
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2023

Instance-specific algorithm configuration via unsupervised deep Instance-specific algorithm configuration via unsupervised deep

graph clustering graph clustering

Wen SONG

Yi LIU

Zhiguang CAO
Singapore Management University, zgcao@smu.edu.sg

Yaoxin WU

Qiqiang LI

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, and the Theory and Algorithms Commons

Citation Citation
SONG, Wen; LIU, Yi; CAO, Zhiguang; WU, Yaoxin; and LI, Qiqiang. Instance-specific algorithm configuration
via unsupervised deep graph clustering. (2023). Engineering Applications of Artificial Intelligence. 125,
1-13.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8086

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8086&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Engineering Applications of Artificial Intelligence 125 (2023) 106740

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Instance-specific algorithm configuration via unsupervised deep graph
clustering
Wen Song a,1, Yi Liu b,1, Zhiguang Cao c, Yaoxin Wu d,∗, Qiqiang Li b,∗

a Institute of Marine Science and Technology, Shandong University, China
b School of Control Science and Engineering, Shandong University, China
c School of Computing and Information Systems, Singapore Management University, Singapore
d Faculty of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Netherlands

A R T I C L E I N F O

Keywords:
Algorithm configuration
Unsupervised graph embedding
Mixed-integer programming

A B S T R A C T

Instance-specific Algorithm Configuration (AC) methods are effective in automatically generating high-quality
algorithm parameters for heterogeneous NP-hard problems from multiple sources. However, existing works
rely on manually designed features to describe training instances, which are simple numerical attributes and
cannot fully capture structural differences. Targeting at Mixed-Integer Programming (MIP) solvers, this paper
proposes a novel instances-specific AC method based on end-to-end deep graph clustering. By representing
an MIP instance as a bipartite graph, a random walk algorithm is designed to extract raw features with both
numerical and structural information from the instance graph. Then an auto-encoder is designed to learn dense
instance embeddings unsupervisedly, which facilitates clustering heterogeneous instances into homogeneous
clusters for training instance-specific configurations. Experimental results on multiple benchmarks show that
the proposed method can improve the solving efficiency of CPLEX on highly heterogeneous instances, and
outperform existing instance specific AC methods.

1. Introduction

NP-hard problems such as Mixed-Integer Programming (MIP),
Boolean Satisfiability Problem (SAT), and Constraint Programming
(CP), are ubiquitous in modeling and solving practical decision-making
problems (Song et al., 2022a). There are many highly parameterized
algorithms (e.g., Branch-and-Cut) and solvers (e.g., CPLEX, Gurobi, OR-
Tools) that can solve these problems. However, the practical solving
performance of these algorithms or solvers is often largely affected
by their parameters. Therefore, adjusting the parameter configuration
appropriately for the algorithm/solver according to properties of the
problem to be solved is of great importance. Traditionally, the param-
eters are set manually based on expert experience or trial-and-error.
However, when the configuration space is large, which is the case
for most modern solvers, finding the most appropriate configuration
manually could be very tedious and even impractical.

Algorithm Configuration (AC) (Hutter et al., 2011) is an effective
approach to circumvent manual parameter tuning. Instead, AC methods
automatically search the configuration space to find good algorithm
parameters. Depending on whether a surrogate model is included,
which is used to predict the performance of configurations, existing

∗ Corresponding authors.
E-mail addresses: wensong@email.sdu.edu.cn (W. Song), 201934500@mail.sdu.edu.cn (Y. Liu), zhiguangcao@outlook.com (Z. Cao), y.wu2@tue.nl (Y. Wu),

qqli@sdu.edu.cn (Q. Li).
1 Wen Song and Yi Liu contributed equally.

AC methods can be roughly divided into model-free and model-based
methods. Typical model-free methods include ParamILS (Parameter It-
erated Local Search) (Hutter et al., 2009), GGA (Gender-based Genetic
Algorithm) (Ansótegui et al., 2009), and irace (López-Ibáñez et al.,
2016). Due to the NP-hardness, running and evaluating a configuration
on instances often incurs high cost, which is hard to avoid in model-free
methods. Model-based methods were proposed to alleviate this issue,
by using a surrogate model to predict the configuration performance
and updating the model through evaluation iterations. Hutter et al.
(2011) proposed SMAC (Sequential Model-based Algorithm Configu-
ration) based on the probabilistic regression model, which enables
the participation of multiple instances in the configuration process.
They also extended the supported parameter types to categorical and
conditional parameters. Ansótegui et al. (2015) proposed GGA++ by
embedding the random forest model into GGA, and optimized the
selection of parents and offsprings in the underlying genetic algo-
rithm. Wang et al. (2016) proposed REMBO (Random Embedding
Bayesian Optimization), which resolves the issue of scaling Bayesian
Optimization methods such as SMAC to higher dimensions.

As an alternative to AC, algorithm portfolio selects for each instance
the most suitable solver from a set of available ones, so that to maxi-
mize practical solving performance (Xu et al., 2008). It is based on the

https://doi.org/10.1016/j.engappai.2023.106740
Received 30 December 2022; Received in revised form 4 June 2023; Accepted 27 June 2023
Available online xxxx
0952-1976/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.engappai.2023.106740
https://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2023.106740&domain=pdf
mailto:wensong@email.sdu.edu.cn
mailto:201934500@mail.sdu.edu.cn
mailto:zhiguangcao@outlook.com
mailto:y.wu2@tue.nl
mailto:qqli@sdu.edu.cn
https://doi.org/10.1016/j.engappai.2023.106740
http://creativecommons.org/licenses/by/4.0/

W. Song, Y. Liu, Z. Cao et al. Engineering Applications of Artificial Intelligence 125 (2023) 106740

intuition that no single solver performs the best on all instances. There-
fore, the main advantage of algorithm portfolio is that the algorithm
can be selected according to the characteristics of the specific instance,
especially when the instances differ greatly (Gomes and Selman, 2001).
An outstanding example is SATzilla (Xu et al., 2012), an instance-
based method for automatically constructing algorithm portfolio, which
employs the empirical hardness models and cost-sensitive classification
models to evaluate algorithm performance. Also based on SAT solvers,
Lindauer et al. (2017) proposed the automatic construction of parallel
portfolios (ACPP) method, which generates parallel portfolio by com-
bining the configuration spaces of several different solvers. Liu et al.
(2019) proposed to construct ACPP by grouping instances explicitly.
To improve the capability of the parallel portfolios in generalizing to
instances not included in the training set, they further proposed GAST
(generative adversarial solver trainer) (Liu et al., 2020), which employs
an adversarially trained generator to create more training instances.

In general, conventional AC methods only generate one configu-
ration for a target algorithm, based on the assumption that all the
training instances are homogeneous from the same distribution. This is
a major limitation because in reality, instances could be heterogeneous
and come from different sources (Xu et al., 2010). In such multi-source
cases, instances could differ greatly and it is difficult for conventional
AC methods to find an overall good configuration. Algorithm portfolio
methods can mitigate this issue to some extent, by selecting algorithm
on a per-instance basis. However, a major drawback of portfolio meth-
ods is that they require a set of strong and uncorrelated candidate
solvers, which could not be available in many cases (Xu et al., 2011).
As a combination of the two types of methods, instance-specific AC
preserves the advantages of both sides. In this direction, Hydra (Xu
et al., 2011) is a representative AC framework. The main idea is to
determine a configuration with the best overall performance, and then
iteratively add useful algorithms and remove useless ones from the
portfolio. Given a highly parameterized algorithm and a set of training
instances, Hydra automatically generates a set of configurations that
form an effective portfolio. Instead of focusing on iterative selection
of algorithms, Kadioglu et al. (2010) proposed ISAC (Instance-Specific
Algorithm Configuration), which first groups the instances into dif-
ferent clusters based on their similarities, and then apply GGA on
each cluster to obtain the corresponding configurations. As shown in
the experiments of Malitsky and Sellmann (2012), ISAC significantly
outperforms competing methods including SATzilla and Hydra.

While various instance-specific AC methods have achieved great
success in handling multi-source instances, the representation of in-
stances is rarely studied. Such representation is important because it
directly characterizes the instances and determines the similarities be-
tween them. Current instance-specific AC methods depend on manually
designed features (e.g., number of variables and constraints) to repre-
sent different instances, which requires extensive domain knowledge
and trial-and-error to design. Moreover, the manual features could
hardly be comprehensive, and may lose important information that are
crucial to achieve good performance. Recently, deep (reinforcement)
learning has been shown to be effective in speeding up solving NP-hard
problems such as vehicle routing (Kool et al., 2019; Xin et al., 2020;
Wu et al., 2021c), scheduling (Park et al., 2021; Song et al., 2022b),
satisfaction problems (Selsam et al., 2019; Song et al., 2022a), and
MIP (Gasse et al., 2019; Wu et al., 2021a,b). It is well acknowledged
that deep neural networks could learn high-quality features that are
useful for problem solving directly from raw problem features (Bengio
et al., 2021). However, most of existing works focus on learning certain
components (e.g., branching heuristics) inside the target algorithm.
In terms of configuring algorithm parameters from the outside, the
research is rather sparse (Eggensperger et al., 2019).

In this paper, we focus on instance-specific AC for MIP, and fill
the above research gap by proposing a novel deep representation
learning method, so as to save tedious manual efforts and improve the
performance of algorithm configuration on heterogeneous instances.

Our method, named DGCAC (Deep Graph Clustering based Algorithm
Configuration), is based on the framework of ISAC, one of the best
instance-specific AC methods. It automatically extracts feature embed-
dings from training instances in an end-to-end fashion, which are then
fed into an off-the-shelf clustering algorithm to divide the training
instances into multiple groups, on each of which an optimized config-
uration is obtained by a standard AC algorithm (we use SMAC here).
Specifically, we employ the graph representation of MIP, and design
an auto-encoder which learns to embed the training instances into a
low-dimensional feature space unsupervisedly. Such feature extraction
scheme enables combining simple numerical features and complex
structural features that are difficult to obtain in manual design, so as to
extract rich information that can better identify and represent the MIP
instances. We also discuss the effects of different clustering methods
on the configuration performance, and propose to replace the original
g-means algorithm in ISAC with 𝑘-means to improve the homogene-
ity of instances within each cluster, which empirically lead to better
performance. Extensive experiments show that our DGCAC method
improves the performance of ISAC in configuring the target solver
CPLEX. Based on the automatically extracted features, our method
can produce configurations with shorter runtime than those generated
with traditional manual features. The configuration generated by our
method also shows better ability in generalizing to instances of larger
sizes that are unseen in training.

To summarize, this paper makes the following contributions:

• We propose a novel deep learning based instance-specific AC
method for MIP, which saves manual efforts in feature designing
and improves the configuration performance.

• We design an unsupervised graph learning method to extract
MIP instance feature embeddings, which enables extracting not
only simple numerical information but also complex structural
features.

• We propose to use 𝑘-means instead of g-means in the ISAC frame-
work, so that the number of clusters can be adjusted appropriately
for better performance.

• We verify the effectiveness of our method on heterogeneous MIP
instances from various sources. Results show that the features
automatically learned by DGCAC can lead to better configuration
performance, and effectively generalizes to instances larger than
those used in training.

This paper is organized as follows. Section 2 introduces preliminary
knowledge. Section 3 describes our method in detail. Section 4 reports
experiments and analysis. Section 5 concludes the paper.

2. Preliminaries

In this section, we introduce some important concepts that are
closely related to our method.

2.1. The Algorithm Configuration Problem

Here we define the problem of AC following Birattari and Kacprzyk
(2009). A parameterized target algorithm 𝑇 is given with 𝑁 config-
urable parameters 𝜃 = {𝜃1,… , 𝜃𝑁}. Each parameter 𝜃𝑖 can take any
value from its domain 𝐷𝑖, which forms a configuration space 𝛩 =
∏𝑁

𝑖=1 𝐷𝑖 that provides a range for all the configurable parameters in the
algorithm. Depending on the function of each parameter, the domain
𝐷𝑖 could be discrete (integer or categorical) or continuous. A parameter
configuration means to select for each configurable parameter 𝜃𝑖 a
value within their respective range 𝐷𝑖. At the same time, AC requires
a set of training problem instances 𝑃 and a cost measurement function
𝐹 , which is usually set based on the runtime of solving the problem
instance or the quality of the returned solution under certain time
constraints. The problem of AC is to find an optimal parameter con-
figuration 𝜃∗ that minimizes the cost measurement function 𝐹 when
running the target algorithm 𝑇 on training instances 𝑃 , i.e., 𝜃∗ =
argmin𝜃∈𝛩𝐹 (𝜃).

2

W. Song, Y. Liu, Z. Cao et al. Engineering Applications of Artificial Intelligence 125 (2023) 106740

Fig. 1. Overall workflow of DGCAC.

2.2. Sequential Model-based Algorithm Configuration

Sequential Model-based Algorithm Configuration (SMAC) (Hutter
et al., 2011) is a general and mainstream AC method with excellent
performance. It constructs a fitting model, which replaces the random
selection of configuration in model-free methods, so as to improve
the configuration efficiency. Starting from the default parameter con-
figuration of the target algorithm, SMAC iteratively performs three
steps, i.e., model fitting, configuration selection and intensification,
to optimize the configuration. For the fitting model, SMAC adopts
random forest to produce more accurate prediction of configuration
performance and quantify the uncertainty in the prediction, which is
convenient for the calculation of the subsequent acquisition function.
For configuration selection, SMAC adopts Expected Improvement (EI)
as the acquisition function to balance the exploration and exploitation
of configuration space. SMAC is equipped with an intensification mech-
anism to control how many times each configuration can be evaluated
and when to choose a configuration to be the incumbent configuration.

2.3. Instance-Specific Algorithm Configuration

Instance-Specific Algorithm Configuration (ISAC) (Kadioglu et al.,
2010) is a generic algorithm configuration method that can optimize
various solvers based on instance features. Compared with instance-
oblivious AC methods such as SMAC, ISAC can greatly improve the
parameter configuration performance when the instances are heteroge-
neous. The process of ISAC is as follows. First, features of each training
instance are extracted. The original ISAC uses manually designed fea-
tures to represent instances. For MIP, these features include the number
of variables, the number of constraints, the mean value and standard
deviation of various coefficients, etc. Then, based on the extracted
features, all training instances are grouped into different clusters by
applying the standard clustering algorithm g-means. Finally, for each
cluster which can be considered as homogeneous, GGA (Ansótegui
et al., 2009) is invoked to optimize the configuration. After training,
when solving new instance, ISAC finds the cluster it belongs to based
on its features, and invoke the configuration of that cluster to solve it.

Note that SMAC and ISAC are designed under different assumptions.
While SMAC assumes the training instances to be homogeneous, ISAC

assumes a harder but more practical situation that the training in-
stances are heterogeneous (e.g., from multiple sources). Consequently,
ISAC employs a clustering mechanism to obtain multiple homogeneous
instance groups, on which homogeneous AC method such as SMAC and
GGA can be applied.

2.4. Clustering

The main task for clustering is to classify a set of unlabeled data
into a number of groups. Data points in the same group should have
similar attributes or features. In this paper, we focus on two well-known
clustering algorithms, i.e., 𝑘-means and g-means. The idea of 𝑘-means
algorithm is to randomly select 𝑘 cluster centers, calculate the distance
between each data point and each group center, and then classify all
points into the group where the closest point is located. For each group,
the cluster center is recalculated according to all data points in the
group. The above steps were iteratively repeated to obtain the final
clustering result. Another clustering algorithm, g-means (Hamerly and
Elkan, 2004), is a method that can automatically adjust the number
of clusters 𝑘, which resolves the problem of 𝑘-means that the 𝑘 value
needs to be set in advance. The main idea of g-means is that the data
points of a good cluster will present a Gaussian distribution around the
cluster center. The g-means algorithm considers all input data points as
a cluster, then selects the current cluster in each iteration and evaluates
whether the Gaussian distribution condition is satisfied with statistical
Anderson–Darling test. If the Gaussian distribution condition is not
satisfied, the current cluster is divided into two clusters by 2-means
clustering. The above steps are iteratively repeated to obtain the final
clustering results.

3. Methodology

This section presents our method DGCAC (Deep Graph Clustering
based Algorithm Configuration) for heterogeneous MIP instances. Based
on the framework of ISAC, our aim is to achieve end-to-end clustering
directly from instance data, so as to avoid manual feature design
and improve configuration quality. Fig. 1 shows the overall workflow
with three stages. In the first stage, we construct a graph structure
to represent the MIP instance, and extract multiple subgraphs from

3

W. Song, Y. Liu, Z. Cao et al. Engineering Applications of Artificial Intelligence 125 (2023) 106740

Fig. 2. Graph representation of the MIP instance.

the MIP graph by an improved random walk algorithm to retain both
numerical and structural information. In the second stage, the extracted
subgraphs are fed into an auto-encoder, which learns to map the graph
representation of each training instance into a low dimensional space in
an unsupervised manner, so as to obtain the embedding (i.e., a feature
vector) of each instance. In the third stage, we apply 𝑘-means algorithm
on the learned instance embeddings to cluster the instances, and train a
configuration for each cluster using SMAC. In the following subsections,
we will introduce each of the three stages, as well as the overall training
and inference procedures.

3.1. MIP graph representation and subgraph extraction

3.1.1. MIP graph representation
The general form of MIP problem can be written as:

min 𝐜⊤𝐱 (1)
s.t. 𝐀𝐱 ≤ 𝐛, (2)

𝐥 ≤ 𝐱 ≤ 𝐮, (3)

where 𝐱 ∈ Z𝑟 ×R𝑛−𝑟 is a vector of 𝑛 decision variables with 𝑟 integer
variables and 𝑛 − 𝑟 real variables bounded by 𝐥 = [𝑙1,… , 𝑙𝑛] ∈ R𝑛 and
𝐮 = [𝑢1,… , 𝑢𝑛] ∈ R𝑛, 𝐜 = [𝑐1,… , 𝑐𝑛] ∈ R𝑛 is the objective coefficient
vector, and 𝐀 = [𝑎𝑗𝑖]𝑚×𝑛 ∈ R𝑚×𝑛 and 𝐛 = [𝑏1,… , 𝑏𝑛] ∈ R𝑚 together
defines 𝑚 constraints.

Instance-specific AC methods describe each MIP instance using
a set of features. Conventional methods rely on manually designed
features (e.g., the number of variables 𝑛 and constraints 𝑚, mean and
standard deviation of objective and constraint coefficients). However,
such manual design is tedious and time-consuming, and the resulting
feature set could hardly be optimal in fully describing the instance.
Instead of using manual features, we represent MIP instances based
on the recent proposed bipartite graph scheme (Gasse et al., 2019). It
considers variables and constraints in an MIP instance as two types of
nodes, and all kinds of coefficients are constructed as edges or node
attributes. The resulting graph structure could fully capture information
of the MIP instance, which provides the data basis for automatically
learning the internal structure and properties that is difficult to find by
manual feature designing.

The bipartite graph representation of MIP is shown in Fig. 2. Given
an MIP instance with 𝑛 variables and 𝑚 constraints, we first construct 𝑛
variable nodes 𝑥𝑖 (1 ≤ 𝑖 ≤ 𝑛) and 𝑚 constraint nodes 𝛿𝑗 (1 ≤ 𝑗 ≤ 𝑚). The
coefficient of constraint matrix can be constructed as the edge between
variable and constraint node because it is related to both variables
and constraints and there is a one-to-one corresponding relationship.
If a variable 𝑖 appears in a constraint 𝑗 with nonzero coefficient 𝑎𝑗𝑖,
the corresponding variable node is connected to the constraint node to
form an edge 𝑒𝑗𝑖. For the zero values in the coefficient matrix 𝐀, the
corresponding variable node and constraint node will not form an edge,

resulting in structural differences in the graph representation among
different MIP instances.

Based on the above defined topology of the MIP graph structure,
we further define attributes for each node and edge, so that numerical
information can be injected. For each variable node 𝑥𝑖, its attributes
consist of four parts including (1) its coefficient 𝑐𝑖 in the objective
function; (2) the type of 𝑥𝑖, which could be binary, integer or contin-
uous; (3) the upper bound information of 𝑥𝑖, and (4) the lower bound
information of 𝑥𝑖. For the variable type, we use one-hot encoding with
three binary values 𝑧𝐵𝑖 , 𝑧𝐼𝑖 and 𝑧𝐶𝑖 to indicate whether 𝑥𝑖 is binary,
integer or continuous, respectively. For the upper and lower bound
information, since not all variables have a specified upper or lower
bound in the vector 𝐥 or 𝐮, we use four values 𝐼𝑈𝑖 , 𝑢̄𝑖, 𝐼𝐿𝑖 , and 𝑙𝑖 as
the attributes. Specifically, 𝐼𝑈𝑖 and 𝐼𝐿𝑖 are two binary values to indicate
whether 𝑥𝑖 has a specified upper or lower bound, respectively. If 𝑥𝑖 has
an upper bound, then 𝐼𝑈𝑖 = 1 and 𝑢̄𝑖 = 𝑢𝑖, otherwise 𝐼𝑈𝑖 = 0 and 𝑢̄𝑖 = 0.
The logic of 𝐼𝐿𝑖 and 𝑙𝑖 is the same. For each constraint node 𝛿𝑗 , we use
the corresponding constraint bounds 𝑏𝑗 as its node attribute. Finally,
for each edge that connects variable node 𝑥𝑖 and constraint node 𝛿𝑗 , we
use the corresponding coefficient 𝑎𝑗𝑖 in the constraint matrix 𝐀 as its
attribute. The attribute vectors 𝐲𝑥𝑖 for each variable node, 𝐲𝛿𝑗 for each

constraint node, and 𝐲𝑒𝑗𝑖 for each edge are summarized as follows:

𝐲𝑥𝑖 = [𝑐𝑗 , 𝑧𝐵𝑖 , 𝑧
𝐼
𝑖 , 𝑧

𝐶
𝑖 , 𝐼

𝑈
𝑖 , 𝑢̄𝑖, 𝐼

𝐿
𝑖 , 𝑙𝑖]

⊤ ∈ R8,∀1 ≤ 𝑖 ≤ 𝑛, (4)

𝐲𝛿𝑗 = [𝑏𝑗] ∈ R,∀1 ≤ 𝑗 ≤ 𝑚, (5)

𝐲𝑒𝑗𝑖 = [𝑎𝑗𝑖] ∈ R,∀𝑎𝑗𝑖 ≠ 0. (6)

In summary, an MIP instance can be constructed as a graph 𝐺 =
(𝑉𝑣, 𝑉𝑐 , 𝐸), where 𝑉𝑣, 𝑉𝑐 and 𝐸 are the set of variable nodes, con-
straint nodes and edges, respectively. Defining an MIP instance in this
way gives a more comprehensive representation of the information it
contains.

3.1.2. Subgraph extraction
After constructing the graph structure for the MIP instance, the

amount of obtained data could be huge, especially for large-scale
instances. How to extract information from the MIP graph to achieve ef-
ficient and comprehensive data acquisition for each instance should be
carefully considered. Here we design an improved random walk method
to extract subgraphs of the MIP graph structure to obtain comprehen-
sive instance information in an efficient way. Random walk algorithm
is an information extraction method for graph, which randomly selects
a node in the graph as the starting point, and continuously selects an
adjacent node of the current node as the next node until it reaches a
preset path length. The set of nodes and edges accessed by each round
of random walk on the graph form a subgraph.

However, conventional random walk has some limitations in ex-
tracting structural information of the MIP graph. Since the walking is
random, it is possible to return to some part of the graph that has been

4

W. Song, Y. Liu, Z. Cao et al. Engineering Applications of Artificial Intelligence 125 (2023) 106740

visited. These revisits cannot be detected in conventional random walk
methods. Here we adopt the recently proposed SEED method (Wang
et al., 2020), which improves conventional random walk by extracting
the timestamp feature, which indicates the time when the node is
first visited (i.e., its earliest visiting time) in the current round of
walk. This feature is useful in distinguishing subgraphs with similar
numerical features but different structural features which is common
in the MIP graph we defined in this paper, and hence is beneficial for
distinguishing different MIP instances.

Remind that the MIP graph structure we constructed in Section 3.1.1
is a bipartite graph, which contains two types of nodes with different
attribute types and quantities. However, the SEED method can only
handle standard graphs with homogeneous nodes. In this paper, we ex-
tend it to handle bipartite graph. According to structural characteristics
of the bipartite graph, we set the starting node of each random walk to
be of the same type, and set the same path length for each random walk.
In this way, the extracted subgraph representations (in terms of feature
vectors) of different random walks are consistent and comparable.

Our random walk algorithm is designed as follows. Given a bipartite
graph 𝐺 = (𝑉𝑣, 𝑉𝑐 , 𝐸) created for an MIP instance 𝑝 as input, we
set the starting node of all random walks to be a randomly selected
variable node. Then, we perform 𝑠 times of random walks to extract
𝑠 subgraphs, each of the same path length 𝑤 (excluding the starting
node) where 𝑤 is set as an even number. When the time (or step)
𝑡 is 0, we randomly select a variable node 𝑥(0) ∈ 𝑉𝑣 as the starting
node, and set its timestamp 𝑦(0)𝜏 (i.e., the earliest visiting time) to 0.
Then, among all neighboring nodes of 𝑥(0), another node is randomly
sampled as the next node which is a constraint node 𝛿(1) ∈ 𝑉𝑐 , and
the corresponding timestamp 𝑦(1)𝜏 of the sampled node is set to 1. This
process is iterated for 𝑤 steps, during which if the sampled node has
not been visited, then its timestamp 𝑦(𝑡)𝜏 is set to the current time 𝑡,
otherwise its timestamp remains as its earliest visiting time. Besides the
timestamp, we also extract two parts of information during each step
𝑡 (1 ≤ 𝑡 ≤ 𝑤) of the random walk, including the attribute 𝐲(𝑡)𝑥 or 𝐲(𝑡)𝛿 of
the visited node (depending on whether a variable node or constraint
node is visited) and the edge attribute 𝐲(𝑡)𝑒 of the edge connecting the
two nodes sampled in step 𝑡 − 1 and 𝑡.

The result of a random walk is a subgraph of the MIP instance graph,
which can be represented as a (raw) feature vector 𝐘 by organizing the
attribute and timestamp data obtained during the random walk. Specif-
ically, the vector 𝐘 contains three parts, including the node attribute
vector 𝐲𝑛𝑜𝑑𝑒, edge attribute vector 𝐲𝑒𝑑𝑔𝑒 and timestamp vector 𝐲𝑡𝑖𝑚𝑒. For
the node attribute vector, the 𝑤 node attribute vectors obtained in 𝑤
times of sampling are concatenated to construct a 𝛽-dimension vector
defined below:

𝐲𝑛𝑜𝑑𝑒 = [𝐲(1)𝛿 , 𝐲(2)𝑥 ,… , 𝐲(𝑤−1)
𝛿 , 𝐲(𝑤)

𝑥]⊤ ∈ R𝛽 , (7)

where 𝛽 = 8× 𝑤
2 +1× 𝑤

2 = 9𝑤
2 , since 𝑤 is even and the number of visited

variable nodes and constraint nodes are 𝑤∕2.
The construction process of edge attribute vector 𝐲𝑒𝑑𝑔𝑒 and times-

tamp vector 𝐲𝑡𝑖𝑚𝑒 is the same as above. Since the information sampled
by edge attribute and timestamp attribute in each step is a 1-bit scalar,
the final vector dimension is 𝑤, as shown in Eqs. (8) and (9):

𝐲𝑒𝑑𝑔𝑒 = [𝐲(1)𝑒 , 𝐲(2)𝑒 ,… , 𝐲(𝑤−1)
𝑒 , 𝐲(𝑤)

𝑒]⊤ ∈ R𝑤, (8)

𝐲𝑡𝑖𝑚𝑒 = [𝑦(1)𝜏 , 𝑦(2)𝜏 ,… , 𝑦(𝑤−1)
𝜏 , 𝑦(𝑤)

𝜏]⊤ ∈ R𝑤. (9)

Based on the above definitions, the feature vector 𝐘 of the subgraph
after each round of walk is constructed by concatenating the node
attribute vector, edge attribute vector and timestamp vector to form
a 𝛽 + 2𝑤 dimensional vector, as shown in Eq. (10):

𝐘 = [𝐲𝑛𝑜𝑑𝑒, 𝐲𝑒𝑑𝑔𝑒, 𝐲𝑡𝑖𝑚𝑒]⊤ ∈ R𝛽+2𝑤. (10)

After 𝑠 rounds of random walks on the corresponding MIP instance
graph, we can obtain the representation of an MIP instance 𝑝 as Y𝑝 =
{𝐘1,𝐘2,… ,𝐘𝑠}, where 𝐘𝑖 is the subgraph feature vector extracted in
the 𝑖th round. So far, the random walk based feature extraction of the
MIP instance is completed.

Remark. Traditional manually designed features can only extract
numerical information (e.g., the number of variables and constraints)
from the MIP instances. However, numerical features are far from
enough. When giving two instances from the same source but with
different scale, for example, two combinatorial auction problems, the
coefficient of one instance is much larger than that of the other.
Considering only numerical features, the two instances are likely to be
divided into two clusters. However, they have strong similarity in the
relationship between variables and constraints, and should be put into
the same cluster and solved using the same parameter configuration.
Our feature extraction method avoids the above limitation since we
inject the structural information of MIP instances. Specifically, the sub-
graphs extracted by random walk can reflect the structural differences
between instances. With the support of numerical information on the
nodes and edges, the extracted information is more comprehensive,
hence could lead to better instance clustering.

3.2. Deep graph embedding learning based on auto-encoder

The raw features of each MIP instance graph extracted above is
high-dimensional, and is difficult to cluster directly by clustering al-
gorithm. Hence it is necessary to obtain dense low-dimensional feature
representation, i.e., embedding of the MIP graph. To this end, we design
a deep auto-encoder (Zhai et al., 2018), which learns to map the raw
feature vector of each instance to the embedding space unsupervisedly,
so as to reduce feature dimension of the MIP instance graph for better
clustering.

Before fed into the auto-encoder, the raw feature vectors of the MIP
instance graphs are pre-processed by the following two steps. First,
the timestamp vector 𝐲𝑡𝑖𝑚𝑒 of each subgraph is converted to one-hot
encoding, which is suitable for dealing with discrete values. Since the
length of each random walk is 𝑤, a state register of 𝑤-bit is used to
represent the state of each timestamp attribute 𝑦(𝑡)𝑡𝑖𝑚𝑒 in 𝐲𝑡𝑖𝑚𝑒. Each state
has an independent register bit, and only one of the 𝑤 bits is valid.
Therefore, the timestamp vector of each random walk is converted
from 𝐲𝑡𝑖𝑚𝑒 ∈ R𝑤 to 𝐲𝑡𝑖𝑚𝑒 ∈ R𝑤2 , and the raw feature vector of
the corresponding subgraph is converted from 𝐘 ∈ R𝛽+2𝑤 to 𝐘 ∈
R𝛽+𝑤+𝑤2 . Second, we normalize the raw features of each subgraph,
since the coefficients and attributes of instances from different sources
and different scales may be quite different in the order of magnitude.
We use min–max normalization to scale the raw features into [0, 1].

The auto-encoder we designed consists of the encoder 𝑓 (⋅) and de-
coder 𝑔(⋅), which are implemented as Multi-Layer Perceptrons (MLPs).
For each extracted subgraph raw feature vector 𝐘, the encoding func-
tion 𝑓 (⋅) transforms it to a dense low-dimensional vector 𝐡 ∈ R𝑑ℎ

(i.e., the embedding vector) using MLP parameters 𝜂𝑒. Then, the de-
coding function reconstruct a vector 𝐘̂ of the same length as 𝐘, using
MLP parameters 𝜂𝑑 . The above process is shown below:

𝐡 = 𝑓 (𝐘; 𝜂𝑒), (11)

𝐘̂ = 𝑔(𝐡; 𝜂𝑑). (12)

Note that the encoding and decoding MLPs have the symmetrical
structure, which consists of an input layer, a hidden layer and an output
layer. Dimensions of the hidden layers in both the encoder and decoder
are equal, denoted as 𝑑𝑒. LeakyReLU is used as the activation function
in the two MLPs.

Given an input 𝐘 and the corresponding output 𝐘̂ of the auto-
encoder, we calculate the mean square error (MSE) between them
to measure the similarity between the original raw feature and the
reconstructed one:

𝑀𝑆𝐸(𝐘, 𝐘̂) =∥ 𝐘̂ − 𝐘 ∥2 . (13)

Based on MSE, we can optimize the encoding and decoding parame-
ters 𝜂𝑒 and 𝜂𝑑 using standard gradient descent algorithm, by setting the
mean MSE over subgraphs extracted from all training instances as the

5

W. Song, Y. Liu, Z. Cao et al. Engineering Applications of Artificial Intelligence 125 (2023) 106740

Fig. 3. Schematic diagram of algorithm configuration training.

loss function. After training, we can obtain a set of embedding vectors
H𝑝 = {𝐡1,𝐡2,… ,𝐡𝑠} of each input instance 𝑝, by applying the trained
encoder to each subgraph vector 𝐘. By averaging all vectors in H𝑝, we
obtain a 𝑑ℎ-dimensional vector 𝐡𝑝, as the representation of the input
MIP instance 𝑝 in the embedding space:

𝐡𝑝 =
1
𝑠

𝑠
∑

𝑖=1
𝐡𝑖. (14)

3.3. Clustering and configuration

Based on the dense low-dimensional representation learned by the
auto-encoder, we employ clustering algorithm to divide the multi-
source instances into multiple clusters as in ISAC, so that instances with
similar features can be grouped together. To measure the similarity
between instances, we calculate the Euclidean distance between the
corresponding embedding vectors. Taking two MIP instances 𝑝 and 𝑞
as an example, the corresponding instance embeddings are 𝐡𝑝 and 𝐡𝑞
of dimension 𝑑ℎ. The distance between the two embeddings in the
embedding space is:

𝑑𝑖𝑠𝑡(𝐡𝑝,𝐡𝑞) =

√

√

√

√

𝑑ℎ
∑

𝑖=1
(ℎ𝑝𝑖 − ℎ𝑞𝑖)

2. (15)

The smaller the distance between the two embeddings, the higher the
similarity of the two instances, and the more inclined they are to the
same cluster.

The schematic diagram for the clustering and configuration process
is shown in Fig. 3. For the configuration training of each cluster, we
adopt the general AC method SMAC described in Section 2.2, due
to its good performance in optimizing parameters for homogeneous
instances. In terms of instances clustering, as mentioned in Section 2.3,
ISAC adopts g-means as the clustering method. While it does not
need to preset the number of clusters 𝑘 as in 𝑘-means, however, the
clustering performance could be affected if the number of clusters is
completely controlled by the algorithm. In g-means, the termination
condition for iterative division of clusters is that the data points of the
current clustering conforms to Gaussian distribution. In the instance-
specific AC problem, if a large number of training instances have similar
features or are evenly distributed in the feature space, g-means cannot
continue to divide instances when the overall distribution has reached
Gaussian distribution. This could prevent the clustering to reach a
desirable degree, resulting in an undesirable small number of clusters
and the instances within each cluster could be not sufficiently homo-
geneous to achieve satisfactory configuration performance. To resolve
this issue, we propose to substitute the g-means algorithm in ISAC with

Algorithm 1: DGCAC-Training
Input: MIP instance set 𝑃 , target algorithm 𝑇 , configuration

space 𝛩, number of subgraphs 𝑠 and steps 𝑤 of random
walk, training epoch 𝜏, learning rate 𝛼, number of
clusters 𝑘

Output: Cluster centers 𝐶, encoder weights 𝜂𝑒, configurations
of all clusters 𝑄

1  ← BulidGraphModel(𝑃);
2 Y ← RandomWalk(, 𝑠, 𝑤);
3 for 𝑖 ← 1 to 𝜏 do
4 H ← Encoder(Y, 𝜂𝑒);
5 Ŷ ← Decoder(H, 𝜂𝑑);
6 𝜂𝑒, 𝜂𝑑 ← MinLoss(Y, Ŷ) with learning rate 𝛼;

7 𝐡 ← Ave-Aggregation(H);
8 (𝐶, 𝑆) ← K-Means(𝐡, 𝑘);
9 for 𝑗 ← 1 to 𝑘 do
10 𝑄𝑗 ← SMAC(𝑇 , 𝑆𝑗 , 𝛩);
11 return 𝐶 = {𝐶1, ..., 𝐶𝑘}, 𝜂𝑒, 𝑄 = {𝑄1, ..., 𝑄𝑘};

𝑘-means, which offers better control on the number of clusters, so as
to obtain better configuration optimization effect. In the experiments,
we will show that the algorithm configuration performance obtained
by 𝑘-means is better than that of g-means.

3.4. Training and inference procedures

The overall training process of DGCAC is shown in Algorithm 1.
Given a set of training MIP instances 𝑃 , we first construct the bipartite
graph for each instance, collected in the set  (Line 1). Then, the
improved random walk algorithm is performed on each instance graph,
to obtain the subgraph set Y (Line 2). Next, we perform 𝜏 epochs of
auto-encoder training to obtain the set of instance embeddings H (Line
3–6), based on which we get the set of aggregated instance embeddings
𝐡 (Line 7) and perform 𝑘-means clustering to divide the whole training
set into 𝑘 clusters 𝑆 = {𝑆1,… , 𝑆𝑘} (Line 8). Finally, we run SMAC on
each cluster 𝑆𝑗 to obtain the optimized parameter configuration 𝑄𝑗 .

After training, the inference process of DGCAC for solving any new
instance 𝑝 is shown in Algorithm 2. We first build the bipartite graph
model of instance 𝑝 and perform random walk to get the subgraph
representations of 𝑝, which is then processed by the trained encoder to
obtain the aggregated instance embedding 𝐡𝑝 (Line 1–4). To determine
which cluster the input instance 𝑝 belongs to, we calculate the distance

6

W. Song, Y. Liu, Z. Cao et al. Engineering Applications of Artificial Intelligence 125 (2023) 106740

Algorithm 2: DGCAC-Inference
Input: MIP instance 𝑝 , number of subgraphs extracted 𝑠 and

steps 𝑤 of random walk, encoder weights 𝜂𝑒, cluster
centers 𝐶, configurations of all clusters 𝑄 , target
algorithm 𝑇

Output: Configuration for testing instance 𝑄𝑚𝑖𝑛
1 𝐺 ← BulidGraphModel(𝑝);
2 Y𝑝 ← RandomWalk(𝐺, 𝑠,𝑤);
3 H𝑝 ← Encoder(Y𝑝, 𝜂𝑒);
4 𝐡𝑝 ← Ave-Aggregation(H𝑝);
5 for 𝑗 ← 1 to 𝑘 do
6 𝐷𝑗 ← 𝑑𝑖𝑠𝑡(𝐡𝑝, 𝐶𝑗) ;
7 𝑄𝑚𝑖𝑛 ← MinDistance(𝐷 = {𝐷1, ..., 𝐷𝑘});
8 𝑇 (𝑝,𝑄𝑚𝑖𝑛);
9 return;

between its embedding to each of the cluster center (Line 5–6). Then,
we find the cluster with the minimum distance, and retrieve the corre-
sponding parameter configuration (Line 7), which is used by the target
algorithm to solve 𝑝 (Line 8).

4. Experimental evaluation

In this section, we perform experiments to validate our method.
After introducing the experiment setup in Section 4.1, we first examine
the performance of 𝑘-means and g-means algorithm in the proposed
DGCAC in Section 4.2. Then, we compare the performance of different
AC methods in Section 4.3. Finally, we examine the performance
of different AC methods in generalizing the trained configuration to
larger-scale unseen instance sets in Section 4.4.

4.1. Experimental setup

4.1.1. Configuration scenario
In this paper, we choose the leading commercial solver IBM ILOG

CPLEX 12.10.0 as the configuration target, due to its superior perfor-
mance and wide applications in MIP solving. As listed in Table A.10
in the Appendix, we optimize 24 important parameters (including 1
continuous and 23 discrete parameters) of CPLEX, and set the configu-
ration space according to the adjustable range of parameters provided
in the CPLEX user manual. Our objective is to minimize the average
runtime of CPLEX.

4.1.2. Instance sets
Three instance sets are used in our experiments. All instance sets

contains MIP instances from multiple sources and different scales, and
is publicly available or can be generated by open-source generator.

Set1 is generated using the generator2 in Gasse et al. (2019), which
contains 4 types of MIP problems including combinatorial auction
problem (Cauctions), capacitated facility location problem (Facilities),
maximum independent set problem (Setcover) and maximum indepen-
dent set problem (Indset). We generate three subsets of small, medium
and large scale, named Set1-S, Set1-M and Set1-L. Each subset includes
instances from the four types with the proportion of 1:1:1:1. The
parameters we used in generating the three subsets is listed in Table 1,
and the corresponding problem scale is shown in Table 2. For the small
subset Set1-S, we generate 300 instances in which 200 is used for
training and 100 for testing. The larger two subsets Set1-M and Set1-L
contains 100 instances each, and are only used in the generalization
evaluation, hence we do not perform training on these two subsets.

2 https://github.com/ds4dm/learn2branch.

Table 1
Instance generation parameters used in creating Set1.

Source Parameter Small Medium Large

Cauctions # items 300 400 500
bids 800 800 800

Setcover

rows 1000 1500 2000
cols 1000 1000 1000
Density 0.05 0.05 0.05
Max coefficient 1000 1000 1000

Indset # nodes 1000 1500 2000
Affinity 4 4 4

Facilities
customers 300 400 500
facilities 100 100 100
Ratio 5 5 5

Table 2
Number of variables (𝑛) and constraints (𝑚) in Set1.

Source Small Medium Large

𝑛 𝑚 𝑛 𝑚 𝑛 𝑚

Cauctions 800 450 800 550 800 650
Setcover 1000 1000 1000 1500 1000 2000
Indset 1000 4000 1500 6000 2000 8000
Facilities 30 000 400 40 000 500 50 000 600

Set2 is from Alvarez et al. (2017), which is a multi-source MIP
instance set with four types of constraints including: set covering (SC),
multi-knapsack (MKN), bin packing (BP) and equality (EQ). Set2 con-
tains instances generated from three constraint combinations: BP-EQ,
BP-SC and MKN-SC. Here we directly use the public available instance
library,3 where for each constraint combination, there are 25 and 50
instances for training and testing, respectively, hence Set2 contains
75 training and 150 testing instances in total. The average number of
variables and constraints of instances in Set2 are 200 (maximum 360)
and 100 (maximum 160), respectively.

Set3 is from the well recognized and widely used benchmark MI-
PLIB,4 which contains highly heterogeneous instances from a wide
range of practical applications. Based on the instance scale that the
proposed method proposed can handle and the difficulty of experi-
ments, we select 60 MIPLIB instances, for which CPLEX with default
configuration can solve optimally within 100 s. Details of the 60
instances are listed in Table A.9 in Appendix. The average number
of variables and constraints of instances in Set3 are 8835.8 (maximum
87482) and 2334.7 (maximum 13206), respectively.

4.1.3. Hyperparameters
We empirically tune the hyperparameters of DGCAC on a small

validation set. We set the path length 𝑤 = 16 and the number of random
walks 𝑠 = 100. For the auto-encoder, we set the hidden dimension of
the encoder and decoder as 𝑑𝑒 = 128, and the dimension of extracted
subgraph embedding (and instance embedding) to 𝑑ℎ = 64. We use
the Adam optimizer to train the auto-encoder, which is one of the
best-performing and widely used optimizers for neural network train-
ing (Choi et al., 2019). We perform training for 𝜏 = 1000 epochs with
learning rate 𝛼 = 0.01. Depending on the clustering algorithm, DGCAC
is executed in two modes, namely DGCAC-g for g-means clustering and
DGCAC-k for 𝑘-means. For DGCAC-g, we set the minimum number of
instances in a cluster and the maximum clustering depth of g-means to
5 and 6, respectively. For 𝑘 in DGCAC-k, we will discuss its impact and
setting in the next subsection. As typical in previous works (e.g., Hutter
et al. (2011) and Kadioglu et al. (2010)), we set a time limit of 300 s for
solving each training instance (called captime) to prevent the case that
the solving takes too much time under bad configurations. For instances
reach the captime, we consider their solving runtime as 300 s.

3 http://www.montefiore.ulg.ac.be/~ama/research.php.
4 https://miplib.zib.de/.

7

https://github.com/ds4dm/learn2branch
http://www.montefiore.ulg.ac.be/~ama/research.php
https://miplib.zib.de/

W. Song, Y. Liu, Z. Cao et al. Engineering Applications of Artificial Intelligence 125 (2023) 106740

Fig. 4. Instance clustering visualization of DGCAC-g and DGCAC-k.

Table 3
Runtime of DGCAC-k under different 𝑘 values (unit: s)
𝑘 Train Test Difference

5 7.01 ± 0.92% 6.71 ± 0.91% −4.28%
6 7.00 ± 0.97% 7.14 ± 1.02% 2.00%
7 6.65 ± 0.94% 6.47 ± 0.85% −2.71%
8 6.90 ± 1.19% 6.81 ± 0.98% −1.30%
9 7.27 ± 0.97% 7.28 ± 0.92% 0.14%

Table 4
Results of DGCAC under two clustering algorithms (‘‘Difference’’ is calculated based on
the runtime of train and test).

Method Train Test Difference

Runtime (s) Wins Runtime (s) Wins

DGCAC-g 6.85 ± 1.03% 95∕200 6.71 ± 0.91% 32∕100 −2.04%
DGCAC-k 6.65 ± 0.94% 105∕200 6.47 ± 0.85% 68∕100 −2.71%

4.1.4. Baselines
We compare our approach with the following baselines: (1) CPLEX

with the Default configuration; (2) one of the most commonly used
homogeneous AC method SMAC; (3) state-of-the-art instance-specific
AC method ISAC, for which we substitute the GGA configurator with
the more advanced SMAC for fair comparison, denoted as ISAC𝐒𝐌𝐀𝐂. In
Table A.11 in the Appendix, the manually designed MIP features used
by ISACSMAC are listed. Note that the only difference between ISACSMAC
and DGCAC-g is that the features in our method are learned end-to-end
instead of manually designed. For fair comparison, we give all methods
(including ours) 10 h total training time. Our implementation is based
on Python, and the experimental environment is a Linux machine
(Ubuntu 18.04) with Intel(R) Core(TM) i9-9900k(3.60 GHz) CPU and
32G RAM.

4.2. Experiment 1: Analysis of clustering algorithms

In this subsection, we empirically compare the performance of DG-
CAC with different clustering algorithms using Set1-S. We first discuss
the impact of 𝑘 in DGCAC-k, which determines the number of instance
clusters and further affects the following configuration performance.
We set 𝑘 to 5, 6, 7, 8 and 9 respectively, and conduct 10 h configuration
training for each 𝑘, that is, the configuration training time allocated to
each cluster is about 2 h, 1.67 h, 1.43 h, 1.25 h and 1.11 h respectively.
In Table 3, we present the average runtime on the 200 training and 100
testing instances in Set1-S. We can see that the value of 𝑘 does have an
impact on the configuration performance, and the best 𝑘 for Set1-S is
7 which will be used in the following experiments.

Table 5
Results of different methods on Set1-S.

Method Train Test

Runtime (s) Wins Runtime (s) Wins

Default 8.32 ± 1.01% 11∕200 7.97 ± 1.05% 10∕100
SMAC 8.54 ± 0.93% 26∕200 7.62 ± 0.84% 17∕100
ISACSMAC 7.54 ± 1.10% 43∕200 7.82 ± 1.09% 17∕100
DGCAC-g 6.85 ± 1.03% 57∕200 6.71 ± 0.91% 15∕100
DGCAC-k 6.65 ± 0.94% 63∕200 6.47 ± 0.85% 41∕100

Next, we compare the two versions of our method, DGCAC-g and
DGCAC-k (𝑘 = 7). For each version, we list the average runtime (in sec-
onds) and the number of instances on which it achieves smaller runtime
(the column ‘‘Wins’’) in Table 4. We can see that DGCAC-k consistently
outperforms DGCAC-g, showing that 𝑘-means clustering is better than
g-means for the instance-specific AC problem. To understand why, we
visualize the clustering results of the two algorithms using the t-SNE
method in Fig. 4. We can see that the number of clusters obtained
by g-means is less than that of 𝑘-means, due to the mechanism of g-
means. After the current cluster is gaussified, g-means stops on this
part of instances and does not continue to cluster downward. However,
such mechanism may result in clusters with relatively wide in-cluster
instance distribution, which are still not homogeneous enough and can-
not be effectively solved by one configuration. While 𝑘-means avoids
the above limitation, the 𝑘 value needs to be set appropriately. Under
the same total training time, if 𝑘 is too large, then the time spent in
configuration training for each cluster is reduced, which could affect
the configuration performance. If 𝑘 is too small, then it cannot over-
come the limitation of g-means. To sum up, with a suitable 𝑘, DGCAC
with 𝑘-means can lead to better overall configuration performance.

4.3. Experiment 2: Performance comparison

In this subsection, we compare our method with the baselines using
Set1-S, Set2 and Set3. We give all methods the same 10 h total training
time, and the results are summarized in Table 5. We also give the
boxplot for the distribution of instance solving time in Fig. 5. From
the results, we can observe that the two versions of our method signifi-
cantly outperform the baselines. SMAC performs relatively poorly, and
its runtime is even larger than that of the default CPLEX in the training
set. This shows that it is difficult to find a single configuration for highly
heterogeneous instances from multiple sources. The instance-specific
method ISACSMAC shows better performance, at least in the training
set on which it shortens the runtime of default CPLEX by 9.4%. With
the same clustering algorithm, our DGCAC-g significantly improves
ISACSMAC and shortens the CPLEX default runtime by 17.7% and 15.8%

8

W. Song, Y. Liu, Z. Cao et al. Engineering Applications of Artificial Intelligence 125 (2023) 106740

Fig. 5. Boxplots of runtime on Set1-S.

Fig. 6. Boxplots of runtime on Set2.

Table 6
Results of different methods on Set2.

Method Train Test

Runtime (s) Wins Runtime (s) Wins

Default 20.99 ± 1.11% 4∕75 36.50 ± 1.68% 4∕145
SMAC 13.02 ± 1.51% 17∕75 31.65 ± 2.14% 33∕145
ISACSMAC 12.58 ± 1.21% 16∕75 29.00 ± 2.10% 28∕145
DGCAC-k 10.55 ± 1.21% 35∕75 26.48 ± 2.24% 81∕145

on the training and testing set, respectively. This verifies the advan-
tage of our graph-based unsupervised representation learning method
over using the traditional manually designed numerical features. By
substituting the g-means clustering algorithm with 𝑘-means, DGCAC-k
further boosts the performance and reduces the default CPLEX runtime
by 20.1% and 18.8% on the training and testing set respectively,
with more winning instances. Due to its better performance, we will
use DGCAC-k as the representative of our method in the following
experiments.

Next, we discuss the performance on Set2. Results of all methods are
listed in Table 6, and the corresponding boxplot is shown in Fig. 6. We
can see that SMAC can effectively improve the default CPLEX configu-
ration, probability because Set2 is not that heterogeneous than Set1.

Nevertheless, the instance-specific methods ISACSMAC and DGCAC-k
still outperforms SMAC, with our method being the best. Specifically,
DGCAC-k reduces the runtime of default configuration by 49.7% and
27.5% on the training and testing set, respectively. This shows that
even for homogeneous instances, it could be better to divide them into
multiple clusters such that more focused configurations can be trained.
Note that in the testing set, each method has five instances that cannot
be solved optimally within the 300 s limited time, for which 300 s is
used in calculating the average runtime in Table 6, which explains why
the average runtime of the testing set is greater than that of the training
set.

For Set3, since the MIPLIB instances are highly heterogeneous, we
conduct three rounds of experiments, during each we randomly split
the 60 instances in the ratio of 3:1 as the training and testing set, so
as to avoid the coincidence that good results are caused by a particular
data split. Results of the three rounds of experiments are summarized
in Table 7. It is interesting to see that in all the three rounds, the
performance of SMAC and ISACSMAC are almost the same as the default
configuration. In fact, the configurations trained by the two methods
are almost the same as the default one, showing that they are not
capable in handling instances that are so different from each other. For
SMAC, it is simply because it is designed for homogeneous instances
only. For ISACSMAC, the manually designed numerical features are

9

W. Song, Y. Liu, Z. Cao et al. Engineering Applications of Artificial Intelligence 125 (2023) 106740

Table 7
Results of different methods on Set3.

Round Method Train Test

1

Default 16.94 ± 1.28% 13.20 ± 1.66%
SMAC 17.06 ± 1.28% 13.21 ± 1.66%
ISACSMAC 17.11 ± 1.28% 13.20 ± 1.68%
DGCAC-k 15.64 ± 1.23% 10.18 ± 1.47%

2

Default 16.63 ± 1.38% 21.2 ± 1.34%
SMAC 16.65 ± 1.38% 21.13 ± 1.34%
ISACSMAC 16.49 ± 1.38% 21.04 ± 1.34%
DGCAC-k 14.86 ± 1.35% 34.50 ± 2.19%

3

Default 19.27 ± 1.35% 12.91 ± 1.30%
SMAC 19.20 ± 1.35% 12.89 ± 1.30%
ISACSMAC 19.21 ± 1.35% 13.00 ± 1.30%
DGCAC-k 15.81 ± 1.37% 11.89 ± 1.39%

Table 8
Results of the generalization experiments on Set1.

Scale Method Runtime (s) Wins

Small

Default 7.97 ± 1.05% 10∕100
SMAC 7.62 ± 0.84% 17∕100
ISACSMAC 7.82 ± 1.09% 17∕100
DGCAC-k 6.47 ± 0.85% 41∕100

Medium

Default 40.06 ± 1.09% 12∕100
SMAC 38.86 ± 1.09% 28∕100
ISACSMAC 37.10 ± 1.10% 29∕100
DGCAC-k 36.45 ± 1.20% 31∕100

Large

Default 97.63 ± 0.76% 17∕100
SMAC 99.71 ± 0.79% 19∕100
ISACSMAC 94.59 ± 0.69% 10∕100
DGCAC-k 90.22 ± 0.83% 54∕100

not informative enough to generate meaningful instance clusters. In
contrast, our method can still effectively optimize the configurations
in all the three rounds of training, except on the testing set of round
2. This is because one instance reaches the 300 s solving time limit,
resulting in an excessive value.

To sum up, on the three benchmarks with different characteris-
tics, our method almost consistently outperforms baselines, showing
its strong ability and good robustness in configuring MIP solvers for
heterogeneous instances.

4.4. Experiment 3: Generalization performance analysis

Finally, we evaluate the ability of each method in generalizing
the trained configuration to large instances unseen in training, which
is a desired property for practical usage. For this purpose, we apply
the configurations trained by each method on Set1-S, which has the
smallest scale, to solve the two subsets Set1-M and Set1-L that are
much larger. Results are summarized in Table 8 (results on Set1-S are
copied from Table 5). We can see that both ISACSMAC and DGCAC-k
exhibit the generalization ability on the instances of three scales. In
terms of the average runtime, ISACSMAC improves that of default CPLEX
configuration by 1.9%, 7.4%, and 3.1% on the small, medium and large
instances, respectively. For our method DGCAC-k, the corresponding
improvement is 15.8%, 9.0%, and 7.6%. We can see that for both
methods, the improvement over default configuration drops with the
increase of problem scale, which is common for machine learning
models since the performance usually degrade with the increase of
distribution shift. Nevertheless, the generalization ability of our method
is still better than that of ISACSMAC.

5. Conclusions and future work

While being effective in training configurations for heterogeneous
instances, existing instances-specific algorithm configuration methods
rely on simple numerical features that are manually designed, which
relies on human experience and could limit the configuration per-
formance. This paper proposes DGCAC, a novel instance-specific AC
method for MIP problem, which overcomes this limitation by learning
instance representation directly from instance data. DGCAC reformu-
lates each MIP as a graph, extracts both numerical and structural
information through random walk. Then, it learns instance represen-
tation unsupervisedly based on auto-encoder, and performs 𝑘-means
clustering to formulate homogeneous instance clusters. The above pro-
cess is automated, without the need of manual feature engineering.
Experiments on three representative benchmarks with different de-
grees of heterogeneity well validate the effectiveness of our method.
Results show that our method can generate appropriate clusters for
heterogeneous instances, leading to better AC performance than the
well-known instance-oblivious method SMAC. Moreover, the features
automatically extracted by the unsupervised graph learning can lead to
better configuration performance than that of the traditional manually
designed features used in the original ISAC. Since our target solver
CPLEX is a powerful commercial solver widely used in many indus-
tries (e.g., manufacturing, logistics, maritime affairs), our method can
potentially be applied in speeding up MIP solving in a wide range
of practical applications. In the future, an interesting direction is to
include clustering in the unsupervised representation learning process,
so as to enhance the feature extraction ability. We also plan to extend
our method to support other types of NP-hard problems such as SAT
and CP.

CRediT authorship contribution statement

Wen Song: Conceptualization, Methodology, Software, Writing –
original draft, Writing – review & editing. Yi Liu: Methodology, Soft-
ware, Validation, Writing – original draft, Writing – review & editing.
Zhiguang Cao: Methodology, Software, Validation, Writing – review
& editing. Yaoxin Wu: Conceptualization, Methodology, Writing –
original draft. Qiqiang Li: Conceptualization, Writing – original draft.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This study is supported by the National Natural Science Foundation
of China under Grant 62102228, and in part by Shandong Provincial
Natural Science Foundation, China under Grant ZR2021QF063.

Appendix

The MIPLIB instances considered in this paper is listed in Table A.9.
The optimized CPLEX parameters and their descriptions are listed in
Table A.10. The manual features used in ISAC are listed in A.11.

10

W. Song, Y. Liu, Z. Cao et al. Engineering Applications of Artificial Intelligence 125 (2023) 106740

Table A.9
The MIPLIB instances and the number of variables (𝑛) and constraints (𝑚).

Instance name 𝑛 𝑚 Instance name 𝑛 𝑚

roll3000 1 166 2 295 mc11 3 040 1 920
fast0507 63 009 507 neos5 63 63
beasleyC3 2 500 1 750 p200x1188c 2 376 1 388
swath1 6 805 884 nursesched-sprint02 10 250 3 522
neos-2978193-inde 20 800 396 drayage-25-23 11 090 4 630
n2seq36q 22 480 2 565 rail507 63 019 509
enlight_hard 200 100 neos-1445765 20 617 2 147
supportcase18 13 410 240 ns1952667 13 264 41
exp-1-500-5-5 990 550 dano3_3 13 873 3 202
mik-250-20-75-4 270 195 gmu-35-40 1 205 424
roi2alpha3n4 6 816 1 251 30n20b8 18 380 576
neos-5075914-elvire 5 003 3 720 pg 2 700 125
fastxgemm-n2r6s0t2 784 5 998 neos-5107597-kakapo 3 114 6 498
peg-solitaire-a3 4 552 4 587 timtab1 397 171
neos-860300 1 385 850 neos-662469 18 235 1 085
neos-1171737 2 340 4 179 pg5_34 2 600 225
ns1208400 2 883 4 289 nu25-pr12 5 868 2 313
neos-911970 888 107 neos17 535 486
pk1 86 45 nw04 87 482 36
rmatr100-p10 7 359 7 260 tr12-30 1 080 750
ns1830653 1 629 2 932 rocI-4-11 6 839 10 883
qap10 4 150 1 820 hypothyroid-k1 2 602 5 195
graph20-20-1rand 2 183 5 587 eil33-2 4 516 32
markshare_4_0 34 4 sp150x300d 600 450
drayage-100-23 11 090 4 630 n5-3 2 550 1 062
irp 20 315 39 cod105 1 024 1 024
mcsched 1 747 2 107 neos-3381206-awhea 2 375 479
neos-3083819-nubu 8 644 4 725 neos-1456979 4 605 6 770
sct2 5 885 2 151 seymour1 1 372 4 944
neos859080 160 164 neos-1171448 4 914 13 206

Table A.10
CPLEX parameters considered in this paper.

Name Type Range Default Description

emphasis.mip int 0,1,2,3,4 0 Controls trade-offs between speed, feasibility, optimality, and moving
bounds in MIP.

preprocessing.repeatpresolve int −1,0,1,2,3 −1 Specifies whether to re-apply presolve, with or without cuts, to an MIP
model after processing at the root is otherwise complete.

preprocessing.relax int −1,0,1 −1 Decides whether LP presolve is applied to the root relaxation in an MIP.

solutiontype int 0,1,2 0 Specifies type of solution (basic or non basic) that CPLEX produces for a
linear program (LP) or quadratic program (QP).

preprocessing.boundstrength int −1,0,1 −1 Decides whether to apply bound strengthening in mixed integer programs
(MIPs).

mip.strategy.startalgorithm int 0,1,2,3,4,5,6 0 Sets which continuous optimizer will be used to solve the initial relaxation
of an MIP.

mip.strategy.subalgorithm int 0,1,2,3,4,5 0 Decides which continuous optimizer will be used to solve the subproblems
in an MIP, after the initial relaxation.

mip.strategy.variableselect int −1,0,1,2,3,4 0 Sets the rule for selecting the branching variable at the node selected for
branching.

mip.strategy.bbinterval int 0,1,2,3,4,5,6,7 7 Sets the best bound interval for MIP strategy.

mip.strategy.branch int −1,0,1 0 Decides which branch, the up or the down branch, should be taken first at
each node.

mip.strategy.backtrack float [0,1] 0.9999 Controls how often backtracking is done during the branching process.

mip.strategy.dive int 0,1,2,3 0 Controls the MIP dive strategy.

mip.strategy.lbheur int 0,1 0 Controls whether CPLEX applies a local branching heuristic to try to
improve new incumbents found during an MIP search.

mip.strategy.nodeselect int 0,1,2,3 1 Used to set the rule for selecting the next node to process when
backtracking.

mip.strategy.presolvenode int −1,0,1,2,3 0 Decides whether node presolve should be performed at the nodes of a
mixed integer programming (MIP) solution.

mip.strategy.probe int −1,0,1,2,3 0 Sets the amount of probing on variables to be performed before MIP
branching.

mip.limits.aggforcut int 1,2,3,4,5 3 Limits the number of constraints that can be aggregated for generating
flow cover and mixed integer rounding (MIR) cuts.

mip.cuts.cliques int −1,0,1,2,3 0 Decides whether or not clique cuts should be generated for the problem.

(continued on next page)

11

W. Song, Y. Liu, Z. Cao et al. Engineering Applications of Artificial Intelligence 125 (2023) 106740

Table A.10 (continued).
Name Type Range Default Description

mip.cuts.covers int −1,0,1,2,3 0 Decides whether or not cover cuts should be generated for the problem.

mip.cuts.disjunctive int −1,0,1,2,3 0 Decides whether or not disjunctive cuts should be generated for the
problem.

mip.cuts.flowcovers int −1,0,1,2 0 Decides whether or not to generate flow cover cuts for the problem.

mip.cuts.pathcut int −1,0,1,2 0 Decides whether or not flow path cuts should be generated for the
problem.

mip.cuts.gomory int −1,0,1,2 0 Decides whether or not Gomory fractional cuts should be generated for
the problem.

mip.cuts.gubcovers int −1,0,1,2 0 Decides whether or not to generate GUB cuts for the problem.

Table A.11
Manually designed features used in ISAC.

ID Feature Type ID Feature Type

1 Number of variables int 13 Mean value of the vector of RHS of the constraints float
2 Number of constraints int 14 Min value of the vector of RHS of the constraints float
3 Percentage of integer variables float 15 Max value of the vector of RHS of the constraints float

4 Percentage of continuous variables float 16 Standard deviation of the vector of RHS of the
constraints

float

5 Percentage of ≤ constraints float 17 Mean value of the vector of number of variables (all,
integer or continuous) per constraint

float

6 Percentage of ≥ constraints float 18 Min value of the vector of number of variables (all,
integer or continuous) per constraint

int

7 Percentage of = constraints float 19 Max value of the vector of number of variables (all,
integer or continuous) per constraint

int

8 Percentage of variables with non zero
coefficients in the objective function

float 20 Standard deviation of the vector of number of
variables (all, integer or continuous) per constraint

float

9 Mean value of the vector of coefficients of
the objective function

float 21 Mean value of the vector of the coefficients of
variables (all, integer, or continuous) per constraint

float

10 Min value of the vector of coefficients of
the objective function

float 22 Min value of the vector of the coefficients of variables
(all, integer, or continuous) per constraint

float

11 Max value of the vector of coefficients of
the objective function

float 23 Max value of the vector of the coefficients of
variables (all, integer, or continuous) per constraint

float

12 Standard deviation of the vector of
coefficients of the objective function

float 24 Standard deviation of the vector of the coefficients of
variables (all, integer, or continuous) per constraint

float

References

Alvarez, A.M., Louveaux, Q., Wehenkel, L., 2017. A machine learning-based approxi-
mation of strong branching. INFORMS J. Comput. 29 (1), 185–195. http://dx.doi.
org/10.1287/ijoc.2016.0723.

Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., Tierney, K., 2015. Model-
based genetic algorithms for algorithm configuration. In: Proceedings of the 24th
International Conference on Artificial Intelligence. IJCAI ’15, AAAI Press, pp.
733–739.

Ansótegui, C., Sellmann, M., Tierney, K., 2009. A gender-based genetic algorithm for the
automatic configuration of algorithms. In: Gent, I.P. (Ed.), Principles and Practice of
Constraint Programming - CP 2009. Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 142–157.

Bengio, Y., Lodi, A., Prouvost, A., 2021. Machine learning for combinatorial op-
timization: a methodological tour d’horizon. European J. Oper. Res. 290 (2),
405–421.

Birattari, M., Kacprzyk, J., 2009. Tuning Metaheuristics: A Machine Learning
Perspective, Vol. 197. Springer.

Choi, D., Shallue, C.J., Nado, Z., Lee, J., Maddison, C.J., Dahl, G.E., 2019. On empirical
comparisons of optimizers for deep learning. arXiv preprint arXiv:1910.05446.

Eggensperger, K., Lindauer, M., Hutter, F., 2019. Pitfalls and best practices in algorithm
configuration. J. Artificial Intelligence Res. 64, 861–893.

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., Lodi, A., 2019. Exact combinatorial
optimization with graph convolutional neural networks. Adv. Neural Inf. Process.
Syst. 32.

Gomes, C.P., Selman, B., 2001. Algorithm portfolios. Artificial Intelligence 126 (1),
43–62, Tradeoffs under Bounded Resources.

Hamerly, G., Elkan, C., 2004. Learning the K in K-Means. Adv. Neural Inf. Process.
Syst. 17.

Hutter, F., Hoos, H.H., Leyton-Brown, K., 2011. Sequential model-based optimization for
general algorithm configuration. In: Coello, C.A.C. (Ed.), Learning and Intelligent
Optimization. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 507–523.

Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T., 2009. ParamILS: An automatic
algorithm configuration framework. J. Artif. Intell. Res. 36 (1), 267–306.

Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K., 2010. ISAC –Instance-specific
algorithm configuration. In: Proceedings of the 2010 Conference on ECAI 2010:
19th European Conference on Artificial Intelligence. IOS Press, NLD, pp. 751–756.

Kool, W., van Hoof, H., Welling, M., 2019. Attention, learn to solve routing problems!.
In: International Conference on Learning Representations.

Lindauer, M., Hoos, H., Leyton-Brown, K., Schaub, T., 2017. Automatic construction of
parallel portfolios via algorithm configuration. Artificial Intelligence 244, 272–290.

Liu, S., Tang, K., Yao, X., 2019. Automatic construction of parallel portfolios via explicit
instance grouping. In: Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33. pp. 1560–1567.

Liu, S., Tang, K., Yao, X., 2020. Generative adversarial construction of parallel
portfolios. IEEE Trans. Cybern. 1–12. http://dx.doi.org/10.1109/TCYB.2020.
2984546.

López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T., 2016.
The irace package: Iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58.

Malitsky, Y., Sellmann, M., 2012. Instance-specific algorithm configuration as a method
for non-model-based portfolio generation. In: International Conference on Integra-
tion of Artificial Intelligence (AI) and Operations Research (OR) Techniques in
Constraint Programming. Springer, pp. 244–259.

Park, J., Chun, J., Kim, S.H., Kim, Y., Park, J., 2021. Learning to schedule job-
shop problems: representation and policy learning using graph neural network and
reinforcement learning. Int. J. Prod. Res. 59 (11), 3360–3377.

Selsam, D., Lamm, M., Benedikt, B., Liang, P., de Moura, L., Dill, D.L., et al., 2019.
Learning a SAT solver from single-bit supervision. In: International Conference on
Learning Representations.

Song, W., Cao, Z., Zhang, J., Xu, C., Lim, A., 2022a. Learning variable ordering
heuristics for solving Constraint Satisfaction Problems. Eng. Appl. Artif. Intell. 109,
104603.

Song, W., Chen, X., Li, Q., Cao, Z., 2022b. Flexible job-shop scheduling via graph
neural network and deep reinforcement learning. IEEE Trans. Ind. Inform. 19 (2),
1600–1610.

12

http://dx.doi.org/10.1287/ijoc.2016.0723
http://dx.doi.org/10.1287/ijoc.2016.0723
http://dx.doi.org/10.1287/ijoc.2016.0723
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb2
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb2
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb2
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb2
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb2
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb2
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb2
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb3
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb3
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb3
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb3
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb3
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb3
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb3
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb4
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb4
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb4
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb4
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb4
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb5
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb5
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb5
http://arxiv.org/abs/1910.05446
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb7
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb7
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb7
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb8
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb8
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb8
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb8
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb8
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb9
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb9
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb9
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb10
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb10
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb10
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb11
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb11
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb11
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb11
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb11
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb12
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb12
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb12
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb13
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb13
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb13
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb13
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb13
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb14
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb14
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb14
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb15
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb15
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb15
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb16
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb16
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb16
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb16
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb16
http://dx.doi.org/10.1109/TCYB.2020.2984546
http://dx.doi.org/10.1109/TCYB.2020.2984546
http://dx.doi.org/10.1109/TCYB.2020.2984546
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb18
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb18
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb18
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb18
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb18
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb19
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb19
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb19
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb19
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb19
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb19
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb19
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb20
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb20
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb20
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb20
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb20
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb21
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb21
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb21
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb21
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb21
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb22
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb22
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb22
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb22
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb22
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb23
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb23
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb23
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb23
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb23

W. Song, Y. Liu, Z. Cao et al. Engineering Applications of Artificial Intelligence 125 (2023) 106740

Wang, Z., Hutter, F., Zoghi, M., Matheson, D., De Freitas, N., 2016. Bayesian optimiza-
tion in a billion dimensions via random embeddings. J. Artif. Intell. Res. 55 (1),
361–387.

Wang, L., Zong, B., Ma, Q., Cheng, W., Ni, J., Yu, W., Liu, Y., Song, D., Chen, H., Fu, Y.,
2020. Inductive and unsupervised representation learning on graph structured
objects. In: International Conference on Learning Representations.

Wu, Y., Song, W., Cao, Z., Zhang, J., 2021a. Learning large neighborhood search policy
for integer programming. Adv. Neural Inf. Process. Syst. 34.

Wu, Y., Song, W., Cao, Z., Zhang, J., 2021b. Learning scenario representation for solving
two-stage stochastic integer programs. In: International Conference on Learning
Representations.

Wu, Y., Song, W., Cao, Z., Zhang, J., Lim, A., 2021c. Learning improvement heuristics
for solving routing problems... IEEE Trans. Neural Netw. Learn. Syst..

Xin, L., Song, W., Cao, Z., Zhang, J., 2020. Step-wise deep learning models for solving
routing problems. IEEE Trans. Ind. Inform. 17 (7), 4861–4871.

Xu, L., Hoos, H.H., Leyton-Brown, K., 2010. Hydra: Automatically configuring algo-
rithms for portfolio-based selection. In: Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence. AAAI ’10, AAAI Press, pp. 210–216.

Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K., 2008. SATzilla: Portfolio-based
algorithm selection for SAT. J. Artif. Intell. Res. 32 (1), 565–606.

Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K., 2011. Hydra-MIP: Automated al-
gorithm configuration and selection for mixed integer programming. In: RCRA
Workshop on Experimental Evaluation of Algorithms for Solving Problems with
Combinatorial Explosion At the International Joint Conference on Artificial
Intelligence (IJCAI). pp. 16–30.

Xu, L., Hutter, F., Shen, J., Hoos, H., Leyton-Brown, K., 2012. SATzilla2012: Improved
algorithm selection based on cost-sensitive classification models. In: Proceedings of
SAT Challenge 2012: Solver and Benchmark Descriptions. pp. 55–58.

Zhai, J., Zhang, S., Chen, J., He, Q., 2018. Autoencoder and its various variants. In:
2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). pp.
415–419. http://dx.doi.org/10.1109/SMC.2018.00080.

13

http://refhub.elsevier.com/S0952-1976(23)00924-7/sb24
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb24
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb24
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb24
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb24
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb25
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb25
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb25
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb25
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb25
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb26
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb26
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb26
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb27
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb27
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb27
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb27
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb27
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb28
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb28
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb28
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb29
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb29
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb29
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb30
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb30
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb30
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb30
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb30
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb31
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb31
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb31
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb32
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb32
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb32
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb32
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb32
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb32
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb32
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb32
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb32
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb33
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb33
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb33
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb33
http://refhub.elsevier.com/S0952-1976(23)00924-7/sb33
http://dx.doi.org/10.1109/SMC.2018.00080

	Instance-specific algorithm configuration via unsupervised deep graph clustering
	Citation

	Instance-specific algorithm configuration via unsupervised deep graph clustering
	Introduction
	Preliminaries
	The Algorithm Configuration Problem
	Sequential Model-based Algorithm Configuration
	Instance-Specific Algorithm Configuration
	Clustering

	Methodology
	MIP Graph Representation and Subgraph Extraction
	MIP graph representation
	Subgraph extraction

	Deep Graph Embedding Learning based on Auto-encoder
	Clustering and Configuration
	Training and Inference Procedures

	Experimental Evaluation
	Experimental Setup
	Configuration scenario
	Instance sets
	Hyperparameters
	Baselines

	Experiment 1: Analysis of Clustering Algorithms
	Experiment 2: Performance Comparison
	Experiment 3: Generalization Performance Analysis

	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix
	References

