
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2023

Neural airport ground handling Neural airport ground handling

Yaoxin WU
Eindhoven University of Technology

Jianan ZHOU
Nanyang Technological University

Yunwen XIA

Xianli ZHANG

Zhiguang CAO
Singapore Management University, zgcao@smu.edu.sg

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons, Theory

and Algorithms Commons, and the Transportation Commons

Citation Citation
WU, Yaoxin; ZHOU, Jianan; XIA, Yunwen; ZHANG, Xianli; CAO, Zhiguang; and ZHANG, Jie. Neural airport
ground handling. (2023). IEEE Transactions on Intelligent Transportation Systems. 24, (12), 15652-15666.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8069

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8069&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8069&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8069&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8069&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1068?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8069&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Yaoxin WU, Jianan ZHOU, Yunwen XIA, Xianli ZHANG, Zhiguang CAO, and Jie ZHANG

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/8069

https://ink.library.smu.edu.sg/sis_research/8069

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Neural Airport Ground Handling
Yaoxin Wu*, Jianan Zhou*, Yunwen Xia, Xianli Zhang, Zhiguang Cao, Jie Zhang

Abstract—Airport ground handling (AGH) offers necessary
operations to flights during their turnarounds and is of great
importance to the efficiency of airport management and the
economics of aviation. Such a problem involves the interplay
among the operations that leads to NP-hard problems with
complex constraints. Hence, existing methods for AGH are
usually designed with massive domain knowledge but still fail
to yield high-quality solutions efficiently. In this paper, we aim
to enhance the solution quality and computation efficiency for
solving AGH. Particularly, we first model AGH as a multiple-fleet
vehicle routing problem (VRP) with miscellaneous constraints
including precedence, time windows, and capacity. Then we
propose a construction framework that decomposes AGH into
sub-problems (i.e., VRPs) in fleets and present a neural method to
construct the routing solutions to these sub-problems. In specific,
we resort to deep learning and parameterize the construction
heuristic policy with an attention-based neural network trained
with reinforcement learning, which is shared across all sub-
problems. Extensive experiments demonstrate that our method
significantly outperforms classic meta-heuristics, construction
heuristics and the specialized methods for AGH. Besides, we
empirically verify that our neural method generalizes well to
instances with large numbers of flights or varying parame-
ters, and can be readily adapted to solve real-time AGH with
stochastic flight arrivals. Our code is publicly available at:
https://github.com/RoyalSkye/AGH.

Index Terms—Airport Ground Handling, Vehicle Routing
Problem, Attention Model, Reinforcement Learning.

I. INTRODUCTION

EFficient turnaround operations for aircraft play an im-
portant role in alleviating the flight delays and relevant

economic loss at an airport. In airport ground handling
(AGH), a variety of operations need to be scheduled to serve
the flights according to their precedence relation (as shown
in Fig. 1), where each type of operation is always performed
by a fleet of vehicles. Therefore, central to AGH is usually
the vehicle routing problem (VRP). However, different from
other conventional VRPs, the one in AGH is much harder
given that, 1) apart from the intricate precedence constraint,
each (type of) flight has its own requirement (e.g., demand,
time windows) for each operation; 2) the problem scale is

*Yaoxin Wu and Jianan Zhou contributed equally to this paper.
This research was conducted in collaboration with Singapore Telecommu-

nications Limited and supported by the Singapore Government through the
Industry Alignment Fund - Industry Collaboration Projects Grant. (Corre-
sponding author: Zhiguang Cao.)

Yaoxin Wu is with the Department of Information Systems, Faculty of
Industrial Engineering and Innovation Sciences, Eindhoven University of
Technology, Netherlands. (E-mail: wyxacc@hotmail.com).

Jianan Zhou, Yunwen Xia, Xianli Zhang and Jie Zhang are with the School
of Computer Science and Engineering, Nanyang Technological University,
Singapore (E-mails: jianan004@e.ntu.edu.sg, yunwen001@e.ntu.edu.sg, xi-
anli001@e.ntu.edu.sg, zhangj@ntu.edu.sg).

Zhiguang Cao is with the School of Computing and Information Sys-
tems, Singapore Management University, Singapore. (E-mail: zhiguang-
cao@outlook.com).

In-Blocks
[0, 0, 0]

Disembark
[6, 7, 6]

Unload Baggage
[2, 1, 3]

Potable Water
[7, 7, 8]

Toilet Servicing
[6, 6, 6]

Fuel
[8, 9, 8]

Cater&Clean
[4, 3, 2]

Board
[8, 9, 8]

Load Baggage
[4, 5, 5]

PushBack
[2, 2, 1]

Off-Blocks

0

1

2

3

4

Fig. 1: The exemplary operations in AGH and their precedence
relation. The operations at the same level share the same
priority, and a smaller level index means the corresponding op-
eration has a higher priority, e.g., fueling, catering and cleaning
have the same priority and precede boarding. Moreover, the
numbers in the square brackets refers to the corresponding
operation duration to three different flight types.

often large in practice especially for busy airports where a
considerable number of flights need to be served at each time.
Hence, solving the VRP in AGH is nontrivial and challenging
(Note: hereafter, we use AGH to represent the VRP in AGH
for convenience).

Considering the combinatorial nature of the problem, exact
algorithms based on branch and bound (or its variants) have
been exploited to solve AGH. They usually model the problem
as mixed integer linear programming (MILP) [1], [2], and
then solve it with mature solvers, e.g., CPLEX. However, such
solvers are inefficient to handle the large and complex solution
space, and usually consume prohibitively long computation
time. On the other hand, as alternatives to balance the solution
quality and computation time, traditional improvement heuris-
tics or meta-heuristics also have been leveraged to solve AGH.
In this line of works, a number of attempts design specific
heuristics only for a single type of operation, e.g., towing,
catering, fueling and baggage loading, respectively [3]–[6].
However, the problem could be much harder when multiple
fleets for various operations are practically needed given
their complex precedence relation. To handle this challenging
setting, some works proposed specialized meta-heuristics to
solve AGH with multiple operations [7], [8]. Nevertheless,
these methods depend on much trial-and-error and domain
knowledge to design hand-crafted rules or operators, which
may limit the solving performance and hinder their applica-
tions in reality.

Recently, an increasingly large number of deep models have

ar
X

iv
:2

30
3.

02
44

2v
1

 [
cs

.A
I]

 4
 M

ar
 2

02
3

https://github.com/RoyalSkye/AGH

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2

been proposed to learn construction heuristics for solving VRP
variants including traveling salesman problem (TSP) and ca-
pacitated vehicle routing problem (CVRP). Most of those deep
models follow the encoder-decoder architecture and are trained
with reinforcement learning (RL) algorithms [9]–[13]. The
learned construction policies infer solutions efficiently. More
importantly, those end-to-end neural methods could produce
desirable results which sometimes are even comparable to
the highly specialized and optimized heuristics. Despite much
success achieved, most of the neural methods are only able to
tackle the classical VRP variants with much simple constraints,
which will become less effective in coping with AGH.

In this paper, we propose a neural method that learns to
construct solutions for AGH. Particularly, we first propose a
general framework to decompose the global optimization of
AGH into sub-problems for each fleet of vehicles based on
the precedence of operations, so that a construction heuristic
could be applied to solve them in sequence. However, those
sub-problems may interplay each other due to the precedence
relation (e.g., fueling goes before boarding) at each flight.
To address this issue, we present an attention-based policy
network with masking schemes for constraints, where we
explicitly encode time windows and operations in our neural
network to capture the interplay. Moreover, we train the neural
network with RL, which is shared across all the sub-problems.
The resulting learnt policy is able to focus on long-term
return and attain solutions of high-quality. Accordingly, our
contributions are summarized as follows,

1) We design a construction framework to decompose the
AGH into sub-problems, which allows them to be sequen-
tially solved with the proposed construction heuristic.

2) We parameterize the proposed construction heuristic with
an attention-based policy network in conjunction with
embeddings of time windows and operations. Further
trained with RL and shared across sub-problems, it allows
the learnt heuristic to automatically construct solutions
for AGH without much hand-crafted rules. To our knowl-
edge, this is one of the early neural methods to tackle
VRPs with complex constraints.

3) We conduct extensive experiments with a realistic set-
ting from the CHANGI Airport in Singapore. Results
show that the proposed method efficiently produces high-
quality solutions and outperforms the state-of-the-art con-
ventional meta-heuristics. Particularly, our method can
solve AGH with hundreds of flights in seconds, and is
applicable to dynamic scenarios with stochastic arrivals.

The remainder of this paper is organized as follows. Section II
reviews existing works related to AGH and neural methods for
VRPs. Section III introduces AGH and its MILP formulation.
Section IV elaborates the construction framework for AGH
and the proposed neural method. Section V presents exper-
imental results and analysis, and we conclude the paper in
Section VI.

II. RELATED WORKS

In this section, we first review the existing works pertaining
to airport ground handling (AGH), and then provide a view of
neural methods for general vehicle routing problems (VRPs).

A. Airport Ground Handling

Most existing works on AGH only tackle a specific (type of)
operation, and model it as a vehicle routing problem (VRP)
or related variants. Among them, Norin et al. formulated the
scheduling of de-icing operation as a vehicle routing problem
with time windows (VRPTW), and minimized both the tour
length of de-icing vehicles and the total flight delay uisng
the greedy randomized adaptive search procedure (GRASP)
algorithm [14], [15]. Du et al. modeled the scheduling of
towing operation also as a VRPTW and solved it using the
column generation method based on the MILP form of the
problem [3]. Zhou et al. studied the scheduling of trailers
considering both rolling windows and flight delays, which
was solved using the genetic algorithm (GA) [16]. Guo et al.
considered scheduling vehicles for airport baggage transport,
and solved it by leveraging the parameter or rule selection in
GA [6]. Han et al. described the scheduling of ferry vehicles
as the form of MILP to minimize the number of used vehicles,
which was solved using CPLEX [17]. There were also a
number of studies for scheduling of fueling operation that
were solved with meta-heuristics like ant colony optimization
(ACO) and iterated local search (ILS) [5], [18], [19]. On
the other hand, only a few works investigated the global
optimization for multiple (types of) operations in AGH. Padrón
et al. presented a decomposition method to schedule multiple
interplayed operations based on constraint programming (CP)
and large neighborhood search (LNS) [7]. In particular, they
first optimized the time windows for vehicle fleets using CP,
then the decomposed VRPTW for each fleet were solved using
LNS, which aimed to decrease the waiting time for operations
and the total completion time for serving the flights. Moreover,
they also ameliorated the method by solving the decomposed
VRPTW in different orders, which impacted the performance
due to the interplay relation among operations [20]. A recent
method leveraged non-dominated sorting genetic algorithm
(NSGA-II) to solve the routing problems for multiple types
of vehicles (fleets), with respective VRPTW modeled for
each fleet [8]. It aimed to minimize the total number of
used vehicles as well as time cost of specified vehicles,
where the presented method outperformed the multiobjective
evolutionary algorithm based on decomposition (MOEAD)
and the particle swarm optimization (PSO) algorithm. Other
works less related to AGH in airside operation research and on-
demand logistics, e.g., gate assignment, manpower scheduling,
truck-drone coordinated VRPs, are introduced in [21]–[27].

B. Neural Methods for VRPs

The advances of deep (reinforcement) learning have ignited
considerable research on solving combinatorial optimization
problems (COPs) with neural networks. The attempts in recent
years have shown encouraging results in tackling various clas-
sic COPs [28]–[33], where vehicle routing problems (VRPs)
are receiving noticeably more attention than others [34]–
[39]. Most of the deep models for VRPs follow the encoder-
decoder architecture, where the encoder learns representations
of problem instances, and the decoder constructs the solution
(i.e., tours) sequentially. Among them, Vinyals et al. designed

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 3

a RNN based sequence-to-sequence (seq2seq) neural archi-
tecture to solve TSP using supervised learning [40]. Bello et
al. improved the training algorithm by changing it to rein-
forcement learning, which circumvents the needs of optimal
solutions as the labels [9]. Moreover, they also introduced the
masking scheme to guarantee feasible solutions, and attention
glimpses to strengthen the network efficiency. Nazari et al.
further transformed the encoder in the seq2seq model into
the linear projection, and applied it to solve both TSP and
CVRP [10].

Rather than RNN, more subsequent works resorted to Trans-
former to rebuild seq2seq models using attention-based neural
networks [41]. Among them, Kool et al. adapted the attention
modules (AM) in both encoder and decoder of Transformer
to solve TSP, CVRP and other variants [11]. Concurrently,
Kaempfer et al. tailored the permutation invariant pooling layer
in Transformer to seq2seq models and solved the multiple
TSP [42]. However, its performance was inferior to the AM
in [11]. On top of AM, Kwon et al. further enhanced the
performance on both TSP and CVRP by breaking the sym-
metry that lies in the essentially same routes [31]. Notably,
many other variants of AM were also proposed recently given
its desirable framework and convenience for implementation,
e.g., the ones consider multiple relational attention [43] and
multiple decoders [44]. In addition, a number of endeavours
focused on the graph representation for VRP. Khalil et al.
described traditional greedy heuristics for TSP as MDP and
trained a deep Q-Network (DQN) based policy network which
embedded the states in episodes using Graph Neural Network
(GNN) [12], [45]. Nowak et al. attempted to predict the
solution to the graph based TSP using GNN and supervised
learning [46]. Joshi et al. proposed a graph convolutional
network (GCN) with different decoding schemes to tackle TSP
in both supervised or autoregressive fashion [47]. We would
like to note that most of the above works fall into the category
of neural construction methods, which construct solutions
(tours) for VRP sequentially (e.g., node by node). For another
category of related works which learn improvement heuristics
or meta-heuristics, we refer the readers to surveys [48]–[50]

Although the aforementioned neural methods could auto-
matically learn the rules to solve VRPs, most of them only
handle problems with simple settings and constraints (e.g.
TSP and CVRP). In contrast, this paper turns to solve a
complex yet practical VRP with intricate constraints (i.e. AGH
with multiple operations), and we propose an effective neural
method to solve the problem by learning from data in an end-
to-end fashion. To the best of our knowledge, it is a very
early attempt to successfully solve the AGH with deep learning
based method.

III. PROBLEM STATEMENT

In this section, we describe the AGH with multiple (types
of) operations as a multiple-fleet vehicle routing problem with
various constraints and formulate it as the form of mixed
integer linear programming (MILP).

In practice, each (type of) operation for the flight is normally
performed by a fleet of vehicles. Therefore, we model the AGH

with multiple operations as a multiple-fleet VRP, addition-
ally constrained by capacity, time windows and precedence.
Specifically, we represent the AGH on an undirected graph
G = (N , E) with the node set N = {0, 1, · · · , n, ṅ} and
edge set E = {(i, j)|i, j ∈ N ; i 6= j}. Both node 0 and
ṅ denote the depot but are used to differentiate the location
which the vehicles start from and return to, so as to avoid
temporal conflicts at the depot. We denote flights to be served
as N ∗ = N \ {0, ṅ} with demand δfi for each i ∈ N ∗
and operation f ∈ F (F = {1, · · · , F}). Naturally, we set
δf0 = δfṅ = 0. For an operation f ∈ F , each edge (i, j)

is assigned with a cost cfij , with cf0ṅ = +∞ to avoid the
meaningless travel between node 0 and ṅ. In this paper, since
we aim to minimize the global travel distance of all vehicles
in all operations, we set c1ij = · · · = cFij , all of which
equal to the distance between flight i and j. For different
operations, the precedence relation is represented as f1 ≺ f2
(f1, f2 ∈ F) if f1 precedes f2. We assume that each fleet1 that
corresponds to f ∈ F comprises vehicles Vf = {1, · · · , V f}
with the capacity denoted by Qf and sufficiently large V f . In
addition, we denote by dfi the service time for flight i regarding
operation f , which means how much time it takes to complete
operation f at flight i, with df0 = dfṅ = 0; we denote by tfij
the travel time from flight i to j by the vehicle for operation
f , with tf0ṅ = 0; we denote by [afi , b

f
i] the time window to

serve flight i, which means the start time of operation f for
serving flight i should be between afi and bfi . Accordingly, the
AGH is formulated as follows,

min.
∑
f∈F

∑
v∈Vf

∑
(i,j)∈E

cfijx
f
ijv (1)

s.t.
∑
i∈N

∑
v∈Vf

xfijv = 1,∀j ∈ N ∗, f ∈ F (2)∑
i∈N\{ṅ}

xfiuv =
∑

j∈N\{0}

xfujv,∀u ∈ N
∗, v ∈ Vf , f ∈ F

(3)∑
j∈N∗

∑
v∈Vf

xf0jv ≤ V
f ,∀f ∈ F (4)∑

j∈N∗

∑
v∈Vf

xf0jv =
∑
i∈N∗

∑
v∈Vf

xfiṅv,∀f ∈ F (5)∑
i∈N\{0}

∑
v∈Vf

xfi0v =
∑

j∈N\{ṅ}

∑
v∈Vf

xfṅjv = 0,∀f ∈ F

(6)∑
i∈N∗

δfi
∑
j∈N

xfijv ≤ Q
f ,∀v ∈ Vf , f ∈ F (7)

xfijv(T
f
iv + dfi + tfij − T

f
jv) ≤ 0,∀v ∈ Vf , f ∈ F (8)

afi ≤ T
f
iv ≤ b

f
i ,∀v ∈ V

f , f ∈ F (9)

T f1iv + df1i ≤ T
f2
iv ,∀f1, f2 ∈ F , f1 ≺ f2 (10)

xfijv ∈ {0, 1},∀(i, j) ∈ E , v ∈ V
f , f ∈ F (11)

T fiv ≥ 0,∀i ∈ N ∗, v ∈ Vf , f ∈ F (12)

1Note that fleets naturally share the same indices as operations since they
are performed by the corresponding fleets. We also assume that the vehicles
are homogeneous.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 4

where the decision variable xfijv determines whether a vehicle
v for operation f serves flight j after i, and T fiv determines
when to start serving flight i by vehicle v for operation f .
Regarding the objective in Eq. (1), minimizing the global travel
distance as the cost is considered in this paper. Regarding the
constraints, Eq. (2) ensures that each flight is only served by
one vehicle for a given operation; Eq. (3) ensures that a vehicle
goes to serve a flight for an operation and will exactly leave the
same fight; Eq. (4) ensures that the number of vehicles to serve
flights for an operation is not larger than the maximum number
of vehicles in the fleet; Eq. (5) ensures that the vehicles in a
fleet which leave the depot will return to it; Eq. (6) ensures
that all routes start from and end at the depot; Eq. (7) ensures
that the demands fulfilled by a vehicle is not larger than its
capacity; Eq. (8) ensures the right temporal logic when the
vehicle v for operation f serves two continuous flights i and
j. Specifically, the start time of its service at flight j should
not be earlier than the time point when the vehicle completes
the service at flight i and then arrives at flight j. Eq. (9)
ensures that the start time of operation f at flight i should be
within the time window defined above. Eq. (8) and (9) together
ensure that operations always start within the predefined time
windows, which also obey the temporal sequence; Eq. (10)
ensures that the operations are performed to a flight following
their precedence relation, where the exemplary precedence is
depicted in Fig. 1. For example, the operation f2 can only
start at flight i after that the operation f1 is completed at the
same flight, if f1 precedes f2. We further linearize Eq. (8) as
below,

T fiv+d
f
i + t

f
ij−T

f
jv ≤ C(1−x

f
ijv),∀(i, j) ∈ E, f ∈ F , (13)

where C is a large constant (i.e. 106), so that the studied AGH
could be transformed into a mixed integer linear programming
(MILP) problem.

Please note that this paper targets a more complex yet
practical version of AGH in comparison to most existing
literature, where multiple operations, hundreds of aircraft, and
various relations (e.g. precedence and temporal relations) be-
tween operations and aircraft are considered. In the following
section, we propose a learning based method to solve the AGH
which we have modeled as a multiple-fleet VRP with diverse
constraints. With the power of deep learning, our method can
learn more effective heuristics and cost less domain knowledge
and hand-engineering than the existing methods for AGH [7],
[8], [20]. As we know, this is the first time that deep learning
is applied to solve this practical VRP, rather than simple and
standard VRPs in the literature such as TSP and CVRP.

IV. METHODOLOGY

In this section, we introduce the proposed method to
solve AGH. Firstly, we present a framework that is able to
work elegantly with construction heuristics. It decomposes the
global optimization of AGH into VRPs for each fleet based on
the precedence relation, and sequentially constructs solutions
(routes) to each resulting VRP which will also be used to
update the time window of flights for the succeeding level
of operations. Then we formulate the solution construction

for each sub-problem as a Markov decision process (MDP),
and parameterize the policy with an attention-based neural
network, which is shared across all the sub-problems. Finally,
we present the RL algorithm to train the policy network. The
overview of our proposed method is illustrated in Fig. 2.

A. Construction Framework for AGH
The proposed framework for AGH is generic to construc-

tion heuristic such as Clarke and Wright’s Savings (CWS),
insertion based heuristics or learning based policies, which
are used to solve the VRP for each fleet by selecting next
flight to serve progressively. In specific, we decompose the
AGH problem into sub-problems for each fleet. The sub-
problems are essentially VRPs with capacity and time window
constraints, which can be further grouped based on their
precedence level (priorities). In doing so, we can solve the
AGH by optimizing sub-problems following the precedence
relation, which reduces the complexity and ensures the feasi-
bility of solutions to the original problem. The decomposition
strategy and the overview of construction framework is briefly
summarized as follows (see also Fig. 2):

1) Firstly, we decompose all fleets into several groups based
on their precedence level. The fleets in each group should
have the same precedence level, which means the time
windows of the served flights for the current fleet will
not be affected by other fleets in the same group. For
example, the disembarkation, portable water supply and
baggage unloading in Fig. 1 are in the same group, which
can be processed independently. In this way, the global
AGH problem is decomposed into several groups, with
each group comprising several sub-problems (fleets).

2) Then we start with the group who has the highest prece-
dence level. All sub-problems in the current group are
solved by a solver or construction heuristic in the frame-
work, sequentially or in parallel (i.e., the order doesn’t
matter since they can be processed independently). We
solve the sub-problems in each group sequentially.

3) Based on the constructed solutions for the current group,
we update the time windows of flights for fleets in the
succeeding group whose precedence level is the most
nearest to (and lower than) the current one. For example,
the completion time of fueling, catering and cleaning will
be used to update the time window of boarding in Fig. 1.
In other words, the time windows for operations at flights
are gradually determined by solving the sub-problems
following the precedence relation.

4) After solving all the groups, we obtain the global solution
by simply collecting the solution to each sub-problem.
It includes the derived routes for vehicles in each fleet,
and the start time of operations can be easily computed
based on the routes and operation duration. The global
solution is feasible since all constraints are satisfied in the
solving process. For example, the precedence constraint
is satisfied since we solve sub-problems following the
precedence level, and update the time windows accord-
ingly; the capacity and time windows are satisfied when
solving sub-problems by masking scheme as shown in
Eqs. (27) and (28) in Section IV-C.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 5

✈" ✈✈ ✈ ✈" "✈" ✈✈ ✈ ✈" ""

Update
tim

e w
indow

Input

✈ ✈ ✈ ✈✈✈✈ ✈✈✈

0

1

2

0 1 2

Update
tim

e w
indow

Update
solutio

n

Tour

✈✈

Arrival Time

Departure Time

Construction
Heuristic

UL
Construction
Heuristic

✈" ✈ ✈ ✈✈" "✈" ✈ ✈ ✈✈" "✈" ✈ ✈ ✈✈"✈" ✈ ✈ ✈✈"

IB

PW

PB

Precedence

✈" ✈ ✈ ✈✈" "✈" ✈ ✈ ✈✈"

Construction
Heuristic

✈✈ ✈ ✈ ✈✈✈✈ ✈✈"

Depot

✈

Flight

✈✈ ✈ ✈ ✈✈✈✈ ✈✈

Time Window

Update
solutio

n

Fig. 2: An illustration of the proposed construction framework for AGH. In this exemplary instance, five flights need to be
served by four fleets of vehicles for corresponding operations with three precedence levels (priorities). Based on the precedence
relation, we decompose this AGH into four sub-problems (or three groups). For each sub-problem, a local time window (red)
of each flight is maintained, which constrains the start and completion of the current operation. The construction heuristic
produces solutions for sub-problems, which are also used to update the time windows for VRPs in the next precedence level.

Next, we formally introduce the details of the proposed
construction framework for AGH. For a set of operations s(p)
with precedence levels p ∈ [0, ...,P − 1], we maintain a time
window twpj = [apj , b

p
j] for each flight j, where apj and bpj

represent the start and end of the time window, respectively.
The operations in the precedence level p must be launched and
completed within the assigned time window. Note that the time
window of each flight is the same even for different operations
if they have the same precedence level, such as fueling and
catering in Fig. 1. Formally, the time window for operation
f at flight j is constrained with the precedence level p (i.e.,
f ∈ s(p)) and updated as follows,

apj =

{
tja, p = 0

maxf∈s(p−1) T
f
j , p 6= 0

(14)

bpj = tjd −
∑
p≺p′

max
f∈s(p′)

dfj , (15)

where tja and tjd are the planned arrival and departure time of
flight j; T fj is the completion time of operation f at flight
j, which is calculated based on the constructed solutions for
operations of the preceding precedence level; dfj is the service
duration of operation f at flight j. Intuitively, the start of time
window at a flight is initialized with the planned arrival time
and updated based on the completion time of all operations
with higher priorities. On the other hand, the end of time
window is initialized with the departure time and progressively
tighten based on the least reserved time required by the set
of operations with lower priorities. The max operator in Eq.
(15) results from the Cannikin Law2, which means the least
reserved time required for set s(p′) is determined by the

2Also known as Wooden Bucket Theory, where the capacity of a bucket is
determined by the shortest stave.

operation with the longest duration, since it guarantees that all
operations in s(p′) could be completed within maxf∈s(p′) d

f
j

in the optimal case.
As illustrated in Fig. 2, we deal with the precedence

constraints and assign time windows to each flight following
the aforementioned process in Eqs. (14) and (15). The other
constraints in VRPs for each fleet are handled by the construc-
tion heuristic. The derived solution for each fleet by the con-
struction heuristic will also be used to update time windows
of flights for operations in the succeeding precedence level.
In this way, AGH is solved by constructing VRP solutions for
fleets sequentially which will satisfy all constraints. Note that
the operations with the same precedence level (e.g., fueling
and catering in Fig. 1) can be performed for the flight at the
same time, and their solutions can be constructed in parallel
with shared inputs (i.e., the same assigned time windows) to
the construction heuristic.

B. MDP Formulation

According to the construction framework in Section IV-A,
the AGH problem x can be decomposed into sub-problems
xf , where f refers to an operation (or fleet). These sub-
problems can be sequentially solved by any construction
heuristic following the precedence relation as mentioned in
Section IV-A. Instead of classic construction heuristics, this
paper aims to use DRL to learn construction policies to solve
the sub-problems. To this end, for each sub-problem xf ,
we formulate the solution construction as a Markov decision
process (MDP), i.e., (S,N ,Pa,Ra). Specifically, the agent
repeatedly selects the next flight to serve with the learnt policy,
which results in a finite trajectory/episode. In particular, at the
tth step,
• State: sft ∈ S is represented by the static (i.e., the graph

embedding) and dynamic information (i.e., the context

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 6

embedding and previously selected flights).
• Action: aft ∈ N is to select the next flight to serve w.r.t.

the current operation according to the policy π(aft |s
f
t),

where N is the node set {0, 1, . . . , n} with 0 denoting
the depot and others for flight indices.

• Transition: Pa = P (sft+1|s
f
t , a

f
t) refers to the transition

from state sft to sft+1, which is resulted from the action
aft . In our framework, the next state is realized determin-
istically w.r.t. the action, i.e., Pa = 1.

• Reward: After all flights are served within T steps, the
episode in MDP for operation f ends, and a complete
solution (tour) af = (af1 , . . . , a

f
T) is attained. The total

reward for the episode is represented as the negative
length of the tour, i.e., Ra = −L(af).

C. Policy Parameterization

We concretize the policy as an attention-based encoder-
decoder model inspired by the attention model (AM) in [11],
where the encoder learns representations of problem instances,
and the decoder constructs solutions by learning which flight to
select next for the current operation. Note that the learnt policy
is shared across all the operations (sub-problems). Given a sub-
problem xf for instance x, which is a VRP w.r.t. operation f ,
the probability of a solution πθ(af |xf) is parameterized by θ
and factorized as follows,

πθ(a
f |xf) =

T∏
t=1

πθ(a
f
t |xf , a

f
1:t−1), (16)

where af1:t−1 represents the current partial solution (route)
that has been constructed before the tth iteration. At the tth

iteration, we fix the previously constructed route af1:t−1, and
select an unvisited yet feasible flight (or depot) according to
the policy πθ, which will be added into the current route.
However, different from AM, our model handles much more
complex VRP variants than the ones in [11]. In particular,
the architecture of our model is illustrated in Fig. 3, which
primarily encompasses the encoder and decoder,

1) Encoder: The encoder first computes the initial embed-
ding h(0)

j for each node (i.e., flight and depot) with dimension
dh = 128. On the one hand, we consider the location infor-
mation of nodes. Different from the existing works where the
coordinates of nodes in TSP or CVRP are randomly sampled
according to a specific distribution, the flight nodes in AGH
are located at some gates that are fixed in an airport. In other
words, each flight is assigned to a specific gate for operations,
and all possible locations of flights could be enumerated.
Therefore, we leverage a learnable lookup table (i.e., a list
of embeddings) to represent the location of each node. On
the other hand, for each flight, we embed their demands and
time windows by learning a linear projection. Then, the initial
embeddings are attained by adding them together. Formally,
the initial embeddings for depot and flight nodes are expressed
as follows,

h(0)
j =

{
e0, j = 0

egj + W[δfj , a
p
j , b

p
j] + b, j = 1, ..., n

(17)

where egj is the embedding of the location gj for flight j;
δfj is the demand of flight j for operation f ; apj and bpj are
the start and end of time window of operation f ∈ s(p) on
flight j, respectively; W ∈ Rdh×3 and b ∈ Rdh×1 are trainable
parameters; [·, ·] is the horizontal concatenation operator. Note
that since the time windows for the current operation are
updated according to the solutions to the preceding operations,
it is natural to leverage recurrent neural network (RNN) or
its variants to specifically embed apj and bpj . However, it did
not bring significant improvements over the linear projection
w.r.t. the final global solutions. Hence, we stick to the usage
of linear projection in Eq. (17) for better parallelism and
higher computation efficiency (we discuss such a comparison
in Section V-B).

Given the yielded initial embeddings, the encoder updates
them for N=3 times with the multi-head attention (MHA)
(M=8 heads) layer and feed-forward (FF) layer, which further
process their outputs using skip-connection and batch normal-
ization (BN). Specifically, the update of embeddings at the the
lth layer (Eq. (18) and (19)), and the forward pass of a MHA
layer and FF layer (Eq. (20)-(22)) are expressed as follows,

ĥ
(l)

j = BN(l)(h(l−1)
j + MHA(l)(h(l−1)

j ;h(l−1)
0 , . . . ,h(l−1)

n)),

(18)

h(l)
j = BN(l)(ĥ

(l)

j + FF(l)(ĥ
(l)

j)), (19)

umjk =
(Wm

Q hj)T (Wm
K hk)√

dh/M
, (20)

ĥj = MHA(hj ;h0, . . . ,hn) =
M∑
m=1

Wm
O [

n∑
k=0

eujk∑
k′ e

ujk′
Wm
V hk],

(21)

FF(ĥj) =WF
1 · ReLu(WF

0 ĥj + bF0) + bF1 , (22)

where l ∈ [1, . . . , N] is the layer index and h(l)
j is the

embedding for flight j at the lth layer; BN refers to the
batch normalization; (h0, . . . ,hn) are embeddings related to
the depot and flight nodes; Wm

Q , Wm
K and Wm

V are trainable
parameters to attain the query, key and value vectors in MHA;
Wm
O is the trainable parameters for linear projection in the

mth head; WF
0 , WF

1 and bF0 , bF1 are trainable parameters for
linear projection and bias in FF layer. The resulting advanced
embeddings h(N)

j for nodes are then passed to the decoder to
help decide the next flight to serve.

2) Decoder: Given the embeddings from the encoder and
the current partial solution af1:t−1, the decoder sequentially
selects a flight aft at time step t to construct the VRP solution
regarding each operation. To well represent the state sft ,
we incorporate the context embedding h(N)

c into decoder to
capture the dynamics at each step. Formally, we define the
context embedding at step t ∈ [1, . . . , T] as follows,

h(N)
c = [h(N)

, e
′

f ,h
(N)

aft−1

, Qt, FTt], (23)

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 7

(QFRGHU

(PEHGGLQJ

/LQHDU
3URMHFWLRQ

&RQFDWHQDWH

&RQFDWHQDWH

0+$))

�GHSRW�ORFDWLRQ�HPEHGGLQJ

(PEHGGLQJ

&RQFDWHQDWH

0+$

0$6.

$9(5$*(

.�
(�
<

4�
8�
(�
5�
<

WDQK�	�
VRIWPD[

'HFRGHU

Fig. 3: The architecture of the policy network to construct VRP solutions for respective operations in AGH.

where h(N)
= 1

n+1

∑n
j=0 h(N)

j is the graph embedding,
defined as the mean pooling of the advanced node embeddings
from the encoder; e

′

f is the fleet embedding used to distinguish
the current operation f from others (similar to the location
embedding, we also use a learnable lookup table to represent
it); h(N)

at−1
is the embedding of the last (selected) node; Qt

represents the remaining capacity of the current vehicle and
FTt is the completion time on the last node by the current
vehicle. Among them, while the graph embedding h(N)

and
fleet embedding e

′

f are fixed, others vary at each step dur-
ing the solution construction for sub-problem xf . We define
af0 = 0 and start all tours of vehicles from the depot node,
where each tour corresponds to a vehicle. We initialize Qt and
FTt as Q1 = 1 and FT1 = 0 and update them according to
Eqs. (24) and (25), respectively,

Qt+1 =

{
1, jt = 0

Qt − δfjt , jt 6= 0
(24)

FTt+1 =

{
0, jt = 0

max(FTt + tfjt−1jt
, apjt) + dfjt , jt 6= 0

(25)

where we define the node selected at current step as jt = aft ,
and the one at last step as jt−1 = aft−1; tfjt−1jt

is the travel
time from jt−1 to jt; and max(FTt + tfjt−1jt

, apjt) refers to
the start time of an operation on flight jt, which is the larger
value between the time when a vehicle arrives at flight jt
and the start of the time window assigned to the flight. For
example, if the latter is larger, a vehicle cannot serve the
flight until apjt (in Eq. (14)), i.e., the arrival time of the flight
or the latest completion time of operations in the preceding
precedence level. Otherwise, the former is larger and the

selected flight is not to be served until the arrival of the current
vehicle. Note that both Qt and FTt will be reinitialized if
the vehicle visits the depot, which practically indicates that
another vehicle starts from the depot to serve unvisited flights
since the vehicles are homogeneous. However, this procedure
is only used to showcase the tour construction. In practice,
the vehicles in the same fleet could depart at the same time
according to their respective routes to ensure that the earliest
available flight could be served timely, while others could wait
at the corresponding flights if needed. Moreover, our method
also has favorable potential to handle heterogeneous vehicles
as long as the relevant properties are properly embedded.

Given the context embedding h(N)
c , we update it to h(N+1)

c

through a MHA layer with message passing only from the
flight nodes to the context node, which is similar to the glimpse
function in [9] as follows,

h(N+1)
c = MHA(h(N)

c ;h(N)
0 , . . . ,h(N)

n), (26)

where we ignore FF layer, skip-connection and batch nor-
malization (those used in encoder) for the sake of higher
efficiency. On the other hand, the flight nodes should be
masked during the update of the context embedding if they
violate related constraints. For example, if flight j has already
been served in the previous step, then h(N)

j is not passed to
the MHA layer in Eq. (26). Formally, the masking of the flight
mj
t and depot m0

t at step t are updated sequentially as follows,

mj
t =

FALSE, j /∈ af1:t−1 and δfj ≤ Qt and

,max(FTt + tfjt−1j
, apj) + dfj ≤ b

p
j

TRUE, otherwise

(27)

m0
t =

{
TRUE, jt−1 = 0 and ∃ j ∈ N − {0},mj

t = FALSE

FALSE, otherwise

(28)

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 8

where TRUE means the node is masked and thus cannot be
selected at the current step. Specifically, the flight j ∈ N−{0}
is masked if it has been already served by a vehicle regarding
the current operation f ∈ s(p), or its demand exceeds the
remaining capacity of the vehicle, or the current vehicle cannot
finish the service before the end of time window bpj . For the
depot, we do not allow it to be immediately visited again
if it has already been visited at last step while there are
still unserved flights that can be visited without violating any
constraint at the current step.

The score of selecting each action is realized through a
single-head attention mechanism as described in Eq. (29). To
satisfy constraints in AGH, the score of node j needs to be
masked as vt(j) = −∞ if mj

t = TRUE. Accordingly, the final
probability distribution over candidate actions is calculated
with the Softmax function as shown in Eq. (30).

vt(j) =

{
C · tanh(

(WQh(N+1)
c)T (WKh(N)

j)√
dh

), mj
t = FALSE

−∞, mj
t = TRUE

(29)

πθ(a
f
t |xf , a

f
1:t−1) =

evt(a
f
t)∑n

j=0 e
vt(j)

. (30)

Accordingly, our encoder-decoder structured neural network
πθ expresses a stochastic policy to generate a solution (tour)
af for the fleet (operation) f given the instance xf , that is,

πθ(a
f |xf) =

T∏
t=1

πθ(a
f
t |xf , a

f
1:t−1), (31)

where T means the number of steps used to construct a feasible
solution (tour) which serves all aircraft.

D. Policy Training

Given the stochastic policy parameterized by the neural net-
work in Section IV-C, with its solution expressed in Eq. (31),
we train the policy network by exploiting the REINFORCE
algorithm [51] with a rollout baseline [52]. The pseudocode
of training procedure is displayed in Algorithm 1, where
Lfi and Bfi mean the cost (length) of the constructed route
(tour) for fleet f in the i-th instance by the current trained
model and the best saved one, respectively. Correspondingly,
{{Lfi }Bi=1}Ff=1 and {{Bfi }Bi=1}Ff=1 mean the list of costs in all
operations and instances by the two models, respectively. After
each epoch, we use the best checkpoint (i.e. the best saved
model so far) to greedily solve instances in the validation set
Xval,3 and the current model is also used to solve the set.
We substitute the current one for the best checkpoint if it can
achieve significantly better performance according to a paired
t-test [11], as shown in Line 14∼17 in Algorithm 1. For each
fleet w.r.t. operation f , the loss is defined as the expected
solution cost as follows,

L(θ|xf) = Eπθ(af |xf)[L(a
f)], (32)

where L(af) means a function to compute the length of the
constructed route (tour) af . Note that since we explicitly

3We randomly generate 1000 instances after each epoch with the same size
and random seed as those used in training to evaluate the current model.

Algorithm 1 Policy Optimization with REINFORCE

1: Input: number of epochs E; number of iterations per
epoch I; number of operations F ; batch size B; signifi-
cance α.

2: Init θ, θ∗ ← θ
3: for epoch = 1, ..., E do
4: for iter = 1, ..., I do
5: generate random instances {xi}Bi=1

6: {{Bfi }Bi=1}Ff=1 ← Greedy({xi}Bi=1, θ
∗)

7: for f = 1, ..., F do
8: {Lfi }Bi=1 ← Sample({xfi }Bi=1, θ)
9: update time windows as Eqs. (14) and (15)

10: end for
11: obtain gradient 1

B∇L using Eq. (33)
12: θ ← Adam(θ, 1

B∇L)
13: end for
14: {{Lfi }

|Xval|
i=1 }Ff=1 ← Greedy(Xval, θ)

15: {{Bfi }
|Xval|
i=1 }Ff=1 ← Greedy(Xval, θ∗)

16: if t-test(
∑F
f=1{L

f
i }
|Xval|
i=1 ,

∑F
f=1{B

f
i }
|Xval|
i=1) < α then

17: θ∗ ← θ
18: generate a new validation set Xval

19: end if
20: end for

embed the vehicle and operation information, it is expected
that the learned policy is robust and reliable enough to also
tackle VRPs for the heterogeneous fleets (i.e. operations) in
AGH. To this end, we perform the gradient back-propagation,
with the solution to each fleet af separately constructed by the
same policy network in Section IV-C. Formally, we optimize
the policy network for solving AGH with the following update
scheme,

∇L(θ|x) =
∑

x∈{xi}Bi=1

1

|F|
∑
f∈F

[(L(af)

− B(xf))∇ log πθ(a
f |xf)],

θ ← Adam(θ,
1

B
∇L),

(33)

where B(xf) represents the length of the solution to operation
f constructed by the baseline (i.e. the best checkpoint) in
a greedy manner. We use the above gradient to update the
parameters of the policy network, as shown in Line 5∼12 in
Algorithm 1 Intuitively, the above training diagram does not
explicitly handle the interplay between solutions to different
sub-problems. Alternatively, we also try to update the policy
network with the global solution, which is constructed by using
the network to schedule all operations in one go (rather than
separate computations for each sub-problem). However, we
observe that this alternative paradigm yields similar perfor-
mance, which in turn increases additional training complexity
with a long episode to construct the solution. We compare and
analyze those different training paradigms in Section V-B.

In summary, we propose a deep learning based construction
framework to solve AGH, with constraints properly handled
for solution feasibility, the policy network elegantly structured
for informative representation and a novel training algorithm

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 9

to learn effective policies. Compared to use cases of RL for
solving simplified VRP (e.g. TSP or CVRP) in the literature,
this is the first time that RL is designed and applied to the
complex yet practical VRP in AGH. Extensive experiments in
the next section will show that the proposed method achieves
significantly better performance than classic methods.

V. EXPERIMENTS AND ANALYSIS

In this section, we evaluate our neural method on AGH
instances with 20, 50, 100 flights of 3 types, and 10 types
of operations. We compare our method with classic meta-
heuristics, construction heuristics and recent methods specifi-
cally designed for AGH to verify the superiority. Besides, we
evaluate the generalization of the learned policy on instances
with larger problem sizes and different parameters, and con-
duct ablation studies to assess the effectiveness of key designs
in the proposed method. Moreover, we also adapt our method
to real-time setting with stochastic arrival of flights to verify
its capability to handle dynamics.

A. Experimental Settings

Instance Generation. We take the Changi Airport in Sin-
gapore as a use case. It involves 3 terminals and 91 gates,
and we assume the depot node is placed at a specified
location. To conduct the experiment, we load the airport
map4 into SUMO [53], where the distances among locations
could be calculated automatically. On top of that, we generate
instances with 20, 50 and 100 flights, which are referred
as AGH20, AGH50 and AGH100. In those instances, we
assign gates randomly to each flight. We consider 3 types of
flights (each flight is assigned to a type randomly) and sample
their arrival time according to the statistics5 of real scenarios
in Changi airport. Based on the arrival time, the departure
time is computed by adding the duration of a turnaround
(i.e., 30 minutes, 34 minutes and 33 minutes to the 3 flight
types, respectively), which are sufficiently long in general.
Regarding operations, we consider the 10 operations, their
service duration and precedence relations in Fig. 1 for all
instances. Pertaining to each operation, the demand of flights
are uniformly sampled from [1, . . . , 9]. We set the capacity of
vehicles in each fleet to 30, 40 and 50 in AGH20, AGH50 and
AGH100, respectively. Note that we normalize the demand
by the capacity of vehicles before feeding them to neural
networks, and hence the initial capacity is 1 as shown in
Eq. (24). We set vehicle speeds following [54]. For each
problem size (i.e. AGH20, AGH50, AGH100), we train the
policy network with 100 epochs and generate 12800 instances
in each epoch. We randomly generate 1000 instances with the
same size and random seed after each epoch as the validation
set to evaluate the current model, in order to keep the best-so-
far model. For testing, we generate 1000 instances of AGH20,
AGH50 and AGH100 with a random seed that is different from
the one for training. Similarly, we generate 1000 instances
of AGH200 and AGH300 for evaluating the generalization

4https://www.changiairport.com/en/maps.html
5https://www.changiairport.com/en/flights.html

across problem sizes. In addition, we also test our method
to solve AGH instances with different parameters and real-
time settings, with the instance generation introduced in the
corresponding section (i.e. Section V-D and V-E).

Baselines. We compare the learned policy with representative
meta-heuristics, construction heuristics and recent specialized
methods for AGH. All baselines with their implementation
details are introduced as follows.

• CPLEX (v20.1), a mature and highly optimized com-
mercial solver for mixed integer linear programming
(MILP) [55].

• Insertions, a type of construction heuristics to solve
VRPs. We compare with random, nearest, farthest inser-
tion and nearest neighbor [56].

• Clarke and Wright Savings (CWS), a construction heuris-
tic to solve VRPs [57]. The first flight to be served is
selected according to the start of time windows, and
the route is constructed progressively according to the
distance savings and temporal relations between every
two flights.

• Simulated Annealing (SA), a meta-heuristic that mimics
the physical annealing process [58]. We use the nearest
neighbor heuristic to find the initial solution, and equip it
with swap operator to explore the solution space (since it
is better than 2-opt for AGH according to our preliminary
results). We use Metropolis criterion to accept solutions.
Concretely, we run SA for each fleet independently. We
set the size of the neighborhood (defined by the swap
operator) to 500, the maximum iteration number to 100,
the initial temperature to 200, the cooling factor to 0.9,
and the time limit to 30m.

• Large Neighborhood Search (LNS), a meta-heuristic
that generalizes neighborhood search for optimization
by iteratively refining an incumbent solution with local
search [59]. Instead of explicitly defining a neighbor-
hood function (e.g., k-opt operation), LNS defines the
neighborhood implicitly through a pair of destroy and
repair operators. For each instance, we obtain an initial
solution with a simple heuristic based on the nearest
neighbor heuristic. Following the LNS framework in [60],
the destroy operator iteratively selects decision variables
in MILP to be reoptimized, and the repair operator (i.e.,
CPLEX) attains a feasible solution in the reoptimization.
The feasible solution replaces the incumbent one to be
further improved afterwards if it has a better objective
value. Concretely, in each LNS iteration, we randomly
select 50 percent of decision variables to be destroyed
(and reoptimized) while fixing others. The time limit of
each LNS iteration is set to 20s, 1m and 2m for AGH20,
AGH50 and AGH100, respectively.

• LNS SA, a natural combination of LNS and SA where
SA is used as the acceptance criterion in LNS framework.
Specifically, instead of simply greedily accepting new
feasible solutions, we use Metropolis criterion to accept
solutions as used in the SA. The initial temperature is
200, and is cooled by 0.95 every 10 LNS iterations. The
other settings (e.g., the time limit of each LNS iteration)

https://www.changiairport.com/en/maps.html
https://www.changiairport.com/en/flights.html

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 10

TABLE I: Performance regarding ablation studies.

Method
AGH100 (Greedy) AGH100 (Sampling)

Obj. Gap Time Obj. Gap Time

LG 576733.94 139.53% 4.09s 531477.94 136.92% 5.35s

LMG
363241.50 50.73% 4.10s 316558.09 41.02% 5.28s

LMF
299984.50 24.47% 4.10s 263335.75 17.29% 5.27s

w/o TW 338958.66 40.72% 4.12s 301930.75 34.53% 5.24s

w. LSTM 245940.63 2.01% 4.22s 227446.69 1.27% 5.34s

Ours 242930.86 0.75% 4.08s 225617.61 0.45% 5.13s

remain the same as the ones described above.
• Genetic Algorithm (GA), a recent method specifically

designed for AGH [8]. While the original work only
considers one type of aircraft, we adapt it to our setting
with heterogeneous aircraft. The solution (chromosome)
of each fleet is represented as an array, where the first half
represents the vehicle index required by each flight, and
the last half represents the order in which each vehicle
serves the flight. The selection, crossover and mutation
operators are the tournament selection, simulated binary
crossover and polynomial mutation, respectively. The
hyperparameters follow the ones used in [8].

• CP LNS, which tackles similar AGH to ours by first
decomposing it into sub-problems for each fleet according
to temporal constraints, and then applying LNS with
constraint programming (CP) to solve them [7], [20].
We adapt it to solve exactly the same AGH to ours.
The neighborhood structure is defined by two operators:
the Random Pivot operator (RPOP), which removes and
reinserts individual customers, and the Small Routing
(SMART), which relies on arc exchanges. The time limit
of each LNS iteration is kept the same as the vanilla LNS
described above.

We report the average performance in terms of objective
values and relative gaps6 of all methods on the testing set,
where the gaps are calculated against the best solution found
among all the methods. For our method, we use two decoding
strategies, 1) Greedy, which always selects the flight with the
highest probability (based on the output of policy network)
at each step; 2) Sampling, which samples 1000 solutions in
parallel based on the output probability distribution of policy
network, and selects the best one as the final solution. We also
report the average time needed to solve a single instance, the
setting of which may vary with different methods. Note that
we implement (run) all methods on CPU except that our neural
method is on GPU. In specific, we run those experiments on
a server equipped with a single GeForce RTX-2080Ti GPU
card and Intel i9-10940X CPU @ 3.30GHz.

6In specific, let x̄ and x̄∗ be the solution found by the current method and
the best solution found among all methods, respectively. For each instance, we
define the gap of x̄ to the best found solution as: |c(x̄)−c(x̄∗)|/c(x̄∗), where
c(·) is the cost of a solution. We report the average gap over all instances in
the testing set throughout the experiment.

20 40 60 80 100
Epoch

200000

400000

600000

800000

1000000

Ob
j

Training Curves
G

MG

MF

w/o TW
w. LSTM
Ours

Fig. 4: Training curves regarding ablation studies.

Hyperparameters. Regarding CPLEX and meta-heuristics,
we set time limit as 30 minutes to solve instances of AGH20,
AGH50 and AGH100. In addition, for GA, we set the popu-
lation size to 100, crossover probability to 0.7 and mutation
probability to 0.3. For SA, we explore 500 candidate solutions
in the neighborhood of current solution at each iteration of
the local search. The initial temperature is set to 200 with
decay rate of 0.9. For LNS, we set the degree of destruction
to 0.5, which means we reoptimize a sub-MILP with half
unfixed decision variables (while the other half is fixed) in the
original MILP at each iteration. Moreover, we use CPLEX as
the repair operator in LNS. For each LNS iteration, the time
limit for AGH20, AGH50 and AGH100 is set to 20 seconds,
1 minute and 2 minutes, respectively. For LNS SA, the initial
temperature is set to 200 with decay rate of 0.95 for every
10 LNS iterations. For our neural method, we train the policy
network for 100 epochs with instances generated on the fly.
In each epoch, 200 batches of 64 instances are processed for
training, and 1000 instances are evaluated at the end of each
epoch. In the neural structure, we use N = 3 layers in the
encoder and M = 8 heads in each multi-head attention layer.
The dimension of all embeddings is set to 128. We use Adam
optimizer [61] to update the parameters of neural network with
a constant learning rate 10−4. The significance α in t-test is
set to 5%.

B. Ablation Study

We first conduct ablation studies to verify the effectiveness
of key designs in our neural method. Specifically, we evaluate
different loss functions to optimize the policy network for
AGH, and different embedding methods for the temporal
inputs, where we primarily take AGH100 as the study case.
Loss Functions. While the learnt policy for each sub-problem
is shared among different fleets, we concern that loss L(θ|xf)
in Eq. (32) only optimizing the tour length for each sub-
problem may ignore the interplay between sub-problems, i.e.,
the solutions to the higher precedence level affects the time
windows of the succeeding sub-problems. Thus, we also
extend the loss function to consider the global solution or
solutions to a series of sub-problems. Three candidate loss
functions are evaluated as follows,

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 11

TABLE II: Comparison with baselines.

Method
AGH20 AGH50 AGH100

Obj. Gap Time Obj. Gap Time Obj. Gap Time

CPLEX 80151.01 0.00% 30m 300801.58 104.09% 30m 795687.22 252.23% 30m

SA 112250.94 40.26% 30m 248161.94 69.82% 30m 416360.91 84.94% 30m

LNS 91722.98 14.37% 30m 183769.36 25.73% 30m 320327.66 42.25% 30m

LNS SA 94816.34 18.45% 30m 183388.98 25.44% 30m 324700.14 44.16% 30m

GA 143664.25 79.45% 30m 304865.51 108.75% 30m 515242.92 129.10% 30m

CP LNS 114576.62 43.10% 30m 227609.73 55.88% 30m 303815.31 34.88% 30m

Random Insertion 168649.50 96.75% 1.70s 340960.69 135.49% 0.38m 612480.69 171.80% 2.44m

Nearest Insertion 156261.83 82.53% 2.33s 322091.38 122.49% 0.48m 590135.81 161.90% 3.24m

Farthest Insertion 157519.63 83.97% 2.65s 351715.00 143.04% 0.49m 666756.19 195.92% 4.05m

Nearest Neighbor 147099.97 71.44% 0.11s 271017.28 87.04% 0.25s 425558.38 88.75% 0.51s

CWS 106356.66 23.96% 0.10s 190049.50 31.08% 0.25s 300500.69 33.29% 0.50s

Ours(Greedy) 92121.10 7.12% 2.88s 157540.69 8.58% 3.35s 242930.86 7.67% 4.08s

Ours(Sampling) 86380.93 0.45% 2.98s 145099.80 0.02% 3.68s 225617.61 0.00% 5.13s

1) LG: We optimize the policy network with solutions of
all fleets. The gradient is computed as in Eq. (34), where
L(a) and B(x) represent costs of the global solutions
attained by the current model and baseline model, re-
spectively. This approach optimizes the multi-fleet vehicle
routing in AGH as a whole,

∇LG(θ|x) = (L(a)− B(x))∇ log
∏
f∈F

πθ(a
f |xf). (34)

2) LMG
: As an alternative, we define the gradient as a

weighted sum of the solution cost of each sub-problem
and that of the global solution (α = 0.95),

∇LMG
(θ|x) = 1

|F|
∑
f∈F

[(α(L(af)− B(xf))+

(1− α)(L(a)− B(x)))∇ log πθ(a
f |xf)]. (35)

3) LMF
: We further refine LMG

by only considering the
solution costs of sub-problems with lower priorities,

∇LMF
(θ|x) = 1

|F|
∑
f∈F

[(α(L(af)− B(xf))+

(1− α)
∑
p≺p′

∑
f ′∈s(p′)

(L(af
′

)− B(xf
′
)))∇ log πθ(a

f |xf)].

(36)

Note that, same as Eq. (32), the above loss functions are used
to update the policy network after the global solution to AGH
is constructed. Then we train the policies with the above loss
functions and test them on AGH100 instances. The results are
gathered in TABLE I, where we observe that the loss function
in Eq. (32) achieves better performance than the above three
variants. Meanwhile, we display the validation performance
during training in Fig. 4. We observe that the training process
with the loss LG or LMG

is difficult to be converged. It might
result from the relatively high complexity involving the whole
AGH solution for LG, and the noisy information for LMG

.
Here, the noisy information refers to the solution costs from

operations that are not related much, since the solution to an
operation may only affect the ones with lower priorities. On
the other hand, although LMF

performs better than LMG
, it is

still inferior to L(θ|xf) based on our empirical results. Thus
we conclude that the loss L(θ|xf) is sufficiently effective and
efficient to train a desirable policy to solve AGH.
Temporal Embeddings. Since the time windows in each
operation are affected by solutions to the operations with
a higher priority in AGH, we would like to emphasize the
importance of embedding such temporal information, and also
investigate the recurrent neural network (e.g., LSTM) for time
window embedding. Specifically, the temporal input apj and
bpj are first processed with a linear projection, and then passed
to LSTM accompanied with the hidden and cell states. Those
hidden and cell states are initialized with zero vectors and
updated as the output of LSTM at the last step, which is
regarded as the embedding of temporal feature, and then added
to the initial embedding h(0)

j . As shown in TABLE I and Fig.
4, the policy learned without representation of the temporal
feature (w/o TW) performs significantly inferior to the one
with such representation, both for the training and testing.
Also, the results indicate that the recurrent neural network
does not bring obvious advantage over ours. It only slightly
improves the validation performance at the very beginning
of the training. Hence, we stick to the usage of the linear
projection in Eq. (17) to embed the temporal input for better
parallelism and less computational cost.

C. Comparison Study
We compare our neural method with baselines on AGH20,

AGH50 and AGH100 and record the average objective value,
primal gap and (needed) runtime. All results are displayed
in TABLE II. We observe that CPLEX is able to solve
small instances well on AGH20 with the given 30 minutes,
achieving the smallest objective value and primal gap among
all methods. However, its performance saliently degrades on
larger instances, which is generally inferior to the other

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 12

TABLE III: Generalization study on problem sizes.

Method
AGH200 AGH300

Obj. Gap Time Obj. Gap Time

LNS 686158.86 86.18% 1h 1576055.58 223.49% 1h

LNS SA 685258.40 85.88% 1h 1521977.52 212.27% 1h

CP LNS 471051.22 27.32% 1h 576481.92 18.80% 1h

Random Insertion 1163235.50 216.39% 0.33h 1684740.15 246.08% 1.27h

Nearest Insertion 1110559.75 202.08% 0.47h 1577794.82 224.13% 1.69h

Farthest Insertion 1297243.25 252.82% 0.51h 1895887.19 289.45% 1.67h

Nearest Neighbor 664187.06 80.58% 0.97s 858120.69 76.23% 1.43s

CWS 491486.56 33.60% 1.01s 638389.44 31.09% 1.52s

Ours(Greedy) 387361.94 5.28% 6.78s 504203.06 3.53% 8.55s

Ours(Sampling) 367934.56 0.00% 9.89s 487027.66 0.00% 17.49s

methods on AGH50 and AGH100. The reason is that the
computational complexity increases exponentially as the size
grows due to its NP-hard nature, and CPLEX based on the
exact algorithm becomes less effective in searching optimal or
high-quality solutions. On the other hand, our neural method
can attain the best results on AGH50 and AGH100, and
especially when multiple solutions are sampled, the average
primal gap is almost 0. It means our method outperforms all
baselines on almost all instances. Compared to meta-heuristics,
including the two methods (GA and CP LNS) specialized
for AGH, even our method with Greedy decoding achieves
better results than them on all problem sizes (except for LNS
on AGH20). Moreover, our method with Sampling decoding
further improves the results significantly. Note that our method
is more efficient than meta-heuristics, since the policy network
constructs the solution to an instance once without additional
steps for iterative improvements. Additionally, while GA and
CP LNS resort to domain knowledge and trial-and-error to
derive the algorithm, e.g., the design of operators, our method
can learn more powerful policies automatically. Meanwhile,
it is also clear that the learned construction heuristic by our
method is considerably superior to classic insertion heuristics
and CWS, which again verifies its favorable capability in
solving AGH.

D. Generalization Study

After the policy is trained, we expect that it can generalize
well to larger unseen instances. To demonstrate such a capabil-
ity, we directly apply the policy trained on AGH100 to solve
1000 instances of AGH200 and AGH300, which are generated
following almost the same procedure as described in Section
V-A. The only difference is that we set the capacity of vehicles
to 60 and 70 for AGH200 and AGH300, respectively. For
meta-heuristics, we only report the results of LNS, LNS SA
and CP LNS with the time limit of 1 hour, since we found
that they perform better than SA and GA with a similar pattern
in Section V-C. We also compare with classic construction
heuristics, and all results are summarized in TABLE III. It is
revealed that CP LNS and CWS attain the best results among
the meta-heuristics and construction heuristics, respectively.
On the other hand, our method with either Greedy or Sampling

TABLE IV: Generalization study on varying parameters.

Method
Gaussian Poisson

Obj. Gap Time Obj. Gap Time

LNS 311851.84 37.33% 30m 320533.46 40.44% 30m

LNS SA 309631.53 36.33% 30m 316322.71 38.89% 30m

CP LNS 306331.68 34.93% 30m 312833.22 37.75% 30m

Random Insertion 607621.00 166.88% 2.79m 619340.75 172.94% 3.45m

Nearest Insertion 584337.69 156.64% 3.85m 593679.06 161.70% 4.66m

Farthest Insertion 659150.63 189.50% 5.13m 674967.44 197.53% 5.95m

Nearest Neighbor 424645.47 86.38% 0.55s 424585.13 87.00% 0.57s

CWS 304361.41 33.58% 0.57s 311102.69 36.99% 0.52s

Ours(Greedy) 246531.45 8.14% 5.15s 245913.59 8.23% 4.89s

Ours(Sampling) 227973.09 0.00% 6.87s 227209.89 0.00% 6.84s

decoding strategy can still yield better solutions than all base-
lines on both AGH200 and AGH300. Moreover, the needed
runtime of the construction heuristics is shorter than that of
meta-heuristics, exhibiting a desirable efficiency on the large
instances. In summary, our method is able to achieve the best
solutions with reasonably short runtime when generalizing to
larger AGH instances.

On the other hand, it is also necessary to evaluate the
trained model with instances from varying distributions, so as
to verify its potential to be used with diverse modes of instance
parameters. Although our instance generation mostly follows
the real scenarios in Changi airport, we further manifest the
power of the model with varying flight demands and arrival
time. Specifically, we sample flight demands from Gaussian
(with mean 5 and variance 2.5) and Poisson distributions
(with the expected number of events 5), respectively. Similarly,
we also sample the arrival time of aircraft by assigning
probabilities to each hour, which are derived from Gaussian
(with mean 0 and variance 1) and Poisson (with the expected
number of events 4) distributions. We directly apply the trained
model to the instances and record the results in TABLE IV.
It is clear that our methods with Sampling can achieve the
lowest gaps and objective values under either Gaussian or
Poisson distribution. Furthermore, the runtime of our method
is relatively short compared to the metaheuristics and some
of the construction heuristics. Despite the good generalization
to the above two distributions, we will apply the proposed
method to solve AGH in different airports in the future, so as
to evaluate it with other practical parameter distributions.

E. Real-time AGH

In reality, we not only concern a good solution to AGH that
could be computed days earlier, but also hope the model could
handle real-time AGH that is characterized with stochastic
arrivals of flights. In other words, when the known flights are
being scheduled, subsequent (new) flights will arrive at airport
at random time which are not known in advance. To evaluate
this property, we adapt our method and construction heuristics
to the real-time AGH setting (in a re-optimization manner),
which mimics the real-world dynamics in an airport. When the
new flights come, we fix the scheduling of operations before

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 13

TABLE V: Results for real-time AGH

Method
AGH50→100

Obj. Gap Time

Random Insertion 558672.81 102.72% 2.02m

Nearest Insertion 429569.28 55.97% 2.98m

Farthest Insertion 429871.59 56.11% 2.86m

Nearest Neighbor 515896.97 87.60% 3.25s

CWS 336290.59 21.99% 2.90s

Ours(Greedy) 305379.37 10.55% 10.99s

Ours(Sampling) 276043.84 0.00% 14.90s

current timestamp, and continue to schedule the vehicle fleets
for unserved flights. Following the same instance generation
procedure in Section V-A, we first generate 500 instances of
AGH50, and gradually add new incoming flights (until 100
flights in each instance) during inference whose arrival time
are sampled according to the statistics of CHANGI airport.
Note that the arrival time of new flight cannot precede the
current timestamp, and hence is revealed dynamically during
the execution of operations. From the results in TABLE V, it
is exhibited that our method can deal with well the dynamic
arrivals of flights and offer shorter route to dispatch all fleets
for operations. In addition, our method runs efficiently which
meets the requirements of real-time AGH, which well justified
its favorable capability of handling dynamics and randomness
in practice.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we first propose a neural method to solve
AGH. We present a construction framework for AGH with
multiple (types of) operations, which decomposes the studied
problem into VRPs for each fleet and solves them with
a construction heuristic following the precedence relation.
Particularly, we concretize the construction heuristic with
an attention-based policy network and train it by the RL
algorithm, which is shared by each fleet (sub-problem). Re-
sults show that our method outperforms classic construction
heuristics, meta-heuristics and existing specialized methods
for AGH, in terms of solution quality and computational
efficiency. Moreover, our method generalizes well to instances
with larger scales or different parameters and performs favor-
ably on real-time AGH with stochastic flight arrivals, which
yields superior results to all baselines.

In addition, the ablation study provides two pivotal insights
in the algorithmic design for solving AGH. First, the time
window is an important factor that intertwines sub-problems
in AGH. The linear projection is empirically found to be
better than LSTM to embed this information into the policy
network. Second, optimizing the solutions to sub-problems
gains superior performance to the direct optimization of the
global solution during training. These findings may serve as a
source of inspiration for the use of DRL in addressing other
AGH variations and similar practical VRPs.

We would like to note that this work is an early attempt to
solve AGH with deep learning, which has substantial practical

significance. First, it benefits the algorithmic development
for AGH in the data-driven fashion, without much trial-and-
error and domain knowledge to design hand-crafted rules
or operators. Also, the neural method can deliver superior
solutions to classic methods in a fairly short time, which has
a potential to promote the efficiency of airport management
and the economics of aviation. Furthermore, the proposed
method belongs to an appealing application of DRL for solving
practical VRPs with complex constraints, in comparison to
most existing neural methods for simple and standard VRPs.
In the future, we will, 1) apply our method to much larger
AGH instances such as the ones with 1000 flights; 2) adapt
it to other stochastic settings, e.g., the uncertain service time
for operations; 3) involve heterogeneous vehicles in fleets.

REFERENCES

[1] P. Zhao, W. Gao, X. Han, and W. Luo, “Bi-objective collaborative
scheduling optimization of airport ferry vehicle and tractor,” Interna-
tional Journal of Simulation Modelling, vol. 18, no. 2, pp. 355–365,
2019.

[2] S. Zhu, H. Sun, and X. Guo, “Cooperative scheduling optimization for
ground-handling vehicles by considering flights’ uncertainty,” Comput-
ers & Industrial Engineering, p. 108092, 2022.

[3] J. Y. Du, J. O. Brunner, and R. Kolisch, “Planning towing processes
at airports more efficiently,” Transportation Research Part E: Logistics
and Transportation Review, vol. 70, pp. 293–304, 2014.

[4] S. C. Ho and J. M. Leung, “Solving a manpower scheduling problem for
airline catering using metaheuristics,” European Journal of Operational
Research, vol. 202, no. 3, pp. 903–921, 2010.

[5] X. Feng, H. Zuo, and Q. Sun, “Research on collaborative scheduling of
aircraft ground service vehicles based on simple temporal network,” in
2021 IEEE 3rd International Conference on Civil Aviation Safety and
Information Technology (ICCASIT). IEEE, 2021, pp. 263–269.

[6] W. Guo, P. Xu, Z. Zhao, L. Wang, L. Zhu, and Q. Wu, “Scheduling
for airport baggage transport vehicles based on diversity enhancement
genetic algorithm,” Natural Computing, vol. 19, no. 4, pp. 663–672,
2020.

[7] S. Padrón, D. Guimarans, J. J. Ramos, and S. Fitouri-Trabelsi, “A bi-
objective approach for scheduling ground-handling vehicles in airports,”
Computers & Operations Research, vol. 71, pp. 34–53, 2016.

[8] Y. Liu, J. Wu, J. Tang, W. Wang, and X. Wang, “Scheduling optimisa-
tion of multi-type special vehicles in an airport,” Transportmetrica B:
Transport Dynamics, pp. 1–17, 2021.

[9] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural com-
binatorial optimization with reinforcement learning,” in International
Conference on Learning Representations (ICLR), 2017.

[10] M. Nazari, A. Oroojlooy, L. Snyder, and M. Takác, “Reinforcement
learning for solving the vehicle routing problem,” Advances in Neural
Information Processing Systems (NeurIPS), vol. 31, 2018.

[11] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve routing
problems!” in International Conference on Learning Representations
(ICLR), 2018.

[12] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” Advances in Neural
Information Processing Systems (NeurIPS), vol. 30, 2017.

[13] C. K. Joshi, T. Laurent, and X. Bresson, “An efficient graph convo-
lutional network technique for the travelling salesman problem,” arXiv
preprint arXiv:1906.01227, 2019.

[14] A. Norin, T. A. Granberg, P. Värbrand, and D. Yuan, “Integrating
optimization and simulation to gain more efficient airport logistics,” in
Eighth USA/Europe Air Traffic Management Research and Development
Seminar, 2009, p. 10.

[15] A. Norin, D. Yuan, T. A. Granberg, and P. Värbrand, “Scheduling
de-icing vehicles within airport logistics: a heuristic algorithm and
performance evaluation,” Journal of the Operational Research Society,
vol. 63, no. 8, pp. 1116–1125, 2012.

[16] Z. Zhou, S. Liu, and K. Huang, “Research on airport trailer emergency
scheduling model based on genetic simulation annealing algorithm,” in
IOP Conference Series: Materials Science and Engineering, vol. 383,
no. 1. IOP Publishing, 2018, p. 012044.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 14

[17] X. Han, P. Zhao, Q. Meng, S. Yin, and D. Wan, “Optimal scheduling of
airport ferry vehicles based on capacity network,” Annals of Operations
Research, vol. 295, no. 1, pp. 163–182, 2020.

[18] Y. Du, Q. Zhang, and Q. Chen, “Aco-ih: An improved ant colony
optimization algorithm for airport ground service scheduling,” in IEEE
International Conference on Industrial Technology, 2008, pp. 1–6.

[19] K. A. Zampirolli and A. R. S. Amaral, “Simulated annealing and iterated
local search approaches to the aircraft refueling problem,” in Inter-
national Conference on Computational Science and Its Applications.
Springer, 2021, pp. 422–438.

[20] S. Padrón and D. Guimarans, “An improved method for scheduling
aircraft ground handling operations from a global perspective,” Asia-
Pacific Journal of Operational Research, vol. 36, no. 04, p. 1950020,
2019.

[21] Y. S. Gök, D. Guimarans, P. J. Stuckey, M. Tomasella, and C. Ozturk,
“Robust resource planning for aircraft ground operations,” in Interna-
tional Conference on Integration of Constraint Programming, Artificial
Intelligence, and Operations Research. Springer, 2020, pp. 222–238.

[22] Y. S. Gök, M. Tomasella, D. Guimarans, and C. Ozturk, “A simheuristic
approach for robust scheduling of airport turnaround teams,” in 2020
Winter Simulation Conference (WSC). IEEE, 2020, pp. 1336–1347.

[23] G. Andreatta, L. Capanna, L. De Giovanni, M. Monaci, and L. Righi,
“Efficiency and robustness in a support platform for intelligent airport
ground handling,” Journal of Intelligent Transportation Systems, vol. 18,
no. 1, pp. 121–130, 2014.

[24] K. Ng, C. K. Lee, F. T. Chan, and Y. Lv, “Review on meta-heuristics
approaches for airside operation research,” Applied Soft Computing,
vol. 66, pp. 104–133, 2018.

[25] J. Liu, Z. Guo, and B. Yu, “Optimising gate assignment and taxiway path
in a discrete time–space network: integrated model and state analysis,”
Transportmetrica B: Transport Dynamics, pp. 1–23, 2022.

[26] Y. Wang, Z. Wang, X. Hu, G. Xue, and X. Guan, “Truck–drone hybrid
routing problem with time-dependent road travel time,” Transportation
Research Part C: Emerging Technologies, vol. 144, p. 103901, 2022.

[27] Y.-J. Liang and Z.-X. Luo, “A survey of truck–drone routing problem:
Literature review and research prospects,” Journal of the Operations
Research Society of China, vol. 10, no. 2, pp. 343–377, 2022.

[28] Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim, “Learning improvement
heuristics for solving routing problems..” IEEE Transactions on Neural
Networks and Learning Systems, 2021.

[29] C. Zhang, W. Song, Z. Cao, J. Zhang, P. S. Tan, and X. Chi, “Learning
to dispatch for job shop scheduling via deep reinforcement learning,” in
Advances in Neural Information Processing Systems (NeurIPS), vol. 33,
2020, pp. 1621–1632.

[30] M. Lee, S. Hosseinalipour, C. G. Brinton, G. Yu, and H. Dai, “A fast
graph neural network-based method for winner determination in multi-
unit combinatorial auctions,” IEEE Transactions on Cloud Computing,
2020.

[31] Y.-D. Kwon, J. Choo, B. Kim, I. Yoon, Y. Gwon, and S. Min, “Pomo:
Policy optimization with multiple optima for reinforcement learning,” in
Advances in Neural Information Processing Systems (NeurIPS), vol. 33,
2020, pp. 21 188–21 198.

[32] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi, “Exact
combinatorial optimization with graph convolutional neural networks,”
in Advances in Neural Information Processing Systems (NeurIPS),
vol. 32, 2019.

[33] X. Chen and Y. Tian, “Learning to perform local rewriting for com-
binatorial optimization,” in Advances in Neural Information Processing
Systems (NeurIPS), 2019, pp. 6278–6289.

[34] Y. Ma, J. Li, Z. Cao, W. Song, H. Guo, Y. Gong, and Y. M. Chee, “Ef-
ficient neural neighborhood search for pickup and delivery problems,”
in Proceedings of the Thirty-First International Joint Conference on
Artificial Intelligence, IJCAI-22, 7 2022, pp. 4776–4784.

[35] J. Li, Y. Ma, R. Gao, Z. Cao, L. Andrew, W. Song, and J. Zhang, “Deep
reinforcement learning for solving the heterogeneous capacitated vehicle
routing problem,” IEEE Transactions on Cybernetics, 2021.

[36] Y. Ma, J. Li, Z. Cao, W. Song, L. Zhang, Z. Chen, and J. Tang, “Learning
to iteratively solve routing problems with dual-aspect collaborative
transformer,” in Advances in Neural Information Processing Systems
(NeurIPS), vol. 34, 2021, pp. 11 096–11 107.

[37] J. Li, L. Xin, Z. Cao, A. Lim, W. Song, and J. Zhang, “Heterogeneous at-
tentions for solving pickup and delivery problem via deep reinforcement
learning,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 3, pp. 2306–2315, 2021.

[38] L. Xin, W. Song, Z. Cao, and J. Zhang, “Neurolkh: Combining deep
learning model with lin-kernighan-helsgaun heuristic for solving the

traveling salesman problem,” in Advances in Neural Information Pro-
cessing Systems (NeurIPS), vol. 34, 2021.

[39] J. Zhou, Y. Wu, Z. Cao, W. Song, J. Zhang, and Z. Chen, “Learning large
neighborhood search for vehicle routing in airport ground handling,”
IEEE Transactions on Knowledge and Data Engineering, 2023.

[40] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Advances
in Neural Information Processing Systems (NeurIPS), 2015, pp. 2692–
2700.

[41] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems (NeurIPS), 2017, pp. 5998–
6008.

[42] Y. Kaempfer and L. Wolf, “Learning the multiple traveling salesmen
problem with permutation invariant pooling networks,” arXiv preprint
arXiv:1803.09621, 2018.

[43] Y. Xu, M. Fang, L. Chen, G. Xu, Y. Du, and C. Zhang, “Reinforcement
learning with multiple relational attention for solving vehicle routing
problems,” IEEE Transactions on Cybernetics, 2021.

[44] L. Xin, W. Song, Z. Cao, and J. Zhang, “Multi-decoder attention
model with embedding glimpse for solving vehicle routing problems,”
in Proceedings of 35th AAAI Conference on Artificial Intelligence, 2021,
pp. 12 042–12 049.

[45] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, 2020.

[46] A. Nowak, S. Villar, A. S. Bandeira, and J. Bruna, “A note on learning
algorithms for quadratic assignment with graph neural networks,” in
International Conference on Machine Learning (ICML), vol. 1050, 2017,
p. 22.

[47] C. K. Joshi, Q. Cappart, L.-M. Rousseau, and T. Laurent, “Learning
tsp requires rethinking generalization,” in International Conference on
Principles and Practice of Constraint Programming, 2021.

[48] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, “Reinforcement
learning for combinatorial optimization: A survey,” Computers & Oper-
ations Research, vol. 134, p. 105400, 2021.

[49] M. Karimi-Mamaghan, M. Mohammadi, P. Meyer, A. M. Karimi-
Mamaghan, and E.-G. Talbi, “Machine learning at the service of meta-
heuristics for solving combinatorial optimization problems: A state-of-
the-art,” European Journal of Operational Research, vol. 296, no. 2, pp.
393–422, 2022.

[50] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinato-
rial optimization: a methodological tour d’horizon,” European Journal
of Operational Research, vol. 290, no. 2, pp. 405–421, 2021.

[51] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3,
pp. 229–256, 1992.

[52] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[53] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner, “Micro-
scopic traffic simulation using sumo,” in The 21st IEEE International
Conference on Intelligent Transportation Systems. IEEE, 2018, pp.
2575–2582.

[54] S. S. De Vicente, “Ground handling simulation with cast,” Ph.D.
dissertation, 2010.

[55] IBM(2017), “Ibm ilog cplex 12.10 user manual ibm crop.” 2017.
[56] O. Bräysy, W. Dullaert, and M. Gendreau, “Evolutionary algorithms for

the vehicle routing problem with time windows,” Journal of Heuristics,
vol. 10, no. 6, pp. 587–611, 2004.

[57] M. M. Solomon, “Algorithms for the vehicle routing and scheduling
problems with time window constraints,” Operations research, vol. 35,
no. 2, pp. 254–265, 1987.

[58] A. Franzin and T. Stützle, “Revisiting simulated annealing: A
component-based analysis,” Computers & operations research, vol. 104,
pp. 191–206, 2019.

[59] D. Pisinger and S. Ropke, “Large neighborhood search,” in Handbook
of metaheuristics. Springer, 2019, pp. 99–127.

[60] J. Song, Y. Yue, B. Dilkina et al., “A general large neighborhood search
framework for solving integer linear programs,” Advances in Neural
Information Processing Systems (NeurIPS), vol. 33, pp. 20 012–20 023,
2020.

[61] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations (ICLR), 2015.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 15

Yaoxin Wu received the B.Eng degree in traf-
fic engineering from Wuyi University, Jiangmen,
China, in 2015, the M.Eng degree in control engi-
neering from Guangdong University of Technology,
Guangzhou, China, in 2018, and the Ph.D. degree
in computer science from Nanyang Technological
University, Singapore, in 2023. He was a Research
Associate with the Singtel Cognitive and Artificial
Intelligence Lab for Enterprises (SCALE@NTU).
He joins the Department of Information Systems,
Faculty of Industrial Engineering and Innovation

Sciences, Eindhoven University of Technology, as an Assistant Professor. His
research interests include combinatorial optimization, integer programming
and deep learning.

Jianan Zhou received the B.Eng. degree in soft-
ware engineering from Northeastern University,
Shenyang, China, in 2019, and the M.Sc. degree
in artificial intelligence from Nanyang Technological
University, Singapore, in 2021. He is currently pur-
suing the Ph.D. degree with the School of Computer
Science and Engineering, Nanyang Technological
University, Singapore. His research interest includes
machine learning with combinatorial optimization
problems.

Yunwen Xia received the B.Eng. degree in computer
science and Technology from Xiamen University,
Xiamen, China, in 2019, and the M.Eng degree
from Nanyang Technological University, Singapore,
in 2022. She was a Project Officier with the Singtel
Cognitive and Artificial Intelligence Lab for En-
terprises (SCALE@NTU), Nanyang Technological
University. Her research interest includes recommen-
dation system and neural combinatorial optimiza-
tion.

Xianli Zhang received the B.Eng. degree in survey
engineering from Wuhan University, Wuhan, China,
in 2000, and the M.Eng. degree in electronics and
communication engineering from Beihang Univer-
sity, Beijing, China, in 2008. He is currently a Ph.D.
candidate with the School of Computer Science
and Engineering, Nanyang Technological University,
Singapore. His research interests include scheduling,
evolutionary computation, and deep learning.

Zhiguang Cao received the Ph.D. degree from
Interdisciplinary Graduate School, Nanyang Tech-
nological University. He received the B.Eng. de-
gree in Automation from Guangdong University of
Technology, Guangzhou, China, and the M.Sc. in
Signal Processing from Nanyang Technological Uni-
versity, Singapore, respectively. He was a Research
Fellow with the Energy Research Institute @ NTU
(ERI@N), a Research Assistant Professor with the
Department of Industrial Systems Engineering and
Management, National University of Singapore, and

a Scientist with the Agency for Science Technology and Research (A*STAR),
Singapore. He joins the School of Computing and Information Systems,
Singapore Management University, as an Assistant Professor. His research
interests focus on learning to optimize (L2Opt).

Jie Zhang received the Ph.D. degree from the
Cheriton School of Computer Science, University
of Waterloo, Canada, in 2009. He is currently a
Professor with the School of Computer Science
and Engineering, Nanyang Technological University,
Singapore. He is also a Professor at the Singapore
Institute of Manufacturing Technology. During his
Ph.D. study, he held the prestigious NSERC Alexan-
der Graham Bell Canada Graduate Scholarship re-
warded for top Ph.D. students across Canada. He
was also a recipient of the Alumni Gold Medal at

the 2009 Convocation Ceremony. The Gold Medal is awarded once a year to
honour the top Ph.D. graduate from the University of Waterloo. His papers
have been published by top journals and conferences and received several best
paper awards.

	Neural airport ground handling
	Citation
	Author

	I Introduction
	II Related Works
	II-A Airport Ground Handling
	II-B Neural Methods for VRPs

	III Problem Statement
	IV Methodology
	IV-A Construction Framework for AGH
	IV-B MDP Formulation
	IV-C Policy Parameterization
	IV-C1 Encoder
	IV-C2 Decoder

	IV-D Policy Training

	V Experiments and Analysis
	V-A Experimental Settings
	V-B Ablation Study
	V-C Comparison Study
	V-D Generalization Study
	V-E Real-time AGH

	VI Conclusions and Future Works
	References
	Biographies
	Yaoxin Wu
	Jianan Zhou
	Yunwen Xia
	Xianli Zhang
	Zhiguang Cao
	Jie Zhang

