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Abstract. The logistical complication of long-term mine planning in-
volves deciding the sequential extraction of materials from the mine pit
and their subsequent processing steps based on geological, geometrical,
and resource constraints. The net present value (NPV) of profit over the
mine’s lifespan usually forms the sole objective for this problem, which is
considered as the NP-hard precedence-constrained production scheduling
problem (PCPSP) as well. However, increased pressure for more sustain-
able and carbon-aware industries also calls for environmental indicators
to be considered. In this paper, we enhance the generic PCPSP formula-
tion into a multi-objective optimization (MOO) problem whereby carbon
cost forms an additional objective. We apply the Non-Dominated Sort-
ing Genetic Algorithm II (NSGA-II) to this formulation and experiment
with variants to the solution generation. Our tailored application of the
NSGA-II using a set of real-world inspired datasets can form an approx-
imated Pareto front for planners to observe stipulated annual carbon
emission targets. It also displays that tailored variants of the NSGA-II
can produce diverse solutions that are close to the true Pareto front.

Keywords: Precedence-constraint production scheduling · Resource ca-
pacity optimization · Multi-objective evolutionary algorithm · Sustain-
ability.

1 Introduction

The five phases of mining present a number of logistical challenges (Fig. 1).
During the planning, implementation, and production phases, logistics man-
agement must forecast, plan, and schedule tasks from strategic, tactical, and
operational angles. During the planning phase, environmental concerns are ad-
dressed through the environmental impact assessment (EIA) and reclamation
plan. These are submitted with the mining plan to the respective government
authorities before the implementation phase [7]. As the mining phases mature,

? Supported by Enterprise Singapore.



2 N.A.B. Azhar et al.

the mining plans, EIA, and reclamation plans are updated and can become pro-
gressively detailed. The reclamation plan is updated and reviewed periodically
in certain jurisdictions such as Western Australia. However, regulatory rigor and
intra-governmental coordination vary across jurisdictions and may be improved,
such as integrating the EIA and reclamation plan processes [12]. These can be
classified as the strategic perspective for mine planning.

Fig. 1. Summary of activities for each mine phase and their influences on costs.

Similarly, the tactical and operational perspectives of mine planning are up-
dated periodically and have the potential to incorporate environmental concerns.
Planning from the tactical perspective [13] over the whole mine lifespan (decades)
has been tackled as the precedence-constrained production scheduling problem
(PCPSP) and acknowledged as NP-hard. The logistical challenge in the PCPSP
involves the movement of extracted raw materials from the mine pit through
the broad sequence of processing and refinement steps to obtain the desired
products. To support these activities, there are various operational facilities for
processing (e.g., crushing and grinding), refining (e.g., hydrometallurgy), storage
(i.e., stockpile), and waste (e.g., tailings pond and dump). These facilities have
their own set of resources and corresponding capacity constraints.

When modeling mines, planners discretize the buried materials into three-
dimensional blocks to decide the sequence of extraction. Each block would have
its own set of preceding blocks that require prior extraction due to the geology
and geometry unique to each mine site. This is known as precedence constraints
and is illustrated in Fig. 2. There are then diverse resource constraints for each
block at the downstream processing and refining facilities. For the efficient and
effective movement of extracted materials, these sequence and processing deci-
sions are considered holistically with the approximate net present value (NPV)
of profit throughout decades of the mine’s lifespan.

Barring profit, environmental considerations and the push for net zero car-
bon emissions are reverberating within the mining industry due to its exten-
sive processing and operations scale. Hence, the monitoring of carbon emissions
throughout the value chain of the PCPSP is increasingly necessary and ties in
with schemes such as the emission trading systems (ETS) and emission taxes. In
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Fig. 2. Block extraction sequence example from year to year following precedence and
resource constraints for MineLib’s Newman1 instance [3]

this paper, we boost previous research on the PCPSP by enhancing the generic
PCPSP formulation [6] with carbon cost. This allows planners to consider the
NPV of carbon cost alongside profit.

Instead of solely maximizing the NPV of profit in the generic PCPSP formu-
lation, we convert it into a multi-objective optimization (MOO) problem with
another objective that minimizes the NPV of carbon cost. Next, we apply the
NSGA-II [5] whereby components of the algorithm - initial solution generation,
crossover and mutation - are tailored to the PCPSP. As far as we know, earlier
works of evolutionary algorithms (EA) to the PCPSP did not propose similar
frameworks. In fact, details on the initial solution generation, crossover, and mu-
tation are quite lacking. Furthermore, earlier works for the PCPSP employed EA
such as genetic algorithm [1] and differential evolution [8] for a single objective
formulation problem whereas we use NSGA-II for an MOO problem. We then
test variants of our approach with a real-world mine dataset from an operating
mine and benchmark instances from Minelib [6]. It turns out that variants to
the solution generation can improve results. Furthermore, we demonstrate how
our approach can produce approximated Pareto fronts for planners to observe
carbon emissions targets when deciding on mining plans.

2 Related Work

The angles of strategic, tactical, and operational issues are commonly used for re-
search on the logistics of mining. Lately, qualitative and quantitative research on
mine planning that incorporates sustainability elements has increased. However,
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quantitative research based on operations research, artificial intelligence, and
machine learning trails behind qualitative research [21]. Furthermore, research
that incorporates carbon emissions from a tactical angle remains sparse.

From the strategic angle, one of the research covers carbon emissions indi-
rectly by increasing efficiency and thus minimizing haulage costs. The main focus
of Rimélé, Dimitrakopoulos, and Gamache [14] is to minimize land disturbance
by optimizing the order of ore extraction. To achieve this, they propose an in-pit
waste disposal approach, which involves depositing unprofitable extracted ores
in available areas within the pit instead of moving them to temporary dumps.
Meanwhile, Xu et al. [20] model carbon emission cost directly as one of the un-
desirable environmental outputs. In their multi-objective approach, they aim to
minimize undesirable environmental outputs while simultaneously maximizing
both the NPV of profit and social benefits. It focuses solely on the pit limit,
which determines whether or not to extract the ores while ignoring the sequenc-
ing and processing decisions thereafter.

From the operational angle, the objective is to explicitly decrease expenses
associated with carbon emissions in operational facilities and transportation net-
works. Valderrama et al. [18] utilize a mixed integer programming (MIP) model
to analyze carbon emissions from inter-facility transportation and operating fa-
cilities. Similarly, Attari and Torkayesh [2] employ a multi-objective MIP to
examine carbon emissions in transportation between facilities and customers. In
comparison, Canales-Bustos, Santibañez-González, and Candia-Véjar [4] develop
a multi-objective hybrid particle swarm optimization algorithm to minimize in-
vestment costs, transportation costs, deviations between product quality and
goals, and carbon emissions from facilities and vehicles. These operational an-
gles ignore the tactical decisions of extraction and sequencing of blocks. Lastly,
Wang et al. [19] indirectly model carbon emissions by comparing resource ef-
ficiency and the NPV of profit with an NSGA-II. Their formulation also pre-
defines extraction decisions and focuses only on the processing of extracted ores.

Research from the tactical angle directly models carbon emission cost when
examining trade-offs between profit and sustainability. Azhar et al. [3] consider
extraction, sequencing, and processing decisions of ores as per the PCPSP. They
enhance the generic PCPSP formulation with an additional constraint of carbon
emission cost [20] to produce an approximated Pareto front.

Our research is based on the tactical angle of the PCPSP, focusing on deci-
sions of block extraction, extraction sequence, and its processing steps [3]. We
also directly model the trade-off between the NPV of profit and the carbon
emission cost by adopting the carbon costing framework by Xu et al. [20]. How-
ever, we differ from Azhar et al. [3] by including the carbon emission cost as an
additional objective function instead of a constraint.

3 The PCPSP Definition and Formulation

The PCPSP determines the entire mining process, including extraction and pro-
cessing decisions for valuable mineral ores, and provides investors with an es-
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timate of a mine’s value [7]. The mine consists of several components, such as
the pit, dump, stockpiles, processing plants, and heavy machinery. In the pit,
mineral ore deposits are divided into blocks of the same size for modeling pur-
poses. Each block has a unique value and a set of precedence constraints based
on geology, which affects the overall extraction sequence over time and how the
ore is processed, as illustrated in Fig. 2. After extraction, the block is trans-
ported to processing facilities where it undergoes various treatments, such as
crushing, grinding, and screening, to reduce it according to the requirements.
Then, the material is refined to improve its quality and obtain various desired
end products. Unfortunately, this value chain consumes significant raw materials
(e.g., energy, water, gases) and generates harmful by-products (e.g., water and
air pollution, chemical waste).

3.1 Carbon Costing Formulation

Our main aim is to augment the PCPSP formulation with carbon costing. To
measure carbon emissions, we use the metric by Xu et al. [20], which defines
the cost of carbon emissions Ci,e from energy consumption. This cost reflects the
amount of carbon dioxide that is absorbed during ore excavation, processing, and
refining. The formula includes two key quantities: the amount of ore extracted
from the pit and sent for further processing Qi,o, and the amount of waste
material extracted and treated Qi,w. These quantities are multiplied by the
energy consumed using coal to extract one unit tonne of material (either ore
or waste) from the pit em, and the energy consumed to process one unit tonne
of ore ep. These values are then multiplied by the carbon factor of coal fc, the
conversion coefficient of carbon dioxide from carbon fa, and the absorption cost
of carbon dioxide Cc.

C =
(Qi,o +Qi,w)em +Qi,oep

1000
fcfaCc (1)

3.2 Enhanced Multi-Objective PCPSP Formulation

The PCPSP is a problem in scheduling mining activities that aims to maximize
the NPV of profit while satisfying several requirements related to mineral ore
grade, equipment availability, and processing plant capacity [6]. This requires ex-
pertise in multiple domains such as geology, chemistry, engineering, economics,
and customer relations. Firstly, geologists provide information on the ore com-
ponents and grades based on multiple drill samples and the structure of the
surrounding materials. Secondly, mining engineers use this information to assess
the structure, methods, and equipment needed to access the ore. Next, geologists
and chemists determine the type of processing and refining required for differ-
ent ores, which can result in varying products. Then, economists estimate the
economic value of each block based on demand and supply worldwide. Lastly,
customer relations evaluate the demand of current and potential customers. All
these considerations make mine scheduling a complex task.
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Mine scheduling research usually relies on real-world case studies because
mining operations are unique and shaped by geo-metallurgical factors [13]. How-
ever, this approach leads to solution techniques that cannot be directly compared
with others. The MineLib library [6] provides a set of generalized mathematical
formulations and instances for three problem variants, including the PCPSP,
which is the most complex problem. By adopting the PCPSP formulation, our
work enables other researchers to build upon it.

The generic formulation for the PCPSP [6] defines B as the set of blocks, Bb as
the subset of predecessors for block b ∈ B, and D as the set of destinations. The
profit p̃bdt is obtained by extracting a block b and processing it at a destination d
during a specific period, using qbdr units of operational resource r ∈ R. A binary
decision variable xbt is used to indicate whether block b is extracted during period
t. A continuous decision variable ybdt represents portions of block b delegated to
destination d during period t. The augmented multi-objective PCPSP has two
objective functions. The first objective maximizes the NPV of profit for periods
T , while the second objective minimizes the carbon emission cost pegged to the
extraction and processing of mineral ores.

The first objective function derives the profit p̃bdt for a given period t ∈ T
with pbd

(1+α)t , where α denotes the discount factor. The estimated value of a block

is determined by geologists using its ore composition and grade. The summation
of the NPV of profit throughout the mine’s lifespan emphasizes the significance
of extracting blocks with higher value earlier.

(Objective function 1) Z1 = max
∑
b∈B

∑
d∈D

∑
t∈T

p̃bdtybdt (2)

The second objective function calculates the discounted carbon cost c̃bdrt
from using operational resource r ∈ R to extract or process block b at desti-
nation d ∈ D during period t ∈ T . It is derived using cbdr

(1+α)t . Practically, this

function can be crucial within the framework of carbon credit trading, a market-
based instrument aimed at reducing carbon dioxide emissions. Under this system,
economies that exceed their allocated emissions can purchase credits from those
that have reduced their emissions below their carbon emission permits.

(Objective function 2) Z2 = min
∑
b∈B

∑
d∈D

∑
r∈R

∑
t∈T

c̃bdrtybdt (3)

Constraint (4) sets conditions for the order in which blocks can be extracted,
and it applies to all blocks and periods. It states that block b′ must be extracted
in the same or an earlier period than block b, as b′ is a predecessor of b. This
constraint is decided by mining engineers based on the materials surrounding
the ore, including sand, silt, and clay, as well as the ore’s type and composition.
The latter is determined by geologists.∑

τ≤t

xbτ ≤
∑
τ≤t

xb′τ ∀b ∈ B, b′ ∈ Bb, t ∈ T (4)
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Constraint (5) specifies that a block should be completely dispatched to one
or multiple destinations if it is mined. Otherwise, it should not be sent to any
destination. The selection of destination is influenced by the ore’s grade and
composition, as well as the demands of customers.

xbt =
∑
d∈D

ybdt ∀b ∈ B, t ∈ T (5)

Constraint (6) limits block extraction to only once during the mine’s lifespan.∑
t∈T

xbt ≤ 1 ∀b ∈ B (6)

Constraint (7) guarantees that for each time period t, the use of every opera-
tional resource r is within the limits of minimum Rrt and maximum R̄rt. These
resources are managed by mining engineers and technicians, and they include
diggers, haulage trucks, grinders, and processing plants.

Rrt ≤
∑
b∈B

∑
d∈D

qbdrybdt ≤ R̄rt ∀r ∈ R, t ∈ T (7)

Constraint (8) represents side constraints with lower bound a and upper
bound ā. It can represent various mining situations, including grade constraints.

a ≤ Ay ≤ ā (8)

Finally, constraints (9) and (10) reflect the range of values.

xbt ∈ {0, 1} ∀b ∈ B, t ∈ T , (9)

ybdt ∈ [0, 1] ∀b ∈ B, d ∈ D, t ∈ T . (10)

4 NSGA-II for the Augmented Multi-Objective PCPSP

Diverse techniques are available for MOO problems with their own advantages
and disadvantages [11]. Due to the NP-hard nature of the PCPSP, exact methods
such as the MIP and constraint programming [15], are found to be efficient for
smaller instances but become intractable as the instance size increases. Hence,
alternatives have to be explored. One of them is the extension of the genetic
algorithm framework. Genetic algorithms use a population of randomly gener-
ated solutions that are evaluated for improvement at each iteration, making it
possible to converge on the entire Pareto set in one run. Multi-objective evolu-
tionary algorithms (MOEAs) belong to the class of genetic algorithms used for
MOO problems. They utilize additional advanced methods to maintain a varied
population of Pareto optimal solutions throughout the iterations. The MOEAs
are differentiated by their fitness assignment, diversity mechanism, elitism, and
the use of external population [9].
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We utilize NSGA-II [5] as it remains a popular choice due to its effective
mechanisms of non-domination sorting, crowding distance sorting, and elitism,
which contribute to a diverse Pareto optimal set and accelerated convergence.
Its wide application across other industries, including medicine [10] and man-
ufacturing [17], further demonstrates its strength. Our implementation of the
NSGA-II for the augmented multi-objective PCPSP is summarized in Fig 3.

Fig. 3. Overview of NSGA-II implementation.

4.1 Initial Population of Solutions with Cone Sets

The repair of precedence constraint violation is computationally intensive and
hence, it should be prevented as much as possible. To do so, we compute the
complete set of preceding blocks that need to be extracted before the current
block of interest with a directed acyclic graph (DAG). The shape of this set,
together with the block of interest, can be described as a cone set, illustrated in
Fig. 4. For each cone set, we compute the resources required, the profit, and the
earliest period the cone set can be extracted based on the cumulative resource
capacity for each period t. The apportionment of blocks to destinations at each
time period, ybdt is determined by the profit associated with each destination;
we utilize argmax and softmax (details in Section 5). These components form
the heuristic for the initial solution, shown in Algorithm 1.
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Fig. 4. Cross-sectional view of mine pit when excavating different target blocks.

Algorithm 1 produces a population of solutions Ωj where each solution j is
the set of blocks extracted at each time period xbt. Each solution is processed
progressively through each time period t ∈ T (line 6). At each time period, blocks
are pre-selected based on the earliest period of extraction (line 9) with allowance
for resource violation (line 15) using an upper bound resource multiplier ρ. The
resource multiplier is randomly generated where ρ ∈ [0, 1] (line 5). This allows
variants amongst solutions in the population set Ωj . Then, the resources required
for the solution are checked against the upper bound of resources for the time
period t. If there are no violations, a local improvement heuristic is run (line
20). Otherwise, a repair operator is invoked (line 22).

Both the improvement heuristic and the repair operator rely on finding fringe
blocks. These are blocks situated at the periphery of the solution that may
prevent major disruptions to the current solution when added or removed. If
there is no resource violation, the priority is to add more profitable blocks.
Otherwise, blocks that consume the least resources are added. Conversely when
removing blocks, blocks that are least profitable are prioritized. Finally, the
solutions are ranked based on the two objective functions with non-domination
sorting and crowding distance [5].

4.2 Reproduction

The reproduction of offspring from the initial solution or parent solution consists
of the binary tournament operator, mutation, and crossover. Once offspring so-
lutions are produced, they are again ranked based on the two objective functions
with non-domination sorting, and crowding distance. This reproduction step is
run till the maximum number of generations (i.e., the termination threshold).

The binary tournament operator randomly selects two individuals (or solu-
tions) from a population and chooses the best (based on the rank function of
NSGA-II) for the next generation. This procedure is repeated until the desired
number of individuals for the next generation is obtained. The set of parent
solutions from this step then leads to the crossover operator.

Crossover facilitates the creation of new offspring solutions by combining
genetic material from two parent solutions. The process involves selecting a
crossover point in the parents’ genetic code and exchanging genetic informa-
tion beyond that point to generate two new offspring solutions. The crossover
rate parameter η determines whether this step occurs for the parent pair. A high
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Algorithm 1 Generation of the population of initial solutions.
Input: Block model B, destinations D, predecessor edges E, time periods T , resource types R,
resource capacity required per block at each destination and resource type qbdr, resource bounds for
each resource type R̄rt, profit of block when sent to destination p̃bd, apportionment of the block to
each destination ybdt upper bound resource multiplier ρ, population size Ω
Output: Population of solutions Ωj where each solution is block extracted at each time period
xbt

1: G← ConstructDAG(B, E)
2: θ ← ConeSetComputaions(G,D, T ,R, qbdr, R̄rt, p̃bd
3: Ωj ← ∅
4: for j in Ω do
5: ρ← RANDOM(0, 1)
6: for t in T do
7: B̂ ← ∅
8: for b in θ do
9: if b earliest extraction period = t then
10: B̂ ← B̂ ∪ b
11: end if
12: end for
13: for b in B̂ do
14: Î ← ∅
15: if

∑
b∈B̂

∑
d∈D qbdrybdt ≤ R̄rt ∗ ρ then

16: Î ← Î ∪ b
17: end if
18: end for
19: if

∑
b∈Î

∑
d∈D qbdrybdt < R̄rt then

20: xbtj ← ImproveSolution(G, qbdr, p̃bd, Î)
21: else if

∑
b∈Î

∑
d∈D qbdrybdt > R̄rt then

22: xbtj ← RepairResourceV iolation(G, qbdr, p̃bd, Î)
23: end if
24: end for
25: Ωj ← Ωj ∪ xbtω

26: end for
27: return Ωj

crossover rate reflects a higher chance that crossover occurs. Due to the multi-
period structure of the PCPSP, we design an interdependent-period single-point
crossover that accounts for the entire mine lifespan. It combines two parent solu-
tions by exchanging portions of their periodic components. We use a crossover cut
ζ ∈ [0, 1], drawn randomly, to determine the crossover index using ζ ∗

∑
t∈T xbt.

This index can fall in any time period. Fig. 5 illustrates a crossover between two
feasible solutions. The last step in this illustration is an immediate fix to prevent
block extraction across multiple periods.

Subsequently, mutation introduces a small random alteration to the genetic
code of an individual. In the mutation step, we choose blocks for extraction
(i.e., xbt = 1) with no precedence blocks. The current time period t′ is mutated
randomly to another time period t ∈ {T \ t′}. The mutation step occurs for all
parent pairs, but we used the mutation rate γ to select the percentage of blocks
with no precedence |{b̂}| to mutate. The subset of blocks with no precedence is

selected uniformly using SAMPLE(RANDOM(0, γ) ∗ |{b̂}|, {b̂}).
Solutions may become infeasible after crossover and mutation. The crossover

step may result in precedence violation whereas the mutation step may result
in resource violation. Hence, the repair operator is invoked. It uses the pre-
computed cone sets that are akin to the initial solution generation.
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Fig. 5. Crossover between two feasible solutions.

5 Experiments

We utilize a small-sized real-world inspired dataset from an operating copper
and gold mine, Wilma1. It was adapted for the generic formulation and mocked
up. We complemented it with benchmark instances from MineLib - Newman1
and Kd. Newman1 is small-sized whilst Kd is medium-sized (Kd is a copper
mine in North America). Table 1 informs the number of blocks |B|, precedence
|Bb|, time periods |T |, destinations |D| and operational resource constraints |R|.

Table 1. Key characteristics of the dataset.

Name Block Precedence Periods Destinations Resources

Newman1 1,060 3,922 6 2 2
Wilma1 1,960 7,112 4 3 3
Kd 14,153 219,778 12 2 2

5.1 Experimental Setup

There are two NSGA-II variants - based on the argmax and softmax functions –
for the portions of block b delegated to destination d during period t, ybdt ∈ [0, 1].
This directly affects Objective Function 1. The first variant, using the argmax

function, apportions a block fully to the destination with the most profit. Mean-
while, the softmax function variant, apportions a block across all destinations
with a multiplier λ on the profit of that block when sent to each destination,
pbd:

softmax =
eλpbd∑D
d=1 e

λpbd
(11)

We run the two variants three times, each with 100 solutions in a population
and generations ranging from eight to ten. From the six populations of solution
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sets, we derive the true Pareto front of non-dominated solutions. Then, the so-
lution sets from each population are compared using the ratio of non-dominated
individuals (RNI) [16], distance, and diversity metrics [5]. Firstly, the RNI met-
ric yields the proportion of best-known solutions φ (i.e., solutions that form part
of the Pareto front) that exist in a population Ωj with N solutions:

Ratio of non-dominated individuals (RNI) =
|φj |
N

(12)

Secondly, the distance metric assesses how closely a solution j in population
Ωj converges to the true Pareto front. Initially, the metric calculates the mini-
mum Euclidean distance between a solution from population Ωj and all solutions
k from the true front Ωk. This is then averaged across all N solutions. A value
close to zero is desired.

Distance metric =

∑N
j=1 min djk

N
(13)

Finally, the diversity metric evaluates the even spread of solutions over the
true Pareto front using the Euclidean distance. It considers the distance between
successive solutions di, the average distance d̄ of all di, distances between extreme
solutions of the true Pareto-optimal front dk, and distances between extreme
solutions in a population set dj . A value close to one indicates better diversity.

Diversity metric =
dk + dj +

∑N−1
i=1 |di − d̄|

dk + dj + (N − 1)d̄
(14)

The NSGA-II model for the augmented multi-objective PCPSP was built
using Python. The algorithm was executed on a Linux operating system with
3.5 GHz 3rd generation Intel Xeon Scalable processor, 128 vCPUs and 128 Gb
memory. The initial solution was produced with the upper bound resource mul-
tiplier ρ of 1.2. In the reproduction, the mutation γ and crossover η rates were
set to 0.2 and 0.6, respectively. Lastly, the softmax multiplier λ was 4.

5.2 Results

The performance metrics of RNI, distance, and diversity for the argmax and
softmax variants are summarized in Table 2. Overall for Newman1 and Wilma1
instances, the argmax variants, compared to the softmax variants, generate sets
of solutions that are closer to the true Pareto front (distance metric), but with
less assortment (diversity metric) and lesser individual solutions that form part
of the true Pareto front (RNI). For Newman1, the argmax and softmax average
distance metrics are 0.290 and 0.304, respectively, while for Wilma1, their values
are 0.056 (argmax) and 0.074 (softmax). Next, the diversity metric averages
0.753 (argmax) and 0.830 (softmax) for Newman1, and 0.863 (argmax) and
1.017 (softmax) for Wilma1. Finally, the RNI averages 0.003 (argmax) and 0.007
(softmax) for Newman1, and 0.007 (argmax) and 0.037 (softmax) for Wilma1.
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Table 2. Performance metrics of experiment variants across datasets.

Experiment Softmax Argmax

Generation RNI Distance Diversity RNI Distance Diversity

Newman1

8 0 0.264 0.862 0 0.254 0.780
9 0 0.332 0.820 0 0.295 0.767
10 0.02 0.317 0.807 0.01 0.321 0.713

Average 0.007 0.304 0.830 0.003 0.290 0.753

Wilma1

8 0.09 0.082 1.037 0.01 0.039 0.803
9 0.01 0.078 0.977 0 0.070 0.875
10 0.01 0.063 1.038 0.01 0.058 0.911

Average 0.037 0.074 1.017 0.007 0.056 0.863

Kd

8 0 0.332 0.749 0.03 0.322 0.946
9 0 0.251 0.684 0 0.324 0.905
10 0 0.236 0.685 0.01 0.333 0.925

Average 0 0.273 0.706 0.01 0.326 0.925

Fig. 6. Newman1 Pareto front across generations for two NSGA-II variants.

Meanwhile for the medium-sized instance of Kd, these observations between
the argmax and softmax variants are reversed. The softmax variants, compared
to the argmax variants, generate sets of solutions that are closer to the true
Pareto front (distance metric), but with less assortment (diversity metric) and
lesser individual solutions that form part of the true Pareto front (RNI). The
average values are found in Table 2.

A Pareto optimal front is also produced for each population variant. This
visual aid allows mine planners to appreciate the trade-off between the NPV
of profit and carbon cost for decision making. Fig. 6, Fig. 7 and Fig. 8 display
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Fig. 7. Wilma1 Pareto front across generations for two NSGA-II variants.

Fig. 8. Kd Pareto front across generations for two NSGA-II variants.

the Pareto front of the population variants across generations for Newman1,
Wilma1, and Kd respectively. The computation time for each population variant
was less than an hour for Newman1. However, when the model is applied to larger
datasets, the computation time increases. Hence, the traversal of the search space
may be improved for this framework to be applied to much larger instances.

6 Conclusion

In this paper, we implement the NSGA-II model to balance the NPV of profit
with carbon emissions when managing the movement of ores from the mine
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pit to the production facilities. Our framework for the open pit mine addresses
sustainability concerns by augmenting the generic PCPSP into a multi-objective
problem that can be catered to diverse environmental concerns. It is applied to
real-world instances of an operating mine and MineLib that have been extended
for carbon emission considerations. Our approach demonstrates the effective
formation of Pareto fronts with profit and carbon cost axes so that mine planners
can consider both aspects concurrently.

Previous work has used the generic PCPSP for carbon emissions trade-off
but through an additional constraint. To the best of our knowledge, this is the
first reformulation into a MOO problem. Future work can focus on improving the
computation time to extend this proof of concept to larger datasets. Additionally,
other MOEAs can be evaluated against the NSGA-II model and the objective
functions can be further expanded for other environmental concerns.
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