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Abstract
An efficient manufacturing system is key to maintaining a healthy economy today. With
the rapid development of science and technology and the progress of human society, the
modern manufacturing system is becoming increasingly complex, posing new challenges
to both academia and industry. Ever since the beginning of industrialisation, leaps in
manufacturing technology have always accompanied technological breakthroughs from
other fields, for example, mechanics, physics, and computational science. Recently, ma-
chine learning (ML) technology, one of the crucial subjects of artificial intelligence, has
made remarkable progress in many areas. This study thoroughly reviews how ML, spe-
cifically deep (reinforcement) learning, motivates new ideas for addressing challenging
problems in manufacturing systems. We collect the literature targeting three aspects:
scheduling, packing, and routing, which correspond to three pivotal cooperative pro-
duction links of today's manufacturing system, that is, production, packing, and logistics
respectively. For each aspect, we first present and discuss the state‐of‐the‐art research.
Then we summarise and analyse the development trends and point out future research
opportunities and challenges.

KEYWORD S
bin packing, combinatorial optimisation, deep reinforcement learning, job shop scheduling, manufacturing
systems, vehicle routing

1 | INTRODUCTION

Combinatorial optimisation problems (COPs), as one important
branch ofmathematical optimisation, have practical applications
in many fields, such as communication, transportation,
manufacturing and aroused broad research in industrial engi-
neering, computer science, and operations research. Due to the
NP (non‐deterministic polynomial‐time) hardness, finding their

optimal solutions is challenging. In specific, the discrete solution
space in COPs renders the optimisation less efficient, without
the guidance of gradient as in continuous optimisation. Mean-
while, the complexity of searching the (near‐)optimal solution(s)
among feasible solutions could exponentially increase as the
problem scale grows. Classic methods, including exact algo-
rithms and (meta‐)heuristics, generally depend on massive
expertise and tuning work to solve specific problems. They are
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also subject to impractical runtime and inferior results, especially
on large‐scale or hard COPs.

To tackle the above issues, learning‐based optimisation
methods flourish in recent years. They learn heuristics or key
policies in COP algorithms in a data driven way, so that the
resulting learning assisted methods are able to achieve high‐
quality solutions. The automatically learned heuristics or pol-
icies have potentials to surpass their classic counterparts via the
effective design of neural networks and training algorithms.
The logic behind the effectiveness of deep learning for COPs
are as follows [1, 2]: (1) a class of problem instances could
share similar structures with only their data drawn from an
underlying distribution; (2) the deep (reinforcement) learning is
conducive to learning heuristics or policies automatically given
sufficient instances with similar problem structures. The first
point is often satisfied in practice given the fact that similar
problems are repeatedly solved everyday in manufacturing and
daily life, for example, machine scheduling and object packing
in production; the second point has been witnessed in the
revolution by deep (reinforcement) learning, which has realise
intriguing achievements in diverse tasks in terms of images,
texts, audios, graphs etc.

Despite very early attempts that couple machine learning
(ML) with COPs [3–5], recent deep learning‐based methods
present promising results, which are comparable to classic
optimisation methods [6–8]. Their success has inspired
miscellaneous deep models to cope with specific COPs, for
example, vehicle routing [9–13], scheduling [14–17], bin packing
[18–21], or enhance performance in solving general COPs, for
example, integer programming [22–28] and constraint pro-
gramming [29–31]. The corresponding literature on the
methods for specific COPs are reviewed respectively in refs
[32–35]. In addition, some surveys from the methodological
perspective overview existing learning‐based methods for
COPs, for example, on generic usage of ML [1, 36, 37], graph
neural networks [38–40], reinforcement learning (RL) [41–47].

In this survey, we review the learning‐for‐optimisation
literature from the perspective of manufacturing. Compared
to the previous surveys, we only centre on the existing
learning‐based methods for the most concerned COPs in
manufacturing, that is, scheduling, bin packing, and routing
problems, since (1) they are nearly the most studied ones in
learning‐for‐optimisation community; (2) neural architectures
and training algorithms for these problems share some as-
sociations, for example, similar sequence‐to‐sequence deep
models are often used in both routing and bin packing; (3)
they correspond to key procedures in the manufacturing
process from goods production to delivery, which directly
influence the final throughput and revenue [45, 48, 49]; (4)
All of the problems are solved for everyday manufacturing,
where deep learning has the most potential to aid for raising
their efficiencies. In specific, the effective scheduling of ma-
chines and crew is paramount for a wise usage of resources
and thus could significantly reduce the cost; a high‐quality
operational solution in the packing procedure empowers a
high usage rate of containers and finally increases goods
supply. The routing procedure directly influences the

transportation of materials or goods, which plays critical roles
in various manufacturing activities. Optimisation for routing
undoubtedly renders the whole manufacturing process more
fluently and reliably. On the other hand, all the above pro-
cedures happen regularly in daily manufacturing. The corre-
sponding COPs need to be tackled in every day, with the
relatively fixed problem structures but different input data,
for example, the delivery locations for routing are varying in
days with distances between locations changed. Therefore,
deep learning could be leveraged to discover efficacious
methods underlying the data distribution. Despite the over-
view of methods for tackling the three concerned COPs, we
also discuss the gap between existing deep models and their
applications in real situations and potential challenges that
could be considered to tackle in future research. We also note
that there are already some surveys for the usage of classic
ML in manufacturing [50–52]. In contrast, this paper presents
cutting‐edge deep learning techniques for typical COPs in
manufacturing, which have achieved superior performance to
classic optimisation methods. In summary, the contributions
of this paper are as follows:

� In this paper, we survey and present recent learning‐for‐
optimisation literature on three specific COPs, that is,
scheduling, bin packing, and routing problems, which are
paramount joints in manufacturing. Compared to existing
survey papers, for example, [1, 41], this paper covers the
works to date and very recent state‐of‐the‐art deep models
for each problem.

� While some survey papers review broad applications of deep
learning in a relatively coarse‐grained way, for example, [40,
44], this paper spreads the learning‐for‐optimisation litera-
ture on the three most studied problems in a fine‐grained
way. We believe such a detailed review could inspire the
development of deep learning in the other problem
domains.

� Meanwhile, we do not limit our scope to single problem
styles, for example, manufacturing/machine scheduling or
transportation [45–47], since there are indivisible associa-
tions between neural architectures or training algorithms in
methods for the involved three COPs, which we believe are
critical to stimulating more advanced methods in learning‐
for‐optimisation community.

� In contrast to existing surveys from the methodological
perspective, we comprehensively present related works for
each problem, which are not constrained to specific
methods, for example, RL [41, 44–47], graph neural net-
works [38–40]. We hope it could grasp the whole picture for
each problem, which readers would be interested in.

The detailed discrepancies between this paper and existing
art are as follows. Compared with [41], we focus more on
learning to solve COPs sourced from the domain of
manufacturing. Mazyavkina et al. [41] discussed more general
COPs, such as mixed‐integer linear programs, while failing to
present fine‐grained reviews on manufacturing‐oriented
problems, for example, the job shop scheduling problem
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(JSSP). Therefore, our review is more related and beneficial to
audiences in the manufacturing domain. Panzer et al. [44] re-
view a range of relevant disciplines designated for a production
system and show that deep reinforcement learning (DRL) can
address various tasks. However, we regard production as one
of the essential links of the manufacturing system with the
other two major components, that is, packing and logistics, and
provide a more systematic view of the whole system by
covering each of the links via reviewing the state of the art
research respectively. Although the detailed analysis of sched-
uling problems in the production system is given in refs [45,
46], the literature introduced is relatively outdated compared
with those in this paper. Furthermore, we focus on algorithms
based on GNN and attention‐based neural network, which are
demonstrated as more suitable and promising for COPs in the
manufacturing system, for example, for vehicle routing prob-
lem (VRP) [9]. Finally, Farazi et al. [47] specifically reviews the
comprehensive application of RL in the broad transportation
domain. Nonetheless, some covered disciplines, such as mari-
time transpiration and energy‐efficient driving, are too domain‐
specific to be informative for audiences from manufacturing
systems. In contrast, we focus on the topics in transportation
most related to manufacturing, that is, logistics optimisation.

The reminder of this survey are arranged as follows. In
Section 2, we introduce problem definitions and basic notions
for the three COPs. In Section 3, we review the learning‐based
methods for scheduling problems, with a bias to paradigms for
JSSP, one basic and generic scheduling problem. In Section 4,
we review existing deep models for offline and online bin
packing problems (BPPs) respectively. In Section 5, we elab-
orate neural solvers for a variety of routing problems. We
conclude this survey in Section 6 with some discussions.

2 | PRELIMINARIES

In this section, we first introduce DRL, a novel ML paradigm
for solving job shop scheduling, packing, and VRPs. Then, we
state the three problems in the form of graph representation,
on top of which existing works develop miscellaneous deep
models. Since existing models mostly resort to DRL as training
paradigms, we further present typical MDP formulations used
commonly in literature.

2.1 | Deep reinforcement learning

DRL is the combination of RL [53] and deep learning [54]. RL
is a subject of ML that deals with sequential decision‐making.
The basic idea of RL is straightforward: An agent (usually
controlled by some policy π) interacts with its environment by
taking actions. The environment reacts to the agent's actions
and provides it with numerical feedback (rewards). The goal of
the agent is to learn good behaviour such that the expected
cumulative feedback (formulated as the state value function V)
is maximised, which is usually achieved by learning an optimal
policy π* or an optimal state value function V * explicitly (the

optimal policy can be retrieved later from V *). The interaction
procedure between the agent and the environment can be
described as the close loop in Figure 1.

In most cases for DRL, either the policy πθ or the state
value function Vθ is parameterised with some deep neural
network with parameters θ. The former case is classified as the
policy‐based method, which includes REINFORCE [55], A3C
[56], and proximal policy optimisation (PPO) [57], while the
latter case is called the value‐based method covering Deep Q
Network (DQN) [58], double DQN [59], and duelling DQN
[60]. We refer the audiences to ref. [61] for a comprehensive
review of DRL methods.

2.2 | MDP formulations

To better describe the three problems, we provide basic
problem statements and corresponding MDPs respectively.
Please note that all MDPs in this section are concluded from
existing literature, and they have been widely applied in existing
RL methods for solving the problems.

2.2.1 | Job shop scheduling problems

Problem statement: Among the scheduling problems in
manufacturing, the JSSP [62] is one of the generic models that
has been vastly studied. In JSSP, a series of jobs are to be
processed by a set of machines. Each job contains several
operations that should be processed in a predefined order (i.e.
the precedent constraints). The goal is to find the best per-
mutations (processing orders) of operations on machines to
achieve particular objectives while not violating the precedent
constraints, such as minimising total production time (i.e. the
makespan) or the total tardiness. The MDP formulation for the
JSSP often varies from method to method, depending on the
genre of the framework. Here we introduce one of the MDP
modellings based on a construction heuristic exploited by most
of the existing research.

State: The problem instances and partial schedules
encountered during solving are usually represented with the
disjunctive graph [63], a sparse directed graphical model with
operations as nodes and the directed arc between any two
operations denoting the processing order from the source to
the target.

Action: The action set for the current state (disjunctive
graph) is the subset of feasible operations that can be assigned
to their designated machines. This operation assignment action
is usually called dispatching.

Transition: The transition from one state to the next state
is a deterministic function that changes the disjunctive graph
according to the dispatched operation to accommodate the
effect of dispatching. It updates the topology of the disjunctive
graph, for example, new arcs are introduced to connect the
dispatched operation with its preceding neighbour on the same
machine, or the numerical features of each node, for example,
the starting time.
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Reward: The reward is closely correlated with the objec-
tive we would like to optimise. For example, one can define the
reward as the value difference of the makespan of the current
state to the previous state, such that the sum is the total
makespan we want to minimise.

Policy: The stochastic policy takes the disjunctive graph
representation of the current state as input. It selects one of the
feasible operations to dispatch to the machine till the end of
the episode.

Note that the above MDP model is a general formulation.
Some existing works strengthen this MDP modelling by aug-
menting the disjunctive graph. For example, ScheduleNet [64]
enhances the expressiveness of the disjunctive graph by
introducing artificial machine nodes that include more infor-
mation from the perspective of the resources (machines).

2.2.2 | Bin packing problems

Problem statement: Given a set of cuboid items I = {i1, …,
iN}, with each item in featured by its length, width and height
(ln, wn, hn), they need to be put into a bin B with length,
width and height (L, W, H). The basic constraints are (1)
the total capacity/weight of items cannot surpasses the
maximal allowed capacity/weight of the bin and (2) items
cannot overlap with each other. In addition, other practical
constraints (e.g. regrading stability, precedence) are often
involved in different problems [21, 65]. The construction
heuristics for such problem could be described as the MDP
defined below:

State: Since the items are put into the bin one by one, the
state st ∈ S at the tth step should reflect both the status of the
bin with the packed items Ipt and the set of unpacked items Iut .
Regarding the former, it comprises the configuration of the
packed items in the bin, for example, the positions, orienta-
tions and sizes of packed items. Also, the height map is often
used to reflect both the current distribution of packed items
and utilisation rate in the bin. Regarding the latter, the sizes and
orientations of unpacked items should be considered.

Action: At each state st, the action could be selecting the
next item to pack from the unpacked ones ait ∈Ai, deter-
mining the position of the selected item in the bin apt ∈Ap,
and selecting its orientation aot ∈Ao. In the literature, the agent
could only focus on one (e.g. at ¼ ait) or two actions (e.g.
at ¼ ðait; a

p
t Þ), with the other executed by heuristics in the

environment.
Transition: Given the action at, the selected item ait is put

into the bin, following its position apt and orientation aot , so that
the state is deterministically updated as st+1, with a new status
of the bin with the packed items Iptþ1 ¼ Ipt ∪ ait and the
remaining unpacked items Iutþ1 ¼ Iut − ait. Specially, Ip0 ¼Ø
and Iu0 ¼ I .

Reward: According to different objectives to optimise, the
reward functions are defined diversely. Here, we take the uti-
lisation rate as the objective, which is mostly studied in the
present learning‐based methods. The reward function can be
defined as rt = ltwtht/LWH, where (lt, wt, ht) is the size of the

selected item ait. The reward indicates the change of the uti-
lisation rate when the item ait is packed at the tth step. The
interaction between the agent and environment alternately
extends until the termination by the capacity/weight
constraint, and the cumulative reward from step t of the
episode is Rt ¼

PT
k¼t γ k−trk, with the discount factor γ ∈ [0,

1]. When t = 1 and γ = 1, R1 ¼
PT

k¼1lkwkhk=LWH . There-
fore, the goal of RL is maximising the expected utilisation rate
E½R1� over the distribution of episodes.

Policy: The stochastic policy π is represented by a con-
ditional probability distribution π¼ P

�
ait; a

p
t ; aot jst

�
. The sto-

chastic episodes are produced by solving a class of BPPs, with
the policy iteratively picking the action given each sate st. The
episodes are used to optimise the policy by RL algorithm.
According to the concerned actions, the policy for only one or
two actions are trained in most literature, for example,
π¼ P

�
aitjst
�
and π¼ P

�
ait; a

p
t ; jst

�
.

Please note that the above problem description and MDP
is for a basic offline 3D bin packing. The instantiations of the
MDP have been successfully applied for specific packing
problems in some works [20, 66]. Other variants of packing
problems and their corresponding MDPs (e.g. packing with
online settings, multiple bins or continuous positions) can be
found in literature [18, 49, 67, 68].

2.2.3 | Vehicle routing problems

Problem statement: Given a graph G = (V, E) where V
contains N nodes and E contains the possible edges between
each node i, j ∈ V, the general routing problems consider
finding the shortest route to serve N customers under several
constraints. For example, the Travelling Salesman Problem
(TSP) considers finding the shortest Hamilton cycle, that is, a
tour that starts with one node, visits other node once and
only once, and finally returns to the starting node. The pre-
vailing MDP formulations of DRL‐based solvers for routing
problems can be classified into two types, that is, construction
MDP and improvement MDP. Below we introduce them in
detail.

F I GURE 1 The close‐loop interaction between the agent and the
environment. For interaction at time step t, at, st, and rt stand for the action,
state, and reward respectively. st+1 is the next state to which the
environment transits. The agents' policy π(⋅|s) takes a state s as input and
outputs an action a.
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1) Construction MDP: Staring from an empty solution, the
MDP describes a process of iteratively adding a node into
the current partial solution until a valid solution is
constructed.

State: The state st ∈ S at time t reflects (1) node‐level
information for each customer node (i.e. coordinates, de-
mand etc.), (2) global‐level information about the route con-
struction (e.g. the remaining capacity of the vehicle), and (3)
the current partial solution {a1, …, at−1} where ai is the
previously selected node (action) at time i. For initial state
when t = 0, the partial solution is empty.

Action: At time t, the action is to choose a valid node in set
V. However, we note that the action space is state‐dependent,
which means that not all nodes in V are available for selection
given a particular state st. We mask the actions that lead to
infeasible solutions so as to make sure all the constraints of the
routing problems are satisfied. In the TSP example, we mask
previously visited nodes to make sure that each node is only
visited once.

Transition: The state transition rule is deterministic which
adds the selected action at to the partial solution, that is,
change the partial solution from {a1, …, at−1} to {a1, …, at−1,
at} and then update the node‐level and global‐level informa-
tion of the state accordingly.

Reward: In typical routing problems where the objective is
to minimise tour length, the reward is commonly set to the
negative value of the increase in tour length, such that the
cumulative rewards would be the negative total tour length.
The idea here is to ensure that maximising cumulative rewards
is equivalent to minimising the tour length objective. This
reward design is supposed to be updated for different VRP
variants based on their specific objective function.

Policy: The policy π is usually parameterised by a deep
model (i.e. a deep neural network). Given the input state st that
describes the current partial solution and the information
about the construction, the policy decides on an action at that
selects a node. The entire episode concludes when all of the
nodes are selected and a valid tour is constructed. In most
cases, the policy is stochastic in the sense that it learns an
action distribution for selecting each node.

2) Improvement MDP: Differently, this MDP describes a
search process similar to the neighbourhood search [69] in
traditional heuristics. Staring from a randomly generated
solution, it iteratively performs rewriting operations (neigh-
bourhood search) on the current solution to convert it to
another ones, until near‐optimal solutions are found. Below
we give a possible MDP formulation for the above
improvement process.

State: The state st of the MDP at time t would reflect:
(1) node‐level information for each customer node (similar
to the construction MDP), (2) global‐level information
about the search (e.g. historical visited solution and its
corresponding costs), and (3) the current solution δt. For
the initial state s0, the solution δ0 can be any randomly

generated one as long as it is feasible for the studied routing
problem.

Action: The action at would be a specific operation that
changes the current solution δt into another new one δ0t. For
example, according to refs [2, 70], the action is to specify two
nodes (i, j) in V to perform a pairwise local search operation as
shown in Figure 2. And according to refs [71, 72], the action is
to control a ruin‐and‐repair operator to perform the neigh-
bourhood search. This process is similar to the idea of
neighbourhood search in the literature. Meanwhile, we note
that masking is also applied to the action space in order to
make sure the next solution is feasible.

Transition: In many existing works, the state transition
rule is deterministic which will always accept the next proposed
solution δ0t as the solution of the next state. Meanwhile, the
node‐level and the global‐level information of the state are
updated accordingly.

Reward: The reward is typically set to be the immediate
reduced objective value of the current best‐so‐far solution after
taking the local search action, which ensures that the cumu-
lative rewards would equal to the total improvement (i.e.
reduced objective value) over the initial solution (for mini-
mising optimisation).

Policy: The policy π is usually stochastic and para-
meterised by a deep model. Different from the above con-
struction MDP, the time horizon in improvement MDP could
be any user‐specified values according to the time budget of
users; thus a reward discount factor γ < 1 is usually needed.
The best solution found throughout the whole improvement
horizon was recognised as the final solution to the studied
routing problem.

The instantiations of the above two MDPs have been
successfully applied for specific routing problems in several
representative works (e.g. in refs [2, 9, 10, 70, 72, 73]). Similar
to scheduling and bin packing, we note that there are different
MDPs used in the literature other than the above ones for
routing problems. We refer to refs [73, 74, 75] as some
examples.

3 | JOB SHOP SCHEDULING
PROBLEMS

Fabrication is one of the essential procedures of modern
manufacturing systems. Scheduling is a prerequisite for coor-
dinating resources for tasks to increase productivity and reduce
cost, critical for achieving efficient fabrication. The scheduling

F I GURE 2 Three examples of pairwise neighbourhood search
operators. This graph is retrieved from Ma et al. [70], where 2‐opt reverses
the segment between node i and node j; insert puts node i after node j; and
swap exchanges the position of node i and node j.
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problems are usually mathematically defined as COPs and thus
can be solved precisely with exact methods such as mathe-
matical programming and branch‐and‐bound [76]. However,
most of the scheduling problems possess NP‐hardness [77],
making it too time‐consuming to obtain the optimal solution
for large‐scale instances within a limited time for real‐life
scenarios in practice. Therefore, a wide range of so‐called
heuristic or metaheuristic methods [78] are developed, which
trade off the solution quality with computational time.
Although the heuristics and metaheuristics have improved to
progressively mature since their emergence, the recent break-
through of ML techniques and the increasing complexity of
scheduling problems have aroused more interest in incorpo-
rating ML with traditional heuristic and metaheuristic methods
for better performance [79, 80].

3.1 | Learning to solve JSSP

3.1.1 | Learning to generate PDRs for JSSP

Many algorithms have been proposed to solve JSSP. Among
them, the priority dispatching rule (PDR) [81] is a class of
frequently used heuristics that has extensive applications on
JSSP due to its very fast computation and human interpretable
expressions. A number of PDRs has been designed and
implemented for JSSP instances with various production cri-
terion and constraints [81]. However, manually designing
PDRs can be tedious and mentally intensive since there are no
guarantees that a single PDR or a subset is enough and
effective to adapt for full spectrum of JSSP instances and
objectives. From a data science point of view, the bright part is
that the abundant JSSP instances with diverse sizes and dis-
tributions make it possible to utilise ML to generate PDRs
automatically. Attributed to the generalisation ability of ML,
machine learning models are expected to generate high‐quality
PDRs for a range of JSSP instances for given distributions,
which alleviates the burden of human expert in designing
PDRs manually.

In particular, L2D [14], GNNRL [82], and ScheduleNet [64]
are three pioneering and representative works following this
idea. L2Ds [14] model the solution‐constructing procedure as a
sequential decision‐making problem and utilise DRL to solve it
by learning to dispatch operations. Specifically, the JSSP in-
stances and (partial) solutions are represented with disjunctive
graphs [63], a sparse directed graphical model describing the
processing orders among operations. Then, a DRL agent, usu-
ally parameterised by a GNN, learns the vectorised embeddings
of the operations (nodes) in the disjunctive graph, based on
which one of the feasible operations is selected and dispatched
to its corresponding machine and make corresponding changes
to the topology of the disjunctive graphs (states). Unlike the
traditional PDRs that select operations based on a priority index
computed by some rules, the DRL agent learns from the graph
and outputs the operation in an end‐to‐end manner. Such
learning ability allows the DRL agent to learn from copious
instances and generalise to unseen ones, even those from other

distributions. GNNRL [82] follows a similar strategy but with
some differences. The states (disjunctive graphs) are static, and
the architecture of GNN is different, which is a simple message‐
passing network. Compared with the other two works, Sched-
uleNet [64] is the first to propose introducing artificial machine
nodes into the disjunctive graph to incorporate the work‐in‐
progress (WIP) information for partial schedules. By learning
the embedding of machine and operation nodes independently
with a type‐aware GNN model, ScheduleNet achieves state‐of‐
the‐art performance due to more expressive graph representa-
tion and more effective graph embeddings. JSSenv [83] is a
delicately designed and well‐optimised simulator for JSSP,
extended from the OpenAI gym's environment suite [84].
Instead of employing the disjunctive graph, JSSenv models and
represents the states of partial schedules with Gantt charts [85].
JSSenv then proposes a DRL agent to solve JSSP instances
individually in an online fashion. However, it is an online
method that performs training for each individual instance,
hence is slower in computation compared with other works
which can quickly infer the solutions to given instances after
trained offline.

Prior to DRL, researchers employ genetic programming
(GP), a kind of classic ML algorithm to learn to generate
PDRs, for example, in refs [86, 87]. While showing promising
results, GP‐based methods generate a fix rule that applies to all
states. In contrast, DRL‐based methods generate policies that
are adaptive to each scheduling states, hence have more po-
tential in optimising the performance.

3.1.2 | Learning to select PDRs for JSSP

Instead of learning PDRs explicitly, several works tend to learn
to select from a subset of PDRs. Lin et al. [88] propose a DQN
[58] (one of the well‐knownDRLmethods for discrete control)‐
based method, to select PDR from a pool of candidates for each
machine. Each machine is now treated separately, and a cen-
tralised DQN agent learns to pick dispatching rules for each
machine respectively. Since the rule set is predefined and fixed
during learning and testing, the DQN agent's performance is
highly dependent on the quality of the rules in the set. Compared
with learning PDRs explicitly, which theoretically can search the
whole PDR space, learning to select rules has limited explora-
tion (only covering a subset of the space), and the performance
is therefore relatively less competitive. However, while learning
PDRs loses its interpretability as it is difficult to reason why a
particular operation is dispatched since the action is generated
with a deep neural network, learning to select PDRs is more
understandable to human experts.

3.2 | Learning to solve JSSP with flexible
machines

In order to be more in line with the actual situation of
manufacturing systems in real life, some challenging but
essential features and constraints are needed to be incorporated
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when solving JSSP. For example, flexible machines and
dynamical events are two classes of constraints often consid-
ered. The flexible machines (or parallel machines in some
literature) are a group of identical machines for processing jobs.
Compared with classical JSSP, where each job has its designated
machines to process, the job with multiple flexible machines
must be assigned to one of the eligible machines before deciding
its processing order on the selected machine. The JSSP
with flexible machines is termed as the flexible JSSP [89], or
FJSSP in short. Recently, several works have been devoted to
exploring FJSSP solving with ML techniques. In ref. [90], Müller
et al. propose a ML algorithm for selecting constraint pro-
gramming solvers for FJSSP. In their study, they find that the
CPLEX from IBM and OR‐Tools fromGoogle are the two best
solvers for solving FJSSP in terms of solution quality and
computational time; however, their performance is comple-
mentary to each other. According to this observation, they
propose two ML algorithms based on decision trees (traditional
ML) and convolutional neural networks (CNNs) (deep learning)
to select CPLEX or OR‐Tools solver based on the instance
features and parameters. The comprehensive experiments show
that the solver‐selection approach outperforms using any of the
two solvers. In ref. [91], Song et al. propose a DRL‐based
method to automatically learn high‐quality PDRs for FJSSP
end‐to‐end, without relying on existing manual PDRs.
They design a heterogeneous graph structure to represent ma-
chine and job status during the construction process, and pro-
pose a heterogeneous graph attention network to extract graph
embeddings for decision making. Results on both synthetic and
public benchmarks show that the learned policy performs better
than traditional manual designed PDRs. Besides utilising
deep architectures, the traditional ML algorithm has also
demonstrated effectiveness in learning for solving FJSSP.
RANFORS [92] proposes a random forest‐based algorithm
for extracting PDRs from the best schedules generated
with mixed‐integer linear programming, constraint program-
ming, or hybrid genetic algorithm, with the aim of minimising
the average total weighted tardiness of jobs. The experiment
results show that the learned PDRs outperform the existing
dispatching rules.

3.3 | Learning to solve JSSP with dynamic
events

Accidents can happen anytime in such a complex system as the
production system, such as new jobs arriving or machines
malfunctioning, which poses more challenges for ML‐based
solvers. The JSSP with dynamic events is called dynamic
JSSP (DJSSP). Some methods start considering various dy-
namic events to make the scheduler more robust to these
disturbances. Zeng et al. [94] consider machine breakdown and
different order requirements in JSSP, where a machine can
break or the configuration of jobs may change. They formulate
the DJSSP as an MDP with the disjunctive graphs as the states
and a set of PDRs as the action space. A graph representation
learning module based on the self‐attention mechanism [97]

extracts the embeddings of each operation for the current
state. Unlike previous works with GNN as the backbone
embedding networks that aggregate information from neigh-
bours by following the topology of the disjunctive graph, they
propose to exploit self‐attention as the embedding operator
where each node pays attention to every other node regardless
of their connections in the disjunctive graph. Then a DRL
agent based on double duelling DQN with prioritised replay
and noisy networks (D3QPN) algorithm learns to pick rules
from the action set. The experiment results show that D3QPN
outperforms traditional PDRs and a genetic algorithm‐based
metaheuristic method. Their analysis of the effect of
different graph representation learning methods, that is,
matrix‐based, GNN‐based, and attention‐based methods, shed
some light on the representation learning for JSSP.

3.4 | Other shop‐level scheduling problem

In addition to JSSP, there are efforts to approach other types of
shop‐level scheduling problems with DRL. MatNet [95] con-
siders a flexible flow shop problem (FFSP). In FFSP, a set of
jobs consists of multiple stages, each of which is to be pro-
cessed by a set of flexible machines. The problem instances are
encoded by a series of matrices, each corresponding to a stage
containing the processing time of each job on each flexible
machine at that stage. Then a matrix encoding network (Mat-
Net) based on self‐attention mechanism [98] independently
embeds each stage's matrix and outputs the permutation of
jobs on each machine for that stage. The experiment results
reveal that MatNet is better than the CPLEX solver and a
particle swarm‐based metaheuristic method in terms of speed
and optimality gap. However, MatNet makes an assumption
that the machines are not shareable across stages, which is less
generic than JSSP. MGRO [15] learns a policy to aid iterated
greedy, an improvement heuristic, to solve the hybrid flow
shop scheduling problem. PFSPNet [96] solves a simpler
variant of the scheduling problem called the permutation flow
shop scheduling problem, where the solution of a problem
instance is a permutation of all jobs. PFSPNet consists of an
encoder and a decoder; all built based on the classical RNN
network. By taking the problem instance as input and
embedding it with the encoder, PFSPNet extracts the work-
flow for jobs as vectors, which are then fed into the decoder to
decode a permutation of jobs. Large‐scale problem instances
are tested for up to 200 jobs and 20 machines. The experiment
results are promising compared with other heuristic and met-
aheuristic baselines.

3.5 | Future directions

We have reviewed the state‐of‐the‐art deep (reinforcement)
learning‐based methods for solving JSSP and its variants in
previous sections, for which we summarise the information in
Table 1. Nevertheless, the performance of existing learning‐
based methods can be enhanced with the advanced searching
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strategy and generalisation power. Efficient active search (EAS)
[13] proposes three EAS strategies to adjust either the problem
embedding learned by the encoder, the residual layer added to
the decoder, or the parameters of a lookup table to improve
the performance of the neural COP solvers. In this way, EAS
only adjusts a small subset of (model) parameters during
search, which is faster than the original active search (AS)
framework that updates the whole set of parameters. Experi-
ments on a range of COP problems, such as vehicle routing
and JSSP, demonstrate that EAS is a practical framework for
dramatically improving the performance of existing neural
solvers. Another direction deserving attention is to increase the
generalisation ability. Iklassov et al. [93] come up with an
adversarial curriculum learning (ACL) strategy for addressing
the catastrophic forgetting when generalising between different
problem sizes for JSSP. Specifically, ACL is trained starting
from the most accessible problems (smallest problem size) and
revisits the worst‐solved instances whose difficulty (problem
size) is proportional to the distribution of performance. When
the model's performance is above a threshold for the current
difficulty (problem size), the difficulty level is increased by one
(i.e. the next problem size). ACL has shown outstanding per-
formance improvement against L2D across the full range of
problem sizes.

Generalisation ability is a challenging topic for ML research
in general. Although it has been extensively investigated in
other ML domains, it is less studied under the context of the
COP problem, especially for intelligent scheduling systems. In
contrast, the diversity of complex production systems eagerly
craves a robust ML model that can handle various re-
quirements and scenarios. Taking a step back, performance of

the existing ML‐based scheduling methods is less satisfying
than mature traditional solvers, which may be attributed to the
unsuitable problem representation and weak problem repre-
sentation learning of existing models. Unlike VRPs for which
self‐attention [9] is a well‐recognised backbone model, JSSP
still lacks such a backbone model that can effectively learn
problem representations for various scheduling problems.
These are the current challenges for the future research of
intelligent scheduling in manufacturing systems.

4 | BIN PACKING PROBLEMS

In the manufacturing industry, packing is critical in different
scenarios such as container packing, truck loading, warehouse
stacking etc. [99–101]. The improvement of efficiency in these
joints could largely reduce the cost in manufacturing and
promote the revenue for a company. Different taxonomies are
applicable in the domain of bin packing according to item
dimensions/shapes, objective functions etc. In this section, we
review the learning‐based methods in the aspect of offline/
online BPPs, which associate with whether the upcoming items
for packing are known in prior. It determines the packing
action space, the use of historical data and training paradigms,
which should be considered in the employment of learning
techniques. We also summarise the hyper‐heuristics for BPPs
in the literature since they reflect the early mindsets to solve
the problems with the aid of learning‐based techniques. For
your convenient retrieval, we present the taxonomy of deep
learning‐based methods for bin packing in Table 2. We elab-
orate them below.

TABLE 1 Deep (reinforcement) learning‐based methods for JSSP and its variants in manufacturing systems

Method Year Venue Problem
Constraints or dynamic
events Objective

Machine leaning
algorithm Problem encoding

L2D [14] 2020 NeurIPS JSSP NA Makespan PPO Disjunctive graph

GNNRL [82] 2021 IJPR JSSP NA Makespan PPO Disjunctive graph

ScheduleNet [64] 2022 Preprint JSSP NA Makespan REINFORCE Disjunctive graph

JSSenv [83] 2021 ICAPS JSSP NA Makespan PPO Gantt chart

Lin et al. [88] 2019 TII JSSP NA Makespan DQN Matrix

EAS [13] 2022 ICLR JSSP NA Makespan PPO Disjunctive graph

Iklassov et al. [93] 2022 Preprint JSSP NA Makespan Actor critic Vector

Müller et al. [90] 2022 EJOR FJSSP Flexible machines Makespan Decision trees,
supervised DL

Manually engineered
features

Song et al. [91] 2022 TII FJSSP Flexible machines Makespan PPO Heterogeneous graph

Zeng et al. [94] 2022 Preprint DJSSP Machine breakdown,
different job requirement

Makespan Double duelling DQN Disjunctive graph

MatNet [95] 2021 NeurIPS FFSP Flexible machines Makespan REINFORCE Vector

MGRO [15] 2021 SIGKDD HFSP NA Makespan PPO Multiple graphs

PFSPNet [96] 2021 TETCI PFSP NA Makespan Actor critic Matrix

Abbreviations: JSSP, job shop scheduling problem; PFSP, permutation flow shop scheduling problem.

8 of 24 - ZHANG ET AL.

 25168398, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cim

2.12072, W
iley O

nline L
ibrary on [29/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



T
A

B
L
E

2
A

ta
xo

no
m
y
of

de
ep

le
ar
ni
ng

‐b
as
ed

lit
er
at
ur
e
fo
r
bi
n
pa
ck
in
g

M
et
ho

d
Ye

ar
Ve

nu
e

P
ro
bl
em

O
bj
ec
tiv

e
D
ee
p
m
od

el
P
ol
ic
y
to

le
ar
n

T
ra
in
in
g
al
go

ri
th
m

H
u
et

al
.[
19

]
20

17
Pr
ep
rin

t
O
ffl
in
e
3D

‐B
PP

Le
as
t
su
rf
ac
e
ar
ea

Po
in
te
r
ne
t

Se
qu

en
ce

R
E
IN

FO
R
C
E

La
te
rr
e
et

al
.[
10

2]
20

18
A
A
A
I
w
or
ks
ho

p
O
ffl
in
e
2D

~
3D

‐B
PP

Le
as
t
su
rf
ac
e
ar
ea

Fe
ed

‐fo
rw

ar
d
ne
tw
or
k

Po
sit
io
n
&

or
ie
nt
at
io
n

R
2

D
ua
n
et

al
.[
10

3]
20

19
A
A
M
A
S

O
ffl
in
e
3D

‐B
PP

Le
as
t
su
rf
ac
e
ar
ea

Po
in
te
r
ne
t

Se
qu

en
ce

&
or
ie
nt
at
io
n

PP
O

+
SL

Z
ha
ng

et
al
.[
10

4]
20

21
Pr
ep
rin

t
O
ffl
in
e
&

on
lin

e
3D

‐B
PP

M
ax
im

al
ut
ili
sa
tio

n
ra
te

M
od

ifi
ed

tr
an
sf
or
m
er

Se
qu

en
ce

&
or
ie
nt
at
io
n

R
E
IN

FO
R
C
E

pr
io
rit
ise

d
sa
m
pl
in
g

H
u
et

al
.[
67

]
20

20
A
C
M

T
O
G

O
ffl
in
e
2D

~
3D

‐B
PP

C
om

pa
ct
ne
ss

&
Py

ra
m
id
al
ity

&
St
ab
ili
ty

R
N
N

+
at
te
nt
io
n

Se
qu

en
ce

&
or
ie
nt
at
io
n

A
2C

Li
et

al
.[
10

5]
20

19
Pr
ep
rin

t
O
ffl
in
e
2D

~
3D

‐B
PP

M
ax
im

al
ut
ili
sa
tio

n
ra
te

M
od

ifi
ed

tr
an
sf
or
m
er

Se
qu

en
ce

&
or
ie
nt
at
io
n
&

po
sit
io
n

A
2C

+
G
A
E

Jia
ng

et
al
.[
20

]
20

21
T
C
Y
B

O
ffl
in
e
3D

‐B
PP

M
ax
im

al
ut
ili
sa
tio

n
ra
te

M
od

ifi
ed

tr
an
sf
or
m
er

+
C
N
N

Se
qu

en
ce

&
or
ie
nt
at
io
n
&

po
sit
io
n

A
2C

+
G
A
E

Ya
ng

et
al
.[
68

]
20

21
H
in
da
w
iM

PE
O
ffl
in
e
1D

~
3D

‐B
PP

M
ax
im

al
ut
ili
sa
tio

n
ra
te

‐
Se
qu

en
ce

Q
le
ar
ni
ng

D
ua
n
et

al
.[
49

]
20

22
Pr
ep
rin

t
O
ffl
in
e
3D

‐B
PP

M
ax
im

al
ut
ili
sa
tio

n
ra
te

M
od

ifi
ed

Po
in
te
r
ne
t

Se
qu

en
ce

R
E
IN

FO
R
C
E

K
un

du
et

al
.[
10

6]
20

19
IE

E
E

RO
‐M

A
N

O
nl
in
e
2D

‐B
PP

M
ax
im

al
ut
ili
sa
tio

n
ra
te

C
N
N

Se
qu

en
ce

D
ou

bl
e
D
Q
N

Ve
rm

a
et

al
.[
65

]
20

20
Pr
ep
rin

t
O
nl
in
e
3D

‐B
PP

M
ax
im

al
ut
ili
sa
tio

n
ra
te

Fe
ed

‐fo
rw

ar
d
ne
tw
or
k

Po
sit
io
n

D
ou

bl
e
D
Q
N

Z
ha
o
et

al
.[
21

]
20

21
A
A
A
I

O
nl
in
e
3D

‐B
PP

M
ax
im

al
ut
ili
sa
tio

n
ra
te

C
N
N

Po
sit
io
n

A
C
K
T
R

Z
ha
o
et

al
.[
18

]
20

21
IC

LR
O
nl
in
e
3D

‐B
PP

M
ax
im

al
ut
ili
sa
tio

n
ra
te

G
A
T

Po
sit
io
n

A
C
K
T
R

Ya
ng

et
al
.[
10

7]
20

21
IR

O
S

O
nl
in
e
3D

‐B
PP

M
ax
im

al
ut
ili
sa
tio

n
ra
te

M
LP

Po
sit
io
n

PP
O

Z
hu

et
al
.[
10

8]
20

21
A
C
M

C
IK

M
O
nl
in
e
3D

‐B
PP

M
ax
im

al
ut
ili
sa
tio

n
ra
te

C
N
N

Po
sit
io
n

SL

ZHANG ET AL. - 9 of 24

 25168398, 2023, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cim

2.12072, W
iley O

nline L
ibrary on [29/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4.1 | Off‐line BPPs

Inspired by Pointer Networks [6, 7], Hu et al. propose the first
trial to solve a 3D BPP (3D‐BPP) by deep learning [19]. They
take the sizes of items as input to the encoder, and employ the
decoder to output the sequence in which the items are packed
into bins. Laterre et al. also attempt to determine the sequence of
items for 2D‐BPP and 3D‐BPP by an adversarial self‐play in
single‐player games, which is extended from two‐player games
(e.g. go and chess) [102]. They transform standard rewards in
MDP according to if a reward surpasses a percentile of historical
rewards, so that the agent always aim to achieve better perfor-
mance than its latest version. Duan et al. learn the policy to select
orientations for items in addition to the sequence policy, and
adapt Pointer Network with the intra‐attention which involves
the information in previous decoding steps in the current de-
cision [103]. The above three works minimise the surface area of
a flexible rectangular bin, given soft packing materials. In
contrast, various methods are proposed to maximise the uti-
lisation rate of bins. Zhang et al. apply a transformer‐style neural
network to learn the sequence policy and an additional
attention‐based network to determine positions to put each
item. They use prioritised oversampling to improve the training
and evaluate their method for offline/online 3D‐BPPs [104].
Hu et al. resort to an encoder‐decoder neural architecture to
learn the selection of the pair of an item and its orientation [67].
They consider a special case where the items are initialised by a
spatial configuration, which leads to a preference constraint
between items, for example, an item can only be selected to pack
when all items on top of it have been packed. There are also
some endeavours to simultaneously learn policies for selecting
the item, its rotation and position. In specific, Li et al. decom-
pose the actions for combinations of item, rotation and position
into sub‐actions for each dimension, and train the respective
policies by an actor‐critic algorithm with generalised advantage
estimation [66, 105]. This method is evaluated on offline/online
2D and 3D‐BPPs. Similarly, Jiang et al. design a sequence‐to‐
sequence neural network with three decoders to be trained as
three policies, and in the encoder a CNN is used for embedding
the status of bins along with an attention mechanism for
embedding the items [20]. In addition, Yang et al. focus on the
objective of minimum bin slack in 1D~3D‐BPP, in which Q‐
learning is used to train selection policy for items [68]. Duan
et al. convert 3D‐BPP into a set covering problem, considering
to pack the current order with historical packing patterns [49]. In
this way, practical and complex constraints can be readily
handled, since they have been satisfied in the historical suc-
cessful packs. The set covering problem is solved by the column
generation algorithm, in which the authors further accelerate the
solving of pricing subproblems, by selecting candidate packs
with a modified Pointer Net.

4.2 | On‐line BPPs

The recent study on on‐line BPPs by deep learning may start
from [106], in which a CNN‐based Q network is used to learn

the position policy in 2D‐BPPs. Verma et al. claim a first trial
to solve online 3D‐BPPs with real‐world physical constraints.
They limit the candidate positions in a bin to put the items by a
heuristic strategy, and then use DQN to select the action pair
of the position and orientation [65]. This work also discusses
multiple constraints and criteria that should be considered in
online BPPs. Zhao et al. discretise the bottom of a bin as the
grid, with grid points to be selected for locating the front‐left‐
bottom corner of a box, and optimise space utilisation rate in
3D‐BPP by an on‐policy actor‐critic algorithm [21, 109]. This
method is limited to integer constrained box sizes and employ
an additional neural network to predict infeasible grid points
for pruning solution space. To handle continuous sizes of
boxes, the authors also propose a tree search‐based learning
method, where leaf nodes represent candidate placements for
the next item, and they use attention‐based neural network to
select a leaf node and spread the tree [18]. Yang et al. reflect the
promising candidate actions (derived from heuristics) as MDP
rewards for the agent, so as to guide the policy learning via
PPO [107]. They develop a robotic system to evaluate their
method on real‐world packing tasks, which is shown effective
to pack variable‐sized products. Zhu et al. extend the online
3D packing into realistic settings with hundreds of items to
pack and dozens of constraints considered [108]. The learning‐
based method is based on a tree search framework, where a
CNN is trained to prune nodes (packing actions) that could
deliver sub‐optimal solutions.

4.3 | Hyper‐heuristics

Except the above learning‐based methods, some attempts that
learn to solve BPPs are developed in the hyper‐heuristic
domain. Hyper‐heuristics is a class of artificial intelligence
techniques to assist the automatic design of heuristics [110].
Despite standard solution‐oriented heuristics, hyper‐heuristics
are high‐level heuristic‐oriented methods, which aim to
wisely use low‐level heuristics to solve problems for better
performance. There are already some hyper‐heuristics applied
to BPPs. Mao et al. employ a selective hyper‐heuristic to solve
1D‐BPPs, and use a multilayer perceptron (MLP) to predict the
positioning heuristic from the candidates for a given instance
[111]. López‐Camacho et al. propose the representations of
hyper‐heuristics (combinations of low‐level heuristics) by
chromosomes and search the most promising hyper‐heuristic
by genetic algorithm for a class of instances in 1D‐BPP or
2D‐BPP [112]. Similarly, Duhart et al. search the hyper‐
heuristic for 2D‐BPP with the ant colony optimisation
(ACO) [113]. Silva‐Gálvez et al. use k‐means to cluster solving
states of instances and statisticise scores of candidate posi-
tioning heuristics on these clusters, so that the final learned
hyper‐heuristic naturally selects the heuristic with highest score
[114]. The above methods belong to selective hyper‐heuristics
and aim to select low‐level heuristics according to instances or
solving states of instances. On the other hand, generative
hyper‐heuristics automatically construct new heuristics from
components of existing heuristics. A few trials use GP to
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discover effective constructive heuristics for BPPs [115, 116].
All the above methods are designed for off‐line BPPs and a
few hyper‐heuristics solve the online version with similar
techniques [117–119]. Compared to deep learning, hyper‐
heuristics generally lack semantic or informative representa-
tions of instances or solving states, and are less efficient in
training, especially with a large quantity of instances.

4.4 | Future directions

In our survey, we find the current learning‐based methods have
achieved appealing results on both offline/online BPPs,
generally with superior performance to classic hand‐crafted
construction heuristics. However, there are still some chal-
lenges that should be well tackled in the future study. We state
the related issues and the potential research directions in the
following aspects.

Complete state representation: Almost all existing methods
are developed based on DRL, which must learn state repre-
sentation for the status of both the bin and items. Such rep-
resentation could greatly influence the decision in packing
process and thus the final performance. However, existing
methods might only involve partial information when they
learn single policy, for example, sequence or position policy. In
fact, most literature admit the sequence, positions and orien-
tations of items are intertwined, which could together influence
the final packing performance. Hence, the aggregation of
embeddings for these aspects could increase the final perfor-
mance even if single policy is trained.

In addition, since the utilisation rate of bins at each step
are greatly influenced by critical points of currently packed
items, that is, the points with the most values along each
dimension, it is natural to discover the spatial relation between
them in the encoding, especially for 3D‐BPP. The GNN could
be an elegant choice, which we find is scarcely used in the
literature.

Large (continuous) action space: Compared to scheduling
and routing problems, the action space in BPP is the combi-
nations of items, positions and orientations. However, very a
few current works learn to decide on all three aspects [20, 66],
since it will cause the issue of the large action space. This could
be more intractable when continuous positions are considered
[18]. From the perspective of DRL, such large action space
could be potentially tackled by the algorithms for continuous
action space, for example, DDPG, TD3, and decomposition
techniques. We refer readers to representative works in these
domains [120–123].

Practical constraints & criteria: Existing literature mostly
focus on simple BPPs without the consideration of practical
constraints. This issue is pointed out in recent works [49, 108].
Except the standard constraints in BPP, for example, capacity/
weight constraints, overlap constraint, it could be a valuable
direction to cope with realistic constraints in learning, so that
the trained models could be used in real‐world settings.
The additional constraints are different in varying domains,
for example, physical stability with robots [65], customer

requirements in delivery [49], and preference constraints in the
style of picking and packing [67]. Regarding the criteria in BPP,
existing methods mostly focus on minimising the utilisation
rate and bin number. Some other objectives are also critical to
consider in the optimisation, for example, stability, compact-
ness, pyramidality [67]. Thus it could be worthwhile to extend
multi‐objective learning techniques for solving BPPs to gain
more reliable performance.

5 | VEHICLE ROUTING PROBLEMS

Another critical part of modern manufacturing is logistics,
which assures the availability of raw materials before produc-
tion and the efficacy of product distribution after
manufacturing. Logistics services that are efficient, smooth,
and low‐cost may reduce operating expenses, boost profits,
and eventually promote manufacturing development. For de-
cades, the logistic scenarios are modelled and studied as a
classic family of COP called VRPs, also known as the routing
problems [124]. Due to the NP‐hard nature, VRPs are
considered unlikely to be solved optimally within running time
polynomial in the problem size [125], making exact methods
unfavourable in solving industrial‐scale VRP instances. To this
end, heuristic algorithms such as simulated annealing (SA)
[126], neighbourhood search [127, 128], and evolutionary al-
gorithms [129, 130], were proposed to find near‐optimal so-
lutions for VRPs with much shorter time, where hand‐
engineered designs and rules by human experts are leveraged
to define the search process.

Recently, the concepts such as Logistics 4.0 [131] and smart
logistics [132] have embarked in both industry and academia,
which has garnered increased attention in designing learning‐
based solvers for routing problems. After years of develop-
ment, these neural solvers have resulted in promising perfor-
mance on numerous routing problems in terms of both
inference time and solution quality [10, 13, 72, 133–135].
Overall, the main motivation is that the conventional hand‐
engineered heuristics can be effectively substituted by data‐
driven neural solvers through automatic ML, hopefully with
several benefits: (1) the heuristic patterns learned by neural
solvers straight from data may be more efficient than human
designs; (2) the GPU‐accelerated neural solvers tend to exhibit
a faster speed than conventional CPU‐based heuristics, espe-
cially when used to solve a large amount of instances in par-
allel; (3) human knowledge regarding the target routing
problem is often reduced to a minimum while designing such
neural solvers, allowing neural approaches to have potential to
be swiftly adapted for learning to solve new VRP variant; in
another word, neural approaches are some new general tools
for solving routing problems.

The majority of early initiatives of neural solvers were
centred on supervised learning (SL). In the attempts by refs
[6, 136, 137], they successfully showed feasibility of learning
faster neural solvers based on SL. However, SL requires
proper training dataset (i.e. a set of VRP instances and their
corresponding optimal solutions) and the presence of human
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solvers, which prevents its direct application to hard‐to‐solve
and large‐scale VRPs. Nevertheless, even in some recent
works (e.g. in refs [133, 135, 136, 138, 139]), SL is still the
most efficient learning paradigm for training deep models for
small‐scale and fundamental VRP tasks (e.g. TSP). Another
learning paradigm is unsupervised learning (UL), which was
used in refs [134, 140, 141] to (help) learn deep models for
VRPs. Besides SL and UL, more recent works are focused on
the state‐of‐the‐art DRL methods. DRL learns heuristics
without human guidance and manually labelled data, which
shows potential to learn powerful and efficient solvers even
for complex, large‐scale or currently unsolvable routing
problems.

Consequently, this section mainly focuses on reviewing
DRL‐based approaches for solving routing problems. We also
discuss SL in Section 5.2.3 since it is still essential for some
recently developed neural solvers. Unsupervised learning is not
highlighted since it was not actively used in this field. Mean-
while, we limit the review scope to research works that learn
neural heuristics since these methods are more suitable for
industrial‐scale VRP problems in manufacturing we are con-
cerned in this review. There existing some other works that
leverage neural networks to assist exact approaches. For
example, Furian et al. [172] proposed a ML‐based branch and
price framework which uses neural networks to predict the
branching scores in assisting variable selection for branching.
Since we will not cover this direction, we refer to a recent
survey by Lodi et al. [173] for more details of neural exact
approaches. In Table 3, we list a summary of recent DRL‐
based heuristic approaches for VRPs. Other ML assisted
heuristic approaches for VRPs are depicted in Table 4.
Below we summarise existing learning‐based solvers from the
aspects of their target VRP variants and types of learnt neural
solvers, respectively, followed by some discussions on future
directions.

5.1 | Target variants of routing problems

5.1.1 | Classical routing problems

We first discuss several classical routing problems of interest
for manufacturing.

As the simplest routing problem, TSP was the first research
focus in the literature. TSP considers to visitN nodes (locations)
exactly once, and finally return to the original one, where the
objective is to minimise the total travel distance of the route.
Bello et al. [7] presented the first DRL‐based solver for solving
TSP. Using the negatives tour length as the reward signal of RL,
their RLmethod has shown significant improvement over SL [6]
and outperformed Google's solver OR‐Tools [174] on TSP100
(TSP with N = 100 nodes). Dai et al. [142] then proposed S2V‐
DQN based on graph embedding network, which delivered
better performance compared to hand‐crafted heuristics such as
2‐opt, nearest/farthest insertions etc. Since then, considerable
works have focussed on increasing the optimality gaps of DRL‐
based neural solvers utilising three benchmark problems:

TSP20, TSP50, and TSP100 (e.g. Refs [2, 8, 9, 10, 70, 146–148,
154, 163]). Besides the above works that focus on learning
efficient TSP solvers from scratch, researchers are also inter-
ested in the scalability and the generalisation of these learned
solvers on large‐scale instances where conventional heuristics
fail to address well. Drori et al. [151] showed that their learnt
neural solver can solve TSP in approximately linear time
complexity as the problem size increases. Fu et al. [138]
demonstrated that they can generalise a pre‐trained model on
small‐scale TSP (e.g. TSP50) to large TSP instances with up to
10,000 nodes using the proposed graph sampling and heat maps
merging approaches.

Another representative routing problem is the Capacitated
Vehicle Routing Problem (CVRP), which first appears in
Dantzig et al. [175]. It considers multiple vehicles and a ca-
pacity constraint on the basis of TSP. In a CVRP solution, each
vehicle needs to fulfil the demands of some customers by
departing from the depot, visiting the customers, and finally
returning back to the depot, where the cumulative demands of
visited customers in one sub‐route cannot exceed the given
vehicle capacity. Existing works for solving CVRP are usually
tested on CVRP20, CVRP50, and CVRP100. Nazari et al. [8]
extended the work of Bello et al. [7] and became the first
learning‐based method for CVRP. In another concurrent work
by Kool et al. [9], Google's OR‐Tools has been significantly
surpassed by the learning‐based Attention Model (AM).
Further integrated with multiple decoders proposed in Xin
et al. [148], or POMO training [10], the performance of AM
for CVRP was further improved. Specifically, POMO achieved
an averaged gap of 0.32% to the hand‐crafted LKH solver
[176] on 10,000 CVRP100 instance with much shorter
computational time (2 min vs. 12 h) [10]. Different from the
above works that learn neural heuristics in a purely data‐driven
way (i.e. without any human experience), Lu et al. [73] pro-
posed a framework called L2I that combined the learning‐
based methods with the traditional highly‐optimised local
search operators. Despite requiring much more inference time,
L2I becomes the first DRL‐based CVRP solver that beats
classical strong solver LKH [176] in terms of the objective
values. In a recent work by Li et al. [135], they provided the
first neural approach for large‐scale CVRP. By learning to
decompose large CVRP instances into sub‐problems, the
proposed learning‐to‐delegate framework that might speed up
any hand‐crafted CVRP solver by 10� to 100� while main-
taining competitive solution quality. We note that the learning‐
to‐delegate may also be applied to the above learning‐based
CVRP solver.

Pickup and Delivery Problems (PDPs) are also common in
manufacturing logistics. On the top of TSP, the pickup‐and‐
delivery TSP (PDTSP) considers a set of service requests,
each of which is defined by a pickup node, a corresponding
delivery node, and a precedence constraint that requires pickup
to be conducted before delivery. The PDTSP was tackled
through DRL for the first time in ref. [155], where a novel
heterogeneous attention mechanism was introduced to AM. In
ref. [169], the multi‐agent RL was explored to solve PDTSP
with capacity constraint. In a recent work by Ma et al. [72], the
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neural neighbourhood search (N2S) framework was proposed
which was the first learning‐based solver that outstrips the
well‐known LKH3 solver [176] on solving PDTSP and its
variant with Last‐In‐Fist‐Out (LIFO) constraint on the syn-
thesised dataset.

Besides the precedence covariant in PDPs, the time win-
dow (TW) constraint is also critical in real‐world logistics. The
VRPTW was studied in Zhao et al. [149], in which the AM
model is combined with a local search post‐processing pro-
cedure to outstrip traditional heuristics such as the ACO. In Lin
et al. [156], the model of Nazari et al [8] was adapted to solve
the Electric VRPTW where the charging of electric vehicles are
considered in the problem formulation. By proposing a novel
Multi‐Agent Attention Model, Zhang et al. [150] tackled the
VRP with Soft Time Windows (VRPSTW) and outperformed
OR‐Tools with shorter computation time. In Zhang et al. [168],
a more practical TSPTW variant called multiple‐vehicle TSP
with time window and rejections was studied, where customers
can be rejected due to TW constraint.

Many other variants of routing problems are also studied
via DRL‐based methods. In refs [9, 148, 154], their models
were also tested on Split Delivery Routing Problems (SDVRP),
Orienteering Problem [177], Prize Collecting TSP (PCTSP)
[178] and Stochastic PCTSP. The Split Delivery VRP (SDVRP)
was studied in ref. [71] with a proposed Neural Large Neigh-
bourhood Search (NLNS) framework which outperformed the
strong hand‐crafted solver SplitILS [179]. Li et al. [74] inves-
tigated the DRL‐based solver for Heterogeneous CVRP, which
takes into account vehicles of various capacity, using both min‐
sum and min‐max objective settings. Kwon et al. [180] pre-
sented the first neural solver MatNet for solving the Asym-
metric TSP based on the POMO [10] and achieved far superior
performance than other neural approaches.

5.1.2 | Multi‐objective routing problems

In real‐world manufacturing, multiple (conflicting) objectives
may exist in a single optimisation task, for example, minimising
route length while minimising the number of vehicles. Since it
is unlikely to optimise all the objectives with only one solution,
the major purpose of multi‐objective optimisation is to
discover a group of Pareto optimal solutions. The Pareto
optimal means that any solution in the Pareto set can dominate
others in terms of some objectives but not all objectives. Thus,
the Pareto optimal solutions are various trade‐offs between the
different objectives. From the literature, several representative
hand‐crafted solvers for multi‐objective optimisation have
been proposed such as the non‐dominate sorting‐based
NSGA‐II [181], the decomposition‐based evolutionary algo-
rithms MOEA/D [182], and the niching techniques based
evolutionary algorithms [183].

Li et al. [152] were among the first attempts to solve
multi‐objective TSP (MOTSP) using DRL and showed better
performance than the NSGA‐II solver [181]. In their pro-
posed DRL‐MOA method, multiple Pointer Network [6]‐
based deep models are learnt together, each of whichT
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optimises a sub‐problem that considers optimising the
weighted‐sum of multiple objectives with various different
weight configurations. The obtained solutions by all models
are then processed to find the Pareto solutions with a non‐
dominating sorting strategy similar to NSGA‐II [181]. In
Wu et al. [143], the authors further upgraded the Pointer
Network in DRL‐MOA into the more powerful AM model
[9] and solved the multi‐objective VRPTW variant for the
first time, leading to the MODRL/D‐AM method. Later on,
MODRL/D‐AM was further refined with additional tech-
niques for better performance such as evolutionary learning
[158] and meta learning [167]. However, the above methods
all need to learn a set of multiple models and require addi-
tional traditional techniques to find Pareto solutions which
may not be efficient. Moving against that, a recent approach
P‐MOCO [165] proposed to directly output the approximate
Pareto solutions by learning one single preference‐
conditioned model to predict all the possible preferences.
Experimental results on MOTSP and MOVRP showed that
their method significantly outperformed other baselines in
terms of solution quality and the search efficiency.

5.1.3 | Online/dynamic routing problems

The online VRPs contemplate a planning process in which
information regarding the VRP instance is provided progres-
sively, that is, in a real‐time manner (see a survey [184]). This
type of VRP is also connected to dynamic VRPs, which take
into account information changes throughout the operational
horizon (see a survey [185]). Such changes could be, for
example, newly arrived or left orders, changes in service time,
and time‐dependent traffic conditions. Because the dispatch
system in most online or dynamic VRP settings must respond
to dynamic events in a timely manner, learning‐based solver
might be a promising option because it is often considerably
quicker than hand‐crafted heuristics. Meanwhile, the above
online or dynamic events typically have underlying distribu-
tions or patterns, making data‐driven and learning‐based
solvers, more ideal for tackling them.

Based on the deep model of graph embedding [142] and the
Pointer Network [6], James et al. [144] was among the earliest
works of applying DRL to solve dynamic VRPs where newly
arrived pickup‐delivery orders and dynamic traffic conditions
are simulated based on real‐world data. Later on, Zhang et al.
[157] tackled the similar dynamic TSP and dynamic PDP
(DPDP) by ameliorating the AM in Kool at al. [9] into an
upgraded version in order to process dynamic environment
changes. In Wu et al. [159], the AM [9] was adapted together
with some RNN units to solve the time‐dependent TSPTW
variant. In Oren et al. [160], the deep Q‐learning was explored
together with an improved Monte Carlo Tree Search (MCTS) to
solve online CVRP. However, the problem scales of the
aforementioned works remain rather small. Li et al. [161]
introduced Spatial‐Temporal Aided Double Deep Graph
Network (ST‐DDGN), the first learning‐based solver to tackle
industry‐scale DPDP with up to 600+ orders and 150+T
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vehicles. They exploited a ST‐DDGN to estimate delivery de-
mand and regulate the vehicle assignment for new orders. A
hierarchical optimisation framework for DPDP was proposed
in Ma et al. [162] to tackle large‐scale DPDP with up to 1000
orders. In their methods, the upper‐level agent could dynami-
cally partition the DPDP into a series of sub‐problems and the
lower‐level agent could solve the sub‐problem using a neigh-
bourhood search solver (could also be learning‐based one).
Aside from the above solvers that leveraged large and powerful
deep models, there is another line of research works that used
some basic neural networks such as the Multi‐Layer Perceptron
(MLP) [186] (that are much shallower than the ones such as the
Pointer Network [6] and the AM [9]) to aid the decision making.
Joe and Lau [153] studied the dynamic CVRP problem with
newly arrived customers through a hybrid deep Q‐learning and
SA algorithm. Chen et al. [164] investigated a new online routing
scenario in which vehicles and drones collaborate to serve dy-
namic customers and used RL to learn to allocate new cus-
tomers to either drones or vehicles. In a recent work by Basso
et al. [187], the safe RL (without neural networks) was explored
to address the dynamic stochastic electric VRP.When compared
to human solutions, these learning‐based solvers for online/
dynamic VRPs could generate much better results within
shorter response time.

5.2 | Types of learnt neural solvers

As mentioned in Section 2, DRL‐based works have mainly
exploited two types of MDP formulations, resulting in two
types of learnt neural solvers. In this section, we explain them
in depth, followed by a short review of other learning‐based
solvers that do not employ DRL.

5.2.1 | Neural construction solvers

The first type is to learn a construction heuristic. Staring from
an empty solution, it learns to add an customer node into the
partial solution to construct the complete one. In general,
neural construction solvers for routing problems consume
extremely short inference time, which makes it more suitable
for online/dynamic settings that need rapid response. How-
ever, for NP‐hard routing problems, constructing solutions
can easily fall into the local minimum, which renders the needs
of combining other post‐processing techniques, such as: (1)
sampling (e.g. in refs [8, 9, 143, 144, 150, 152, 154–159, 167])
that repeats the stochastic construction process for multiple
times, (2) beam search (e.g. in refs [148]) that performs an
additional best‐first search process, (3) AS (e.g. in refs [7, 13])
that performs a few extra gradient updates during inference for
each specific instance, (4) data augmentation (e.g. in refs
[10, 95, 165]) that samples multiple solutions by exploiting the
equivalence and invariant transformations for routing prob-
lems, and (5) other hybrid construction and local search
methods (e.g. in refs [12, 149]). Among them, we highlight the

data augmentation technique, which was initially suggested in
POMO [10] and is the most effective and efficient way for
boosting the performance of neural construction solvers. In
specific, the authors proposed that by flipping the node co-
ordinates, a given TSP or CVRP instance in Euclidean space
might be augmented into eight distinct ones with the same
optimal solution. Though these instances are equivalent for the
routing problem, the learned deep models may regard them as
distinct, which would enable more diverse construction pro-
cesses. We also highlight the EAS by Hottung et al. [13]. As
also mentioned in Section 3.5, EAS performs AS for a
particular instance during inference by only adjusting a small
subset of parameters of the learnt deep model to achieve su-
perior performance. And it could be generic to boost most of
the above neural approaches. For example, by applying EAS to
POMO on solving CVRP, EAS achieved a even better per-
formance than the strong hand‐crafted heuristic LKH3 [176],
leading to the state‐of‐the‐art performance on learning data‐
driven CVRP solvers [13].

5.2.2 | Neural improvement solvers

Aiming at directly learning the search process, the second type
exploits the neural improvement heuristics that learn to
perform N2S. Staring from a complete initial solution, it learns
to iteratively transform the current solution into another one
until a given time limit is achieved. Since this type of neural
solvers learn to improve a poor random solution, they are in
general slower than the neural construction heuristics (but can
be still faster than conventional hand‐crafted heuristics in most
of the cases). These improvement solvers are motivated by the
idea that if the available solving time is longer, they may find
much higher quality solutions than neural construction solvers.
As the first neural improvement heuristic, NeuRewriter [11]
learns to pick local search operations and rewrite the local
components of the current solution. It successfully out-
performed the neural construction solver AM [9] and Nazari
et al. [8] on solving CVRP. The L2I framework proposed in Lu
et al. [73] explored the hybrid of learning framework and
conventional methods. It used a learning‐based neural network
to select local search operators from a candidate pool con-
taining several professional local search operators and became
the first neural solver to outperform hand‐crafted LKH3
solver [176] on solving CVRP instances in terms of the solu-
tion quality (though required longer computation time). By
exploring SA heuristics as well as the idea of the large neigh-
bourhood search (LNS) heuristics which considers applying
destroy and repair operators to current solutions, the neural
LNS (NLNS) was proposed in Hottung et al. [71] and also
showed superior performance over AM [9]. Wu et al. [2]
proposed a Transformer‐based improvement solver for TSP
and CVRP. By learning to perform the pair‐wise operators (e.g.
2‐opt, reinsert, or swap as illustrated in Figure 2), it has shown
a promising result over NeuRewriter [11] and AM [9]. The
method of Wu et al. [2] was then improved to dual‐aspect
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collaborative transformer (DACT) method by Ma et al. [70]
based on a upgraded deep model and a CL strategy to enhance
the RL. Though DACT displayed a significantly better infer-
ence and generalisation performance than Wu et al. [2], its
computational efficiency is still not satisfactory when
compared to the latest neural construction solvers (e.g. POMO
[10]). In a more recent work, DACT was further modified to
N2S [72] to solve the pickup and the delivery problems
(PDPs). By further equipped with a designed data augmenta-
tion scheme similar to POMO [10], N2S significantly out-
performed DACT, Heter‐AM [155], and POMO on solving
PDPs and became the first learning‐based solver to outstrip
the well‐known hand‐crafted LKH3 solver [176] on syn-
thesised PDP datasets.

5.2.3 | Other ML‐assisted solvers

Furthermore, there are studies that employed ML techniques
other than DRL to learn neural solvers. In CVAE‐Opt solver
[141], the authors employed the unsupervised conditional
variational autoencoder approach to learn a latent search
space where each point in the space corresponds to a VRP
solution. As a result, the optimisation of constrained routing
problems was transformed into an unconstrained optimisation
problem in the latent space, allowing high‐quality solutions to
be found via powerful unconstrained continuous optimisation
solvers like differential evolution algorithm. Another inter-
esting idea in the literature is the combination of SL with
other conventional approaches. As discussed previously, SL
can effectively train deep models only when the training data
are available. Thus, SL is often prohibited for large‐scale or
complex VRPs. Recently, researchers discovered that models
learnt through SL may also be utilised to effectively address
challenging routing problems by integrating some post‐
processing techniques, such as beam search [136], MCTS
[138], dynamic programming [133], and guided local search
[139]. For example, in Joshi et al. [136], the authors made the
first effort to learn a model using SL to predict a heat map
that indicates the likelihood of edges belonging to the optimal
TSP solutions. High‐quality solutions are then searched by the
beam search heuristics in such heat map. To address the
limitation that SL only works on small‐scale TSP, Fu et al.
[138] suggested that we may construct heat maps for large‐
scale TSPs by (1) dividing large‐scale TSPs into smaller sub‐
problems, (2) predicting heat‐maps using models learnt on
small‐scale TSPs, and (3) merging these heat maps. Further
combined with the MCTS, their method can be generalised to
solving TSP with arbitrarily larger sizes. Meanwhile, SL was
also used to train some decision‐making models to assist a
particular solver. In Xin et al. [134], SL was leveraged together
with UL to create more efficient edge candidate sets that
guides and improves the well‐known LKH solver. In Li et al.
[135], the classic SL technique regression was exploited to
learn to select sub‐problems of large‐scale VRP instances and
learn to delegate the optimisation of the sub‐problem to
existing VRP solvers.

5.3 | Future directions

5.3.1 | More powerful deep models

The representation capability of deep models ensures a good
performance of learning‐based neural solvers. Thereafter, we
observe that many researchers have focussed on proposing
more advanced models which could often lead to significant
improvement on the performance of the learnt solver. For
instance, on improving the performance of the neural con-
struction solver AM [9], the researchers have explored different
architecture designs such as multiple decoders [148], multiple
relational attention [154], heterogeneous attention [155], hybrid
of recurrent neural network [159], matrix encoding [180] etc.
Regarding to the neural improvement solvers, we also see that
the dual‐aspect attention [70] and the Synthesis attention [72]
lead to much better performance than the previous model in
Wu et al. [2]. Despite the above successes, we argue that the
development of deep models for routing problems are still
immature. On the one hand, most of the existing techniques
such as the Transformer is originally designed for the tasks in
Natural Language Processing (NLP), which means that such
design may not be optimal for VRP tasks. For example, as
suggested by Ma et al. [70], the positional encoding of the
original Transformer is designed for linear sequences (e.g.
sentences), which makes it problematic to reflect the circularity
and symmetry of a route sequence in VRPs. They thus proposed
a novel cyclic positional encoding method which significantly
enhanced the generalisation performance in terms of different
problem sizes. In this regard, we believe that more in-
vestigations should be made to study deep models that are more
powerful and suited for VRP tasks. On the other hand, although
the current neural models are usually generic to solve a family of
routing problems based on the same architecture, the training
of the models for different variants need to be conducted
independently from scratch. In other words, we do not have a
powerful enough and universal deep routing model that can be
trained only once and then quickly adapted to address different
VRP variants. There are examples of this kind of universal
models in the field of NLP. For example, the large, pre‐trained
language model BERT [188] could be trained to handle a variety
of different NLP tasks by pre‐training and then fine‐tuning on
the individual task. And we expect more research works in the
future on studying such large, pre‐trained deep models for
routing problems.

5.3.2 | Enhancing scalability capability

The scalability often measures the efficiency of a learnt heu-
ristic for large‐scale instances. Although there are already some
efforts on improving the scalability of the learnt solvers (e.g.
[135, 138, 151]), the proposed methods are often limited to the
TSP and CVRP, and at the same time are not generic enough to
boost most of the solvers listed in Table 3. Meanwhile, the
performance of DRL‐based methods on large‐scale optimisa-
tion are still not good enough as we can see most of the solvers
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in Table 3 only focussed on problem sizes up to hundreds of
nodes. This might because the computation complexity of the
self‐attention used in most of Transformer‐based neural
solvers would grows at least in quadratic as the size of the
problem grows. More advanced techniques such as sparse
attention [189] and kernel‐based linear Transformers [190] can
be considered in the future.

5.3.3 | Enhancing generalisation capability

More future studies should pay attention to improving the
generalisation of the trained DRL models across different
distributions. For current neural solvers, the majority of the
training data (i.e. VRP instances containing the coordinates of
the customer nodes) are generated at random using a certain
distribution (mostly the Uniform distribution). Real‐world
VRP instances, however, could adhere to varied or even arbi-
trary unknown distributions. Unfortunately, ML‐based solvers
usually suffer from a serious generalisation performance,
making these learnt models less effectiveness when used to
solve these out‐of‐distribution instances. As pointed out by
Joshi et al. [191], zero‐shot generalisation of the current neural
solvers ‘requires rethinking the entire neural combinatorial
optimisation pipeline, from network layers and learning
paradigms to evaluation protocols’. Recently, some attempts
have already concentrated on improving the generalisation of
the learnt models across other distributions. Among these at-
tempts, most of them focussed on leveraging more diverse
instances from different distributions to the training data,
which is supposed to force the model to learn more robust and
generalisable features. Such augmentation of training data may
be achieved by adversarial robustness [192], group dis-
tributionally robust optimisation [193], and hardness‐adaptive
CL [194]. Different from the above methods that learn to
augment the training dataset, Bi et al. [195] proposed to tackle
the cross‐distribution generalisation issue by knowledge
distillation. They first train teacher models on several exemplar
distributions, and then learn a light‐weight yet generalist stu-
dent model through the proposed AMDKD framework.
Despite the success of the above attempts, we note that the
upgraded generalisation ability of the neural solvers is still not
that satisfactory, especially when compared to the traditional
heuristics. We expect more efficient approaches in the future to
boost the generalisation of these learning‐based solvers.

5.3.4 | Solving more constrained routing
problems

Existing works concentrate solely on searching in the feasible
areas of the whole searching space, which is often accom-
plished by masking out invalid actions that produce infeasible
solutions for both construction‐based and improvement‐based
neural solvers. However, such design might not be effective,
since these feasibility masks must be calculated for every action

in the MDP, which is even more crucial for constrained
problems. Unfortunately, there is currently no attempt that
tries to improve the DRL framework for constrained problem.
And there is also no analysis of the effect of such masking
scheme on the final performance of learnt heuristics. There-
fore, we expect future research to put efforts on evaluating the
effectiveness of the current invalid action masking scheme and
exploring more effective approaches to deal with constraints
for learning‐based solvers.

6 | CONCLUSION AND DISCUSSION

This paper summarised and analysed the state‐of‐the‐art
research in applying ML for optimisation problems in
manufacturing from three aspects, that is, production, packing,
and logistics. By citing the job shop scheduling problems, the
BPPs, and the routing problems as concrete examples, we
show that DRL is a ML paradigm favoured by the community.
We comprehensively discussed the challenges each aspect
faces. First and foremost, we hope this survey will help re-
searchers from related areas overlook the problems being
studied for the topic of learning for manufacturing and the
progress so that more advances can be made in this field. In
addition, pointing out the limitation of current research, we
hope to highlight the challenges and provide an analysis of the
potential reasons to motivate future works and push intelligent
manufacturing to life.
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