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ABSTRACT
An automated driving system (ADS), as the brain of an autonomous
vehicle (AV), should be tested thoroughly ahead of deployment.
ADS must satisfy a complex set of rules to ensure road safety, e.g.,
the existing traffic laws and possibly future laws that are dedicated
to AVs. To comprehensively test an ADS, we would like to system-
atically discover diverse scenarios in which certain traffic law is
violated. The challenge is that (1) there are many traffic laws (e.g.,
13 testable articles in Chinese traffic laws and 16 testable articles in
Singapore traffic laws, with 81 and 43 violation situations respec-
tively); and (2) many of traffic laws are only relevant in complicated
specific scenarios.

Existing approaches to testing ADS either focus on simple oracles
such as no-collision or have limited capacity in generating diverse
law-violating scenarios. In this work, we propose ABLE, a new ADS
testing method inspired by the success of GFlowNet, which Aims
to Break many Laws Efficiently by generating diverse scenarios.
Different from vanilla GFlowNet, ABLE drives the testing process
with dynamically updated testing objectives (based on a robustness
semantics of signal temporal logic) as well as active learning, so as
to effectively explore the vast search space.We evaluate ABLE based
on Apollo and LGSVL, and the results show that ABLE outperforms
the state-of-the-art by violating 17% and 25% more laws when
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testing Apollo 6.0 and Apollo 7.0, most of which are hard-to-violate
laws, respectively.
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1 INTRODUCTION
The rapid development of autonomous driving technology is ex-
citing as it promises tremendous social and economic benefits by
reducing traffic accidents and improving traffic efficiency[19, 49].
Ensuring safety is one of the primary considerations before the
wide-scale deployment of AVs. An investigation from US National
Highway Traffic Safety Administration concludes that AVs only can
prevent up to 34% of traffic crashes and even introduces accidents
if the automated driving technology does not eliminate the traffic
violations [38]. For example, when a Tesla car with Full Self-Driving
feature is set as “assertive” operating mode, it allows vehicles to
illegally roll through stop signs at 4-way intersection at speeds of
up to 5.6 MPH. As the illegal rolling will greatly increase the risk
of a crash, Tesla has to recall all the cars with this feature [13]. An
ADS must strictly obey traffic laws during self-driving, as traffic
laws are the current standard formula for road safety [16] (at least

942

https://doi.org/10.1145/3597926.3598108
https://doi.org/10.1145/3597926.3598108
https://doi.org/10.1145/3597926.3598108
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597926.3598108&domain=pdf&date_stamp=2023-07-13


ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Xiaodong Zhang, Wei Zhao, Yang Sun, Jun Sun, Yulong Shen, Xuewen Dong, and Zijiang Yang

until traffic laws dedicated to AVs are developed). However, it is
challenging to manually design testing scenarios to test an ADS
against intricate traffic laws. The challenge is that (1) there are
many traffic laws (e.g., 13 testable articles in Chinese traffic laws
and 16 testable articles in Singapore traffic laws, with 81 and 43
violation situations respectively [4]); and (2) many of traffic laws
are only relevant in complicated scenarios.

Recently, researchers have proposed multiple approaches to effi-
ciently generate scenarios for testing ADS [18, 23, 29, 32, 34]. These
approaches leverage random sampling or randomized searching to
generate scenarios, such as genetic algorithm (GA) [34] and ma-
chine learning[32]. Unfortunately, these techniques often adopt
a fairly weak oracle, i.e., no-collision or reaching destination. We
foresee that human drivers and AVs will share the road system in
the near future. It is thus expected that AVs would follow the exist-
ing traffic laws. This is not only because these laws are designed for
road safety but also because human drivers drive with the expecta-
tion that other vehicles follow the same laws. To violate traffic laws
comprehensively is not easy as multiple factors are often required
to be satisfied simultaneously. Consider the third case of Article #38
in the Regulations for the Implementation of the Road Traffic Safety
Law of the People’s Republic of China [21]. It describes that when
the red light is on, vehicles are prohibited from passing. Except that,
vehicles turning right can pass without hindering the passage of
vehicles or pedestrians. Obviously, existing approaches focus on
testing for collision is unlikely helpful in generating scenarios for
violating such laws.

Only a few works focus on testing ADS against traffic laws in the
literature. The state-of-the-art is the recent work LawBreaker [48],
which adopts a GA-based testing method. Our investigation shows
that LawBreaker finds almost all the failures during the initial 50
tests, e.g., only 10% of the failures are discovered with the remain-
ing 462 tests, which costs 9 hours of simulation. The reason is that
LawBreaker tends to repeatedly discover scenarios that are similar
to those already-found ones as the GA approach shows premature
convergence [41]. This is in terms due to the vast search space of
testing scenarios and the fact that different law-violating scenarios
are often far away from each other (i.e., requiring very different
scenarios). While some works, such as SAMOTA [23], also claim
testing ADS against traffic laws, their approaches are very restric-
tive, i.e., only testing compliance with signal lights. To better test an
ADS against various traffic laws, we must improve the diversity of
the generated scenarios, i.e., distinct ways of violating traffic laws.
To avoid generating redundant testing scenarios (each of which is
costly to simulate with existing simulators such as LGSVL [45]),
we should generate diverse scenarios violating different laws as
efficiently as possible. Furthermore, the identified law-violating
scenarios must be tested physically eventually, which is very costly.

In this work, we propose an approach called ABLE to generate
diverse scenarios for testing ADS against real-world traffic laws.
ABLE models scenario generation as sampling a sequence of con-
structive actions (i.e., parameter assignment), based on a recently
proposed model called GFlowNet [11]. Note that GFlowNet was
designed for a different setting (i.e., generating promising protein
sequences [26]) and we thus have to enhance GFlowNet in multiple
ways, e.g., with dynamically updating objective functions which
are computed based on a robustness semantics of signal temporal

logic. Furthermore, in order to generate valid scenarios (which are
subject to physical laws as well as environmental constraints), we
must constrain the search using appropriate types and invariants.

We have implemented ABLE and evaluated it using a scenario
scripting language called AVUnit [6], LGSVL as the simulator, and
multiple versions of Baidu Apollo [9, 10] as the ADSs under test.
ABLE finds a total of 117 and 130 different violations of 13 Chinese
traffic laws when testing Apollo 6.0 and Apollo 7.0, respectively.
Compared to LawBreaker, ABLE outperforms the state-of-the-art
by violating 17% and 25% more laws. A close investigation shows
that these newly discovered violations are missed by LawBreaker
because they require complicated scenarios and are hard to discover
through random searches. We further conduct experiments to show
that our improvements to the vanilla GFlowNet model are relevant
and effective. The key contributions of this work are as follows.

• We propose a new scenario generation method, to gener-
ate diverse testing scenarios which trigger violation of real-
world traffic laws.

• To better adapt to scenario generation, we have made three
optimizations to GFlownet. The first is that we define re-
wards based on the robustness degree of a scenario with
respect to the specification; The second is to support dy-
namic rewards to keep targeting the uncovered violations
during active learning; the third is to incorporate domain
knowledge so that only appropriate actions at each sample
step are selected.

• We have implemented ABLE based on Apollo and LGSVL,
and conducted multiple comparative experiments against
the state-of-the-art.

This paper is organized as follows: Section 2 provides an illus-
trative example to show how ABLE works. Section 3 defines the
problem. Section 4 presents the detailed algorithm. Section 5 evalu-
ates ABLE with multiple experiments. Section 6 presents the threats
to validity. Lastly, Section 7 reviews related works, which is then
followed by a conclusion in Section 8.

2 ILLUSTRATIVE EXAMPLE
List 1 presents an example traffic law specification written in signal
temporal logic (STL)[24, 43]. In particular, it describes the 7-th
clause in Article #51 of the Regulations for the Implementation of
the Road Traffic Safety Law of the People’s Republic of China[21],
which stipulates how a vehicle should behave at an intersection
without a directional signal. An English translation of Article #51-7
reads as follows: At intersections with no direction indicator lights,
turning motor vehicles must give priority to non-turning vehicles and
pedestrians. Right-turning motor vehicles traveling in the opposite
direction must give priority to left-turning vehicles.

Article #51-7 is specified as law51_sub7 in List 1. In particular,
clause law51_sub7_1 specifies that the ego vehicle may be either
turning right or left. Clause law51_sub7_2 specifies that there is
an NPC (Non-Player Character) vehicle or pedestrian with priority
moving in the relevant lane. Clause law51_sub7_3 specifies that
the ego vehicle must slow down to less than 0.5m/s within the
next d time steps. Note that F and G mean ‘eventually’ and ‘always’
respectively, which are modal operators in temporal logic. The
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1 law51_sub7_1 = (direction ==Right | direction ==Left)
2 law51_sub7_2 = (PriorityNPCAhead ==True |

PriorityPedsAhead ==True)
3 law51_sub7_3 = F[0,d](speed <0.5)
4 law51_sub7 = G(( law51_sub7_1 & law51_sub7_2) ->

law51_sub7_3))

Listing 1: Formal specification of Article #51-7 in Chinese
traffic laws

1 𝜃46: F((( direction == Right)and(PriorityNPCAhead ==True))
and(G[0,d](not(speed <0.5))))

2 𝜃47: F((( direction == Right)and(PriorityPedsAhead ==True))
and(G[0,d](not(speed <0.5))))

3 𝜃48: F((( direction ==Left)and(PriorityNPCAhead ==True))and
(G[0,d](not(speed <0.5))))

4 𝜃49: F((( direction ==Left)and(PriorityPedsAhead ==True))
and(G[0,d](not(speed <0.5))))

Listing 2: Four violation formulae of law51_sub7 in List 1

constant d can be customized by the user. In this example, we set d
to 2 for simplicity.

It is challenging to check whether this traffic law law51_sub7
will be violated by an ego vehicle. Its complicated formula involves
multiple variables regarding different objects, and thus testing it
requires multiple objects to be set up properly to reach a specific
state at the same time. Furthermore, one article of the laws, due
to its complexity, may be violated in many different ways, each
of which should be tested adequately. For instance, List 2 shows
four formulae1, which specify the four different ways of violating
law51_sub7. For example, 𝜃46 captures a scenario where the ego
vehicle does not give way during turning right when anNPC vehicle
has priority on the road.

Most of the existing ADS testing methods[28, 32, 34, 37] cannot
address the above problem, due to their inability to specify traffic
laws formally. Although LawBreaker [48] is theoretically capable
of testing the safety of ADS against traffic laws, according to our
experiment, it fails to generate a scenario that demonstrates a vio-
lation of any of the four ways after 9 hours. In comparison, ABLE
generates two scenarios which show two different ways of violating
law51_sub7, i.e., 𝜃46 and 𝜃48, in 3 and 5 hours respectively. By re-
playing the generated scenarios, it can be found that the ego vehicle
does not slow down its speed at all when changing lane, whilst an
NPC with priority is moving. Although there is no collision in the
test, in reality many traffic accidents result from this unsafe lane or
direction change, which is in the Top Causes of Car Accidents[42].

3 PROBLEM DEFINITION
An ADS must be tested with a wide range of scenarios before they
can be deployed. Compared to real-world testing, simulation-based
testing is more cost-effective and is more flexible [1]. For instance,
simulator-based testing allows us to experiment with dangerous
scenarios which are often life-threatening in real tests. It often
can be done in the development phase on high-fidelity simulators,
such as CARLA[15] and LGSVL[45]. Furthermore, the developers
can design various scenario scripts to test whether an ADS obeys
the safety specifications, such as traffic laws and no-collision. This

1Numbers 46-49 are the indexes of the four formulae in the total 81 violation formulae
in [5].

Table 1: Action types for each type of object

Object Type Action Types
Time set{hour, minute}
Weather set{rain,sunny,wetness,fog,snow,cloud}
Ego Vehicle set{start position, start speed, destination position,

destination speed }
NPC Vehicle set{start position, start speed, waypoint position,

waypoint speed, destination position, destination
speed, vehicle type}

Pedestrian set{start position, start speed, waypoint position,
waypoint speed, destination position, destination
speed }

Obstacle set{position, size}

work thus focuses on the simulation testing of AV against traffic
laws.

3.1 Definition of Search Space
A test case of an ADS is typically referred to as a scenario, which
intuitively specifies how different objects relevant to ADS testing
evolve through time. There are mainly six types of objects in a
scenario, i.e., ego vehicle, time, weather, NPC vehicles, pedestri-
ans, and obstacles. Table 1 lists the allowed action types for the
corresponding objects, each of which may affect the behavior of
the ego vehicle. A scenario is a tuple ⟨𝑡,𝑤, 𝑒, 𝑛, 𝑝, 𝑜⟩, where each
component is a sequence of actions for the corresponding object.
The actions depend on the corresponding object participating in a
traffic scenario.

Specifically, 𝑡 is an action sequence on the time, e.g., set hour
or set minutes. 𝑤 is an action sequence on the weather, e.g., set
rain or set fog. 𝑒 is an action sequence on ego vehicle, e.g., set start
point or set destination point. 𝑛 is an action sequence on an NPC
vehicle, e.g., set start speed or waypoint position. 𝑝 is an action
sequence, which has a similar setting as the NPC vehicle. 𝑜 is an
action sequence about the obstacle, e.g., set size or set position.
Note that there are in general multiple NPC vehicles, pedestrians
and obstacles in a scenario.

List 3 shows a scenario script written in AVUnit[6]. This script
effectively defines a scenario where 𝑛 consists of five NPC vehicles.
Specifically, Line 1-3 specify the map, time, and weather in the
simulation environment. In lines 5-8, the task of the ego vehicle
is to move from the start point on lane_540 to the target point
on lane_572, which are 50 and 60 meters away from their initial
lane positions, respectively. Line 9-13 show that the Sedan car npc1
moves from the start position with an initial speed of 6 m/s to the
target point. In particular, Line 11 adds a waypoint for npc1, which
specifies its speed to be 4m/s when it arrives at 200 meters away
from lane_574 start point. The Other four NPC vehicles have a
similar setting as npc1, which are omitted. All of these statements
constitute a testing scenario. Note that a scenario can be mutated
in many different ways. For instance, the value for setting the hour
at can be 0, 1, ..., or 23, which means that 24 actions can be selected
here. The offset of the start point for the ego vehicle can be set
to any value within a predefined range, such as [40m, 60m]. The
type of NPC vehicle can be set to any value in the set {BoxTruck,
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1 map_name = "san_francisco ";
2 time = 12:00;
3 weather = {rain :0.5, fog:0.1, wetness :0.6};
4 evn = Environment(time , weather);
5 ego_init_state = (" lane_540 "->50);
6 ego_target_state = (" lane_572 "->60);
7 vehicle_type = (car_model);
8 ego_vehicle = AV(ego_init_state , ego_target_state ,

vehicle_type);
9 npc1_type = ("Sedan");
10 npc1_init_state = (" lane_574 "->100, 6);
11 npc1_waypoint = (" lane_574 "->200, 4)
12 npc1_dest_state = (" lane_569 "->30);
13 npc1 = Vehicle(npc1_init_state ,

npc1_waypoint , npc1_dest_state ,
npc1_type);

14 (omit npc2-npc5)
15 npc_list = {npc1 , npc2 , npc3 , npc4 , npc5};
16 scenario0 = CreateScenario{load(map_name),

ego_vehicle , npc_list , evn};

Listing 3: Code snippet of a scenario script

Hatchback, Jeep, SUV, SchoolBus, Sedan}, which are supported in a
simulator.

3.2 Problem Definition
The formal specification of traffic laws is denoted as the symbol Θ.
We write 𝜙 (Θ) to denote the set of formulae that specify different
ways in which Θ can be violated, as defined in [48]. We refer the
readers to [48] for details. Our testing objective is to generate one
testing scenario at least for each of the violation formulae in 𝜙 (Θ),
i.e., to show different ways of violating each traffic law. Consider the
examples in List 1 and 2 again. law51_sub7 and violation formulae
{𝜃46, 𝜃47, 𝜃48, 𝜃49} are the set Θ and 𝜙 (Θ), respectively.

Our problem is to generate a set of scenarios VS such that the
scenarios in VS satisfies as many formulae in 𝜙 (Θ) as possible.
Note that not all of the formulas in 𝜙 (Θ) are satisfiable. There may
be multiple reasons why a formula in 𝜙 (Θ) is not satisfiable. First,
ideally it may be that the ADS is designed in such a way that it
never violates the law, e.g., always stop before a red light. Secondly,
satisfying a violation formula may require certain specific maps,
which may not be available. For instance, Article 40 in [21] that
regulates the behavior of vehicles when facing traffic lights with
directions can not be tested if the map does not support traffic lights
with directions.

4 ALGORITHM OF ABLE
The architecture of ABLE is shown in Figure 1. Firstly, Data Preparation
prepares the data for training a model for guiding the testing in the
next step, including transforming scenarios into action sequences
and computing the rewards of scenarios according to their trace
data. Secondly, Scenario Generation trains a generative model
with the initial scenarios, then samples a batch of diverse scenarios
based on the trained model. While the model is trained according to
the recently proposed GFlowNet, we propose three optimizations
so that it caters to the characteristics of our ADS testing problem.
Optimization 1 is that we define rewards based on the robust-
ness degree of a scenario with respect to the specification, which
intuitively measures how close the scenario is from satisfying the
specification; Optimization 2 is to dynamically update reward to
keep targeting the uncovered violations, and Optimization 3 is to

Figure 1: The architecture of ABLE

only choose the appropriate type of actions at each sample step to
meet the characteristics of the scenario script. Thirdly, Scenario
Testing iteratively runs the generated scenarios one-by-one in a
simulator and then checks whether an ADS violates the traffic laws
based on the traces generated from the scenarios. Lastly, Active
Learning augments the scenario set with the newly-tested sce-
narios after each round and then updates the generative model.

4.1 Data Preparation
Algorithm 1 shows the details on how to process the data for the
model training. It loads an initial set of scenarios (which are gener-
ated using existing approaches such as LawBreaker) and the set of
formulae 𝜙 (Θ), and outputs the processed action sequences associ-
ated with reward values. Each initial scenario is a scenario script
written in a scenario description language such as AVUnit and a
data trace obtained by simulating the scenario using a simulator
such as LGSVL. For each scenario, the algorithm first encodes its
scenario script as an action sequence as shown in Line 3, and then
calculates its reward value over its trace based on 𝜙 (Θ) as shown
in Line 4-8. The details are discussed below.

4.1.1 Encoding Scenario Script. A scenario script describes the
scenario, i.e., associating values to different objects, such as time,
weather, pedestrians, and NPC vehicles, as well as their concrete
behaviors in terms of waypoints. The encoding should meet four
goals. First, it must keep the context-sensitive nature of scenario
scripts. Second, the encoded action sequence can be decoded to
obtain the original scenario. Third, for the same operations to the
same object in different scenario scripts, the converted actions must
be consistent. Fourth, it must cover all the settings that are relevant
to the testing results.

To meet the first and second goals, DataPreparation converts
all the operations in a script into an action sequence, on which each
action is sorted by its corresponding script location. To meet the
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Algorithm 1: DataPreparation(𝜙 (Θ), S)
Input: 𝜙 (Θ): Violation formulae
S: Scenario set with trace data
Output: S𝑎 : Action sequences for model training

1 S𝑎 = ∅;
2 foreach ⟨𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑠𝑛, 𝑡𝑟𝑎𝑐𝑒 𝜋𝑠𝑛⟩ ∈ S do
3 actionSequence = encode(𝑠𝑛);
4 robustnessVector = [];
5 foreach 𝜃 ∈ 𝜙 (Θ) do
6 robustnessVector.add(𝜌 (𝜃, 𝜋𝑠𝑛));
7 end
8 reward = computeReward(robustnessVector);
9 S𝑎 .add(⟨𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑟𝑒𝑤𝑎𝑟𝑑⟩);

10 end
11 return S𝑎 ;

1 Type Value
2 ...
3 set ego.start.lane_540 to 50 (Action1),
4 set ego.destination.lane_572 to 60 (Action2),
5 set npc1.type to Sedan (Action3),
6 set npc1.start.lane_574 to 100 (Action4),
7 set npc1.start.speed to 6 (Action5),
8 set npc1.motion.lane_574 to 200 (Action6),
9 set npc1.motion.speed to 4 (Action7),
10 set npc1.destination.lane_569 to 30 (Action8)
11 ...

Listing 4: The action sequence for the ego vehicle and npc1
in List 3

third and fourth goals, DataPreparation encodes the action type
with a unique prefix and builds a unique action identification by
joining the prefix with the value. Consider the example in List 3.
List 4 shows the encoded actions for ego and npc1. For example,
Action1 describes the setting at Line 5 in List 3, and Action2 for
Line 6 in List 3. For the added way point to npc1, Action6 and
Action7 stand for the settings of offset and speed respectively.

4.1.2 Computing Reward. The reward is computed based on the
robustness degree of each violation formula over the current trace
as shown in Line 4-6 of Algorithm 1. In this work, the robustness
degree is computed based on the quantitative semantics [14, 36, 40,
44] of STL, which evaluates how far a given trace is from satisfying
an STL formula. Quantitative semantics is a measure of system
safety that can be used to quantify the performance of a systemwith
respects to a specification.[44]. As shown in Line 6, this measure
is defined as a robustness degree function 𝜌 , whose result is a
real number. Consider a simple STL formula 𝜃 = 𝐹 [0, 6] (𝑠𝑝𝑒𝑒𝑑 >

3.5𝑚/𝑠). If speed is 3m/s within the 6 time steps in trace 𝜋 , 𝜌 (𝜃, 𝜋)
is equal to -0.5, which indicates that 𝜃 fails over 𝜋 . If speed is 4m/s,
𝜌 (𝜃, 𝜋) is equal to 0.5, which indicates that 𝜃 holds over 𝜋 .

In this work, we design the reward function such that it satis-
fies two requirements. First, if a scenario covers many violation
formulae with high robustness degree, its reward should be high,
i.e., the reward can reflect the overall quality of a scenario. Second,
the reward should be dynamically updated during the learning and
fuzzing, i.e., a violation formula that has been satisfied will not be
considered in the next iteration.

Algorithm 2: ScenarioGeneration(S𝑎)
Input: Action sequences for training model S𝑎
Output: Scenario batch 𝐵

1 Fit proxy R on dataset S𝑎 ;
2 Train generative model 𝐺𝐹𝑁 using proxy R on dataset S𝑎 ;
3 Sample action sequence batch 𝐵𝑠𝑒𝑞 from 𝐺𝐹𝑁 ;
4 𝐵 = decode(𝐵𝑠𝑒𝑞 );
5 return 𝐵

Line 8 computes the reward value of 𝜋𝑠𝑛 according to our new
reward function in Equation 1, which presents a definition of the
reward value for scenario 𝑠𝑛. 𝐶𝑜𝑣 (𝜃 ) decides whether 𝜃 will be
considered based on its coverage. If 𝜃 is covered, it will not be
considered any more and 𝐶𝑜𝑣 (𝜃 ) is set as 0. Otherwise, 𝐶𝑜𝑣 (𝜃 )
is set as 1. 𝐷𝑖𝑠 (𝜃 ) measures how far violation formula 𝜃 will be
satisfied, and its value depends on the robustness degree 𝜌 (𝜃, 𝜋𝑠𝑛).
If 𝜃 is satisfied by trace 𝜋𝑠𝑛 , that is 𝜌 (𝜃, 𝜋𝑠𝑛) ≥ 0, 𝐷𝑖𝑠 (𝜃 ) is set as 0;
Otherwise, 𝐷𝑖𝑠 (𝜃 ) is equal to −𝜌 (𝜃, 𝜋𝑠𝑛).

R(𝑠𝑛) =
∑︁

𝜃 ∈𝜙 (Θ)

𝐶𝑜𝑣 (𝜃 )
𝐷𝑖𝑠 (𝜃 ) + 1

𝐷𝑖𝑠 (𝜃 ) =
{
−𝜌 (𝜃, 𝜋𝑠𝑛), 𝜌 (𝜃, 𝜋𝑠𝑛) < 0
0, 𝜌 (𝜃, 𝜋𝑠𝑛) ≥ 0

𝐶𝑜𝑣 (𝜃 ) =
{

0, 𝜃 𝑖𝑠 𝑐𝑜𝑣𝑒𝑟𝑒𝑑

1, 𝜃 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑣𝑒𝑟𝑒𝑑

(1)

Consider the violation formulae in List 2 as the testing target. Let
the scenario in List 3 be 𝑠𝑛1 and its trace be 𝜋𝑠𝑛1. Over 𝜋𝑠𝑛1, the ro-
bustness degree 𝜌 ({𝜃46, 𝜃47, 𝜃48, 𝜃49}, 𝜋𝑠𝑛1) equals {−1.0,−2.0,−1.0,
−2.0}. Then,𝐷𝑖𝑠 ({{𝜃46, 𝜃47, 𝜃48, 𝜃49}) is calculated to be {1.0, 2.0, 1.0,
2.0}.𝐶𝑜𝑣 ({𝜃46, 𝜃47, 𝜃48, 𝜃49}) is set to {1, 1, 1, 1} since the four viola-
tion formulae have not been covered. After calculation, the reward
value R(𝑠𝑛1) is 1.67.

4.2 Scenario Generation
Algorithm 2 presents the details on how testing scenarios are gen-
erated. It takes action sequences with reward values as input and
outputs a batch of new high-reward scenarios.

4.2.1 Training Model. In order to return the evaluated reward of
the samples instantly during training, a proxy is trained in advance.
As shown in Line 1 of Algorithm 2, the proxy model R𝑖 is trained
on the current data-set. This proxy model is a multi-layer neural
network. The labels are the corresponding reward values of the
scenarios. Without such a proxy model, the reward values of the
candidates during training can only be obtained from the simulation,
which would make training extremely time-consuming.

Line 2 shows that 𝐺𝐹𝑁𝑖 would be trained with proxy R𝑖 on
dataset S𝑎

𝑖
. We first define T as a directed acyclic graph (A,S, E)

with the set of actions A, the set of nodes S and the set of edges
E. An edge 𝑠

𝑎−→ 𝑠′ ∈ E corresponds a transition from state 𝑠 to
state 𝑠′, triggered by action 𝑎 ∈ A. After applying each action,
a partially constructed object is generated, which can be called a
node or a state 𝑠 ∈ S. Then, a learning objective should be set up.
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The idea is that all the state flows and edge flows on the T must
comply with the flow matching criterion[11], i.e., the amount of
flow entering any state equals the amount of flow coming out of it.
Note that the flow can be interpreted as the probability mass on a
state or an edge. This is achieved by defining a loss function L as
shown in Equation 2, whose global minimum gives rise to the flow
consistency condition.

L =

(
𝑙𝑜𝑔

∑
𝑠′∈𝑃𝑎𝑟𝑒𝑛𝑡 (𝑠 ) 𝐹 (𝑠′→𝑠)∑
𝑠′′∈𝐶ℎ𝑖𝑙𝑑 (𝑠 ) 𝐹 (𝑠→𝑠′′)

)2
(2)

where 𝑠′→𝑠 and 𝑠→𝑠′′ stands for an in-flow and an out-flow for
state 𝑠 respectively.

4.2.2 Generating Scenarios. As shown in Line 3 of Algorithm 2, a
batch of action sequences is sampled from the well-trained model.
The model can also be viewed as a sampling function with a stochas-
tic strategy 𝜆(𝑎𝑡 |𝑠𝑡 ), which outputs 𝑎𝑡 according to current state 𝑠𝑡
and then leads to new state 𝑠𝑡+1. An action sequence is constructed
by starting from an initially empty state 𝑠0 and applying actions
sequentially, and all complete trajectories must end in a special final
state 𝑠𝑓 . The construction of a scenario object 𝑠𝑛 can be defined as

a trajectory of states < 𝑠0
𝑎0−→ 𝑠1 ...

𝑎𝑛−→ 𝑠𝑛 −→ 𝑠𝑓 >.
As the statements in a scenario script must be contextually rele-

vant to each other, the corresponding actions should keep the same
ordering as the statements. Thus, action ordering is fixed with re-
spect to its type in an action sequence. This is a big difference with
applying GFlownet to the molecule synthesis domain[26], where a
building block can appear multiple times in a molecule. However, in
the testing scenario generation domain, only one action of the same
type can be allowed on an action sequence. For example, if two
time-setting actions appear on a sequence simultaneously, such as
setting time to be 11 am and 23 pm, one of them will be redundant.

To avoid the above problem, we incorporate a simple domain
model in our approach so as to only choose the appropriate type
of action at each sample step during action sequence construction.
This can be done by setting the probability of sampling unmatched-
type actions as 0 while adding an action to the current sequence.
Thus, the sampling strategy changes from 𝜆(𝑎𝑡 |𝑠𝑡 ) to 𝜆(𝑎𝑡 |𝑠𝑡 , 𝑡𝑦𝑝𝑒 (𝑎𝑡 ) =
𝑇𝑡 ), where 𝑡𝑦𝑝𝑒 (𝑎𝑡 ) denotes the action type of 𝑎𝑡 and 𝑇𝑡 denotes
the desired action type in the 𝑡-th step on current sequence. In this
work, constraint 𝑡𝑦𝑝𝑒 (𝑎𝑡 ) = 𝑇𝑡 at different time steps is set statically
according to the domain model. To keep our domain model simple
and efficient, we do not consider correlation between actions across
different time steps. This domain model dramatically reduces the
search space from ( |𝐴1 | + |𝐴2 | + ...+ |𝐴𝑁 |)𝑁 to |𝐴1 | ∗ |𝐴2 | ∗ ...∗ |𝐴𝑁 |,
where 𝑁 denotes the length of steps in a scenario and |𝐴𝑖 | denotes
the number of actions in the 𝑖-th step. Consider the action sequence
in List 4. When adding an action to Line 9, only the actions with
type ‘npc1.destination.lane_569’ can be chosen.

Finally, the algorithm decodes the action sequences to synthesize
the executable scenario scripts as shown in Line 4 of Algorithm 2,
which is the inverse of the encoding procedure. This is necessary
as the simulators cannot recognize the generated action sequences.
The synthesized scenarios will be fed into the simulator to drive
further testing.

Algorithm 3: ScenariosTesting(𝐵, Θ)
Input: 𝐵: Testing Scenarios sampled from GFN
𝜙 (Θ): Violation formulae
Output:
Π: Traces for the tested scenarios in 𝐵

VS𝑖 : Law-violating scenarios in current batch
1 Π = ∅;
2 foreach 𝑠𝑛 ∈ 𝐵 do
3 𝜋𝑠𝑛 = Steer ADS to run scenario 𝑠𝑛 in simulator and log

the runtime trace data;
4 foreach 𝜃 ∈ 𝜙 (Θ) do
5 if 𝜋𝑠𝑛 ⊨ 𝜃 then
6 𝜙 (Θ).remove(𝜃 );
7 VS𝑖 .add(

〈
𝑠𝑛, 𝜃

〉
);

8 end
9 end

10 Π.add(⟨𝑠𝑛, 𝜋𝑠𝑛⟩);
11 end
12 return Π, VS𝑖 ;

4.3 Scenario Testing
Algorithm 3 shows the details of how to test the ADS with the sce-
nario batch. It inputs the newly-generated scenarios and violation
formulae, and outputs the trace data and the new violations. For
each scenario, we run the ADS in a simulator and log its run-time
data as shown in Line 3. After a scenario is executed completely,
we check whether each 𝜃 is satisfied over the logged trace 𝜋𝑠𝑛 , as
shown in Line 4-7.

4.3.1 Logging Run-time Data. We call the run-time data at each
time step a scene, which is a snapshot of the world (i.e., the status
of all vehicles, pedestrians, and so on). A complete simulation of a
scenario often have hundreds of time steps. Not all of the informa-
tion in a scene is necessary for checking the violation of traffic laws.
The algorithm just extracts the required data from the scene and as-
signs them to the corresponding variables, i.e., those constitute the
violation formulae. Meanwhile, these variables also constitute the
building blocks of our specification languages, i.e., the propositions.

Referring to work [48], we set up the following kinds of vari-
ables to log data: Car Status Variables describe the properties
involving the lights, engine, horn, and direction of the AV, e.g.,
the variable direction in List 1; Driving Status Variables de-
scribe the speed, acceleration, and braking status of the AV, e.g.,
the variable speed in List 1; Road Variables capture properties of
road that the AV is currently driving on, e.g., whether or not honk-
ing is allowed, the street light is on; Traffic Signal Variables
allow for the specification of laws involving traffic lights at the
junction an AV is approaching; Traffic Variables are associated
with other vehicles sharing the road with the AV, as well as any
pedestrians crossing it, e.g., the variables PriorityNPCAhead and
PriorityPedsAhead in List 1; and Map Variables specify traffic
laws related to environment conditions, e.g., the weather or time
of day.
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4.3.2 Verifying Violation Formulae. An execution trace 𝜋𝑠𝑛 is a
sequence of scenes generated according to a scenario 𝑠𝑛, denoted
as 𝜋𝑠𝑛 = {𝛼0, 𝛼1, ..., 𝛼𝑛}. A scene 𝛼 is a tuple of the form 𝛼 =

(𝑓0, 𝑓1, ..., 𝑓𝑚), where 𝑓 is the valuation mapping of vehicles and
surrounding traffic signal variables mentioned above. Considering
𝜋𝑠𝑛 , we write 𝜋𝑠𝑛 ⊨ 𝜃 (resp. 𝜋𝑠𝑛 ⊭ 𝜃 ) to denote that 𝜃 evaluates to be
true (resp. false) over trace 𝜋𝑠𝑛 . Here, 𝜋𝑠𝑛 ⊨ 𝜃 is measured with the
robustness degree function 𝜌 (𝜃, 𝜋𝑠𝑛). If 𝜌 (𝜃, 𝜋𝑠𝑛) ≥ 0, then 𝜋𝑠𝑛 ⊨ 𝜃
evaluates to be true. Otherwise, it evaluates to be false.

If 𝜋𝑠𝑛 ⊨ 𝜃 is satisfied, it indicates that ABLE finds a way to violate
the traffic laws. Then, 𝜃 will be deleted from set 𝜙 (Θ) as shown in
Line 6 of Algorithm 3, such that it will not be considered again in the
subsequent iterations of fuzzing. Meanwhile, the scenario and its
corresponding violation formula are also recorded in VS𝑖 in Line 7.
After checking all the violation formulae, scenario 𝑠 and its current
trace 𝜋𝑠𝑛 are put into Π in pairs, which will be used in the next loop
of active learning. Consider the four violation formulae in List 2. We
get a newly-generated scenario 𝑠𝑛2 and its trace 𝜋𝑠𝑛2, over which
𝜌 ({𝜃46, 𝜃47, 𝜃48, 𝜃49}, 𝜋𝑠𝑛2) is calculated to be {0.0,−1.0,−1.0,−1.0}.
It is thus clear that the first violation formula 𝜃46 is satisfied since
𝜌 (𝜃46, 𝜋𝑠𝑛2) ≥ 0.

4.4 Active Learning
The loop in Algorithm 4 integrates the above three components
into an active learning framework. The algorithm inputs an initial
scenario set, a set of violation formulae, and the number of active
learning rounds, and outputs law-violating scenarios VS. This ac-
tive learning framework conducts two new tasks. One is to add
the currently tested scenarios like 𝑠𝑛2 into the test set in Line 7,
and another is to update the reward so that those already covered
violated formulae will no longer be considered. Note that the updat-
ing operation is done at component ScenarioTesting as shown
in Line 5. The former task not only augments the original scenario
set, but also brings new high-reward modes for the next round of
scenario generation. The latter one recomputes the reward values
according to Equation 1 for all scenarios in the current scenario
set, such that ABLE can re-target the uncovered violation formulae.
We can call this a dynamic reward, which is more flexible and suit-
able for our scenario generation. The algorithm terminates when
it reaches the bound of active learning loops. With the dynamic
reward, active learning can identify those cases where multiple
objectives are covered and then tackle the remaining ones one by
one.

Consider scenarios 𝑠𝑛1 and 𝑠𝑛2. As the violation formula 𝜃46 has
been covered,𝐶𝑜𝑣 ({𝜃46, 𝜃47, 𝜃48, 𝜃49}) is set to {0, 1, 1, 1}. Therefore,
the reward values of 𝑠𝑛1 and 𝑠𝑛2 are recalculated to 1.17 and 1.5,
respectively.

5 EVALUATION
We have implemented ABLE [5] based on the LGSVL simulation
framework and use it to evaluate two latest versions of Baidu Apollo,
i.e., Apollo 6.0 (released on September 22, 2020) and Apollo 7.0 (re-
leased on December 28, 2021). We use the data bridge in LawBreaker
to spawn scenarios for the simulator and generate a trace using
the collected data. We take the specification of 13 testable Chinese
traffic laws in [48] as our testing target and transform it into 81

Algorithm 4: ActiveLearning(S0, 𝜙 (Θ))
Input: S0: Initial scenario set with oracle
𝜙 (Θ): A set of violation formulae that represent different
law-violating ways
𝐿: The loop bound of active learning
Output: Violation Scenarios VS

1 VS = ∅;
2 for 𝑖 = 0 to 𝐿-1 do
3 S𝑎

𝑖
= DataPreparation(𝜙 (Θ), S𝑖 );

4 𝐵 = ScenarioGeneration(S𝑎
𝑖
);

5 Π, VS𝑖 = ScenariosTesting(𝐵, 𝜙 (Θ));
6 VS = VS ∪ VS𝑖 ;
7 S𝑖+1 = S𝑖 ∪ Π;
8 end
9 return VS;

violation formulae (i.e., 81 violation situations) listed in [5]. Based
on what is reported in [48], LawBreaker selects 13 traffic laws based
on whether they are relevant to the AVs and whether they can be
tested using the Apollo + LGSVL framework (e.g., some laws may
demand certain road features that are not supported by LGSVL as
of now). The violation formulae are automatically generated from
the specification of traffic laws specified in the form of STL. They
are guaranteed to be correct according to [48]. Our evaluator com-
putes the robustness degree of STL formulae based on RTAMT [40].
The maps we use are all from the map store [30] of LGSVL. For
the Car model, we choose LincolnMKZ2017 − the detailed model
information can be found online[31].

In the following, we conduct multiple experiments to answer
the following Research Questions (RQs). Our experiments are con-
ducted on the four sessions from [7], including Intersection with
Double-Direction Roads (S1), Lane Changing in the Same Road (S2),
Intersection with Single-Direction Roads (S3), T-Junction (S4). The
initial scenarios used in Algorithm 1 come from the existing trace
data of LawBreaker. The proxy model in Section 4.2 is implemented
as a 32*1024 fully-connected neural network. It also is trained using
the existing trace data of LawBreaker. Since LawBreaker is the only
one that supports testing against traffic laws, it is the only baseline
in our experiments. In view of the randomness, we run LawBreaker
and ABLE 4 times (512 runs per time), respectively. For LawBreaker,
we select the best testing result as the baseline. For ABLE, we choose
the median one for comparison. We set the loop bound 𝐿 to 4 and
the size of Batch 𝐵 to 128 for ABLE. All experiments are conducted
on a machine with a 16-Core Intel i7 3.80GHz CPU, an NVIDIA
RTX 2080ti GPU, and 32 GB system memory.

RQ1:How effective is ABLE on generating diverse law-violati-
ng scenarios?

To answer this question, we first summarize the number of differ-
ent law-violating scenarios discovered by LawBreaker and ABLE.
Table 2 lists the testing result against Apollo 6 and 7 compared
to LawBreaker. Columns LawBreaker and ABLE show the total
number of covered violations in each session on both Apollo ver-
sions. Column Δ gives the comparison result between LawBreaker
and ABLE. Column Formulae Index lists the indexes of all the
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Table 2: Comparison with LawBreaker in terms of Covering Violation formulae

Session Version LawBreaker ABLE Δ
#Violations Formulae Index

S1 Apollo 6.0 24 28 ↑ 4 12, 28, 31, 55
Apollo 7.0 23 30 ↑ 7 12, 28, 31, 32, 33, 40, 55

S2 Apollo 6.0 23 29 ↑ 6 2, 40, 41, 46, 73, 77
Apollo 7.0 26 32 ↑ 6 12, 15, 40, 41, 46, 48

S3 Apollo 6.0 26 31 ↑ 5 12, 34, 35, 55, 56
Apollo 7.0 27 36 ↑ 9 31, 32, 33, 34, 35, 46, 50, 55, 56

S4 Apollo 6.0 27 29 ↑ 2 52, 56
Apollo 7.0 28 32 ↑ 4 31, 46, 55, 56

newly discovered violation formulae. We can find the correspond-
ing violation formulae according to the index in [5]. In total, ABLE
totally finds 117 and 130 violation cases in four sessions against
81 violation formula on Apollo 6 and Apollo 7, respectively. ABLE
not only covers all the violations covered by LawBreaker, but also
finds 17 and 26 more violations than LawBreaker on Apollo 6 and
7, respectively. On average, ABLE offers an increase of 17% and
25% on average compared to LawBreaker. We have made all of
these violation publicly available so that they can be used to further
improve Apollo.

We then investigate why these scenarios are only covered by
ABLE. Our investigation suggests that the reason may be that these
newly covered scenarios are indeed hard to cover based on GA.
Figure 2 and 3 show the difficulty degree distribution of all the
covered violations on Apollo 6 and 7, respectively. For one viola-
tion formula, its difficulty degree in one session can be measured
by 1/𝑉𝑡𝑖𝑚𝑒𝑠 , where 𝑉𝑡𝑖𝑚𝑒𝑠 indicates its the number of times it is
violated in the total 512 runs. For example, if there are ten scenarios
satisfying violation formula 𝜃 in a session, its difficulty degree is 0.1.
Note that a violation formula may have different difficulty degrees
in different sessions. On the scatter diagrams, the blue points stand
for the violations previously covered by LawBreaker, and yellow
points stand for our additional newly-covered violations. It can
be found that most of our newly-covered violations have a higher
difficulty degree than the previously discovered ones.

Our investigation shows that the difficulty of a formula is mostly
related to variables that can be frequently set through certain ac-
tions. For instance, the violation formula 𝜃55, newly covered by
ABLE in Session S1 on Apollo 7.0, has a high difficulty degree of
0.5. It describes a law-violating case that the ego vehicle does not
turn on its left-turning signal when turning left. The reason why it
is hard to discover in S1 is that a series of settings are required to
make the ego vehicle and an NPC vehicle reach the intersection at
the same time, and the ego vehicle has to turn to bypass the NPC
vehicle blocked in front. As for 𝜃63, it describes a law-violating
case that the ego vehicle does not turn on the fog light when the
fog degree is bigger than or equal to 0.5. It has a low difficulty de-
gree of 0.004 and is easy to be discovered, because the fog remains
unchanged once set. Intuitively, this is reasonable as in order to
trigger certain law violations, we are required to set the variables
accordingly at certain time.

1 𝜃55: Difficulty Degree = 0.5
2 F(( direction ==Left)and(not(turnSignal ==Left)))
3 𝜃63: Difficulty Degree = 0.004
4 F((fog >=0.5) and(not(fogLightOn ==ON)))

Listing 5: The difficulty degree of two formulae in Session S1
on Apollo 7.0

Table 3: Complexity and time cost

Session SeqL ComS Version G-Cost T-Cost

S1 43 3.1e+41 6.0 0.39h 7.00h
7.0 0.42h 7.52h

S2 41 8.0e+42 6.0 0.54h 12.60h
7.0 0.52h 12.10h

S3 46 4.6e+45 6.0 0.57h 7.83h
7.0 0.56h 7.80h

S4 82 4.4e+97 6.0 1.22h 8.42h
7.0 1.30h 9.62h

Take Away: ABLE is more effective than the state-of-the-art on
generating diverse law-violating scenarios, i.e., covering more distinct
ways of violating traffic laws.

RQ2: How efficient is ABLE?
To answer the question, we present the details of the training

time, and figures showing the number of identified law-violating
scenarios over time. Table 3 lists the search space complexity of
each session and the time cost in terms of model learning and sce-
nario testing. Column SeqL and ComS indicate the length of the
action sequence for a scenario and the number of sequences in com-
binational space, respectively. It can be found that the search space
in each session is extremely large, and a longer action sequence
often means larger search space. Column G-Cost and T-Cost show
the time cost in terms of learning-based scenario generation and
scenario testing, respectively. The total execution time of ABLE
is Column T-Cost + Column G-Cost. Except for session S4, the
learning cost only occupies a small part of the total cost. The reason
why S2 has a higher running costs is that there are many stationary
vehicles in S2, and as a result, the ego vehicle is often stuck and
waits for a long time. Note that we do not list the time cost of Law-
Breaker, as its G-Cost is negligible compared to ABLE and it has
the same T-Cost with ABLE. Additionally, there are no significant
differences in terms of time cost between the two Apollo versions.
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Figure 2: The difficulty degree distribution of covered violations for Apollo 6

Figure 3: The difficulty degree distribution of covered violations for Apollo 7

Figure 4: The relation between discovered violations and testing times for Apollo 6

Figure 4 and Figure 5 show the relation between the number of
testing scenarios and the number of discovered violations on Apollo
6 and 7, respectively. Our statistic shows that ABLE and LawBreaker
find 73% and 90% violation formulae on average in the first 50 testing
scenarios, respectively. This almost always corresponds to the easy-
to-cover violations with a low difficulty degree in Figure 2 and 3.
It can also be found that LawBreaker tends to perform well in the
early stage, but contribute little afterwards. It is because the GA in
LawBreaker is at high risk of getting stuck in local maxima. Instead,
the curves of ABLE continues to rise during the entire stage. It all
comes down to the fact that active learning with a dynamic reward
function can continuously pour new vitality into the testing.

TakeAway: 1. The training overhead is minor compared to the testing
time. 2. The approach of ABLE (i.e., GFlowNet with dynamic reward
function and active learning) is promising as it continues to cover
more law-violating scenarios over time.

RQ3: How effective is active learning and our new reward
function (i.e., Optimization 2)?

To answer the question, we present the details on the compari-
son between our method (Active+New) and two alternative meth-
ods (Inactive+New and Active+Max). Specifically, Active+New
is an integration of active learning with our new reward func-
tion. Inactive+New omits active learning from our method, i.e.,
loop bound 𝐿 is set to 1, and the size of Batch 𝐵 is set to 512.
Active+Max replaces our reward function with the maximum
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Figure 5: The relation between discovered violations and testing times for Apollo 7

Table 4: Reward function evaluation on Apollo 7

Session Active
+Max

Inactive
+New

Active
+New Δ

S1 24 28 30 6/2
S2 30 27 32 2/5
S3 27 24 36 9/12
S4 29 30 32 3/2

robustness which is the one used in LawBreaker, which can be
defined as𝑚𝑎𝑥 (𝜌 (𝜃1, 𝜋), ..., 𝜌 (𝜃81, 𝜋)). Table 4 shows the compari-
son result, which is evaluated on Apollo 7.0. Column Δ shows the
difference between Inactive+New/Active+Max and Active+New
in terms of the number of covered violations. It can be found that
our method clearly outperforms the other two methods. Especially,
Inactive+New is not good as LawBreaker in Session S3. The reason
is that Active+Max only considers the maximum robustness of a
scenario, but ignores the other robustness values, such that part of
high-reward scenarios are easily overlooked. As for Inactive+New,
it only finishes testing a large batch of scenarios without further dis-
covering new law-violating scenarios, since it does not update the
reward to re-target the uncovered violation formulae. This shows
that changing the reward dynamically is justified in our setting as
it helps us to improve the searching efficiency by redirecting search.
Note that for optimization 1 and 3, the original design of GFlowNet
does not apply and thus it is infeasible to run the experiments with
the original GFlowNet. Therefore, we do not conduct the ablation
study to demonstrate the effectiveness of optimization 1 and 3.
Take Away: Our new reward function combined with the active
learning mode can achieve the best effect.

6 THREATS TO VALIDITY
First, The effectiveness of ABLE will be effected by the action space
of the existing scenario set, e.g., its size and richness. If there is no
specific action in the space, such as setting the speed of an NPC
to 10.5m/s, then any violations that can only be triggered with
this action cannot be discovered by ABLE. It is due to ABLE only
creating the new combination modes among the actions in current
search space, not creating new actions (i.e., tuning new values for
parameters). Therefore, this work dose not analyze whether tuning
a parameter for a particular action can make the difference for the

testing. We leave it to future work to incorporate such parameter
tuning.

Second, it is hard for us to judge in general whether a sce-
nario is considered realistic since some of them are naturally low-
probability events. Nonetheless, it does not mean that ADS gets
to ignore them. Based on what we observe, some of the identified
scenarios seem realistic to us. For instance, one of the scenarios
is that the car does not give way to the moving school bus that
first enters into the T-Junction, which breaks the fourth clause in
Article 51 of China Traffic Law [21]. This clause stipulates that all
vehicles should pass in turn when encountering a release signal
(i.e., green traffic light). Its violation formula is the 41-st formula
in [5]. As shown in Figure 6-a, the ego vehicle does not give way
to the moving school bus when entering the T-Junction. Figure 6-b
shows that the ego vehicle continues to move, which eventually
leads to a collision. This kind of scene is common in our real world.

Figure 6: A collision caused by breaking the Article 51 of
China Traffic Law

7 RELATEDWORK
Testing scenario generation. Existing works on testing scenario
generation mainly explore how to generate critical scenarios that
can expose incorrect functionality of ADS. Many works focus on
whether a collision occurs or not with evolutionary algorithms[28,
33, 34], Markov decision process[17], rule-based searching[37] and
machine learning[23, 27, 32]. For example, AV-Fuzzer[34] optimizes
the fuzzing algorithm based on GA under the guide of the distance
from other NPC vehicles. Similarly, SceGene [33] leverages the
probability model to eliminate traffic scenarios that do not meet the
test requirements, and aims to generate diverse scenarios. Jenkins
et al. propose an automated approach based on recurrent neural
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networks to generate accident scenarios [27]. SAMOTA [23] lever-
ages surrogate models to test ADS with the target of covering many
safety requirements, such as avoiding collision with pedestrians.
In addition to ‘no-collision’, testing strong oracles only has been
studied in a few works [2, 25, 39, 48]. For example, Hungar de-
scribes a comprehensive test specification for highway pilots with
respect to harmful events-related variables[25]. The most relevant
work is LawBreaker [48], which designs a specification language
to describe traffic laws and proposes GA-based fuzzing algorithm
to find different violations of traffic laws.

Although most existing works propose different methods to
generate scenarios for the evaluation of AV, they only focus on
simple oracles. Although SAMOTA has the ability of testing many
objectives, it can not support testing a much more complicated
specification (i.e., traffic laws). As for LawBreaker, its fuzzing al-
gorithm does not work well after the initial 50 tests on average
because it shows premature convergence. In this work, we can find
diverse scenarios to trigger more traffic violations by combining
our new reward function with active learning.

Object Generation. Our work is about the problem of learning
a sampling policy for generating an object from a sequence of
actions. This sampling problem has been studied with numerous
generative models[12, 35, 47], Markov Chain Monte Carlo (MCMC)
methods[22, 46, 50], reinforcement learning (RL) methods[3, 8, 20]
and GFlowNet[11, 26], such as in molecular generation[50] and
data imputation[8]. The generative models rely on a given set of
positive examples to train the model, thus not taking advantage of
the negative examples. RL tends to focus on one or a few dominant
modes, i.e., returning maximization objectives. When sampling
a batch of diverse objects, MCMC generally only performs local
exploration so that it is extremely slow to converge to the target
distribution. GFlowNet, first introduced in [11], samples with a
probability proportional to the return and then obtains a diverse
batch of high-reward objects.

Like the design of de novo biological sequences with desired
properties[26], diversity is also a key consideration for generating
high-reward scenarios in ADS testing. Among these algorithms,
only GFlowNet is suitable for our needs. To better adapt to the
scenario generation domain, ABLE enhances three optimizations to
the vanilla GFlowNet, e.g., dynamically updating reward function
and sampling the appropriate type of actions at each sample step.

8 CONCLUSION
We propose ABLE, a new ADS testing method based on GFlowNet,
to generate diverse law-violating scenarios efficiently. To better
adapt to scenario generation, we improve GFlowNet with two op-
timizations, i.e., dynamically updating objective functions during
active learning and only choosing the appropriate type of action
at each sample step. We have evaluated ABLE based on Apollo,
and LGSVL, and the results show that ABLE outperforms the state-
of-the-art by violating 17% and 25% more hard-to-discover laws
when testing Apollo 6.0 and Apollo 7.0, respectively. We further
conduct experiments to show that our improvements to the vanilla
GFlowNet model are relevant and effective.
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