
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2022

Learning variable ordering heuristics for solving constraint Learning variable ordering heuristics for solving constraint

satisfaction problems satisfaction problems

Wen SONG

Zhiguang CAO
Singapore Management University, zgcao@smu.edu.sg

Jie ZHANG

Chi XU

Andrew LIM

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons

Citation Citation
SONG, Wen; CAO, Zhiguang; ZHANG, Jie; XU, Chi; and LIM, Andrew. Learning variable ordering heuristics
for solving constraint satisfaction problems. (2022). Engineering Applications of Artificial Intelligence.
109, 1-12.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8070

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8070&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8070&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Engineering Applications of Artificial Intelligence 109 (2022) 104603

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Learning variable ordering heuristics for solving Constraint Satisfaction
Problems
Wen Song a, Zhiguang Cao b,∗, Jie Zhang c, Chi Xu b,c, Andrew Lim d

a Institute of Marine Science and Technology, Shandong University, China
b Singapore Institute of Manufacturing Technology (SIMTech), Singapore
c School of Computer Science and Engineering, Nanyang Technological University, Singapore
d School of Computing and Artificial Intelligence, Southwest Jiaotong University, China

A R T I C L E I N F O

Keywords:
Constraint Satisfaction Problem
Variable ordering
Deep reinforcement learning
Graph Neural Network

A B S T R A C T

Backtracking search algorithms are often used to solve the Constraint Satisfaction Problem (CSP), which is
widely applied in various domains such as automated planning and scheduling. The efficiency of backtracking
search depends greatly on the variable ordering heuristics. Currently, the most commonly used heuristics
are hand-crafted based on expert knowledge. In this paper, we propose a deep reinforcement learning based
approach to automatically discover new variable ordering heuristics that are better adapted for a given class
of CSP instances, without the need of relying on hand-crafted features and heuristics. We show that directly
optimizing the search tree size is not convenient for learning, and propose to optimize the expected cost of
reaching a leaf node in the search tree. To capture the complex relations among the variables and constraints,
we design a representation scheme based on Graph Neural Network that can process CSP instances with
different sizes and constraint arities. Experimental results on random CSP instances show that on small and
medium sized instances, the learned policies outperform classical hand-crafted heuristics with smaller search
tree (up to 10.36% reduction). Moreover, without further training, our policies directly generalize to instances
of larger sizes and much harder to solve than those in training, with even larger reduction in the search tree
size (up to 18.74%).

1. Introduction

Combinatorial problems widely exist in many domains (Petit and
Trapp, 2019). As one of the most commonly studied combinatorial
problems in computer science and artificial intelligence, Constraint
Satisfaction Problem (CSP) provides a general framework for modeling
and solving combinatorial problems. Solving CSP plays a central role
in many research areas. A typical and successful application of CSP
is automated planning and scheduling (Salido et al., 2008), which has
numerous real-world applications, ranging from industry 4.0 (Legat and
Vogel-Heuser, 2017; Song et al., 2019) to robotics (Kasprzak et al.,
2014; Behrens et al., 2019). A CSP instance involves a set of variables
and constraints. To solve it, one needs to find a value assignment
(i.e. solution) for all the variables such that all the constraints are
satisfied, or prove such assignment does not exist. Despite its ubiquitous
applications, unfortunately, CSP is well known to be NP-complete
in general (Mackworth and Freuder, 1993). To solve CSP efficiently,
backtracking search algorithms are often employed, which are exact
algorithms with the guarantee that a solution will be found if one exists.
Though the worst-case complexity is still exponential, with the help of

∗ Corresponding author.
E-mail addresses: wensong@email.sdu.edu.cn (W. Song), zhiguangcao@outlook.com (Z. Cao), zhangj@ntu.edu.sg (J. Zhang), cxu@simtech.a-star.edu.sg

(C. Xu), i@limandrew.org (A. Lim).

constraint propagation, backtracking search algorithms often perform
reasonably well in practice (Rossi et al., 2006).

In general, a backtracking search algorithm performs depth-first tra-
verse of a search tree, and tries to find a solution by iteratively selecting
a variable and applying certain branching strategy. The decision of
which variable to select next is referred to as variable ordering. It is well
acknowledged that the choice of variable ordering has a critical impact
on the efficiency of backtracking search algorithms (Gent et al., 1996).
However, finding the optimal ordering, i.e. the one results in a minimal-
sized search tree, is at least as hard as solving the CSP (Liberatore,
2000; Rossi et al., 2006). Therefore, current practice mainly relies
on hand-crafted variable ordering heuristics obtained from the experi-
ence of human experts, such as MinDom (Haralick and Elliott, 1980),
Dom/Ddeg (Bessiere and Régin, 1996), and impact-based heuristic (Re-
falo, 2004). Though they are easy to use and widely adopted, they do
not have any formal guarantees on the optimality. In addition, they are
designed for solving any CSP instance without considering the problem-
specific structures, which can be exploited to achieve much better
efficiency. However, incorporating these additional features requires

https://doi.org/10.1016/j.engappai.2021.104603
Received 3 June 2021; Received in revised form 5 November 2021; Accepted 5 December 2021
Available online 20 December 2021
0952-1976/© 2021 Elsevier Ltd. All rights reserved.

W. Song, Z. Cao, J. Zhang et al. Engineering Applications of Artificial Intelligence 109 (2022) 104603

substantial experience and deep domain knowledge, which are hard to
obtain in reality (Rossi et al., 2006).

Recently, Deep Neural Networks (DNNs) have been shown to be
promising in learning algorithms for solving NP-hard problems, such
as routing, graph problems, Propositional Satisfiability Problem (SAT),
and so on Bengio et al. (2020). The effectiveness comes from the fact
that given a class of problem instances (e.g. drawn from a distribution),
DNN can be trained to discover useful patterns that may not be known
or hard to be specified by human experts, through supervised or
reinforcement learning (RL) (Ma et al., 2020; Altan et al., 2021). Based
on the above success, in this paper, we ask the following question:
can we use DNN to discover better variable ordering heuristics for a class
of CSP? This is not a trivial task, due to the following challenges.
Firstly, given the exponential (worst-case) complexity of CSP, it is not
practical to obtain large amount of labeled training data (e.g. optimal
search paths), therefore it is hard to apply supervised learning methods.
Secondly, CSP instances have different sizes in terms of number of
variables and constraints, and the constraint arities (i.e. number of
variables involved) are also different. It is crucial to design a deep
representation scheme that can effectively process CSP instances of any
size and constraint arity.

In the literature, several works have tried to leverage machine
learning techniques to learn variable ordering heuristics for solving sat-
isfaction problems, such as SAT (Lagoudakis and Littman, 2001), Quan-
tified Boolean Formulas (QBF) (Samulowitz and Memisevic, 2007), and
CSP (Epstein and Petrovic, 2007; Xu et al., 2009). However, as will be
detailed in Section 2, these methods cannot directly generate ordering
policies from solving status. They require a set of predefined heuristics
from which the algorithm learns to choose (or combine), and are all
based on conventional learning methods and hand-crafted features.
More recently, independent to our work, DNN is used with RL to learn
value ordering heuristics for CSP (Cappart et al., 2021; Chalumeau
et al., 2021). However, as mentioned in Chalumeau et al. (2021), learn-
ing variable ordering heuristics with DNN raises additional challenges
to the learning mechanism.

In this paper, we design a deep reinforcement learning (DRL) agent
which tries to make the optimal variable ordering decisions at each de-
cision point to minimize the search tree size. More specifically, variable
ordering in backtracking search is modeled as a Markov Decision Pro-
cess (MDP), where the optimal policy is to select at each decision point
the variable with the minimum expected number of search nodes. The
DRL agent can optimize its policy by learning from its own experiences
of solving CSP instances drawn from a distribution, without the need of
supervision. However, as will be shown later, such direct formulation
could cause inefficiency and inconvenience to the learning mechanism,
since learning must be delayed until backtracking from a search node.
To resolve this issue, we consider the search paths originated from a
node as separate trajectories, and opt to minimize the expected number
of remaining nodes to reach a leaf node. We represent the internal
states of the search process based on Graph Neural Network (GNN) (Xu
et al., 2019), which can process CSP instances of any size and constraint
arity, and effectively capture the relationship between the variables and
constraints. We use Double Deep Q-Network (DDQN) (Hasselt et al.,
2016) to train the GNN based RL agent. Experimental results on random
CSP instances generated by the well-known model RB (Xu et al., 2007)
show that the RL agent can discover policies that are better than
the traditional hand-crafted variable ordering heuristics, in terms of
minimizing the search tree size. More importantly, the learned policy
can effectively generalize to larger instances that have never been seen
during training.

To summarize, the contributions of this paper are as follows:

• We propose a novel DRL method to learn variable ordering heuris-
tics for solving a class of CSP. Different from previous works, our
method learns in an end-to-end fashion, meaning that through
self-training, it can automatically generate high-quality ordering
heuristics from raw state input without the need of hand-crafted
features and predefined heuristics.

• We propose to minimize the expected search effort of reaching the
leaf nodes, instead of directly minimizing the search tree size. In
this way, RL training could be more efficient since temporal dif-
ference learning is effectively enabled. Specifically, the agent can
learn at each search step, instead of waiting until backtracking.

• We propose a GNN based scheme to represent the internal search
states, based on which a deep Q network is designed to output the
Q-value of each candidate variable end-to-end from raw state fea-
tures of variables and constraints. Such representation is agnostic
to the instance size, hence enables generalizing to large unseen
instances.

The rest of this paper is organized as follows. We first summarize
related works in Section 2, followed by preliminaries about CSP in
Section 3. Then in Section 4, we present our deep RL method in detail.
Section 5 provides the experimental results and analysis. Section 6
further discusses the reasons of the good performance of our method,
as well as the limitations. Finally, Section 7 concludes the paper.

2. Related work

Recently, there has been an increasing attention on using deep
(reinforcement) learning to tackle hard combinatorial (optimization or
satisfaction) problems. Quite a few works in this direction focus on
solving specific types of problems, including routing (Kool et al., 2019;
Wu et al., 2021; Xin et al., 2021b,a), graph problems (Khalil et al.,
2017a; Li et al., 2018), and scheduling (Zhang et al., 2020; Mao et al.,
2019). Instead of solving specific problems, we focus on CSP which is
a general representation of combinatorial problems.

In the literature, a number of methods try to tackle satisfaction
problems such as CSP and SAT in an end-to-end fashion, meaning that
training DNN to directly output a solution for a given instance. Xu
et al. (2018) represent binary CSP as a matrix and train a Convolutional
Neural Network (CNN) to predict its satisfiability, but cannot give the
solution for satisfiable instances. In addition, the matrix representation
scheme cannot scale to arbitrary problem size. Galassi et al. (2018)
train a DNN that can construct a feasible solution of a CSP instance
by extending a partial assignment, however the representation scheme
based on one-hot encoding of assignment also suffers from the issue
of being restricted to a pre-determined problem size. Selsam et al.
(2019) train a satisfiability classifier for SAT, which can be considered
as a special case of CSP. The underlying architecture is based on GNN
instead of CNN, therefore can process instances with different sizes. The
authors also provide an unsupervised procedure to decode a satisfying
assignment. Amizadeh et al. (2019) propose a differentiable architec-
ture to train a GNN that directly aiming at solving the Circuit-SAT
problem instead of only predicting its satisfiability.

Despite their simplicity and effectiveness, as pointed out by Bengio
et al. in a recent survey (Bengio et al., 2020), end-to-end methods
suffer from two major limitations: (1) feasibility is weak since it is
hard for them to handle advanced types of constraints, and (2) no
guarantee on the solution quality (in terms of optimality and feasibil-
ity for optimization and satisfaction problems, respectively). A more
promising way is to apply machine learning within the framework of
exact algorithms, such that the feasibility and solution quality can be
guaranteed (Bengio et al., 2020). A typical exact framework is the
branch-and-bound algorithm for solving Mixed Integer Linear Programs
(MILPs). He et al. (2014) use imitation learning to learn a control
policy for selecting branches in the branch-and-bound process. Khalil
et al. (2016) achieves similar purpose by solving a learning-to-rank
task to mimic the behaviors of strong branching. Khalil et al. (2017b)
also develop a machine learning model to decide whether the primal
heuristics should be run for a given branch-and-bound node. These
methods are based on linear models with static and dynamic features
describing the current branch-and-bound status. More recently, Gasse
et al. (2019) use imitation learning to mimic strong branching, where
the underlying states are represented using GNN. Similarly, a GNN

2

W. Song, Z. Cao, J. Zhang et al. Engineering Applications of Artificial Intelligence 109 (2022) 104603

based network is designed in Ding et al. (2020), which is trained in
a supervised way to predict values of binary variables in MILP. Though
sharing similar GNN structure, our work differs from Gasse et al. (2019)
and Ding et al. (2020) in mainly two aspects. First, our method does
not require labels that are costly to obtain but necessary for imitation
or supervised learning. Second, as will be shown latter, we only uses 4
simple raw features, while Gasse et al. (2019) and Ding et al. (2020)
rely on 19 and 22 complex MILP features, respectively.

Another exact framework is the backtracking search algorithms
for solving satisfaction problems. Balafrej et al. (2015) use bandit
model to learn a policy that can adaptively select the right constraint
propagation levels at each node of a CSP search tree. More close to our
work, several methods use traditional machine learning to choose the
branching heuristics for solving CSP and some special cases. Lagoudakis
and Littman (2001) use RL to learn the branching rule selection policy
for the #DPLL algorithm for solving SAT, which requires finding all
solutions for a satisfiable instance. However, as will be discussed in Sec-
tion 4, this RL formulation is not directly applicable for learning in our
case. Samulowitz and Memisevic (2007) study the heuristic selection
task for solving Quantified Boolean Formulas (QBF), a generalization of
SAT, through supervised learning. In terms of CSP, Epstein and Petrovic
(2007) opt to learn a linearly weighted profile of multiple ordering
heuristics to select the next variable and value for each search node.
Though their training mechanism is self-supervised by using the solver’s
own solving experiences, it is not formulated as a RL task and the
weight of each heuristic is learned simply based on the frequency it
supports correct or oppose incorrect decisions. Xu et al. (2009) propose
a RL formulation for variable ordering heuristic selection, but only
provide preliminary results.

Though sharing similar goals, our approach significantly differs
from Lagoudakis and Littman (2001), Samulowitz and Memisevic
(2007), Epstein and Petrovic (2007) and Xu et al. (2009) in sev-
eral ways. Firstly, we propose a RL formulation that are suitable for
temporal difference learning during backtracking search, instead of
wait until solving is complete. Secondly, in our approach, the learned
policy directly picks the next variable based on its own estimates of
the environment, without the need of consulting a set of predefined
heuristics. Finally, our approach can leverage the approximation and
expressive power of DNN. Our GNN based representation scheme pro-
vides an effective way to capture the complex relations among variables
and constraints of CSP. More importantly, it can effectively process
instances of arbitrary sizes and constraint arities which is not viable
for the existing deep representations of CSP in Xu et al. (2018) and
Galassi et al. (2018).

Concurrent and independent to our work, Cappart et al. (2021)
formulate the CSP search process as dynamic programming, and em-
ploy deep RL to learn value ordering heuristics, which choose a value
for the selected variable to initiate. This work is further extended
in Chalumeau et al. (2021), which fully embeds deep reinforcement
learning within the CSP solver. Different from these two works, we
focus on learning variable ordering policies which is critical to the
search performance and could possess unique requirements on the
learning mechanism. In the literature, research on learning variable
ordering heuristics based on deep RL is rather sparse (Popescu et al.,
2021).

3. Preliminaries

A Constraint Satisfaction Problem (CSP) can be formally defined
on a constraint network (Balafrej et al., 2015), which is a triple 𝑃 =
⟨ ,,⟩, where = {𝑥1,… , 𝑥𝑛} is a set of 𝑛 variables indexed by 𝑖,
 = {𝑑(𝑥1),… , 𝑑(𝑥𝑛)} is the domain of each 𝑥𝑖, and = {𝑐1,… , 𝑐𝑒} is a
set of 𝑒 constraints indexed by 𝑗. A domain 𝑑(𝑥𝑖) is a finite set of values
that can be assigned to 𝑥𝑖. A constraint 𝑐𝑗 is a pair 𝑐𝑗 = ⟨𝑠𝑐𝑝(𝑐𝑗), 𝑟𝑒𝑙(𝑐𝑗)⟩,
where 𝑠𝑐𝑝(𝑐𝑗) ⊆ is the scope of 𝑐𝑗 specifying the variables involved
in 𝑐𝑗 , and 𝑟𝑒𝑙(𝑐𝑗) is the relation containing all the allowed value com-
binations (tuples) of variables in 𝑠𝑐𝑝(𝑐𝑗). The cardinality of 𝑠𝑐𝑝(𝑐𝑗),

i.e. the number of variables involved in 𝑐𝑗 , is called the arity of the
constraint. In this paper, we assume contains only table constraints,
i.e. all the allowed tuples for a constraint are explicitly listed as a table.
This is somewhat limited, but table constraints are one of the most
fundamental and useful constraint types since they can theoretically
represent any constraint of other type (Demeulenaere et al., 2016). A
solution to the constraint network is an assignment of all the variables
such that all the constraints are satisfied. Solving a CSP is to find one
solution of the constraint network,1 or prove no solution exists, i.e. the
CSP is unsatisfiable.

The backtracking search process can be considered as performing a
depth-first traverse of the search tree, which is dynamically constructed
during the search process. At each node, the algorithm selects a vari-
able from those have not been assigned a value yet (i.e. unbounded)
according to some variable ordering heuristic, and then, based on
certain branching strategy, generates multiple child nodes by posting
a set of mutually exclusive and exhaustive branching constraints and
performing constraint propagation (CP). Essentially, CP is used to re-
move some values that are not consistent with the current branching
decisions, which can significantly reduce the search space and is the
key to achieve high computational efficiency. Hence, each search node
corresponds to a subinstance of the original CSP instance being solved,
with the same constraints (ignoring branching constraints) and smaller
domains. If the domain of some variable is empty after constraint
propagation, then the corresponding node is a dead-end since the
current branching decisions cannot lead to any feasible solution, and
the algorithm backtracks. Search terminates when a solution is found,
or the search tree has been completely traversed, meaning that the
instance is unsatisfiable. Therefore, the leaf nodes of a search tree
include dead-ends and the one with the feasible solution, if one exists.

For backtracking search, one of the most commonly used branching
strategies is enumeration, or 𝑑-way branching, where each child node
corresponds to instantiating the selected variable 𝑥 with a value 𝑙 in its
domain (i.e. posting 𝑥 = 𝑙). The selection of 𝑙 is based on certain value
ordering heuristic. Unlike enumeration, the binary branching strategy,
or 2-way branching, generates two children for a search node, where a
value 𝑙 of the selected variable is applied (i.e. posting 𝑥 = 𝑙) on the left
branch and refuted (i.e. posting 𝑥 ≠ 𝑙) on the right branch. Another
popular alternative is domain splitting, which posts two branching
constraints based on the selected variable 𝑥 and value 𝑙, e.g. 𝑥 ≤ 𝑙 and
𝑥 > 𝑙, to produce two children. A simple illustration of these branching
strategies is shown in Fig. 1. Our approach is not limited to a particular
strategy, since it assumes the general search tree structure. Note that
a search node is created only when it is visited by the algorithm. For
example, suppose the underlying CSP instance in Fig. 1(a) is satisfiable.
When reaching the parent node 𝑠𝐸 , child 𝑠𝐸1 is visited first. If the
algorithm finds out 𝑠𝐸1 is infeasible, it backtracks to the parent and then
creates 𝑠𝐸2 . If a solution is found under 𝑠𝐸2 , the algorithm terminates
therefore 𝑠𝐸3 and 𝑠𝐸4 will not be visited.

4. Method

In this section, we formally describe our proposed approach. We
first formulate the variable ordering heuristic discovery as a rein-
forcement learning task. Then, we present our GNN based state rep-
resentation scheme. Finally, we describe the training algorithm in
detail.

1 Generally, one may require to find more than one, or even all solutions,
if the CSP instance is satisfiable. While we assume finding one is enough, our
approach can be applied when more solutions are required.

3

W. Song, Z. Cao, J. Zhang et al. Engineering Applications of Artificial Intelligence 109 (2022) 104603

Fig. 1. An illustration of three branching strategies. The blue and orange circles are parent and child nodes, respectively, and the green boxes are branching constraints. In this
example, a variable 𝑥 with domain 𝑑(𝑥) = {1, 2, 3, 4} is selected. The four values are ordered ascendingly for branching. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

4.1. The reinforcement learning formulation

Our goal in this paper is to train a reinforcement learning (RL)
agent to perform variable ordering with the objective of minimizing
the search tree size, defined as the total number of search nodes. To
formulate the RL task, we first need to define the underlying Markov
Decision Process (MDP), where the agent is responsible for making
the variable ordering decisions, and the solver is considered as the
environment. Here we define a state 𝑠 as the instance (for the root
node) or subinstance associated with a search node. The states for the
leaf nodes are defined as terminal states. Given state 𝑠, an action 𝑎 is to
select an unbounded variable for branching, hence we define the action
set as 𝐴(𝑠) = {𝑥𝑖 ∈ |

|

|

𝑑(𝑥𝑖)|| > 1}. Given a simple transition (𝑠, 𝑎, 𝑠′),
we define the cost 𝑟(𝑠, 𝑎, 𝑠′) = 1, meaning that one more search node is
visited.

However, the actual state transition in backtracking search is not
the simple ones. Since a search node could have multiple child nodes,
state transitions are not one-to-one as in typical MDP, but one-to-many.
Consider the example in Fig. 1(a), the state on the parent 𝑠𝐸 will transit
to two subinstances 𝑠𝐸1 and 𝑠𝐸2 when action 𝑥 is taken. Nevertheless,
this is not a serious issue because the following transitions from the
child nodes are independent with each other. In other words, this can be
considered as ‘‘cloning’’ the same MDP multiple times, which continue
their own transitions thereafter. Based on this observation, for a state 𝑠
and action 𝑎 ∈ 𝐴(𝑠), let 𝑆′(𝑠, 𝑎) be the set of next states. Then the reward
of taking 𝑎 in 𝑠 is 𝑟(𝑠, 𝑎) =

∑

𝑠′∈𝑆′(𝑠,𝑎) 𝑟(𝑠, 𝑎, 𝑠′) = |𝑆′(𝑠, 𝑎)|. Therefore, for
a deterministic policy 𝜋, the value 𝑣𝜋 (𝑠) of a state 𝑠 corresponds to the
number of search nodes needed to solve the subinstance 𝑠 following 𝜋,
if the discounting factor 𝛾 = 1. The goal of the RL agent is to find the
optimal policy 𝜋∗ such that the expected (discounted) search tree size is
minimized. The optimal action-value function 𝑄∗(𝑠, 𝑎) can be expressed
recursively based on the following Bellman optimality equation2:

𝑄∗(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾
∑

𝑆′
𝑃𝑟(𝑆′

|𝑠, 𝑎)
∑

𝑠′∈𝑆′
min

𝑎′∈𝐴(𝑠′)
𝑄∗(𝑠′, 𝑎′), (1)

where 𝑃𝑟(𝑆′
|𝑠, 𝑎) is the probability of transiting to state set 𝑆′ if action

𝑎 is taken in state 𝑠. If 𝑄∗ is known, then the optimal policy is simply to
select at each state the action with the minimum 𝑄∗ value, i.e. 𝜋∗(𝑠) =
argmin𝑎∈𝐴(𝑠) 𝑄∗(𝑠, 𝑎).

The above one-to-many state transitions have already been noticed
and handled in Lagoudakis and Littman (2000, 2001), where RL is
applied to learn policies for recursive algorithm selection and choosing
branching literals in the #DPLL procedure for solving SAT problems
(with the requirement of finding all solutions). More specifically, Q-
learning is used to learn a linearly parameterized function 𝑄𝐰 as
the estimation of 𝑄∗. Given a transition (𝑠, 𝑎, 𝑆′) with cost 𝑟(𝑠, 𝑎), the
parameters 𝐰 are updated using the following target:

𝑦 = 𝑟(𝑠, 𝑎) + 𝛾
∑

𝑠′∈𝑆′
min

𝑎′∈𝐴(𝑠′)
𝑄𝐰(𝑠′, 𝑎′). (2)

2 From this point on, we will omit the dependency of 𝑆′ on 𝑠 and 𝑎 for
brevity.

However, the learning mechanisms in Lagoudakis and Littman
(2000, 2001) are not suitable for our situation. The key difficulty is
that, we do not know 𝑆′ until the search algorithm backtracks from
𝑠. Consider again the example in Fig. 1(a), we know that 𝑠𝐸 has
four children at most, but only when backtracking from 𝑠𝐸 can we
know that only two of them are needed to be explored. This is not
an issue for #DPLL because the algorithm needs to visit all the child
nodes eventually. However, in our case, learning must be delayed until
backtracking, when the complete transition (𝑠, 𝑎, 𝑆′) and its cost 𝑟(𝑠, 𝑎)
are available so that the target can be computed. This is not desirable
because it slows down the learning process, and requires additional
engineering efforts to store information for all the pending states.

To make learning faster and more convenient, we intend to achieve
bootstrapping using simple transitions (𝑠, 𝑎, 𝑠′) and avoid the need of
storing pending states. To this end, we stick to the one-to-one state
transition in the typical MDP. More specifically, for state 𝑠 and action 𝑎,
we consider the multiple child states in 𝑆′ as samples drawn from the
transition dynamics 𝑃𝑟(𝑠′|𝑠, 𝑎) = 1∕|𝑆′

| for all 𝑠′ ∈ 𝑆′, where 𝑃𝑟(𝑠′|𝑠, 𝑎)
is the probability that the environment will transit to 𝑠′ if 𝑎 is taken
in 𝑠. In this way, we can use the typical Bellman optimality equation
to express an optimal action-value function that are different from that
in Eq. (1):

�̂�∗(𝑠, 𝑎) = 𝑟(𝑠, 𝑎, 𝑠′) + 𝛾
∑

𝑠′
𝑃𝑟(𝑠′|𝑠, 𝑎) min

𝑎′∈𝐴(𝑠′)
�̂�∗(𝑠′, 𝑎′). (3)

An advantage of �̂�∗ is that, we can easily apply Q-learning to learn
an estimate �̂� of it by bootstrapping according to simple transition
(𝑠, 𝑎, 𝑠′) and cost 𝑟(𝑠, 𝑎, 𝑠′), since they are immediately known after a
child node 𝑠′ is created. Note that the learned �̂� function is only used
to make decision for a given state 𝑠 when it is visited for the first time,
i.e. when the left most branch is created. We denote such action as
𝑎(𝑠) = argmin𝑎∈𝐴(𝑠) �̂�∗(𝑠, 𝑎). For other branches, i.e. those created upon
backtracking, the same action is imposed, instead of chosen according
to �̂�, so that the requirement of backtracking search is satisfied. This is
natural for the testing phase, since a fixed �̂� always predicts the same
value for given 𝑠 and 𝑎. But for training, �̂� keeps changing, hence we
need to enforce the same action for transitions to all the following states
in 𝑆′.

Note that the optimal policies �̂�∗(𝑠) and 𝜋∗(𝑠) derived from �̂�∗ and
𝑄∗ are different. In fact, �̂�∗(𝑠) minimizes the expected cost of reaching
a leaf node in the subtree rooted from 𝑠. This is aligned with the well-
known ‘‘fail-first’’ principle (Haralick and Elliott, 1980) in designing
CSP searching strategy, which suggests to reach the leaf nodes as quick
as possible. In Section 5, we will show that this intuition is verified:
along with the progress of learning an estimate of �̂�∗, the search tree
size also decreases though it is not the direct objective to be optimized.
In the following section, we will design a parameterized function �̂�𝐰
to estimate �̂�∗ by using a deep neural network.

4.2. GNN based representation

To parameterize �̂�, we need to find a way to represent 𝑠 and 𝑎.
Recall that 𝑠 is a CSP instances or subinstance which can be described

4

W. Song, Z. Cao, J. Zhang et al. Engineering Applications of Artificial Intelligence 109 (2022) 104603

Fig. 2. Illustration of the Q network. The outputs of 𝑥3 and 𝑥5 are masked out since they are bounded.

as a constraint network, and 𝑎 is an unbounded variable. For binary
CSP, i.e. the arity |𝑠𝑐𝑝(𝑐)| = 2 for all constraint 𝑐 ∈ , the underlying
constraint network can be viewed as a graph with the variables being
vertices and constraints being edges. Such a graph can be naturally
represented by GNN frameworks. Essentially, a GNN learns a vector
representation, or embedding, for each vertex in a given graph by
iteratively performing embedding aggregation among neighboring ver-
tices (Xu et al., 2019). But in general, the arity of CSP constraints could
be larger than 2, meaning that the underlying structure is a hypergraph,
with the constraints being hyperedges. To effectively represent the con-
straint network, below we design a GNN variant that learns embeddings
for both the vertices and hyperedges.

Given a constraint network 𝑃 , let 𝑐 (𝑗) = {𝑖|𝑥𝑖 ∈ 𝑠𝑐𝑝(𝑐𝑗)} be
the indexes of variables that are in the scope of a constraint 𝑐𝑗 , and
𝑣(𝑖) = {𝑗|𝑥𝑖 ∈ 𝑠𝑐𝑝(𝑐𝑗)} be the indexes of constraints where a variable
𝑥𝑖 is involved in. The current status of variables and constraints are
characterized by raw feature vectors 𝑋𝑖 and 𝐶𝑗 , each with dimension
𝑝𝑣 and 𝑝𝑐 . Our GNN computes a 𝑝-dimensional embedding 𝜇𝑖 and 𝜈𝑗 for
each variable 𝑥𝑖 ∈ and constraint 𝑐𝑗 ∈ .3 These embeddings are first
initialized by linearly transforming the respective raw feature vectors,
i.e. 𝜇(0)

𝑖 = 𝑋𝑖𝐰𝑣 and 𝜈(0)𝑖 = 𝐶𝑖𝐰𝑐 , where 𝐰𝑣 ∈ R𝑝𝑣×𝑝 and 𝐰𝑐 ∈ R𝑝𝑐×𝑝 are
learnable parameters. Then we update these embeddings by performing
𝐾 iterations of embedding aggregation operations among the variables
and constraints, based on the underlying hypergraph structure. More
specifically, in each iteration 𝑘 = 1,… , 𝐾, we perform the following
steps:

• Embedding of each constraint 𝑐𝑗 is first updated by aggregating
embeddings from the related variables in 𝑐 (𝑗). More specifically,
we use element-wise summation as the aggregation function, the
result of which is fed into a Multilayer Perceptron (MLP) MLP𝑣
to get the updated embedding of 𝑐𝑗 , along with its embedding in
the previous round and its raw feature vector. This procedure is
shown as follows:

𝜈(𝑘)𝑗 ← MLP𝑣

⎡

⎢

⎢

⎣

∑

𝑖∈𝑐 (𝑗)
𝜇(𝑘−1)
𝑖 ∶ 𝜈(𝑘−1)𝑗 ∶ 𝐶𝑖

⎤

⎥

⎥

⎦

, (4)

where [⋅ ∶ ⋅] is the concatenation operator. The input and output
dimension of MLP𝑣 are 2𝑝 + 𝑝𝑐 and 𝑝, respectively.

• Embedding of each variable 𝑥𝑖 is updated by aggregating em-
beddings of the related constraints in 𝑣(𝑖), based on similar
procedure shown below:

𝜇(𝑘)
𝑖 ← MLP𝑐

⎡

⎢

⎢

⎣

∑

𝑗∈𝑣(𝑖)
𝜈(𝑘)𝑖 ∶ 𝜇(𝑘−1)

𝑖 ∶ 𝑋𝑖

⎤

⎥

⎥

⎦

. (5)

The input and output dimension of MLP𝑐 are 2𝑝 + 𝑝𝑣 and 𝑝,
respectively.

To parameterize �̂�𝐰, we represent the current state 𝑠 by performing
graph-level pooling using element-wise summation of all the variable

3 Here we use the same embedding dimension for variables and constraints
for simplicity; but in general they could have different dimensions.

embeddings after iteration 𝐾, i.e. ∑𝑛
𝑖=1 𝜇

(𝐾)
𝑖 , similar to Khalil et al.

(2017a). Then we concatenate the embedding representations of the
graph and corresponding action 𝑎, and feed it into another MLP to get
�̂�𝐰 as follows:

�̂�𝐰(𝑠, 𝑎) = MLP𝑞

[𝑛
∑

𝑖=1
𝜇(𝐾)
𝑖 ∶ 𝜇(𝐾)

𝑎

]

, (6)

where MLP𝑞 has input and output dimension of 2𝑝 and 1, respectively.
The raw features of variables and constraints in a state 𝑠 are

summarized below. For each variable 𝑥𝑖, we use its current domain
size |𝑑(𝑥𝑖, 𝑠)| and a binary indicator 𝑏(𝑥𝑖, 𝑠) specifying whether it is
bounded as the raw features, hence the vector dimension 𝑝𝑣 = 2. For
each constraint 𝑐𝑗 , its raw feature vector contains: (1) the number of
unbounded variables 𝑢𝑏(𝑐𝑗 , 𝑠), and (2) the current constraint tightness
1 − |𝑟𝑒𝑙(𝑐𝑗 , 𝑠)|∕𝐷(𝑐𝑗 , 𝑠), where |𝑟𝑒𝑙(𝑐𝑗 , 𝑠)| is the number of currently al-
lowed tuples and 𝐷(𝑐𝑗 , 𝑠) =

∏

𝑥𝑖∈𝑠𝑐𝑝(𝑐𝑗) |𝑑(𝑥𝑖, 𝑠)| is the product of current
domain sizes of the involved variables. The dimension of constraint
feature vector is 𝑝𝑐 = 2.

The computation process of the Q network is visualized in Fig. 2. In
the implementation, to make full use of the parallel computing power
of GPU, we collect the raw features of all the variables and constraints
into two matrices 𝐗 ∈ R𝑛×𝑝𝑣 and 𝐂 ∈ R𝑒×𝑝𝑐 where each row is the
corresponding raw feature 𝑋𝑖 and 𝐶𝑗 , and feed them into the network.
In this case, the computations in Eqs. (4)–(6) can be done in parallel for
all the variables and constraints, in the form of matrix calculations. To
be more specific, let 𝝁(𝑘) ∈ R𝑛×𝑝 and 𝝂(𝑘) ∈ R𝑒×𝑝 be the embeddings of
all the variables and constraints after iteration 𝑘. Then the embedding
update in Eqs. (4) and (5) can be written as:

𝝂(𝑘) ← MLP𝑣
[

𝐀𝝁(𝑘−1) ∶ 𝝂(𝑘−1) ∶ 𝐂
]

, (7)

𝝁(𝑘) ← MLP𝑐
[

𝐀⊤𝝂(𝑘) ∶ 𝝁(𝑘−1) ∶ 𝐗
]

, (8)

where 𝐀 is a 𝑒 × 𝑛 binary matrix representing the adjacency relations
between variables and constraints, and 𝐀𝑗𝑖 is 1 if 𝑥𝑖 ∈ 𝑠𝑐𝑝(𝑐𝑗) and
0 otherwise. Note that we implement 𝐀 as a sparse matrix, and the
number of non-zero values in 𝐀 is =

∑𝑒
𝑗=1 𝑠𝑐𝑝(𝑐𝑗). The matrix form

of Eq. (6) is a bit different from its definition. Specifically, we compute
the Q-values for all the variables, and mask out the results of bounded
variables (i.e. set the Q-value to ∞) such that only legal actions in 𝐴(𝑠)
will be selected. In this case, Eq. (6) can be written as:

�̂�𝐰(𝑠) = MLP𝑞
[

𝐈𝝁(𝐾) ∶ 𝝁(𝐾)] , (9)

where 𝐈 is a 𝑛 × 𝑛 all-one matrix.
Here we briefly analyze the time complexity of the Q-network, for

which the major computation is on matrix multiplications. To simplify
the analysis, we consider the embedding dimension 𝑝 and raw feature
dimensions 𝑝𝑣 and 𝑝𝑐 as constant. Since 𝐀 is sparse, the complexity
of Eq. (4) is 𝑂

(

𝑝 + 𝑒𝑝(2𝑝 + 𝑝𝑐)
)

= 𝑂(+ 𝑒), where 𝑂(𝑝) is for sparse-
dense matrix multiplication and 𝑂(𝑒𝑝(2𝑝 + 𝑝𝑐)) is for dense matrix
multiplications in MLP𝑣. Similarly, the computation of Eq. (5) is in
𝑂(+𝑛), and the complexity of 𝐾 iterations is 𝑂 (𝐾(+ 𝑛 + 𝑒)). Compu-
tation of the Q-values in Eq. (6) is in 𝑂(𝑛2𝑝+ 𝑛(2𝑝)) = 𝑂(𝑛2), and hence
the overall time complexity of the Q-network is 𝑂

(

𝐾(+ 𝑛 + 𝑒) + 𝑛2
)

.

5

W. Song, Z. Cao, J. Zhang et al. Engineering Applications of Artificial Intelligence 109 (2022) 104603

The above representation scheme inherits the nice property of GNN,
i.e. the same model and set of parameters can process instances with
arbitrary size and constraint arity, because all the trainable parameters
are shared across all its inputs (e.g. MLP𝑣 is shared across all con-
straints). This effectively enables generalizing models trained on small
instances to larger ones. In the next section, we describe our algorithm
for training the RL agent.

4.3. Training algorithm

Our training algorithm is designed based on Double Deep Q-Network
(DDQN) (Hasselt et al., 2016). It maintains two networks, i.e. the
online network �̂�𝐰 and target network �̂��̄�. More specifically, �̂��̄� is
a periodical copy of �̂�𝐰. At each state 𝑠, the RL agent selects an action
𝑎𝑡 using the 𝜖-greedy strategy according to the online network, and the
experience (𝑠, 𝑎, 𝑠′, 𝑟, 𝑇) is added to an experience reply buffer with
memory size , where 𝑇 = 𝑇 (𝑠′) is a binary indicator of whether 𝑠′

is a terminal state. Then a mini-batch of transitions is sampled from
 to update the parameters of the online network �̂�𝐰 by performing
gradient decent to minimize the squared loss between �̂�𝐰(𝑠, 𝑎) and the
following target:

𝑦 = 𝑟 + 𝛾�̂��̄�

(

𝑠′, argmin
𝑎′∈𝐴(𝑠′)

�̂�𝐰(𝑠′, 𝑎′)

)

. (10)

Note that the above target computation is only applicable when the
state 𝑠′ is non-terminal. For the terminal ones, the target is simply 𝑦 = 𝑟.

Algorithm 1 DDQN for learning variable ordering heuristic
Initialize the experience replay to capacity
for episode 𝑒 = 1 to do

Draw a CSP instance 𝑃 ∼ D
 ← 0
while < 𝑚𝑎𝑥 and 𝑃 is not solved yet do

Observe state 𝑠,
if s has been visited then

Choose 𝑎 = 𝑎(𝑠)
else

Choose 𝑎 as follows:
𝑎(𝑠) =

{

randomly choose from 𝐴(𝑠) w.p. 𝜖
argmin𝑎∈𝐴(𝑠) �̂�𝐰(𝑠, 𝑎) otherwise

end if
Execute 𝑎, observe 𝑠′ and 𝑇 (𝑠′)
Store (𝑠, 𝑎, 𝑠′, 1, 𝑇 (𝑠′)) in
Randomly sample a minibatch from
For each sampled experience, compute the target:

𝑦 =
{

𝑟 If 𝑠′ is terminal
use Eq. (10) otherwise

Perform a gradient descent step to update 𝐰
 ← + 1
if 𝑃 is solved then

Break while
end if

end while
For every 𝑒𝑢 episodes, set �̄� = 𝐰

end for

Our training algorithm is shown in Algorithm 1. The agent is trained
for episodes, during each of them the agent tries to solve a CSP
instance drawn from the distribution D. Due to the intractability of CSP,
it is possible that solving an instance requires a very large number of
steps, i.e. state transitions, especially in the beginning stage of learning
when 𝜖 is large and the quality of policy is low. Though we can let
the agent finish solving an instance, this is not desirable because the
agent’s experience may be limited to a small number of instances for a
long time. Therefore, a special design here is that we set a cutoff limit of

𝑚𝑎𝑥 steps (equivalent to the maximum number of search nodes) to limit
the effort spent by the agent on one instance. Note that the terminal
indicator 𝑇 (𝑠′) of an experience is true only when 𝑠′ corresponds to a
leaf node. For those 𝑠′ terminated due to reaching 𝑚𝑎𝑥, 𝑇 (𝑠′) is still
false. This is to ensure that the target is correctly computed: the actual
cost of a state 𝑠′ terminated by 𝑚𝑎𝑥 is not 0, since more nodes under
it need to be visited to solve the subinstance in 𝑠′. This corresponds to
the partial-episode bootstrapping method in Pardo et al. (2018). In the
experiments, we will show that even a large number of instances hit
the cutoff limit in the early stage, the agent can still learn high-quality
policy that solves all testing instances.

5. Computational experiments

In this section, we conduct a series of experiments to test the
proposed approach. We first introduce the setup of our experiments,
then present the training and testing results on small-sized instances,
and finally report the generalization performance on larger instances,
as well as some analysis of the execution time.

5.1. Experimental setup

Instance generation. The CSP instance used in our experiments are
generated using the well-known and widely used random CSP gener-
ator, model RB (Xu et al., 2007). It takes 5 parameters ⟨𝑚, 𝑛, 𝛼, 𝛽, 𝜌⟩
as input to generate a CSP instance, the meanings of which are listed
below:

• 𝑚 ≥ 2 is the arity of each constraint;
• 𝑛 ≥ 2 is the number of variables;
• 𝛼 > 0 specifies 𝑑, which is the domain size of each variable, and
𝑑 = 𝑛𝛼 ;

• 𝛽 > 0 specifies 𝑒, which is the number of constraints, and 𝑒 =
𝛽 ⋅ 𝑛 ⋅ ln 𝑛;

• 𝜌 ∈ (0, 1) specifies the constraint tightness, and 𝜌⋅𝑑𝑘 is the number
of disallowed tuples for each constraint.

Each unique combination of the above parameters specifies a class of
CSP instances, which can be considered as the distribution D. The CSP
classes used in our experiments are all situated at the phase transition
thresholds, which are combinations of parameters that result in the
hardest instances. A nice theoretical property of model RB that makes it
more preferable than other random CSP models is that, it can guarantee
exact phase transitions and instance hardness at the threshold (Xu
et al., 2007). We test our approach for two types of distributions with
binary and 3-ary constraints, denoted as D1(𝑛) = ⟨2, 𝑛, 0.7, 3, 0.21⟩ and
D2(𝑛) = ⟨3, 𝑛, 0.7, 2.5, 0.24⟩, respectively. With different 𝑛, we have CSP
classes with different sizes. In our experiments, we choose 𝑛 from
{15, 25, 30, 40} and {10, 15, 20, 25} for D1(𝑛) and D2(𝑛), respectively,
since higher constraint arity generally leads to harder instances.

Implementation details. For our GNN model, we instantiate it by
setting the embedding dimension 𝑝 = 128, and all MLPs have 𝐿 = 3 lay-
ers with hidden dimension 128 and rectified linear units as activation
function. The embeddings are updated for 𝐾 = 5 iterations. We train
the RL agent for = 1000 episode, i.e. solving 1000 instances drawn
from distribution D, with the cutoff step limit 𝑚𝑎𝑥 = 10 000. During
training, another 200 instances drawn from D are used to validate
performance of the agent’s policy. The discount factor 𝛾 is set to 0.99.
For exploration, the value of 𝜖 is set to 1 in the beginning, and linearly
annealed to 0.05 in the first 20 000 steps. We use the Adam optimizer
to train the neural network, with a constant learning rate 𝜂 = 0.00005
and mini-batch size = 128. The size of experience replay is = 0.1M.
The frequency of updating the target network is 𝑒𝑢 = 100. For testing,
we set a cutoff limit of 5 × 105 search nodes for our policies and all
baseline heuristics. The neural architecture and hyperparameters are
empirically tuned on small sized instances. More details will be given
in Section 5.4. Our approach is implemented in C++ on top of the

6

W. Song, Z. Cao, J. Zhang et al. Engineering Applications of Artificial Intelligence 109 (2022) 104603

source code of Google OR-Tools,4 a state-of-the-art CSP solver, which
employs the binary branching strategy. The GNN architecture and
training algorithm is implemented based on the source code5 of Khalil
et al. (2017a). The hardware we used is a workstation with Intel Core
i9-9920x CPU and one NVIDIA RTX 2080Ti GPU (11 GB memory). Our
code is publicly available at https://github.com/songwenas12/csp-drl.

Baselines. We compare the trained policies with four classic hand-
crafted variable ordering heuristics that are representative and com-
monly used in many CSP solvers. The first two are embedded in
the underlying solver OR-Tools (other embedded heuristics are rather
uncompetitive in the experiments hence ignored here):

• MinDom (Haralick and Elliott, 1980), which selects the variable
with the minimum current domain size (Dom). Despite its sim-
plicity, this heuristic is effective and popular in practice, and is
implemented in almost all solvers.

• Impact-based heuristic (Impact) (Refalo, 2004), which selects
the variable that can lead to an assignment with the maximum
reduction of search space, i.e. impact. Impact is considered as
one of the state-of-the-art variable ordering heuristics (Li et al.,
2016), and is implemented as the default search strategy in OR-
Tools. Here we use its default configuration where the impact of a
variable is measured by summing the impact of each value in its
current domain, and the decision logic is to select the variable
with the maximum impact and the value with the minimum
impact.

Note that even with its embedded heuristics, OR-tools is already a
very competitive solver and has won the MiniZinc Challenge (Stuckey
et al., 2014) several times. Nevertheless, we implement the below two
heuristics for comparison:

• Dom/Ddeg (Bessiere and Régin, 1996), which improves MinDom
by taking the dynamic degree (Ddeg) of a variable into account,
and selects the variable with the minimum ratio between Dom
and Ddeg. To compute the Ddeg of a variable 𝑥𝑖, this heuristic
first identifies the set of constraints involving 𝑥𝑖, i.e. (𝑥𝑖) = {𝑐𝑗 ∈
|𝑥𝑖 ∈ 𝑠𝑐𝑝(𝑐𝑗)}; then it removes from (𝑥𝑖) those constraints that
involve no unbounded variables, and uses the cardinality of (𝑥𝑖)
as the Ddeg value of 𝑥𝑖.

• Dom/Tdeg (Li et al., 2016), which is a recently proposed heuristic
that incorporates constraint tightness that is also used in our
method as a feature. It replaces the Ddeg in Dom/Ddeg by the
dynamic tightness degree (Tdeg), defined as the summation of
tightness of constraints in (𝑥𝑖), instead of the cardinality as in
Ddeg.

Except Impact which has its own value ordering heuristic, we apply
lexicographical ordering for our approach (denoted as DRL) and the
other baselines MinDom, Dom/Ddeg and Dom/Tdeg to select the next
value.

5.2. Training and testing on small and medium sized instances

In this section, we discuss the performance of the RL agent during
training. More specifically, we train the agent on small and medium
sized binary and 3-ary instance distributions including D1(15), D1(25),
D2(10) and D2(20), respectively. We use two measures to evaluate the
agent’s policies, including (1) the number of search nodes, which is the
objective we try to minimize, and (2) the number of failures (i.e. dead-
ends), which is a measure of the ability to ‘‘fail first’’ (Beck et al., 2004)
and hence reflects the performance with respect to the objective we
defined in Eq. (3).

4 https://github.com/google/or-tools Note that our implementation is
based on the original CP solver, instead of the CP-SAT solver.

5 https://github.com/Hanjun-Dai/graph_comb_opt.

In Figs. 3(a) and 3(b), we plot the agent’s training performance on
the two smallest distributions, i.e. D1(15) and D2(10), with respect to
the average values of the above two measures on the 200 validation
instances. For these two distributions, all instances are successfully
solved within the 10 000 cutoff step limit. As can be observed, the
agent’s performance significantly improved during training. For ex-
ample, on D1(15), the agent needs to visit over 150 search nodes
with more than 70 times of failure on average in the beginning stage
to solve an instance. With the increase of training episodes (i.e. the
number of training instances), the two measures significantly drops
to 22–23 search nodes and 8–9 failures. Similar trends also exist in
Fig. 3(b). However, the training process on D1(10) is more fluctuated,
and requires more episodes to converge to a policy with 50–100 search
nodes and 30–50 failures. This indicates that though having smaller
number of variables, solving instances drawn from D2(10) is harder than
solving those from D2(15), in terms of both learning and solving.

Figs. 3(c) and 3(d) show the training curves on medium sized
distributions D1(25) and D2(15). Clearly, instances drawn from these
two distributions are much harder to solve. Despite the large number of
search nodes and failures, the agent even cannot solve many validation
instances within the cutoff limit of 10 000 nodes in the early stage. For
example, on the hardest distribution D2(15), there are still 67.5% (135
out of 200) validation instances cannot be solved after 100 episodes
of training. Nevertheless, the agent can still drastically improve its
performance. For example, on D2(15), the number of search nodes
significantly drops from nearly 9000 to about 830, and all validation
instances are successfully solved. Note that on the same scale, the cures
in Figs. 3(c) and 3(d) are more fluctuated than their counterparts in
Figs. 3(a) and 3(b).

Fig. 3 demonstrates the effectiveness of our design in several as-
pects. Firstly, for the learning tasks on distributions with different
features and hardness, the agent is able to learn a variable ordering
policy from scratch by itself, without the need of supervision. Sec-
ondly, though the agent is optimizing an alternative objective defined
in Eq. (3), with the progress of learning, the search tree size also
decreases with almost identical trend. Finally, the large number of
cutoff instances in the early stages does not affect the training process
to converge to high-quality policies.

We then evaluate the quality of the trained policies by comparing
them with the baseline heuristics on four test sets, each with 500
instances drawn from the corresponding distributions used in training.
We use the best policy (with respect to the number of search nodes)
to obtain the results of our approach DRL. In these experiments, all
the testing instances are successfully solved by all heuristics within the
cutoff limit of 5 × 105 search nodes. The results are summarized in
Table 1, where the column ‘‘Average’’ is the mean number of search
nodes (failures) for each heuristic on the 500 testing instances, and the
column ‘‘Reduction’’ is the percentage reduction in the average number
of search nodes (failures) that our policies achieved compared with
each baseline. We can observe that for all the four distributions, the
policies trained by our approach outperform the two baseline heuristics
embedded in OR-Tools, i.e. MinDom and Impact, by a large margin.
The reason why Impact performs not quite well is probably because
random CSP instances do not have very strong structure (Correia and
Barahona, 2008). For the other two baselines, our method consis-
tently outperforms Dom/Ddeg on all the four distributions. In terms
of Dom/Tdeg, our method performs on par with it on the two small
distributions D1(15) and D2(10), since the difference between DRL and
Dom/Tdeg is not statistically significant.6 However, on the two larger
and harder distributions D1(25) and D2(15), DRL significantly outper-
forms Dom/Tdeg with around 10% reduction in the number of nodes
and failures, and is statistically significant (for # nodes and failures, 𝑝
value is 2.94 × 10−10 and 3.52 × 10−10 on D1(25), and 5.22 × 10−12 and

6 We use the Wilcoxon signed-rank test with 𝑝 < 0.001 for all the statistical
significant tests in this paper.

7

W. Song, Z. Cao, J. Zhang et al. Engineering Applications of Artificial Intelligence 109 (2022) 104603

Fig. 3. Training Performance (Evaluated every 50 training instances).

Table 1
Test results on the same distribution used in training.
D Heuristic # Search nodes # Failures

Average Reduction Average Reduction

D1(15)

DRL 22.21 – 8.60 –
Dom/Tdeg 22.81 – 8.91 –
Dom/Ddeg 23.05 3.64% 9.02 4.66%
MinDom 33.57 33.85% 14.15 39.22%
Impact 272.51 91.85% 134.99 93.63%

D2(10)

DRL 56.65 – 26.60 –
Dom/Tdeg 57.82 – 27.12 –
Dom/Ddeg 59.98 5.55% 28.27 5.91%
MinDom 100.46 43.61% 48.40 45.04%
Impact 514.09 88.98% 267.75 90.07%

D1(25)

DRL 291.30 – 141.92 –
Dom/Tdeg 320.19 9.02% 156.26 9.18%
Dom/Ddeg 347.78 16.24% 170.06 16.54%
MinDom 799.54 63.57% 395.82 64.14%
Impact 69885.05 99.58% 37526.49 99.62%

D2(15)

DRL 972.45 – 483.58 –
Dom/Tdeg 1084.81 10.36% 539.80 10.41%
Dom/Ddeg 1143.85 14.98% 569.25 15.05%
MinDom 2537.24 61.67% 1265.90 61.80%
Impact 48941.93 98.01% 26267.43 98.16%

4.87×10−12 on D2(15)). This key observation indicates that our method
could be more effective on harder problems. A possible explanation is
that, the search tree for harder problems are larger, hence the space for
possible improvement is also larger.

5.3. Generalizing to larger instances

As mentioned previously, our GNN based representation enables
generalizing the trained models to larger instances that have never
been seen by the agent during training. In this section, we conduct
experiments to evaluate the generalization performance. Specifically,
for distributions D1(𝑛), we run the policy trained on D1(25) on larger
distributions with 𝑛 ∈ {30, 40}; for the distributions of 3-ary CSP
D2(𝑛), the policy trained on D2(15) is evaluated on distributions with
𝑛 ∈ {20, 25}. Similar as in the previous section, we randomly sample
500 instances from each distribution as the test set. In Tables 2 and
3, we summarize the results on binary and 3-ary CSP distributions
D1(𝑛) and D2(𝑛), respectively. In these tables, values in the columns
‘‘Average’’ are computed using all results on the 500 testing instances,

but those in columns ‘‘Reduction’’ are computed based on the instances
that are solved by both DRL and the comparing baseline. The columns
‘‘# Cutoff’’ show the number of instances that are not solved by each
heuristic within the cutoff limit of 5 × 105 nodes. Note that for those
experiments that a majority (≥ 250) of instances are cut off, we do not
report the reduction values.

In Table 2, we can observe that with the increase of 𝑛, the hardness
of solving the instances grows rapidly for all heuristics, which shows
the exponential complexity of CSP. For all experiments in this table, our
policy trained on D1(25) still significantly outperforms all the baselines,
with even larger reduction compared with the corresponding results
in Table 1. Moreover, the reduction tends to be more significant on
instances with larger 𝑛 which are harder to solve. Our conjecture for
this behavior is that, the performance of the trained policy degrades as
the increase of problem size which is common for existing deep learning
based approaches, e.g. Khalil et al. (2017a) and Kool et al. (2019).
However, for larger instances, the spaces that the learned policy can
improve over classic heuristics also become larger, which surpass the
effect of performance degradation. For Table 3 which summarizes the
results for 3-ary distributions, we can make almost the same observa-
tions as those for Table 2. Moreover, we notice that the reductions over
the baseline heuristics in these experiments on 3-ary distributions are
more prominent than those on binary distributions, especially for the
most competitive baseline Dom/Tdeg.

To have a more fine-grained analysis and visualization of the aggre-
gate results in Tables 2 and 3, we show the cactus plots of our method
and baselines on the hardest binary and 3-ary distribution D1(40) and
D2(25) in Fig. 4 (Impact is ignored due to the large number of cutoff
instances). A cactus plot shows the increase of solved instances with
the increase of solving resource bound (cutoff node limit here), and
the lower and more to the right a curve is, the better the corresponding
method. We can see that with the same cutoff node limit, our method
almost consistently solves more instances than all baselines. Such im-
provement is more significant on the harder distribution D2(25). To
further validate the advantage of our method on the per-instance basis,
we plot the pairwise comparisons against Dom/Tdeg and Dom/Ddeg
on D1(40) and D2(25) in Fig. 5, where each dot is an instance and
the coordinates are the corresponding search tree size of our method
and the baseline. We can see that on both distributions, most dots
are distributed above the diagonal (the dashed line), meaning that our
method solves the corresponding instances with fewer nodes than the
baselines.

To summarize, the above analysis shows that the policies trained
by our approach have good generalization ability, and tend to perform

8

W. Song, Z. Cao, J. Zhang et al. Engineering Applications of Artificial Intelligence 109 (2022) 104603

Table 2
Generalization results on binary CSP distributions.
D Heuristic # Search Nodes # Failures # Cutoff

Average Reduction Average Reduction

D1(30)

DRL(D1(25)) 1237.93 – 614.44 – –
Dom/Tdeg 1350.92 8.36% 670.93 8.42% –
Dom/Ddeg 1523.92 18.77% 757.38 18.87% –
MinDom 4160.78 70.25% 2075.69 70.40% –
Impact 318862.66 – 171029.08 – 255

D1(40)

DRL(D1(25)) 23684.04 – 11836.26 – –
Dom/Tdeg 26861.89 11.83% 13425.07 11.83% –
Dom/Ddeg 31807.81 25.54% 15897.96 25.55% –
MinDom 136405.52 81.38% 68196.94 81.39% 13
Impact 491872.80 – 263666.30 – 492

Note: Reduction values are computed using instances solved by both DRL and the corresponding baseline method.

Table 3
Generalization results on 3-ary CSP distributions.
D Heuristic # Search nodes # Failures # Cutoff

Average Reduction Average Reduction

D2(20)

DRL(D2(15)) 17421.14 – 8707.31 – –
Dom/Tdeg 20598.00 15.42% 10295.76 15.43% –
Dom/Ddeg 22113.32 21.22% 11053.37 21.22% –
MinDom 73781.04 75.46% 36887.05 75.46% 3
Impact 462299.49 – 248075.41 – 436

D2(25)

DRL(D2(15)) 287406.14 – 143701.41 – 153
Dom/Tdeg 322161.17 18.74% 161079.64 18.74% 191
Dom/Ddeg 330373.63 22.08% 165186.04 22.08% 203
MinDom 438152.80 – 219079.34 – 391
Impact 499595.53 – 268061.19 – 498

Note: Reduction values are computed using instances solved by both DRL and the corresponding baseline method.

Fig. 4. Cactus plots of our method and baselines Dom/Tdeg, Dom/Ddeg, and
MinDom.

better on harder instances with larger sizes and higher constraint
arities, exhibiting even larger improvements than testing on instances
of the same size as used in training. To support our observations

Table 4
Statistical significant test results (𝑝 value) for DRL and
Dom/Tdeg.
D # Search nodes # Failures

D1(30) 2.24×10−12 2.28×10−12
D1(40) 3.71×10−20 3.66×10−20

D2(20) 3.64×10−39 3.65×10−39
D2(25) 3.43×10−13 3.43×10−13

and conclusion, we conduct statistical significant test to compare the
performance of DRL and Dom/Tdeg.7 The 𝑝 values are listed in Table 4,
showing that all results are statistically significant (𝑝 < 0.001).

5.4. Impact of different neural network architecture

As mentioned previously, the network architecture and hyperpa-
rameters are tuned by performing grid search on small-sized instances,
following the common practice in the literature. Here we show the
impact of two hyperparameters, i.e. the number of GNN iteration 𝐾 and
the number of MLP layers 𝐿, which we find to be crucial for the perfor-
mance. We set 𝐾 ∈ {1, 3, 5, 7} and 𝐿 ∈ {2, 3, 4, 5}, and perform training
on the simplest distribution D1(15) for each combination of 𝐾 and 𝐿.
We also test the trained network on larger distribution D1(20) to ex-
amine the generalization capability. As can be observed in Table 5, all
combinations perform similarly on the training distribution. However,
the generalization performance is significantly different. Specifically,
with the increase of 𝐾, there is a notable trend that the search tree size
on D1(20) decreases, showing its great impact on generalization. This
could be because with more iterations of aggregation and update, the
variable and constraint embeddings could include richer information
from neighbors located farther away on the constraint network. For
each 𝐾, the increase of 𝐿 seems to be harmful, probably because of

7 Comparison to other baselines are also statistically significant, but the
results are omitted here for brevity.

9

W. Song, Z. Cao, J. Zhang et al. Engineering Applications of Artificial Intelligence 109 (2022) 104603

Fig. 5. Pairwise comparison of Number of Search Nodes against Dom/Tdeg and
Dom/Ddeg.

overfitting. The best performing combination is 𝐾 = 5 and 𝐿 = 3, which
is also the configuration we used in the experiments.

5.5. Execution time analysis

We finally analyze the execution times of all the heuristics, which
are listed in Table 6 (some results of Impact are ignored because
a majority of instances are cut off). We can observe that the total
execution times of DRL (shown in the ‘‘Total’’ column) are much longer
than those of the baselines. As shown in the ‘‘Infer’’ column, almost
over 90% of the execution time is spent in GNN inference. In contrast,
the times for variable ordering decisions of the baseline heuristics
are negligible since the related computation is very simple and fast.
With the increase of problem size, the percentage of inference time
decreases, showing that more portion of time is spent in ‘‘actually’’
solving the instances (mostly constraint propagation). To measure these
efforts, we calculate the execution times of DRL without inference in
the ‘‘No Infer’’ column. We can observe that the ‘‘No Infer’’ time of DRL
is generally much short than the run time of MinDom and Impact,
the two embedded heuristics in OR-tools, and comparable to those of
Dom/Ddeg and Dom/Tdeg.

Table 5
Impact of the number of GNN iteration 𝐾 and MLP layers 𝐿.
𝐾 𝐿 Training on D1(15) Generalization on D1(20)

Search nodes # Failures # Search nodes # Failures

1

2 25.63 10.35 329.7 162.13
3 25.63 10.35 718.81 356.57
4 26.51 10.80 190.45 92.15
5 25.59 10.28 212.71 103.21

3

2 25.14 10.12 65.26 29.48
3 26.12 10.55 69.94 31.93
4 26.16 10.55 117.81 55.69
5 26.42 10.75 141.10 67.36

5

2 25.38 10.15 63.72 28.68
3 25.34 10.12 60.96 27.34
4 25.08 10.03 61.32 27.49
5 26.13 10.65 68.07 30.98

7

2 25.60 10.25 63.66 28.63
3 25.57 10.30 74.86 34.32
4 25.09 10.03 67.76 30.65
5 27.11 10.98 81.71 37.61

Note that it is common in tree search algorithms that high-quality
heuristics leading to smaller search tree consume much longer com-
putational time, such as the well-known and effective heuristic Strong
Branching for MILP (Applegate et al., 1995). Nevertheless, minimizing
search tree size is a valid and well-recognized objective for both tra-
ditional and learning-based methods (Liberatore, 2000; Hooker, 1995;
Zarpellon et al., 2021). Our objective in this paper is not to compete
with traditional heuristics in execution time, but to show that high-
quality search policies for CSP can be automatically learned in a
data-driven way, by a carefully designed deep RL method. We believe
the efficiency of our method could be significantly improved with more
advanced techniques such as parameter pruning and model compres-
sion, but is out of the scope of this paper and is a direction for future
research.

Here we show a simple strategy that maintains the advantage of our
method in producing smaller search trees, but is comparable and even
faster than traditional heuristics in execution time. Specifically, based
on the intuition that earlier decisions in the search process are more
critical, we perform DNN inference on nodes in the topmost layers
of the search tree, and use traditional heuristics for the other nodes.
We perform experiments on the hardest distributions D1(40) and D2(25)
for binary and 3-ary problems. We choose ∈ {3, 5, 10, 15}, and use
the best-performing traditional heuristic Dom/Tdeg for the remaining
nodes. Results are summarized in Tables 7 and 8, where the ‘‘Ratio’’
column is the ratio of execution time of DRL to that of Dom/Tdeg,
computed on the commonly solved instances. We can observe that this
strategy significantly reduces the execution time. With the decrease of
, the speed-up is more prominent while the reduction in search tree
size becomes smaller, which is an expected trade-off effect. On 1(40),
DRL starts to outperform Dom/Tdeg in execution time when = 5,
and is 4.3% faster than Dom/Tdeg when = 3 while still maintaining
5.43% reduction in the search tree size. On the harder distribution
2(25), DRL starts to be faster than Dom/Tdeg when = 10. The
fastest version is DRL (= 5), which is 7.9% faster than Dom/Tdeg
on the solved instances with 3.82% reduction in the search tree size.

6. Discussions and limitations

Experimental results in Section 5 show that in most cases, the
variable ordering heuristics learned by our DRL method are able to
outperform traditional hand-crafted ones in minimizing the search tree
size. This advantage could come from the following important facts.
First, in our method, the ordering decisions are made based on a
learned Q function which is explicitly optimized towards minimization
of the search tree, guided by the surrogate objective defined in Eq. (3).

10

W. Song, Z. Cao, J. Zhang et al. Engineering Applications of Artificial Intelligence 109 (2022) 104603

Table 6
Average execution time for all heuristics (all units are milliseconds unless stated).
D DRL Dom/Tdeg Dom/Ddeg MinDom Impact

Total Infer No Infer

D1(15) 23.47 98.32% 0.4 0.32 0.26 0.40 4.67
D1(25) 308.71 91.58% 26.01 23.04 23.70 48.62 2779.89
D1(30) 1465.66 91.01% 131.77 121.77 120.85 298.5 14339.15
D1(40) 36820.6 90.02% 3674.38 3881.52 4132.99 16451.9 –

D2(10) 46.84 97.14% 1.34 1.12 1.07 1.61 5.81
D2(15) 788.92 93.54% 50.96 47.35 46.01 95.36 1349.70
D2(20) 16883.9 91.97% 1356.42 1409.26 1371.18 4378.82 –
D2(25) 318995.48 89.17% 34540.49 35581.39 33515.28 43539.38 –

Table 7
Performance of inferring on the topmost nodes on D1(40).

Heuristic # Search Nodes # Cutoff Time (milliseconds)

Average Reduction Average Ratio (×)

Dom/Tdeg 26861.89 – – 3881.52 –
DRL 23684.04 11.83% – 36820.63 9.486

DRL(=15) 23327.71 13.16% – 14245.39 3.670
DRL(=10) 23967.82 10.77% – 5840.75 1.505
DRL(=5) 24983.85 6.99% – 3793.13 0.977
DRL(=3) 25402.32 5.43% – 3698.68 0.953

Note: Reduction and Ratio values are computed using instances solved by both DRL
and Dom/Tdeg.

Table 8
Performance of inferring on the topmost nodes on D2(25).

Heuristic # Search Nodes # Cutoff Time (milliseconds)

Average Reduction Average Ratio (×)

Dom/Tdeg 322161.17 – 191 35581.39 –
DRL 287406.14 18.74% 153 329637.97 8.174

DRL(=15) 294922.66 14.81% 159 55643.28 1.651
DRL(=10) 302834.59 6.00% 169 35317.73 0.962
DRL(=5) 309851.98 3.82% 179 34302.71 0.921
DRL(=3) 312273.33 3.07% 181 34463.92 0.933

Note: Reduction and Ratio values are computed using instances solved by both DRL
and Dom/Tdeg.

In contrast, the hand-crafted heuristics are designed based on human
experience, which have no direct relation with the search effort. Sec-
ond, traditional heuristics make decisions based on only simple features
(e.g. domain and dynamic degree of each variable). In contrast, for
our method, the features extracted by our GNN based scheme is more
informative and comprehensive, which provides more accurate solving
status so that better decisions could be made. Finally, the size-agnostic
property of GNN makes it possible to reuse the knowledge learned on
small instances to larger ones. Also, the message passing mechanism of
GNN captures the local patterns of the underlying state graph, which
could also apply to larger instances.

While showing promising results, our method also has several lim-
itations that need to be improved in the future for practical usage.
First, currently we only consider table constraints. While they can
theoretically encode any constraints, in practice the constraints could
be defined more compactly in intension. One solution to this issue
is to extend our method with type-aware constraint representation
which could allow heterogeneous edge features, so as to model more
constraint types. Second, as we have analyzed in Section 5.5, the
inference time of GNN is a bottleneck of our method. Similar situations
have also been noticed in other recent works, e.g. Cappart et al. (2021)
and Chalumeau et al. (2021). While we have shown a simple strategy in
Section 5.5 (inferring GNN on the topmost search nodes) could partially
resolve this issue, more principled and rigorous design is needed to
achieve desired trade-off between model accuracy and efficiency, such
as the hybrid scheme in Gupta et al. (2020).

7. Conclusions and future work

In this paper, we make a preliminary attempt on tackling CSP using
deep reinforcement learning. Specifically, we study the problem of how
to use DRL to automatically discover a variable ordering heuristic for
a given class of CSP instances. We propose a reinforcement learning
formulation for this task, which allows the decision making agent to
learn from its own solving experiences without the need of supervision.
Extensive experiments show that our RL agent can discover variable
ordering policies that are better than traditional hand-craft heuristics,
in terms of minimizing the search tree size. The learned policies is
size agnostic, and can generalize to instances that are larger than
those used for training. Moreover, the improvement over traditional
heuristics tends to be more significant on larger and harder problems.
The framework we designed could also be applied to learn other control
policies in backtracking search algorithms, such as value ordering,
propagator selection, and determining propagation level. In the future,
we plan to improve and extend our method to enhance practical CSP
solving in real industrial applications, such as resource scheduling,
industrial robot control, and logistics planning.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This study is supported under the RIE2020 Industry Alignment Fund
– Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well
as cash and in-kind contribution from Singapore Telecommunications
Limited (Singtel), through Singtel Cognitive and Artificial Intelligence
Lab for Enterprises (SCALE@NTU). This study is also supported by the
National Natural Science Foundation of China under Grant 62102228
and 61803104, and in part by Shandong Provincial Natural Science
Foundation under Grant ZR2021QF063, and in part by the A*STAR
Cyber-Physical Production System (CPPS) – Towards Contextual and
Intelligent Response Research Program, under the RIE2020 IAF-PP
Grant A19C1a0018.

References

Altan, A., Karasu, S., Zio, E., 2021. A new hybrid model for wind speed forecasting
combining long short-term memory neural network, decomposition methods and
grey wolf optimizer. Appl. Soft Comput. 100, 106996.

Amizadeh, S., Matusevych, S., Weimer, M., 2019. Learning to solve circuit-SAT: An
unsupervised differentiable approach. In: International Conference on Learning
Representations.

Applegate, D., Bixby, R., Chvatal, V., Cook, B., 1995. Finding cuts in the TSP (a
preliminary report). Center for Discrete Mathematics & Theoretical Computer
Science.

Balafrej, A., Bessiere, C., Paparrizou, A., 2015. Multi-armed bandits for adaptive
constraint propagation. In: International Joint Conference on Artificial Intelligence.
pp. 290–296.

11

W. Song, Z. Cao, J. Zhang et al. Engineering Applications of Artificial Intelligence 109 (2022) 104603

Beck, J.C., Prosser, P., Wallace, R.J., 2004. Trying again to fail-first. In: International
Workshop on Constraint Solving and Constraint Logic Programming. Springer, pp.
41–55.

Behrens, J.K., Lange, R., Mansouri, M., 2019. A constraint programming approach
to simultaneous task allocation and motion scheduling for industrial dual-arm
manipulation tasks. In: 2019 International Conference on Robotics and Automation.
ICRA, IEEE, pp. 8705–8711.

Bengio, Y., Lodi, A., Prouvost, A., 2020. Machine learning for combinatorial op-
timization: a methodological tour d’horizon. European J. Oper. Res. 290 (2),
405–421.

Bessiere, C., Régin, J.-C., 1996. Mac and combined heuristics: Two reasons to forsake
FC (and CBJ?) on hard problems. In: International Conference on Principles and
Practice of Constraint Programming. Springer, pp. 61–75.

Cappart, Q., Moisan, T., Rousseau, L.-M., Prémont-Schwarz, I., Cire, A.A., 2021.
Combining reinforcement learning and constraint programming for combinatorial
optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol.
35, no. 5. pp. 3677–3687.

Chalumeau, F., Coulon, I., Cappart, Q., Rousseau, L.-M., 2021. Seapearl: A constraint
programming solver guided by reinforcement learning. In: International Conference
on Integration of Constraint Programming, Artificial Intelligence, and Operations
Research. Springer, pp. 392–409.

Correia, M., Barahona, P., 2008. On the efficiency of impact based heuristics. In:
International Conference on Principles and Practice of Constraint Programming.
Springer, pp. 608–612.

Demeulenaere, J., Hartert, R., Lecoutre, C., Perez, G., Perron, L., Régin, J.-C., Schaus, P.,
2016. Compact-table: efficiently filtering table constraints with reversible sparse
bit-sets. In: International Conference on Principles and Practice of Constraint
Programming. Springer, pp. 207–223.

Ding, J.-Y., Zhang, C., Shen, L., Li, S., Wang, B., Xu, Y., Song, L., 2020. Accelerating
Primal Solution Findings for Mixed Integer Programs Based on Solution Prediction.
In: Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence. pp.
1452–1459.

Epstein, S., Petrovic, S., 2017. Learning to solve constraint problems. In: ICAPS-07
Workshop on Planning and Learning.

Galassi, A., Lombardi, M., Mello, P., Milano, M., 2018. Model agnostic solution of
CSPs via deep learning: A preliminary study. In: International Conference on
the Integration of Constraint Programming, Artificial Intelligence, and Operations
Research. Springer, pp. 254–262.

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., Lodi, A., 2019. Exact combinatorial
optimization with graph convolutional neural networks. In: Advances in Neural
Information Processing Systems. pp. 15580–15592.

Gent, I.P., MacIntyre, E., Presser, P., Smith, B.M., Walsh, T., 1996. An empirical study
of dynamic variable ordering heuristics for the constraint satisfaction problem. In:
International Conference on Principles and Practice of Constraint Programming.
Springer, pp. 179–193.

Gupta, P., Gasse, M., Khalil, E., Mudigonda, P., Lodi, A., Bengio, Y., 2020. Hybrid
models for learning to branch. Adv. Neural Inf. Process. Syst. 33, 18087–18097.

Haralick, R.M., Elliott, G.L., 1980. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence 14 (3), 263–313.

Hasselt, H.v., Guez, A., Silver, D., 2016. Deep reinforcement learning with dou-
ble Q-Learning. In: Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence. pp. 2094–2100.

He, H., Daume III, H., Eisner, J.M., 2014. Learning to search in branch and bound
algorithms. In: Advances in Neural Information Processing Systems. pp. 3293–3301.

Hooker, J.N., 1995. Testing heuristics: We have it all wrong. J. Heuristics 1 (1), 33–42.
Kasprzak, W., Szynkiewicz, W., Zlatanov, D., Zielińska, T., 2014. A hierarchical CSP

search for path planning of cooperating self-reconfigurable mobile fixtures. Eng.
Appl. Artif. Intell. 34, 85–98.

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L., 2017a. Learning combinatorial
optimization algorithms over graphs. In: Advances in Neural Information Processing
Systems. pp. 6348–6358.

Khalil, E.B., Dilkina, B., Nemhauser, G.L., Ahmed, S., Shao, Y., 2017b. Learning to run
heuristics in tree search. In: International Joint Conference on Artificial Intelligence.
pp. 659–666.

Khalil, E.B., Le Bodic, P., Song, L., Nemhauser, G., Dilkina, B., 2016. Learning to
branch in mixed integer programming. In: Thirtieth AAAI Conference on Artificial
Intelligence. pp. 724–731.

Kool, W., van Hoof, H., Welling, M., 2019. Attention, Learn to Solve Routing Problems!
In: International Conference on Learning Representations.

Lagoudakis, M.G., Littman, M.L., 2000. Algorithm Selection using Reinforcement
Learning. In: International Conference on Machine Learning. pp. 511–518.

Lagoudakis, M.G., Littman, M.L., 2001. Learning to select branching rules in the DPLL
procedure for satisfiability. Electron. Notes Discrete Math. 9, 344–359.

Legat, C., Vogel-Heuser, B., 2017. A configurable partial-order planning approach for
field level operation strategies of PLC-based industry 4.0 automated manufacturing
systems. Eng. Appl. Artif. Intell. 66, 128–144.

Li, Z., Chen, Q., Koltun, V., 2018. Combinatorial optimization with graph convolutional
networks and guided tree search. In: Advances in Neural Information Processing
Systems. pp. 539–548.

Li, H., Liang, Y., Zhang, N., Guo, J., Xu, D., Li, Z., 2016. Improving degree-
based variable ordering heuristics for solving constraint satisfaction problems. J.
Heuristics 22 (2), 125–145.

Liberatore, P., 2000. On the complexity of choosing the branching literal in DPLL.
Artificial Intelligence 116 (1–2), 315–326.

Ma, C., Liu, Z., Cao, Z., Song, W., Zhang, J., Zeng, W., 2020. Cost-sensitive deep forest
for price prediction. Pattern Recognit. 107, 107499.

Mackworth, A.K., Freuder, E.C., 1993. The complexity of constraint satisfaction
revisited. Artificial Intelligence 59 (1–2), 57–62.

Mao, H., Schwarzkopf, M., Venkatakrishnan, S.B., Meng, Z., Alizadeh, M., 2019.
Learning scheduling algorithms for data processing clusters. In: Proceedings of the
ACM Special Interest Group on Data Communication. pp. 270–288.

Pardo, F., Tavakoli, A., Levdik, V., Kormushev, P., 2018. Time Limits in Reinforcement
Learning. In: International Conference on Machine Learning. pp. 4042–4051.

Petit, T., Trapp, A.C., 2019. Enriching solutions to combinatorial problems via solution
engineering. INFORMS J. Comput. 31 (3), 429–444.

Popescu, A., Polat-Erdeniz, S., Felfernig, A., Uta, M., Atas, M., Le, V.-M., Pilsl, K.,
Enzelsberger, M., Tran, T.N.T., 2021. An overview of machine learning techniques
in constraint solving. J. Intell. Inf. Syst. 1–28.

Refalo, P., 2004. Impact-based search strategies for constraint programming. In:
International Conference on Principles and Practice of Constraint Programming.
Springer, pp. 557–571.

Rossi, F., Van Beek, P., Walsh, T., 2006. Handbook of Constraint Programming. Elsevier.
Salido, M.A., Garrido, A., Barták, R., 2008. Introduction: Special issue on constraint

satisfaction techniques for planning and scheduling problems. Eng. Appl. Artif.
Intell. 21 (5), 679–682.

Samulowitz, H., Memisevic, R., 2007. Learning to solve QBF. In: Twenty-Second AAAI
Conference on Artificial Intelligence. pp. 255–260.

Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., Dill, D.L., 2019. Learning
a SAT solver from single-bit supervision. In: International Conference on Learning
Representations.

Song, W., Kang, D., Zhang, J., Cao, Z., Xi, H., 2019. A sampling approach for proactive
project scheduling under generalized time-dependent workability uncertainty. J.
Artificial Intelligence Res. 64, 385–427.

Stuckey, P.J., Feydy, T., Schutt, A., Tack, G., Fischer, J., 2014. The minizinc challenge
2008–2013. AI Mag. 35 (2), 55–60.

Wu, Y., Song, W., Cao, Z., Zhang, J., Lim, A., 2021. Learning improvement heuristics
for solving routing problems. IEEE Trans. Neural Netw. Learn. Syst. 1–13. http:
//dx.doi.org/10.1109/TNNLS.2021.3068828.

Xin, L., Song, W., Cao, Z., Zhang, J., 2021a. Multi-decoder attention model with
embedding glimpse for solving vehicle routing problems. In: Proceedings of the
Thirty-Fifth AAAI Conference on Artificial Intelligence.

Xin, L., Song, W., Cao, Z., Zhang, J., 2021b. Step-wise deep learning models for solving
routing problems. IEEE Trans. Ind. Inform. 17 (7), 4861–4871. http://dx.doi.org/
10.1109/TII.2020.3031409.

Xu, K., Boussemart, F., Hemery, F., Lecoutre, C., 2007. Random constraint satisfaction:
Easy generation of hard (satisfiable) instances. Artificial Intelligence 171 (8–9),
514–534.

Xu, K., Hu, W., Leskovec, J., Jegelka, S., 2019. How powerful are graph neural
networks? In: International Conference on Learning Representations.

Xu, H., Koenig, S., Kumar, T.S., 2018. Towards effective deep learning for constraint
satisfaction problems. In: International Conference on Principles and Practice of
Constraint Programming. Springer, pp. 588–597.

Xu, Y., Stern, D., Samulowitz, H., 2009. Learning adaptation to solve constraint
satisfaction problems. Proc. Learn. Intell. Optim. (LION).

Zarpellon, G., Jo, J., Lodi, A., Bengio, Y., 2021. Parameterizing branch-and-bound
search trees to learn branching policies. In: Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 35, no. 5. pp. 3931–3939.

Zhang, C., Song, W., Cao, Z., Zhang, J., 2020. Learning to dispatch for job shop
scheduling via deep reinforcement learning. In: Advances in Neural Information
Processing Systems.

12

	Learning variable ordering heuristics for solving constraint satisfaction problems
	Citation

	tmp.1694073532.pdf.SrF9Q

