifically, only the
elements which refer to the edges starting from the node i in
the pool are not negative infinity. In Eq. (11), the accumulated
compatibility Z̄t ∈ RN×N is then normalized by the softmax
function to calculate the accumulated attention weights,

Zt = softmax(Z̃t). (11)

The aggregated pool embedding of node i is further gathered
as the linear combination of the node embeddings of its suc-
cessors across the whole solution pool, as shown in Eq. (12),

h̄t
i =

∑
j

ztijhj . (12)

Note that AGA layer could not be removed from the refiner
since it is a basic component to provide diverse information
(aggregated pool embeddings) learned from dynamic historical
solutions stored in the pool. Based on AGA, subsequent
components can further learn to improve the aggregated pool
embeddings (via GRU cell) and refine the node embeddings
from the encoder (via GNL layer).
GRU layer. The aggregated pool embedding of each node i
is further processed using a gated recurrent unit (GRU) cell
to extract and memorize global historical information from all
the previous steps, and the output is expressed in Eq. (13),

h̆t
i = GRUcell(h̆t−1

i , h̄t
i). (13)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, X 2023 6

GNL layer. Given the aggregated historical embedding h̆t
i, i ∈

V at step t, we design a novel gated nonlinear (GNL)
layer to refine the node embeddings hi, i ∈ V generated
from the construction encoder, which is fixed and shared
across the whole process. We leverage an absorb gate to
absorb the new guidance information from the aggregated
historical embedding at the current step, and a reserve gate
to reserve the desirable property of node embeddings, i.e.,
ut = σ(Wu[hi; h̆

t
i]) and rt = σ(Wr[hi; h̆

t
i]), where Wu

and Wr are trainable parameters. The two gates combine the
information taken from the aggregated historical embeddings
and the given node embeddings. Then a nonlinear active
function is used to express absorbed new information from
current pool, as shown in Eq. (14),

ĥt
i = tanh(W [hi;ut · h̆t

i]), i ∈ V, (14)

where W is trainable parameters. In Eq. (15), the final node
embeddings h⃗t

i, i ∈ V are defined as the linear combination
of new guidance information and original node embeddings,

h⃗t
i = rt · hi + (1− rt) · ĥt

i, i ∈ V. (15)

The function of each component of the proposed refiner is
verified in Section V-D.

C. The Decoder

Similar to the encoder, the decoder could also be from
any pre-trained neural construction model. We still apply the
the Transformer-styled decoder in AM and POMO. However,
instead of taking the original embeddings hi generated by
the encoder, the decoder in our model takes the final node
embeddings h⃗i, i ∈ V from the refiner as input, based on
which it sequentially selects a node at each decoding step
to sample a complete solution δ = {π1, π2, ...πZ}, where Z
refers to decoding steps. In specific, Z equals to N for TSP
but may be larger than N for CVRP due to multiple visits to
the depot.

Taking TSP as an example, the decoder first calculates
the mean of node embeddings to provide a more global
perspective, i.e., ḣt = 1

N

∑N
i h⃗t

i, then defines a context vector
in Eq. (16) as the combination of the mean graph embedding,
the embeddings of the end node of the route and the last visited
node (we omit step t for simplification),

hc = (ḣ, h⃗π1 , h⃗πz−1), (16)

where h⃗πz
is the node embedding of the node visited at

decoding step z. For the first step, the last two elements of hc

are replaced by trainable parameters. The context vector and
refined node embeddings are then processed by a MHA layer
as introduced in Section IV-A to generate a glimpse vector hg

in Eq. (17),

hg = MHA(W g
Qh

c, W g
K h⃗, W g

V h⃗). (17)

after which the decoder computes the compatibility between
the enhanced glimpse and node embeddings, and further the

probability of selecting the next node to visit at decoding step
z as shown in Eq. (18) - (19),

cz = G · tanh

(
(hgWQ)

T (⃗hWK)√
dk

)
, (18)

pz = Softmax(cz), (19)

where W g
Q,W

g
K ,W g

V ,WQ,WK are trainable parameter matri-
ces, and G is often set to 10 to control the entropy of cz .

Regarding POMO, since it constructs N solutions by taking
each of the N nodes as the first node to visit (i.e., h⃗i

π1
= h⃗i),

it defines N context vectors hc
i , ∀i ∈ V as shown in Eq. (20),

hc
i =

{
(ḣ, h⃗i, h⃗

i
πz−1

), if z > 1

None, if z = 1
(20)

The N context embeddings are then processed following Eq.
(17)-(19) in parallel to obtain the probability of picking the
next node in each of the N solutions.

Pertaining to the decoding strategy, we could choose the
node with the maximum probability in a greedy manner or
sample a node according to the probability in a sampling
manner at each decoding step. The newly generated solutions
will be added to the pool Pt following the pool updating
mechanism introduced in Section IV-D.

D. Solution Pool Diversification

Solution diversity is important for the search performance.
We design the following mechanism to increase the solution
diversity of our FER. First, we randomly replace a solution δi
from the current pool with the newly constructed one δt (by
the decoder). Second, with a probability gradually increased as
the training progresses, we further choose to replace another
solution δj in the pool with a randomly generated new one
δRt following the rules below: we first check whether the
current pool contains a randomly generated solution added
in the previous steps; if yes, such solution is set to δj ; if
not, we randomly choose another solution from the pool as δj
(δj ̸= δt). We summarize the above operation in Eq. (22),

Pt =

{
Pt−1 \ {δi, δj} ∪ {δt, δRt }, if ϵ<exp(elnEE)

Pt−1 \ {δi} ∪ {δt}, otherwise
(21)

where i ̸= j, “\” and “∪” are the set subtraction and union
operator, respectively. The decision probability is computed
based on the epoch index e, the total epoch number E (defined
in the below subsection), and a random number ϵ ∈ [1, E+1].
For POMO, we randomly select K solutions from the newly
sampled N solutions to update the pool.

In doing so, the pool could, 1) provide a more diverse
dynamic state (in MDP) with different solutions between step
t − 1 and t; 2) achieve a better balance between exploration
and exploitation by gradually converging to the case that only
one random solution is contained in the pool.

E. Training Algorithm

As summarized in Algorithm 1, we adopt n-step advantage
actor critic (A2C) algorithm to train our FER to optimize

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, X 2023 7

TABLE I: Gaps of FER-AM with different pool sizes.

Pool Size N=20 N=50 N=100
Obj. Gap Time Obj. Gap Time Obj. Gap Time

K=2 6.165 0.11% 29m 10.518 0.23% 1.6h 16.025 0.33% 5.7h
K=4 6.163 0.07% 30m 10.498 0.04% 1.8h 16.010 0.23% 6.7h
K=6 6.159 0.00% 32m 10.495 0.01% 2h 15.988 0.09% 7.4h
K=8 6.159 0.00% 34m 10.495 0.01% 2.3h 15.974 0.01% 8h
K=10 6.159 - 36m 10.494 - 2.8h 15.973 - 9.1h

Note: We use Obj. as the abbreviation for the objective value throughout the paper.

ALGORITHM 1: n-step A2C

1 Input: construction encoder πe with pre-trained parameters θe
(fixed); refiner πr with randomly initialized parameters θr
(trainable); construction decoder πd with pre-trained parameter
θd (trainable); critic vϕ with randomly initialized parameters
ϕ; learning rate βπ , βϕ;

2 foreach e = 1, 2, ..., E do
3 foreach b = 1, 2, ..., B do
4 Randomly generate training instances Ib; t← 0;
5 Get node embeddings using pre-trained construction

encoder, h = πe(Ib|θe), as static component of st;
6 while t < T do
7 dθr,d ← 0; dϕ← 0;
8 while t− ts < nstep and t < T do
9 Perform the refiner to get h⃗t = πr (⃗h

t|st, θr);
10 Sample solutions, i.e., at ∼ πd(at |⃗ht, θd);
11 Get reward rt and the next state st+1.

t← t+ 1;
12 end
13 Bootstrap from the last state R = vϕ(st);
14 foreach i = t− 1, ..., ts do
15 R← ri + γR;
16 Accumulate gradients: dθr,d ← dθr,d +

1
|Ib|y

∑
Ib

∑
y(R− vϕ(si))∇logπθr,d(ai|si);

17 Accumulate gradients: dϕ←
dϕ+ 1

|Ib|y
∑

Ib

∑
y(R− vϕ(si)) ∇vϕ(si);

18 end
19 θr ← θr +

βπ
nstep

dθr; θd ← θd + βπ
nstep

dθd;

20 ϕ← ϕ− βϕ

nstep
dϕ.

21 end
22 end
23 end

the objective value defined in Section III, which performs
E epochs of training. The actor {πe, πd, πr} consists of the
pre-trained construction encoder πe and decoder πd, and the
introduced refiner πr, where the parameters of the encoder πe

are fixed during training. Regarding the critic network vϕ, it
takes the refined node embeddings generated by the refiner as
the input and computes the estimated state value. The structure
of the critic network is similar to [13], which first concatenates
the refined node embeddings and its mean pooling as the fused
ones, and then process the fused embeddings by a multilayer
perception (MLP) layer [31], [32] to obtain the output value.

V. EXPERIMENTS

We conduct experiments on two most widely studied VRPs,
i.e., TSP and CVRP, to verify the effectiveness of our method.
Following [10], [15], [16], we randomly generate instances
with N (20, 50 and 100) nodes for each problem for training

TABLE II: Obj. of FER-AM with different pool schemes.

Pool Scheme CVRP20 CVRP50 CVRP100

Greedy 6.186 10.569 16.116
Diversified 6.181 10.560 16.097

and use the same 10,000 instances from [16] for testing.
To evaluate the applicability of our FER to different neural
construction methods, we apply it to two prevailing deep
models, i.e., AM2 and POMO3, by adopting their original
encoder and decoder. We call the corresponding new models
as FER-AM and FER-POMO, respectively.

We train our FER with B = 20 batches per epoch for
E = 100 epochs for CVRP20 and CVRP50 and E = 200
epochs for CVRP100. Regarding FER-AM, we set batch size
to 512 and nstep = 4 with T = 100 steps. The Adam
Optimizer [33] is adopted with initial learning rate 10−4 for
actor and 5×10−5 for critic with decay rate equal to 0.99.
Regarding FER-POMO, we set batch size to 32 and nstep=5
with T =100 steps. The initial learning rate is set to 5×10−5

for actor and 10−6 for critic with decay rate equal to 0.988.
The decoder follows the design of the corresponding original
construction methods, which samples a single solution for AM
and N solutions for POMO at each step. Our dataset and code
in Pytorch are available4.

A. Solution Pool Analysis

We first analyze the impacts of the solution pool size and
the solution pool diversification scheme in our proposed FER.
Impacts of the solution pool size. In Table I, we train and test
our FER-AM using different numbers of K (from 2 to 10) for
solving CVRP instances with T = 5, 000 to show the impacts
of the solution pool size. The gaps are calculated based on
the solutions obtained by the method with lowest objective
values (i.e., total length of the solutions), and the time refers
to the computation time of solving all 10,000 instance for
all methods. We can observe that larger pool sizes tend to
achieve lower objective values and optimality gaps but longer
computation time. To achieve a desirable trade-off between the
solution quality and the computation cost, we adopt K = 6
for CVRP20 and CVRP50, and K = 8 for CVRP100 for both
FER-AM and FER-POMO in the following experiments.
Impacts of the solution pool diversification scheme. In Table
II, we replace the solution pool Pt with a greedy one which

2https://github.com/wouterkool/attention-learn-to-route
3https://github.com/yd-kwon/POMO
4https://github.com/Demon0312/Feature-Embedding-Refiner

https://github.com/wouterkool/attention-learn-to-route
https://github.com/yd-kwon/POMO
https://github.com/Demon0312/Feature-Embedding-Refiner

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, X 2023 8

TABLE III: Comparison with various baselines on TSP and CVRP.

Method N=20 N=50 N=100
Obj. Gap Time# Obj. Gap Time# Obj. Gap Time#

T
SP

Gurobi 3.84 - 5.70 - 7.76 -
LKH 3.84 0.00% (8m) 5.70 0.00% (2h) 7.76 0.00% (8h)

AM (S=200) 3.84 0.11% (30s) 5.73 0.59% (2m) 7.97 2.63% (10m)
FER-AM (T =200) 3.84 0.03% (55s) 5.71 0.18% (3m) 7.90 1.64% (12m)
AM (S=5, 000) 3.84 0.06% (10m) 5.72 0.38% (45m) 7.93 2.13% (4.3h)
FER-AM (T =5, 000) 3.84 0.01% (13m) 5.70 0.02% (57m) 7.85 1.12% (5h)
AM+LCP‡ (1,280, 10) - 5.70 0.08% (4.3h) 7.85 1.13% (8.8h)

POMO (S=200) 3.84 0.02% (2m) 5.70 0.06% (12m) 7.79 0.27% (56m)
FER-POMO (T =200) 3.84 0.00% (3m) 5.70 0.03% (14m) 7.78 0.15% (1.1h)
POMO (S=200, ×8 augment) 3.84 0.00% (18m) 5.70 0.01% (1.5h) 7.77 0.08% (7.4h)
FER-POMO (T =200, ×8 augment) 3.84 0.00% (24m) 5.70 0.00% (1.8h) 7.77 0.03% (8.5h)

C
V

R
P

HGS 6.13 - (12.5h) 10.37 - (24.5h) 15.56 - (56h)
LKH 6.14 0.16% (22h) 10.38 0.14% (3.6d) 15.65 0.56% (6.5d)

AM (S=200) 6.27 2.28% (1m) 10.67 2.93% (4m) 16.29 4.67% (14m)
FER-AM (T =200) 6.18 0.82% (2m) 10.56 1.87% (6m) 16.10 3.43% (22m)
AM (S=5, 000) 6.24 1.80% (25m) 10.60 2.26% (1.5h) 16.15 3.77% (5.5h)
FER-AM (T =5, 000) 6.16 0.50% (32m) 10.50 1.24% (2h) 15.97 2.64% (8h)
AM+LCP‡ (2,560, 1) 6.15 0.35% 10.52 1.49% 16.00 2.81%
AM+LCP‡ (6,500, 1) - - 15.98 2.68%

POMO (S=200) 6.15 0.33% (3m) 10.44 0.71% (20m) 15.74 1.14% (1.6h)
FER-POMO (T =200) 6.13 0.04% (4m) 10.41 0.42% (35m) 15.70 0.88% (1.8h)
POMO (S=200, ×8 augment) 6.14 0.17% (22m) 10.40 0.33% (2.6h) 15.67 0.01% (12h)
FER-POMO (T =200, ×8 augment) 6.13 0.01% (28m) 10.38 0.16% (3h) 15.65 0.56% (14h)

Note: The gaps are calculated based on the solutions obtained by Gurobi for TSP and HGS for CVRP.
The time refers to the computation time of solving all 10,000 instance for all methods.
‡ LCP improves the vanilla AM for better performance and is denoted as “AM+LCP” according to its original paper. We run the results of
TSP using the pre-trained models and take the objective values and optimality gaps of CVRP from the original paper since the pre-trained
CVRP models are not provided.

reserves the best K solutions for solving CVRP with T =200.
We can observe that the diversified pool consistently achieves
lower objective values than the greedy one, and the superiority
of our diversified pool is more obvious as the problem scales
up, which verifies the effectiveness of our design.

B. Comparison Analysis

We now compare FER with neural construction models, i.e.,
AM and POMO, to show the effectiveness of our method.
Regarding AM, we use its sampling strategy to generate S
solutions to solve an instance, where S is set to 200 and 5,000,
respectively. Regarding POMO with diverse rollout strategy,
we use sampling strategy with S = 200 with and without
×8 augment to solve an instance. It generates 8×200×N
and 200×N solutions, respectively, where N is the size of
an instance (number of nodes). For fair comparison, we test
FER-AM and FER-POMO by sampling the same number of
solutions to AM and POMO, respectively. We also consider
the most recent neural model LCP [28]5 as a baseline, which
combines both construction and improvement methods to
refine AM. To calculate the optimality gaps for all neural
models, we leverage three strong conventional solvers, i.e.,
Gurobi [34]6, LKH [35]7, and HGS [36]8 (the state-of-the-art

5https://github.com/alstn12088/LCP
6https://www.gurobi.com/
7http://webhotel4.ruc.dk/∼keld/research/LKH-3/
8https://github.com/vidalt/HGS-CVRP/tree/main/Program

conventional CVRP solver). Note that it is hard to absolutely
fair compare the run time between neural methods (Python,
GPU) and conventional solvers (C++, CPU), thus we follow
the conventions to report the total run time using a single
TITAN XP GPU (for neural methods) or a single CPU core
at 2.0 GHz (for conventional methods).

The comparison results for TSP and CVRP are summarized
in Table III. We can observe that our FER-AM significantly
improves the performance of AM on both TSP and CVRP,
despite slightly longer computation time. Our FER-AM (T =
200) outperforms both AM (S=200) and AM (S=5, 000) for
all cases in terms of objective values and gaps, and consumes
shorter computation time than AM (S = 5, 000). With step
limit T =5, 000, FER-AM achieves slightly better performance
than AM+LCP with much lower computational costs.

Pertaining to the state-of-the-art method POMO, our FER
can still improve its performance in terms of the gap. With step
limit T = 200, our FER-POMO outstrips POMO (S = 200)
for all cases with slightly longer computation time. It also
outperforms POMO (S = 200, ×8 augment) on TSP20 and
CVRP20 with much shorter computation time, and delivers
competitive results for larger problem sizes. Furthermore,
FER-POMO (T = 200) even exhibits superior performance
to the specialized heuristic solver LKH and almost the same
performance to the state-of-the-art HGS on CVRP20. By lever-
aging the same data augmentation strategy in POMO, FER-
POMO (T =200, ×8 augment) further improves the solution

https://github.com/alstn12088/LCP
https://www.gurobi.com/
http://webhotel4.ruc.dk/~keld/research/LKH-3/
https://github.com/vidalt/HGS-CVRP/tree/main/Program

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, X 2023 9

qualities and delivers better results than POMO (S = 200,
×8 augment) for all cases. In particular, our FER-POMO
(T = 200, ×8 augment) achieves the lowest objective values
and gaps among all the neural heuristics, and exhibits almost
the same performance to LKH and slightly worse performance
than HGS. The superiority of our method well justified the
effectiveness of the proposed encoder-refiner-decoder struc-
ture, which allows more efficient search for neural construction
models to produce higher quality solutions.

Furthermore, the existing evolutionary algorithms for VRPs
also maintain a solution pool (a population) for crossover
and mutation to improve the solution quality, which shares
some similarities to our FER method. We thus compare our
FER with the population-based evolutionary algorithm, e.g.,
genetic algorithm (GA) [37] on CVRP with 1,000 instances
as shown in Table IV, where the gaps are calculated based
on the solutions obtained by the method with lowest objective
values. Specifically, we take the initial solution pool of our
FER-AM as the initial population of GA and run two methods
with the same iterations, i.e., 200 and 5,000. For example,
GA (FER-AM Pop, iter=200) refers to GA with the same
initial solution pool as FER-AM (T=200). The first row refers
to GA following the settings in the original paper, where
we further add more iterations for better performance. From
Table IV, we can observe that with the same initial solution
pool (population) and iterations, our FER-AM outperforms GA
in terms of the objective values and optimality gaps on all
cases with less computation time. With larger population size
and iterations, GA achieves lower optimality gaps with longer
computation time. However, it is still inferior to our FER-AM,
which shows the effectiveness of our method.

C. Efficiency Analysis

We continue to compare the search efficiency of our FER
with three representitive neural improvement methods, i.e.,
Wu et al. [13]9, NLNS [24]10(CVRP only), and DACT [15]11

(state-of-the-art) for solving the instances of TSP50, TSP100,
CVRP50 and CVRP100, respectively. We use the pre-trained
models for these improvement methods which are available
online. Regarding DACT, we use the same ×8 data augments
as FER-POMO (S = 200,×8 augment) with T = 5, 000
iterative steps similar to other improvement methods, so as
to largely preserve its favorable performance.

The curves of searching progress for these methods are
plotted in Fig. 4, where the horizontal coordinate refers to
the iterative steps and the vertical one refers to the best-
so-far objective values averaged over 10,000 instances used
in Table III. Here, T = 5, 000 was used expect for FER-
POMO where T = 200 was used. We further plot the best
objective values of the vanilla AM (S = 5, 000) in blue
dotted lines and that of the vanilla POMO (S = 200,×8
augment) in green dotted lines as baselines to show the
improvement of our FER. We can observe the large gaps
between AM and FER-AM, which verifies the superiority

9https://github.com/WXY1427/Learn-Improvement-Heuristics-for-Routing
10https://github.com/ahottung/NLNS
11https://github.com/yining043/VRP-DACT

of FER. Although FER-AM is inferior to POMO, which
indicates that the performance of our FER depends on the
performance of pre-trained backbone models, it is a fair case
since one approach (like our FER) can not guarantee to
boost the backbone model to outperform other more advanced
and larger models (e.g., POMO12). Furthermore, although the
improvement of FER-POMO to the state-of-the-art POMO
is less significant when compared to the case of FER-AM,
it is also reasonable since it is really hard to significantly
improve a highly-optimized model. Nevertheless, our FER can
still improve its performance and enhance its generalization
ability (refer to Table VI and Table VII), which shows the
effectiveness of our method. For improvement baselines, it can
be observed that our FER-AM converges much faster than
Wu et al. [13] and achieves lower objective values for all
cases. With comparable performance to NLNS, our FER-AM
converges faster and outperforms NLNS given limited iterative
steps (i.e., 1,000 steps). Regarding our FER-POMO (S = 200,
×8 augment), it significantly outstrips both Wu et al. [13] and
NLNS for all cases where the superiority is more salient on
larger sizes. More importantly, it also converges much faster
than the state-of-the-art neural improvement method DACT
(T = 5, 000, ×8 augment) for all cases, which further verifies
the significance of our method.

D. Further Analysis of our FER

We now provide more analysis to study the effects of the
proposed refiner network and its components.
Effect of the refiner. To verify that the refiner can ef-
fectively refine feature embeddings from the encoder and
further contribute to diverse exploration, we visualize the
probability distributions of selecting the next node during
solving a CVRP50 instance in Fig. 5. We perform 200 steps of
searching using FER-POMO with and without the introduced
refiner, respectively, and produce one solution at each step
for demonstration. Given a fixed partial solution shown in
the left side of Fig. 5, we plot the probability distributions
of selecting the next node at the 50th, 100th, 150th, and
200th steps for FER-POMO and FER-POMO-w/o-Refiner,
respectively. We find that the probability of selecting the next
node for FER-POMO-w/o-Refiner is always the same through
the whole searching process, and the sole diversity in solutions
comes from sampling with the same distribution. On the other
hand, our FER-POMO could explore more diverse solutions
by consistently refining the node embeddings and gradually
update the probability distributions for sampling, which helps
improve the solution quality (objective values at the 200th
step are 11.53 and 11.70 for FER-POMO and FER-POMO-
w/o-Refiner, respectively) and the sampling efficiency.
Effect of each component of the refiner. In Table V, we
conduct an ablation study to showcase the effect of each part
of the refiner on CVRP50 instances using FER-AM, where
the gaps are calculated based on the solutions obtained by the
method with lowest objective values. The marker “✓” and “×”

12POMO leverages group baselines during training and the data augmen-
tation schemes during inference, and the number of parameters of POMO is
almost twice that of AM.

https://github.com/WXY1427/Learn-Improvement-Heuristics-for-Routing
https://github.com/ahottung/NLNS
https://github.com/yining043/VRP-DACT

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, X 2023 10

TABLE IV: Comparison with GA on 1,000 CVRP instances.

Pool Size N=20 N=50 N=100
Obj. Gap Time Obj. Gap Time Obj. Gap Time

GA (Pop-Size=50, iter=12,000) 6.251 0.95% (14h) 10.781 1.88% (46h) 16.392 2.35% (4d)
GA (FER-AM Pop, iter=200) 6.357 2.67% (3m) 10.991 3.87% (8m) 16.723 4.42% (14m)
FER-AM (T=200) 6.217 0.40% (23s) 10.653 0.67% (1.8m) 16.141 0.79% (2.7m)
GA (FER-AM Pop, iter=5,000) 6.278 1.39% (1.2h) 10.889 2.90% (3h) 16.533 3.24% (5.8h)
FER-AM (T=5,000) 6.192 - (10m) 10.582 - (47m) 16.015 - (1.1h)

(a) TSP50 (b) TSP100 (c) CVRP50 (d) CVRP100

Fig. 4: Curves of searching progress for our FER and baselines including AM [16], POMO [10], NLNS [24], Wu et al. [13],
and DACT [15].

Fig. 5: Probability distributions of FER-POMO and POMO for taking actions at last visited node 37 given a fixed partial
solution {0, 5, 37}. The distributions at four different steps are presented, i.e., 50, 100, 150 and 200.

TABLE V: Effects of each component of the refiner.

AGA GRU GNL Obj. Gap Time

✓ × ×(+) 10.605 1.05% 1.8h
✓ ✓ ×(+) 10.518 0.22% 1.9h
✓ × ✓ 10.512 0.16% 1.9h
✓ ✓ ✓ 10.495 - 2h

refer to use the corresponding part or not, respectively, and
the marker “×(+)” refers to replace GNL layer with simply
adding the fixed node embeddings from the encoder and
the refined embeddings from previous components together.
Please note that the AGA layer could not be removed from
FER since it is a basic component of the refiner to provide
diverse information as introduced in Section IV-B. Thus AGA
is kept for the last four rows. From Table V, we can observe
that GNL layer outperforms “(+)” strategy in terms of the
objective values and optimality gaps for the method with
and without GRU cell, since GNL layer could adaptively
combine the pool embeddings and the node embeddings for
more desirable representation. Moreover, GRU cell can also

improve the performance for the method with both GNL layer
and “(+)” strategy since it aggregates the instructive and global
information learned from AGA in all previous steps. Further
combining GRU and GNL together, our FER-AM (the final
row) achieves the best performance in terms of the objective
values and optimality gaps.

E. Generalization Analysis

We now evaluate the generalization performance of our
FER on two well-known benchmarks, i.e., TSPLIB [38]13

and CVRPLib [39]14, respectively. We compare FER-POMO
(T = 200,×8 augment) with Wu et al. [13] and POMO
(S = 200,×8 augment), and record the results in Table VI
and Table VII. Similar to Wu et al. [13], we use the models
trained for TSP100 and CVRP100 to solve those instances,
with sizes from 51 to 200 and 101 to 200, respectively. For
POMO and FER-POMO, we construct solutions by sampling
a node from candidates with three highest probabilities for

13http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
14http://vrp.atd-lab.inf.puc-rio.br/index.php/en/

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://vrp.atd-lab.inf.puc-rio.br/index.php/en/

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, X 2023 11

TABLE VI: Generalization on TSPLIB instances.

Instance Opt. Wu et al. [13] POMO FER-POMO
(T =3000) (T =200) (T =200)

eil51 425 438 429 429
berlin52 7,544 8,020 7,544 7,544

st70 675 706 677 677
eil76 538 575 545 544
pr76 108,159 109,668 120,404 116,337
rat99 1,211 1,419 1,268 1,266

KroA100 21,282 25,196 21,893 21,720
KroB100 22,141 26,563 23,044 23,043
KroC100 20,749 25,343 21,475 21,372
KroD100 21,294 24,771 22,387 21,969
KroE100 22,068 26,903 22,787 22,679

rd100 7,910 7,915 7,910 7,910
eil101 629 658 640 640
lin105 14,379 18,194 16,248 16,185
pr107 44,304 53,056 45,946 44,482
pr124 59,030 66,010 59,031 59,031

bier127 118,282 142,707 121,037 120,355
ch130 6,110 7,120 6,111 6,111
pr136 96,772 105,618 97,434 97,215
pr144 58,537 71,006 59,358 59,463
ch150 6,528 7,916 6,566 6,563

KroA150 26,524 31,244 29,628 29,190
KroB150 26,130 31,407 28,829 28,419

pr152 73,682 85,616 75,920 76,046
u159 42,080 51,327 42,717 42,801

rat195 2,323 2,913 3,129 3,013
d198 15,780 17,962 22,305 21,769

KroA200 29,368 35,958 35,440 35,283
KroB200 29,437 36,412 35,518 35,382

Avg.Gap 0.00% 15.56% 7.07% 6.25% (↓13.12%)

Bold refers to the best performance among all learning based methods. Opt.
is the abbreviation for Optimal (or the best known) objective value, which is
available in the public benchmark library.

TABLE VII: Generalization on CVRPLIB instances.

Instance Opt. Wu et al. [13] POMO FER-POMO
(T =5, 000) (T =200) (T =200)

X-n101-k25 27,591 29,716 28,000 27,910
X-n106-k14 26,362 27,642 26,570 26,617
X-n110-k13 14,971 15,927 15,111 14,986
X-n115-k10 12,747 14,445 12,888 12,816
X-n120-k6 13,332 15,486 13,476 13,442

X-n125-k30 55,539 60,423 57,914 57,569
X-n129-k18 28,940 32,126 29,094 29,051
X-n134-k13 10,916 12,669 11,260 11,219
X-n139-k10 13,590 15,627 13,763 13,730
X-n143-k7 15,700 18,872 15,900 15,903

X-n148-k46 43,448 50,563 49,191 48,218
X-n153-k22 21,220 26,088 23,593 23,650
X-n157-k13 16,876 19,771 17,195 17,144
X-n162-k11 14,138 16,847 14,562 14,505
X-n167-k10 20,557 24,365 21,136 21,089
X-n172-k51 45,607 51,108 54,060 52,443
X-n176-k26 47,812 57,131 51,610 50,930
X-n181-k23 25,569 27,173 25,975 25,953
X-n186-k15 24,145 28,422 24,768 24,639
X-n190-k8 16,980 20,145 18,545 18,412

X-n195-k51 44,225 51,763 47,390 46,640
X-n200-k36 58,578 64,200 60,725 60,353

Avg.Gap 0.00% 14.27% 4.53% 3.78% (↓19.82%)

more stable inference on both TSPLIB and CVRPLIB, which
have different distributions of customer locations and larger
problem sizes in comparison with the training instances. We
report the objective value to each instance and also the average
gaps based on the optimal solutions provided in the datasets.
In Table VI, we can observe that FER-POMO significantly
outperforms Wu et al. [13] and POMO in terms of the
average gap. Especially, though POMO produces high-quality
solutions, FER-POMO still could reduce its gap by 13.12% on
TSPLIB. Moreover, FER-POMO achieves the lowest objective
values among neural methods on most instances of various
scales, which shows stable superiority of our method even
on large-scale instances. In Table VII, patterns similar to
that of TSPLIB could be observed, where our FER-POMO
outstrips all other neural methods on CVRPLIB and improves
the performance of POMO by 19.82%. The superiority in
generalization performance further justifies the effectiveness
of our encoder-refiner-decoder structure which allows more
diverse search to improve the solution quality.

F. Complexity Analysis

We finally provide complexity analysis of the proposed
FER, especially the designed refiner. We further plot the
computation time of FER-AM and its refiner part over 1)
problem size from 20 to 500 with K=2 in Fig. 6(a) and 2)
pool size from 2 to 20 with N=100 in Fig. 6(b) on 1,000
randomly generated instances. From Fig. 6(a), we can observe
that both the computation time of FER-AM and refiner seems
to quadratically increase as the problem size scales up, which
might be due to the quadratically complexity of the attention
mechanism [4] applied in AM and the accumulated attention
mechanism with operations inside a N × N table in refiner.
However, the increasing speed of computation time of the
refiner is much slower than that of the whole FER-AM,
which indicates low computational complexity of the designed
refiner. From Fig. 6(b), we can observe that the computation
time of FER-AM and the refiner seems to approximately
linearly increase as the pool size increases, which is reasonable
since the refiner needs to aggregate the information from
all solutions in the pool. Moreover, the computation time
of the refiner could be negligible compared to that of the
whole model, which further demonstrates the computational
efficiency of our method.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel encoder-refiner-decoder
structure for solving vehicle routing problems, which itera-
tively improves a neural construction method by refining the
feature embeddings from the encoder for broader search range
and reconstructing a solution(s) with dynamic probability
distributions accordingly via the decoder for more diverse
search. To be specific, the proposed refiner first extracts
graph topological features from dynamic historical solutions to
derive the aggregated pool embeddings via an AGA layer, then
improves the aggregated pool embeddings by absorbing the
instructive and global information from previous improvement
steps via a GRU cell, and finally refines the pre-trained

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, X 2023 12

(a) Problem size (b) Pool capacity

Fig. 6: Computation time of the whole FER-AM and its refiner
over different problem size and pool capacity.

feature embeddings from the encoder with the guidance of
improved pool embeddings via a GNL layer. By doing so,
the FER allows the neural construction methods to not only
iteratively refine the feature embeddings for broader search
range, but also dynamically update the probability distributions
for more diverse search. Extensive experiments show that our
method can effectively improve prevailing neural construction
methods, and also exhibits competitive performance to the
state-of-the-art neural improvement methods with much higher
sampling efficiency. Given the genericalness and effectiveness
of the proposed FER, it could be used in any encoder-decoder
structured neural construction methods [10], [16], [21] to
enhance their performance for solving routing problems. While
our FER is effective, there are still some potential limitations:
1) its final performance may depend on the performance of
the pre-trained backbone models; 2) its boost may be not
significant for highly-optimized models (e.g., the state-of-the-
art POMO) as discussed in Section V-C. In the future, we
will investigate: 1) applying FER to ameliorate the out-of-
distribution generalization performance; 2) considering effec-
tively refining improvement methods; 3) applying FER to solve
other combinatorial optimization problems like Bin Packing
and Scheduling; 4) generalizing FER to larger problem sizes.

REFERENCES

[1] G. Laporte, “The vehicle routing problem: An overview of exact and
approximate algorithms,” European journal of operational research,
vol. 59, no. 3, pp. 345–358, 1992.

[2] P. Hansen, N. Mladenović, and J. A. M. Pérez, “Variable neighbourhood
search: methods and applications,” Annals of Operations Research,
vol. 175, no. 1, pp. 367–407, 2010.

[3] K.-W. Pang, “An adaptive parallel route construction heuristic for the
vehicle routing problem with time windows constraints,” Expert Systems
with Applications, vol. 38, no. 9, pp. 11939–11946, 2011.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, pp. 5998–6008, 2017.

[5] L. Xin, W. Song, Z. Cao, and J. Zhang, “Step-wise deep learning
models for solving routing problems,” IEEE Transactions on Industrial
Informatics, vol. 17, no. 7, pp. 4861–4871, 2020.

[6] L. Chen, B. Hu, Z.-H. Guan, L. Zhao, and X. Shen, “Multiagent meta-
reinforcement learning for adaptive multipath routing optimization,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 33,
no. 10, pp. 5374–5386, 2021.

[7] Z. Zhang, H. Liu, M. Zhou, and J. Wang, “Solving dynamic traveling
salesman problems with deep reinforcement learning,” IEEE Transac-
tions on Neural Networks and Learning Systems, 2021.

[8] Z. Zhang, Z. Wu, H. Zhang, and J. Wang, “Meta-learning-based deep
reinforcement learning for multiobjective optimization problems,” IEEE
Transactions on Neural Networks and Learning Systems, 2022.

[9] Z. Zhang, W. Jiang, J. Qin, L. Zhang, F. Li, M. Zhang, and S. Yan,
“Jointly learning structured analysis discriminative dictionary and anal-
ysis multiclass classifier,” IEEE transactions on neural networks and
learning systems, vol. 29, no. 8, pp. 3798–3814, 2017.

[10] Y.-D. Kwon, J. Choo, B. Kim, I. Yoon, Y. Gwon, and S. Min, “POMO:
Policy optimization with multiple optima for reinforcement learning,” in
Advances in Neural Information Processing Systems, vol. 33, pp. 21188–
21198, 2020.

[11] R. A. Russell and W.-C. Chiang, “Scatter search for the vehicle
routing problem with time windows,” European Journal of Operational
Research, vol. 169, no. 2, pp. 606–622, 2006.

[12] T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins, “A hybrid genetic
algorithm with adaptive diversity management for a large class of
vehicle routing problems with time-windows,” Computers & operations
research, vol. 40, no. 1, pp. 475–489, 2013.

[13] Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim, “Learning improvement
heuristics for solving routing problems,” IEEE Transactions on Neural
Networks and Learning Systems, 2021.

[14] M. Nazari, A. Oroojlooy, M. Takáč, and L. V. Snyder, “Reinforcement
learning for solving the vehicle routing problem,” in Advances in Neural
Information Processing Systems, pp. 9861–9871, 2018.

[15] Y. Ma, J. Li, Z. Cao, W. Song, L. Zhang, Z. Chen, and J. Tang, “Learning
to iteratively solve routing problems with dual-aspect collaborative
transformer,” in Advances in Neural Information Processing Systems,
vol. 34, 2021.

[16] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve routing
problems!,” in International Conference on Learning Representations,
2018.

[17] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Advances
in Neural Information Processing Systems, vol. 28, pp. 2692–2700,
2015.

[18] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural com-
binatorial optimization with reinforcement learning,” in International
Conference on Machine Learning (Workshop), 2017.

[19] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” in Advances in
Neural Information Processing Systems, pp. 6351–6361, 2017.

[20] C. K. Joshi, T. Laurent, and X. Bresson, “An efficient graph convo-
lutional network technique for the travelling salesman problem,” tech.
rep., arXiv preprint arXiv: 1906.01227, 2019.

[21] L. Xin, W. Song, Z. Cao, and J. Zhang, “Multi-decoder attention model
with embedding glimpse for solving vehicle routing problems,” in AAAI
Conference on Artificial Intelligence, 2020.

[22] J. Li, L. Xin, Z. Cao, A. Lim, W. Song, and J. Zhang, “Heterogeneous at-
tentions for solving pickup and delivery problem via deep reinforcement
learning,” IEEE Transactions on Intelligent Transportation Systems,
2021.

[23] X. Chen and Y. Tian, “Learning to perform local rewriting for com-
binatorial optimization,” in Advances in Neural Information Processing
Systems, vol. 32, pp. 6281–6292, 2019.

[24] A. Hottung and K. Tierney, “Neural large neighborhood search for the
capacitated vehicle routing problem,” in 24th European Conference on
Artificial Intelligence, 2020.

[25] H. Lu, X. Zhang, and S. Yang, “A learning-based iterative method
for solving vehicle routing problems,” in International Conference on
Learning Representations, 2020.

[26] A. Hottung, B. Bhandari, and K. Tierney, “Learning a latent search space
for routing problems using variational autoencoders,” in International
Conference on Learning Representations, 2021.

[27] Z. Ling, X. Tao, Y. Zhang, and X. Chen, “Solving optimization problems
through fully convolutional networks: An application to the traveling
salesman problem,” IEEE Transactions on Systems, Man, and Cyber-
netics: Systems, vol. 51, no. 12, pp. 7475–7485, 2020.

[28] M. Kim, J. Park, et al., “Learning collaborative policies to solve np-hard
routing problems,” Advances in Neural Information Processing Systems,
vol. 34, 2021.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 770–778, 2016.

[30] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning, pp. 448–456, 2015.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, X 2023 13

[31] M. W. Gardner and S. Dorling, “Artificial neural networks (the multi-
layer perceptron)—a review of applications in the atmospheric sciences,”
Atmospheric environment, vol. 32, no. 14-15, pp. 2627–2636, 1998.

[32] H. Taud and J. Mas, “Multilayer perceptron (mlp),” in Geomatic
approaches for modeling land change scenarios, pp. 451–455, Springer,
2018.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations, 2015.

[34] L. G. Optimization, “Gurobi optimizer reference manual,” 2021.
[35] K. Helsgaun, “An extension of the lin-kernighan-helsgaun tsp solver for

constrained traveling salesman and vehicle routing problems,” Roskilde:
Roskilde University, 2017.

[36] T. Vidal, “Hybrid genetic search for the cvrp: Open-source implemen-
tation and swap* neighborhood,” Computers & Operations Research,
vol. 140, p. 105643, 2022.

[37] H. Awad, R. Elshaer, A. AbdElmo’ez, and G. Nawara, “An effective
genetic algorithm for capacitated vehicle routing problem,” in Proceed-
ings of the International Conference on Industrial Engineering and
Operations Management, pp. 374–384, 2018.

[38] G. Reinelt, “TSPLIB-A traveling salesman problem library,” ORSA
journal on computing, vol. 3, no. 4, pp. 376–384, 1991.

[39] E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, and A. Subramanian,
“New benchmark instances for the capacitated vehicle routing problem,”
European Journal of Operational Research, vol. 257, no. 3, pp. 845–858,
2017.

Jingwen Li received the B.E. degree in computer
science from University of Electronic Science and
Technology of China, China, in 2018, and the Ph.D.
degree with the department of Industrial Systems
Engineering and Management, National University
of Singapore (NUS), in 2022. She is currently a
lecturer in computer science of Sichuan Normal
University. Her research interests include deep rein-
forcement learning and combinatorial optimization.

Yining Ma received the B.E. degree in computer
science from the South China University of Tech-
nology, Guangzhou, China, in 2019. He is currently
pursuing the Ph.D. degree with the Department of
Industrial Systems Engineering and Management,
National University of Singapore, Singapore. His
research interests include learning to optimize, deep
reinforcement learning, evolutionary computation,
and combinatorial optimization.

Zhiguang Cao received the Ph.D. degree from
Interdisciplinary Graduate School, Nanyang Tech-
nological University. He received the B.Eng. de-
gree in Automation from Guangdong University of
Technology, Guangzhou, China, and the M.Sc. in
Signal Processing from Nanyang Technological Uni-
versity, Singapore, respectively. He was a Research
Fellow with the Energy Research Institute @ NTU
(ERI@N), a Research Assistant Professor with the
Department of Industrial Systems Engineering and
Management, National University of Singapore, and

a Scientist with the Agency for Science Technology and Research (A*STAR),
Singapore. He joins the School of Computing and Information Systems,
Singapore Management University, as an Assistant Professor. His research
interests focus on learning to optimize (L2Opt).

Yaoxin Wu received the B.Eng degree in traf-
fic engineering from Wuyi University, Jiangmen,
China, in 2015, the M.Eng degree in control engi-
neering from Guangdong University of Technology,
Guangzhou, China, in 2018, and the Ph.D. degree
in computer science from Nanyang Technological
University, Singapore, in 2023. He was a Research
Associate with the Singtel Cognitive and Artificial
Intelligence Lab for Enterprises (SCALE@NTU).
He is currently an Assistant Professor with the
Faculty of Industrial Engineering and Innovation

Sciences, Eindhoven University of Technology. His research interests include
combinatorial optimization, integer programming and deep learning.

Wen Song received the B.S. degree in automation
and the M.S. degree in control science and engi-
neering from Shandong University, China, in 2011
and 2014, respectively, and the Ph.D. degree in com-
puter science from Nanyang Technological Univer-
sity, Singapore, in 2018. He was a Research Fellow
with the Singtel Cognitive and Artificial Intelligence
Lab for Enterprises (SCALE@NTU). He is currently
an Associate Professor with the Institute of Marine
Science and Technology, Shandong University. His
research interests include artificial intelligence, deep

reinforcement learning, planning and scheduling, and operations research.

Jie Zhang received the Ph.D. degree from the
Cheriton School of Computer Science, University
of Waterloo, Canada, in 2009. He is currently a
Full Professor with the School of Computer Science
and Engineering, Nanyang Technological University,
Singapore. He is also an Associate Professor at the
Singapore Institute of Manufacturing Technology.
During his Ph.D. study, he held the prestigious
NSERC Alexander Graham Bell Canada Graduate
Scholarship rewarded for top Ph.D. students across
Canada. He was also a recipient of the Alumni Gold

Medal at the 2009 Convocation Ceremony. The Gold Medal is awarded once
a year to honour the top Ph.D. graduate from the University of Waterloo.
His papers have been published by top journals and conferences and received
several best paper awards. He is also active in serving research communities.

Yeow Meng Chee received the BMath, MMath,
and Ph.D. degrees in computer science from the
University of Waterloo in 1988, 1989, and 1996,
respectively. He is currently Vice President (Inno-
vation and Enterprise) at the National University of
Singapore (NUS), Director of the NUS Enterprise
Academy, as well as a Professor at the Department of
Industrial Systems Engineering and Management of
NUS. He was previously Vice Provost (Technology-
Enhanced and Experiential Learning). Preceding his
tenure at NUS, he was Head of the Division of

Mathematical Sciences, Chair of the School of Physical and Mathematical
Sciences, and Interim Dean of the College of Science at the Nanyang
Technological University. His papers have been published by top journals
and conferences. His research interests include coding theory, combinatorics,
electronic design automation and theoretical computer science.

View publication stats

https://www.researchgate.net/publication/371034010

	Learning feature embedding refiner for solving vehicle routing problems
	Citation
	Author

	Introduction
	Related work
	Neural Construction Methods
	Neural Improvement Methods
	Other Learning-based Methods

	Problem formulation
	Methodology
	The Encoder
	The Refiner
	The Decoder
	Solution Pool Diversification
	Training Algorithm

	Experiments
	Solution Pool Analysis
	Comparison Analysis
	Efficiency Analysis
	Further Analysis of our FER
	Generalization Analysis
	Complexity Analysis

	Conclusions and future work
	References
	Biographies
	Jingwen Li
	Yining Ma
	Zhiguang Cao
	Yaoxin Wu
	Wen Song
	Jie Zhang
	Yeow Meng Chee

