
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2023

Class-incremental exemplar compression for class-incremental Class-incremental exemplar compression for class-incremental

learning learning

Zilin LUO
Singapore Management University, zilin.luo.2021@phdcs.smu.edu.sg

Yaoyao LIU

Bernt SCHIELE

Qianru SUN
Singapore Management University, qianrusun@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Graphics and Human Computer

Interfaces Commons

Citation Citation
LUO, Zilin; LIU, Yaoyao; SCHIELE, Bernt; and SUN, Qianru. Class-incremental exemplar compression for
class-incremental learning. (2023). Proceedings of the 2023 Conference on Computer Vision and Pattern
Recognition, Vancouver, Canada, 2023 June 18-22. 11371-11380.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/8055

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8055&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8055&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8055&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F8055&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Class-Incremental Exemplar Compression for Class-Incremental Learning

Zilin Luo1 Yaoyao Liu2 Bernt Schiele2 Qianru Sun1

1Singapore Management University
2Max Planck Institute for Informatics, Saarland Informatics Campus

zilin.luo.2021@phdcs.smu.edu.sg {yaoyao.liu, schiele}@mpi-inf.mpg.de qianrusun@smu.edu.sg

Abstract

Exemplar-based class-incremental learning (CIL) [36]
finetunes the model with all samples of new classes but few-
shot exemplars of old classes in each incremental phase,
where the “few-shot” abides by the limited memory bud-
get. In this paper, we break this “few-shot” limit based
on a simple yet surprisingly effective idea: compressing
exemplars by downsampling non-discriminative pixels and
saving “many-shot” compressed exemplars in the mem-
ory. Without needing any manual annotation, we achieve
this compression by generating 0-1 masks on discrimina-
tive pixels from class activation maps (CAM) [49]. We
propose an adaptive mask generation model called class-
incremental masking (CIM) to explicitly resolve two dif-
ficulties of using CAM: 1) transforming the heatmaps of
CAM to 0-1 masks with an arbitrary threshold leads to
a trade-off between the coverage on discriminative pix-
els and the quantity of exemplars, as the total memory is
fixed; and 2) optimal thresholds vary for different object
classes, which is particularly obvious in the dynamic envi-
ronment of CIL. We optimize the CIM model alternatively
with the conventional CIL model through a bilevel opti-
mization problem [40]. We conduct extensive experiments
on high-resolution CIL benchmarks including Food-101,
ImageNet-100, and ImageNet-1000, and show that using
the compressed exemplars by CIM can achieve a new state-
of-the-art CIL accuracy, e.g., 4.8 percentage points higher
than FOSTER [42] on 10-Phase ImageNet-1000. Our code
is available at https://github.com/xfflzl/CIM-CIL.

1. Introduction
Dynamic AI systems have a continual learning nature to

learn new class data. They are expected to adapt to new
classes while maintaining the knowledge of old classes, i.e.,
free from forgetting problems [31]. To evaluate this, the
following protocol of class-incremental learning (CIL) was
proposed by Rebuffi et al. [36]. The model training goes

Phase i

herding

herding

Phase i+1 Phase i

herding

distil
ling

Phase i+1

all sa
mples

Phase i+1Phase i

herding

New Data

Old Exemplars

New Data

Old Exemplars

Original
Images in (a)

JPEG
Images in (c)

Distilled
Images in (b)

JPEG

herding

samples

Phase i

herding

masking

Phase i+1

herding

samples
New Data

Old Exemplars

New Data

Old Exemplars

Masked
Images in (d)

(a) iCaRL [baseline] (b) Mnemonics [related]

(c) MRDC [related] (d) CIM-based CIL [ours]

New Data

Old Exemplars

New Data

Old Exemplars

New Data

Old Exemplars

New Data

Old Exemplars

Figure 1. The phase-wise training data in different methods. (a)
iCaRL [36] is the baseline method using full new class data and
few-shot old class exemplars. (b) Mnemonics [27] distills all
training samples into few-shot exemplars without increasing their
quantity. (c) MRDC [43] compresses each exemplar uniformly
into a low-resolution image using JPEG [41]. (d) Our approach
based on the proposed class-incremental masking (CIM) down-
samples only non-discriminative pixels in the image. The legend
shows the symbols of special images generated by the methods.

through a number of phases. Each phase has new class
data added and old class data discarded, and the resultant
model is evaluated on the test data of all seen classes. A
straightforward way to retain old class knowledge is keep-
ing around a few old class exemplars in the memory and
using them to re-train the model in subsequent phases. The
number of exemplars is usually limited, e.g., 5∼ 20 exem-
plars per class [12, 17, 25, 27, 36, 42, 44, 46, 48], as the total
memory in CIL strictly budgeted, e.g., 2k exemplars.

This leads to a serious data imbalance between old and
new classes, e.g., 20 per old class vs. 1.3k per new class (on
ImageNet-1000 [9]), as illustrated in Figure 1a. The train-
ing is thus always dominated by new classes, and forgetting
problems occur for old classes. Liu et al. [27] tried to miti-
gate this problem by parameterizing and distilling the exem-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

11371

plars, without increasing the number of them (Figure 1b).
Wang et al. [43] traded off between the quality and quantity
of exemplars by uniformly compressing exemplar images
with JPEG [41] (Figure 1c). As shown in Figure 1d, our
approach is also based on image compression. The idea is
to downsample only non-discriminative pixels (e.g., back-
ground) and keep discriminative pixels (i.e., representative
cues of foreground objects) as the original. In this way, we
do not sacrifice the discriminativeness of exemplars when
increasing their quantity. In particular, we aim for adaptive
compression in dynamic environments of CIL, where the
intuition is later phases need to be more conservative (i.e.,
less downsampling) as the model needs more visual cues to
classify the increased number of classes.

To achieve selective and adaptive compression, we need
the location labels of discriminative pixels. Without extra
labeling, we automatically generate the labels by utilizing
the model’s own “attention” on discriminative features, i.e.,
class activation maps (CAM) [49]. We take this method as
a feasible baseline, and based on it, we propose an adaptive
version called class-incremental masking (CIM). Specifi-
cally, for each input image (with its class label), we use
its feature maps and classifier weights (corresponding to
its class label) to compute a CAM by channel-wise mul-
tiplication, aggregation, and normalization. Then, we ap-
ply hard thresholding to generate a 0-1 mask.1 We notice
that when generating the masks in the dynamic environ-
ments of CIL, the optimal hyperparameters (such as the
value of hard threshold and the choice of activation func-
tions) vary for different classes as well as in different incre-
mental phases. Our adaptive version CIM tackles this by pa-
rameterizing a mask generation model and optimizing it in
an end-to-end manner across all incremental phases. In each
phase, the learned CIM model adaptively generates class-
and phase-specific masks. We find that the compressed ex-
emplars based on these masks have stronger representative-
ness, compared to using the conventional CAM.

Technically, we have two models to optimize, i.e., the
CIL model and the CIM model.2 These two cannot be
optimized separately as they are dependent on computa-
tion: 1) the CIM model compresses exemplars to input
into the CIL model; 2) the two models share network pa-
rameters. We exploit a global bilevel optimization prob-
lem (BOP) [7, 40] to alternate their training processes at
two levels. This BOP goes through all incremental train-
ing phases. In particular, for each phase, we perform a lo-
cal BOP with two steps to tune the parameters of the CIM
model: 1) a temporary model is trained with the compressed
exemplars as input; and 2) a validation loss on the uncom-

1Note that we do not use mask labels to do image compression because
storing them is expensive. Instead, we expand the mask to a bounding box,
as elaborated in Section 4.

2Note that the CIM model is actually a plug-in branch in the CIL model,
which is detailed in Section 4.2.

pressed new data is computed and the gradients are back-
propagated to optimize the parameters of CIM. To evalu-
ate CIM, we conduct extensive experiments by plugging
it in recent CIL methods,3 LUCIR [17], DER [46], and
FOSTER [42], on three high-resolution benchmarks, Food-
101 [3], ImageNet-100 [17], and ImageNet-1000 [9]. We
find that using the compressed exemplars by CIM brings
consistent and significant improvements, e.g., 4.2% and
4.8% higher than the SOTA method FOSTER [42], respec-
tively, in the 5-phase and 10-phase settings of ImageNet-
1000, with a total memory budget for 5k exemplars.

2. Related Work
Class-Incremental Learning (CIL). There are three main
lines of work to address the catastrophic forgetting prob-
lem [30, 31] in CIL. Regularization-based methods apply
discrepancy (between old and new models) penalization
terms in their objective functions, e.g., by comparing out-
put logits [23, 36], intermediate features [12, 17, 24, 39],
and prediction heatmaps [10]. Parameter-isolation-based
methods increase the model parameters in each new incre-
mental phase, to prevent knowledge forgetting caused by
parameter overwritten. Some of them [18, 37, 42, 45, 46]
proposed to progressively expand the size of the neural net-
work to learn new coming data. Others [1,21,25,47] froze a
part of network parameters (to maintain the old class knowl-
edge) to alleviate the problem of knowledge overwriting.
Replay-based methods assume there is a clear memory bud-
get allowing a handful of old-class exemplars in the mem-
ory. Exemplars can be used to re-train the model in each
new phase [12, 17, 26, 27, 36, 43, 44]. This re-training usu-
ally contains two steps: one step of training the model on
all new class data and old class exemplars, and one step of
finetuning the model with a balanced subset (i.e., using an
equal number of samples per class) [12, 17, 25, 26, 46].

The replay-based methods focusing on memory opti-
mization [27, 43] are closely related to our work. [27] pro-
posed a bilevel optimization framework to distill the current
new class data into exemplars before discarding them. It
aims to improve the quality of exemplars without increasing
the quantity. Another work [43] aimed to trade-off between
the quality and quantity of exemplars by image compression
using the JPEG algorithm, i.e., each exemplar is uniformly
downsampled. Ours differs from these two works in three
aspects. 1) Our CIM based image compression automati-
cally segments the discriminative pixels in the exemplar and
downsamples the non-discriminative pixels only. It barely
weakens the representativeness of the exemplar. In contrast,
the parameterization of image pixels in [27] hampers the
model from capturing high-frequency (discriminative) fea-
tures from the image, especially the high-resolution (e.g.,

3Using “plug-in” for evaluation is due to the fact that many baseline
methods were originally evaluated in different CIL settings.

11372

224×224) image [6]. 2) Our approach increases the diversity
(i.e., quantity) of old class exemplars by reducing the mem-
ory consumption for each exemplar. In contrast, [27] keeps
a fixed number of exemplars in the memory. 3) Our ap-
proach has an adaptive image compression strategy that fits
well in the dynamic environments of CIL. In contrast, [43]
uses uniform image compression (or uniformly increasing
quality parameters from 100 to 1) without considering the
properties of specific classes in each learning phase.
Class Activation Map (CAM) [49] is a simple yet effective
weakly-supervised object localization method. Its model
is trained with only the image-level label and can gener-
ate pixel-level masks on foreground objects. Specifically,
the masks are the results of hard-thresholding the heatmaps
produced by feature maps and classifier weights. Advanced
CAM variants include Grad-CAM [38], ReCAM [8], Ad-
vCAM [22], etc. Our CIM is based on the vanilla CAM
because it is computationally simple and efficient.
Bilevel Optimization Problems (BOP) [7, 40] aims to
solve a nested optimization problem, where the outer-level
optimization is subjected to the result of the inner-level opti-
mization. It has shown effectiveness in a wide range of ma-
chine learning areas, such as hyperparameter selection [29]
and meta-learning [13]. For tackling CIL tasks, [27] lever-
ages BOP to alternatively optimize the parameters of the
CIL model and the parameterized exemplars. [25] applies
BOP to learn the aggregation weights of the plastic and elas-
tic branches in the CIL model. In our work, we use BOP to
solve the optimization of the CIL model and the parameter-
ized Class-Incremental Masking (CIM) model, where CIM
is a plugin branch (in the CIL model), using few extra pa-
rameters. The process of BOP is quick and efficient.

3. Preliminary
The following is the training pipeline of standard CIL

with few-shot exemplars. Assume there are N learning
phases. In the 1-st phase, we load data D1 containing all
training samples of c1 classes, and useD1 to train the initial
classification model (θ1, ω1), where θ1 and ω1 denote the
parameters of the feature extractor and classifier, respec-
tively. When the training is done, we evaluate the model
performance on the test samples of c1 classes. Before the 2-
nd phase, we discard most of the training samples due to the
strict memory budget of CIL. In other words, we preserve
only a handful of training samples E1 (i.e., exemplars) in the
memory, selected from D1. A common method for select-
ing exemplars is called feature herding [36] and has been
used in many related works [27, 42, 43, 46]. We adopt it,
too, in this work.

In the i-th phase (i ≥ 2), we load all exemplars E1:i−1 =
E1 ∪ · · · ∪ Ei−1 from the memory and initialize the cur-
rent model (θi, ωi) by the previous model (θi−1, ωi−1).
We use E1:i−1 and the new coming data Di (containing ci

new classes) to train (θi, ωi).Then, we evaluate the current
model using a test set of all

∑i
j=1 cj classes seen so far.

After that, we discard most of the training samples in Di,
and leave few-shot exemplars Ei in the memory. It is clear
that this discarding causes a strong data imbalance between
old and new coming classes in the subsequent phase. In the
following, we introduce our solution to this problem.

4. Methodology
As illustrated in Figure 1d, we alleviate the data imbal-

ance problem by saving a larger number of compressed ex-
emplars for old classes, where we leverage pixel-selective
compression, i.e., downsample only non-discriminative pix-
els. To achieve this, the ideal case is that we have the pixel-
level localization of foreground objects. However, the re-
alistic case is that such localization labels are expensive,
most CIL benchmarks do not have the labels, and it is not
fair to compare with other CIL methods if using the labels.
Without extra labeling, we introduce a CAM-based mask
generation method, and based on it, we provide a baseline
solution to pixel-selective compression in Section 4.1. The
problem of mask generation in CIL is that the optimal gen-
eration hyperparameters such as hard thresholds are chang-
ing in the dynamic environment (with the increasing num-
ber of classes and phases). It is thus desirable to have an
adaptive mask generation process. To this end, we propose
class-incremental masking (CIM)—a learnable mask gen-
eration model, in Section 4.2.

4.1. CAM-based Compression Pipeline

Generating pixel-level labels for large-scale datasets,
e.g., ImageNet [9], is non-trivial. Using class activation
maps (CAM) is a naı̈ve solution with little computation
costs. Its key idea is to make use of the activation of the
classification model itself: on the feature maps, activated
pixels are more discriminative than non-activated ones for
recognizing the object, where “activated” means of high ac-
tivation values and with strong correlation with the clas-
sification weights of the object. After localizing activated
pixels by CAM, we can generate a 0-1 mask on them, e.g.,
by hard thresholding their normalized values, and then up-
sample the mask to the size of the input image [49].
From CAM to 0-1 Mask. We extract CAM in the follow-
ing steps. Given an image x from Di and its ground truth
class label y, let F (x; θi) represent the feature block output
by the feature extractor θi, and ωi,y for the classification
weights of class y in the classifier ωi. The CAM of x is:

MCAM =
A−min (A)

max (A)−min (A)
, A = ω⊤

i,yF (x; θi), (1)

where min(·) and max(·) operations are used for normal-
ization. Then, we upsampleMCAM to the size of image x
and use the same notation.

11373

and

combine

downsample

split
bbox

compressed image

CAM/CIM

label x: “ice cream”
image xx

Figure 2. The proposed compression pipeline. Given an image, we extract its CAM-based (baseline) or CIM-based (ours) mask, threshold
it to be a 0-1 mask with a fixed threshold τ , and generate a tight bounding box (bbox) that covers all masked pixels. Then, we downsample
the pixels outside the bbox and sum the downsampled image up to the masked image to generate the final compressed image.

Each value in MCAM denotes the activation strength of
the model at a specific pixel location. Following the way of
generating 0-1 masks in weakly-supervised semantic seg-
mentation works [8, 11, 22], we apply a hard threshold τ
(between 0 and 1) over all values ofMCAM, and get the 0-1
maskMτ :Mτ =I(MCAM>τ), where I(·) is the indicator
function. InMτ , 1s indicate the locations of discriminative
pixels, e.g., foreground pixels, based on which the model
makes the prediction. While 0s indicate mostly background
pixels or non-discrimination pixels that can be downsam-
pled as they make little contribution to the prediction.

After generating 0-1 masks, it is ideal to keep them in
the memory as meta information of compression. However,
this is not efficient or feasible in CIL. There are two reasons.
1) The space for saving image-size masks is non-negligible.
Each mask pixel is a one-bit boolean value, and one mask
takes around 1

3×8 = 1
24 of the memory of one RGB im-

age. 2) The mask involves activated regions with irregular
shapes. It is thus non-trivial to perform any standard down-
sampling algorithm [34] on the remaining regions.
From 0-1 Masks to Bounding Boxes (BBox). A simple
workaround is to generate a tight bounding box (bbox) to
cover the positions of 1s inMτ , and use the bbox for com-
pression. Specifically, givenMτ , we obtain the coordinate
representation of the bounding box as:

B = [minh,minw; maxh,maxw](h,w):Mτ (h,w)=1, (2)

where h and w denote the vertical and horizontal coordi-
nates of the 1 on Mτ , respectively. We highlight that B
consists of four integers only and takes negligible memory
overhead compared to Mτ . In addition, we “reshape” the
irregular shape (of the activated region) inMτ into a rectan-
gular B, so our downsampling operation on the pixels out-
side the rectangular becomes easy.
Compression with BBox. Given the image and its bbox on
foreground, the compression is implemented by downsam-
pling pixels outside the bbox. Specifically, as illustrated in
Figure 2, we compress the image x to x̃ as follows,

x̃ =MB ⊙ x+ (1−MB)⊙ xη, (3)

whereMB is the binary mask according to B, i.e., the val-

ues ofMB are 1 inside B, and 0 otherwise. xη is the fully
downsampled version of x with a downsampling ratio η
(η > 1), ⊙ denotes the element-wise product, and + de-
notes the element-wise addition. Both ⊙ and + are applied
independently on each RGB channel.

The memory allocated for the compressed image x̃ is as
follows,

mx̃ =
HBWB

HW
+

1

η

(
1− HBWB

HW

)
= 1−

(
1− 1

η

)
·
(
1− HBWB

HW

)
,

(4)

where HB and WB are the height and width of B, respec-
tively. H and W are the height and width of the original
image x, respectively. mx̃ is always smaller than 1 where
1 denotes the memory unit of saving one original image x.
Therefore, we can save a larger number of compressed ex-
emplars within the same memory budget. We denote the set
of compressed exemplars in the i-th phase as Ẽi.
Compression Artifacts. The above compression intro-
duces artifacts to the compressed images, i.e., there is a
resolution mutation around bounding box edges. From the
perspective of spectrum analysis [5, 20], such mutation car-
ries noisy and high-frequency components and impairs the
model training in subsequent phases. We mitigate the ef-
fect of these artifacts by implementing the following data
augmentation: in each training epoch, we transform a ran-
dom subset ofDi into compressed images with CAM-based
bounding boxes using the same downsampling ratio. Us-
ing this augmentation enables the model to “simulate” the
training with compressed images and learn to be invariant
to compression artifacts.

4.2. Class-Incremental Masking (CIM)

Ideally, the mask generation process needs to adjust at
different phases in CIL environments. The process involves
two hyperparameters: the masking threshold and the choice
of network activation functions. First, for the threshold,
searching for its optimum (for all classes) is not trivial. Grid
search is intuitive, but it is computationally expensive when
the number of classes increases in CIL. Second, for the acti-

11374

copy

image xx

1 weight layer

ReLU

weight layer

ReLU

weight layer

PAU

weight layer

PAU

2

3

4

copy

Figure 3. Our CIM installs an “extension” on the backbone (e.g.,
ResNet-18 [16, 36] with four blocks) by adding a learnable ac-
tivation function (e.g., PAU [32]) at the position of the original
activation function (i.e., ReLU [33]). Such “extension” results in
a new network branch (in green), whose weight layer parameters
are directly copied from the original branch (in blue).

vation function, the standard network of CIL methods uses
ReLU [33, 36] and does not optimize it.

We solve this issue by applying a learnable activation
function in addition to the existing ReLU function in the
CIL model. Physically, we have one neural network, while
logically, we have two models to learn (in each incremental
phase): the conventional CIL model with ReLU activations,
and the adaptive mask generation model with learnable ac-
tivations. We thus call our method class-incremental mask-
ing (CIM) based CIL. In the following, we elaborate on the
network design and optimization pipeline.
Network Design. Figure 3 demonstrates an example net-
work architecture in our CIM-based CIL. The proposed
CIM extends the network backbone by logically adding a
network branch, where only the activation functions are
learnable (e.g., Padé Activation Units (PAU4, [32])) and
the parameters of weight layers are copied from the orig-
inal branch. This design is motivated by the works of
He et al. [15] and Bochkovskiy et al. [2], which indicate
that layers with learnable activation functions can flexibly
process object (localization) information at different net-
work blocks. The difference is that we apply this flexibil-
ity to achieve adaptive mask generation for different CIL
phases. We denote the CIM parameters (i.e., the parameters
in learnable activation functions) in i-th phase as ϕi. We
optimize the CIL model (θi, ωi) and the CIM model ϕi via
a global BOP, as elaborated below.
Optimization Pipeline. We demonstrate the overall opti-
mization flow in Algorithm 1, which consists of two levels
of optimization: task-level and mask-level—the former one
for CIL and the latter one for CIM. Note that to maintain an
unified notation, we further define Ẽ0 = ∅.
1) Task-level Optimization. This level aims to optimize
the CIL model (θi, ωi) to address the CIL task at hand. It

4PAU uses a rational function of given degrees m and n, i.e., (a0 +
a1x+ · · ·+amxm)/(1+ b1x+ · · ·+ bnxn), and can be parameterized
by a0, · · · , am and b1, · · · , bn.

Algorithm 1: CIM-based CIL (i-th phase, i≥1)
Input: New data Di; old compressed exemplars

Ẽ0:i−1 (Ẽ0 = ∅); last-phase CIL model
(θi−1, ωi−1) and CIM model ϕi−1 (θ0, ω0

are random parameters, ϕ0 is set to ReLU).
Output: New compressed exemplars Ẽi; updated

CIL model (θi, ωi) and CIM model ϕi.
1 Initialize (θi, ωi) with (θi−1, ωi−1);
2 Initialize ϕi with ϕi−1;
3 for epochs do
4 Train (θi, ωi) using Ẽ0:i−1 ∪ Di by Eq. 5;
5 Compress Di into D̃ϕ

i using ϕi;
6 Temporarily update θi to θ+i using Ẽ0:i−1 ∪ D̃ϕ

i

by Eq. 7;
7 Learn ϕi using Di by Eq. 9;
8 end
9 Compress Di into D̃i using the learned ϕi by Eq. 3;

10 Select exemplars Ẽi from D̃i by, e.g., herding [36].

can be written as:

(θi, ωi)← (θi, ωi)− λ∇(θ,ω)LCIL(Ẽ0:i−1∪Di; θi, ωi),
(5)

where λ is the learning rate. We follow the implementation
of CIL training loss LCIL in baseline methods [23, 42, 46,
50]. This means that we use different training losses when
plugging CIM into different baseline methods.
2) Mask-level Optimization. This level aims to optimize
the CIM model ϕi to produce adaptive compression masks.
It is formulated as a local BOP:

min
ϕi

[Lval(Di; θ
∗
i , ωi) + µR(ϕi)] , (6a)

s.t. θ∗i = argmin
θi

Ltrain(Ẽ0:i−1 ∪ D̃i(ϕi); θi, ωi). (6b)

Eq. 6b denotes an inner-level optimization. It trains θi with
the data D̃i(ϕi) compressed by using ϕi, and converges as
θ∗i . Eq. 6a denotes an outer-level optimization. It is based
on the validation loss derived by θ∗i on the original data Di.
R(ϕi) is a constraint representing the memory limitation
and µ is its weight. In the following, we elaborate on the
implementation details for the two levels.

In the inner-level optimization, we train a temporary CIL
model with compressed data. Specifically, we first com-
press new-class data Di into D̃i(ϕi) using the generated
masks by the CIM model ϕi. Then, we implement the inner-
level optimization as a one-step gradient descent (using the
CIL training loss) as:

θ+i ← θi − β1∇θLCIL(Ẽ0:i−1 ∪ D̃i(ϕi); θi, ωi), (7)

where β1 is the learning rate for θi.

11375

The aim of the outer-level optimization is to optimize ϕi

such that the temporary model (θ+i , ωi) (trained with com-
pressed data) has a low validation loss on the original data
Di. To achieve this, we back-propagate the loss on the orig-
inal data Di to update ϕi as:

ϕi ← ϕi − β2∇ϕ

[
LCE(Di; θ

+
i , ωi) + µR(ϕi)

]
, (8)

where LCE denotes softmax cross-entropy loss and β2 is the
learning rate for ϕi. This trains ϕi to capture the most dis-
criminative features of new-class images. The constraint
R(ϕi) is implemented as a ℓ2-regularization term on the
generated mask by ϕi. The motivation for the regulariza-
tion term is to make the mask coverage smaller, thus the
compressed images take less memory.

We empirically observe that by the above optimization
flow, the output activation maps by ϕi are easy to collapse,
i.e., different images have the same map. To solve this is-
sue, we add a cross-entropy loss term about ϕi in Eq. 8 to
regularize it to produce image-specific activation maps:

ϕi ← ϕi − β2∇ϕ[LCE(Di; θ
+
i , ωi) + µR(ϕi)

+µ′LCE(Ẽ0:i−1 ∪ Di; θi, ϕi, ωi)],
(9)

where µ′ is the weight.
Limitations. Our CIM learns to generate adaptive masks
for exemplar compression in CIL. It has three limitations
that are left as future work. 1) It is not able to adjust any
previous-phase exemplars, as the validation data (the origi-
nal data of these exemplars) are not accessible anymore. 2)
It introduces hundreds of activation parameters to the CIL
model, although this is not a significant overhead compared
to model parameters. Please check detailed overhead analy-
ses in the supplementary materials. 3) Image compression is
not that meaningful for low-resolution datasets (e.g., 32×32
CIFAR-100) It is because the memory taken by the com-
pression parameters (e.g., the parameters of CIM) and the
RGB pixels of a low-resolution image are comparable. Us-
ing the memory to save more images is more meaningful.

5. Experiments
We incorporate CIM into two baseline CIL methods (i.e.,

DER [46] and FOSTER [42]) and boost their model perfor-
mances consistently on three datasets. Below, we introduce
datasets and experiment settings (Section 5.1), followed by
results and analyses (Section 5.2)

5.1. Experimental Settings

Datasets. We conduct experiments on three standard CIL
benchmarks with high-resolution images. 1) Food-101 [3]
consists of 101 food categories with 750 training and 250
test samples per category. All images have a maximum side
length of 512 pixels. 2) ImageNet-1000 [9] is a large-scale

dataset with 1,000 classes and each class has around 1,300
training and 50 test samples. 3) ImageNet-100 is a 100-
class subset randomly sampled from ImageNet-1000 with a
fixed NumPy [14] random seed (1993), following [17]. We
provide other details of these datasets, e.g., image sizes and
pre-processing methods, in the supplementary materials.
Protocols. We use two protocols: learning from scratch
(LFS) and learning from half (LFH), following recent CIL
works [42, 46]. In LFS, the model observes the same num-
ber of classes in all N phases, where N is optionally 5,
10, and 20. In LFH, the model is trained on half of the
classes (e.g., 500 classes for ImageNet-1000) in the 1-th
phase. Then, it learns the remaining classes evenly in the
subsequent N phases, where N can be 5, 10, and 25. In
both protocols, after the training of each phase we evaluate
the resultant model on the test data of all seen classes. Our
final report includes the average accuracy over all phases
and the last-phase accuracy which indicates the degree of
model forgetting. We run each experiment three times and
report the average results.
Memory Budget. There are two memory budget5 settings.
1) In the “fixed” setting, we remove some old-class exem-
plars when new exemplars from the current phase are added
in the memory to maintain the “fixed memory budget”. In
this setting, we set the total memory to be 2,020 samples
for Food-101 and 2,000 samples for ImageNet-100. For
ImageNet-1000, we have two options—5,000 samples and
20,000 samples. 2) In the “growing” setting, a constant
memory budget is allocated for each class across all phases
and hence extra memory is appended when new classes
come. In this setting, we set the budget to be 20 samples
per class for all datasets. Following [42, 46], we apply the
“fixed” setting in LFS experiments and the “growing” set-
ting in LFH experiments.
Implementation Details. Our implementation is based on
the standard deep learning library PyTorch [35] and image
processing library OpenCV [4]. Following [42, 43, 46], we
use an 18-layer ResNet [16] as the network backbone θ
and a fully-connected layer as the classifier ω in all exper-
iments. We use the same CIL training hyperparameters as
in related works [17, 42, 46] for fair comparison: 1) there
are 200 epochs in 1-st phase and 170 epochs in the subse-
quent phases; 2) the learning rate λ is initialized as 0.1 and
decreases to zero with a cosine annealing scheduler [28];
3) the SGD optimizer is deployed, with momentum factor
set to 0.9 and weight decay set to 0.0005. For compression-
related hyperparameters, we set the masking threshold τ as
0.6 and the downsampling ratio η as 4.0. To build the CIM
model, we apply PAUs with degrees m = 5 and n = 4 as
learnable activation layers. For the optimization of the CIM

5Please note that we measure the memory by the number of original
images. Each compressed exemplar in CIM takes less memory than the
original image (Eq. 4), resulting in more exemplars in the same memory.

11376

Method
Learning from Scratch (LFS) Learning from Half (LFH)

Food-101 ImageNet-100 Food-101 ImageNet-100

N=5 10 20 5 10 20 5 10 25 5 10 25
iCaRL [36] 69.66 62.18 56.70 73.90 67.06 62.36 60.13 53.42 46.87 62.53 59.88 52.97
WA [48] 70.94 63.69 58.45 74.64 68.62 63.20 63.55 57.60 52.48 65.75 63.71 58.34
PODNet [12] 68.03 61.24 47.38 72.14 63.96 53.69 75.37 70.01 65.32 75.54 74.33 68.33
AANets [25] 69.46 61.59 48.83 72.98 65.77 55.36 76.07 71.22 66.93 76.96 75.58 71.78
DER [46] 73.88 70.76 64.39 78.50 76.12 73.79 78.13 73.45 - 79.08 77.73 -
DER w/ ours 75.63 73.09 69.17 79.63 77.57 75.36 79.25 75.76 - 80.30 79.05 -
FOSTER [42] 75.03 72.72 66.73 79.93† 76.55† 74.49 79.08 75.07 68.08 80.07† 77.54 72.40*

FOSTER w/ ours 76.44 74.85 70.20 80.58 77.94 75.23 79.76 76.86 70.50 80.93 78.66 75.74
† The paper of FOSTER [42] did not report the numerical results for N=5/10 (LFS) and N=5 (LFH) on ImageNet-100. We run these

experiments using the public code (released by authors) and report the reproduced results.
* Our reproduced result (72.40) is significantly higher than the original result (69.34) reported in the paper of FOSTER.

Table 1. Average accuracies (%) of two top-performing CIL methods [42, 46] with and without our CIM-CIL plugged-in, and other four
baselines [12,25,36,48], on two datasets (Food-101 and ImageNet-100) and using two protocols (learning from scratch (LFS) and learning
from half (LFH)). Due to the space limits, we report the 95% confidence intervals for these results in the supplementary materials.

Memory
Budget Method

N=5 N=10

Avg. Last Avg. Last

M=20k

iCaRL [36] 44.36 27.78 38.40 22.70
WA [48] 58.37 50.62 54.10 45.66
DER [46] 67.49 59.75 66.73 58.62
FOSTER [42] 69.21 64.88 68.34 60.14
FOSTER w/ ours 69.93 66.05 69.53 62.07

M=5k
FOSTER 57.19 49.42 54.72 44.96
FOSTER w/ ours 61.37 54.46 59.48 50.83

Table 2. Average and last accuracies (%) on ImageNet-1000 of
FOSTER with and without our method plugged-in, and other three
baselines [36, 46, 48]. We show two memory budgets, M = 20k
(upper block) and M=5k (lower block), in the LFS setting.

model ϕ (i.e., the mask-level optimization), we initially set
β1 as 0.1 and β2 as 0.01 and reduce them to zero following
the scheduler of λ. µ and µ′ is set to 0.1 and 0.2, respec-
tively. To smooth the training, we clip the gradient norm of
ϕ to be no more than 1. We report the result of hyperparam-
eter sensitivity analysis in the supplementary materials.

5.2. Results and Analyses

Comparing with the State-of-the-art. In Table 1, we sum-
marize the experimental results on two datasets (Food-101
and ImageNet-100) and in two CIL protocols (LFS and
LFH). From the table, we have the following observations.
1) Our CIM-based CIL consistently improves the state-of-
the-art method FOSTER [42] with clear margins in all set-
tings. E.g., our method surpasses it by an average of 1.4 per-
centage points on ImageNet-100, and 2.0 percentage points
on Food-101. 2) Our CIM-based CIL achieves more sig-
nificant improvements when N becomes larger, e.g., on
ImageNet-100 (LFH), our method improves FOSTER by

Ablation Method
Food-101 ImageNet-100

N=10 20 10 20

1 Baseline 72.72 66.73 76.55 72.37
2 Artifact Aug. 71.38 66.03 75.63 71.45
3 Full Comp. 73.03 67.38 76.92 73.26
4 Random Acti. 73.10 67.54 76.88 73.54
5 Center Acti. 73.29 67.88 76.78 73.82
6 Class Acti. 73.76 68.65 77.21 74.67
7 Phase-wise τ 73.83 69.17 77.06 74.78
8 Joint Train 73.44 69.01 77.34 74.59
9 BOP (ours) 74.85 70.20 77.94 75.23
10 LastBlock Only 74.55 69.87 77.72 74.86
11 Fg Compressed 75.02 70.13 77.87 75.46

Table 3. Average accuracies (%) of different ablation methods.
The experiments are conducted in the LFS setting.

0.9 and 3.3 percentage points when N=5 and N=25, respec-
tively. 3) Our CIM-based CIL achieves greater improve-
ments consistently on Food-101 (than ImageNet-100). It
improves baselines by 2.1 percentage points on Food-101,
while the improvement is 1.4 on ImageNet-100 (N=10,
LFS). It shows that our method is particularly effective
when the representative visual cues of a class are from some
of its components, e.g., the “cream” of the class “cake”.

Table 2 shows the results on the large-scale dataset
ImageNet-1000 in different memory settings (M = 20k
and M = 5k). We can see that our CIM-based CIL
improves FOSTER consistently. It is impressive that it
achieves more improvements in the more strict memory set-
ting (M = 5k). Specifically, it boosts the average accuracy
of FOSTER by 4.5 percentage points when M = 5k, sig-
nificantly higher than that of M = 20k (1.0).
Ablation Study. Table 3 shows the ablation results. First

11377

Method
ImageNet-100 ImageNet-1000

N=6 11 26 6 11 26

LUCIR baseline 71.22 69.67 67.45 65.23 62.43 59.88
w/ Mnemonics 73.30 72.17 71.50 66.15 63.12 63.08
w/ MRDC 73.62 72.81 70.44 67.67 65.60 62.74
w/ ours 74.05 73.76 72.84 68.03 66.54 63.77

Table 4. Comparing with Mnemonics [27] and MRDC [43]. We
plug each of them in baseline LUCIR [17] for fair comparison.

block: baselines. Row 1 is for the baseline FOSTER [42].
Row 2 shows the results of adding artifact augmentation
(see Section 4.1). It shows directly apply this augmenta-
tion does not improve and even impair the model. Please
note the models in below blocks all use this augmentation.
Second block: activation methods. Rows 3-6 show the re-
sults of using different activation methods to compress ex-
emplars. Row 3 is to downsample all pixels (i.e., no region
is activated). Row 4 is to randomly select activation regions.
Row 5 is to activate only the center region (14 of the original
image), while row 6 is to use naive CAM. Comparing them
to row 1, we can see that using naively compressed exem-
plars can improve CIL models. Row 4 outperforms rows
3-5, validating that it is more reliable to use the model’s
activation to generate compressed exemplars. Third block:
optimization methods. Rows 7-9 are on top of Row 6 and
are the results of applying different optimization strategies.
Row 7 is to manually select τ using a held-out set (10% of
the dataset). Row 8 is to jointly train CIL and CIM mod-
els (for each input batch). Row 9 is the proposed method
of using a global BOP. Fourth block: two variants of CIM-
based CIL. Rows 10-11 are two variants of row 9. In Row
10, only the activation layers in the last block of CIM are
learnable, and previous blocks use ReLU. Compared to row
9, row 10 shows slightly worse performance. Row 11 shows
the version of adding a weak downsampling (η′ = 2.0) on
discriminative regions, based on which more compressed
exemplars are saved. It results in comparable performance
to row 9 but increases costs.
Comparing with Other Compression-based Methods.
Table 4 shows our results comparing to two compression-
based methods: Mnemonics [27] and MRDC [43]. We can
see that our method consistently outperforms them in all
settings. This is because our method does not sacrifice the
discriminativeness of exemplars while improving the num-
ber (variance) of exemplars in a phase-adaptive manner.
However, the two related methods either keep a fixed num-
ber of exemplars in the memory [27] or use uniform image
compression without considering the properties of specific
classes in different incremental phases [43].
Visualizations (CAM vs. CIM). Figure 4 gives two vi-
sualization examples, “Afghan hound” and “indigo bird”,
each with the activation map as well as the bounding boxes.

“cairn”
Phase 3 CAM CIM (ours)“Afghan hound”

Phase 4

“goldfinch”
Phase 3

“indigo bird”
Phase 6 CAM CIM (ours)

dissimilar

similar

dissimilar

dissimilar

Figure 4. Visualizations (CAM vs. CIM). The experimental set-
ting is N=10 (LFS) on ImageNet-100.

Metric Small Middle Large

Mean of #Exemplars 39.40 38.30 34.77
Last Acc. (%, baseline) 66.13 68.40 69.93
Last Acc. (%, ours) 70.00 71.10 72.26
Improvement (%) +3.87 +3.65 +2.33

Table 5. Results for small, middle and large objects in the setting
of N=10 (LFS) on ImageNet-100. “Mean of #Exemplars” denotes
the average number of saved exemplars by our method. The base-
line (FOSTER [42]) has this number as 20 for all classes.

The first column shows their respective confusing classes
appearing in earlier phases. CIM learns to focus on the dis-
criminative (i.e., dissimilar to confusing classes) regions.
Results of Different-Size Objects. Table 5 shows the re-
sults for small, middle, and large objects. These size catego-
rization is according to ImageNet Object Localization Chal-
lenge [19]. We calculate the bbox coverage for each class
and take top 30 classes with highest coverages as “large”,
rear 30 classes with lowest coverages as “small” and the
rest 40 classes as “middle”. It is intriguing that our method
achieves the highest improvement (over baseline) for small
objects. Our explanation is that small objects benefit more
from image compression (than large ones), as their images
contain more background pixels to downsample.

6. Conclusions
We introduced a novel exemplar compression method for

CIL, allowing us to save more representative exemplars but
not increase memory budget. We achieved this compression
by downsampling non-discriminative pixels of the image
bounded by CAM masks. To generate adaptive masks, we
proposed a novel method CIM that explicitly parameterizes
a mask generation model and optimizes it in an end-to-end
manner across incremental phases. Our method achieves
consistent performance improvements over multiple base-
lines and can be taken as a flexible plug-and-play module.

Acknowledgements. The author gratefully acknowledges
the support by the Lee Kong Chian (LKC) Fellowship fund
awarded by Singapore Management University.

11378

References
[1] Davide Abati, Jakub Tomczak, Tijmen Blankevoort, Simone

Calderara, Rita Cucchiara, and Babak Ehteshami Bejnordi.
Conditional channel gated networks for task-aware continual
learning. In CVPR, 2020. 2

[2] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-
Yuan Mark Liao. Yolov4: Optimal speed and accuracy of
object detection. arXiv, 2020. 5

[3] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.
Food-101 – mining discriminative components with random
forests. In ECCV, 2014. 2, 6

[4] Gary Bradski. The opencv library. Dr. Dobb’s Journal: Soft-
ware Tools for the Professional Programmer, 2000. 6

[5] Kenneth R Castleman. Digital image processing. Prentice
Hall Press, 1996. 4

[6] George Cazenavette, Tongzhou Wang, Antonio Torralba,
Alexei A Efros, and Jun-Yan Zhu. Dataset distillation by
matching training trajectories. In CVPR, 2022. 3

[7] Can Chen, Xi Chen, Chen Ma, Zixuan Liu, and Xue Liu.
Gradient-based bi-level optimization for deep learning: A
survey. arXiv, 2022. 2, 3

[8] Zhaozheng Chen, Tan Wang, Xiongwei Wu, Xian-Sheng
Hua, Hanwang Zhang, and Qianru Sun. Class re-activation
maps for weakly-supervised semantic segmentation. In
CVPR, 2022. 3, 4

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 1, 2, 3, 6

[10] Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng,
Ziyan Wu, and Rama Chellappa. Learning without mem-
orizing. In CVPR, 2019. 2

[11] Zhang Dong, Zhang Hanwang, Tang Jinhui, Hua Xiansheng,
and Sun Qianru. Causal intervention for weakly supervised
semantic segmentation. In NeurIPS, 2020. 4

[12] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas
Robert, and Eduardo Valle. Podnet: Pooled outputs distilla-
tion for small-tasks incremental learning. In ECCV, 2020. 1,
2, 7

[13] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In ICML, 2017. 3

[14] Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt,
Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith,
et al. Array programming with numpy. Nature, 2020. 6

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In ICCV, 2015. 5

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 5, 6

[17] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and
Dahua Lin. Learning a unified classifier incrementally via
rebalancing. In CVPR, 2019. 1, 2, 6, 8

[18] Shenyang Huang, Vincent François-Lavet, and Guillaume
Rabusseau. Neural architecture search for class-incremental
learning. arXiv, 2019. 2

[19] Imagenet object localization challenge. https://www.
kaggle.com/competitions/imagenet-object-
localization-challenge/. 8

[20] Anil K Jain. Fundamentals of digital image processing.
Prentice-Hall, Inc., 1989. 4

[21] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. PNAS, 2017. 2

[22] Jungbeom Lee, Eunji Kim, and Sungroh Yoon. Anti-
adversarially manipulated attributions for weakly and semi-
supervised semantic segmentation. In CVPR, 2021. 3, 4

[23] Zhizhong Li and Derek Hoiem. Learning without forgetting.
PAMI, 2017. 2, 5

[24] Yaoyao Liu, Yingying Li, Bernt Schiele, and Qianru Sun.
Online hyperparameter optimization for class-incremental
learning. In AAAi, 2023. 2

[25] Yaoyao Liu, Bernt Schiele, and Qianru Sun. Adaptive ag-
gregation networks for class-incremental learning. In CVPR,
2021. 1, 2, 3, 7

[26] Yaoyao Liu, Bernt Schiele, and Qianru Sun. Rmm: Rein-
forced memory management for class-incremental learning.
In NeurIPS, 2021. 2

[27] Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and
Qianru Sun. Mnemonics training: Multi-class incremental
learning without forgetting. In CVPR, 2020. 1, 2, 3, 8

[28] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. arXiv, 2016. 6

[29] Dougal Maclaurin, David Duvenaud, and Ryan Adams.
Gradient-based hyperparameter optimization through re-
versible learning. In ICML, 2015. 3

[30] Michael McCloskey and Neal J Cohen. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. In Psychology of Learning and Motivation. Else-
vier, 1989. 2

[31] Ken McRae and Phil A Hetherington. Catastrophic interfer-
ence is eliminated in pretrained networks. In Proceedings of
the 15h Annual Conference of the Cognitive Science Society,
1993. 1, 2

[32] Alejandro Molina, Patrick Schramowski, and Kristian Ker-
sting. Padé activation units: End-to-end learning of flexible
activation functions in deep networks. In ICLR, 2019. 5

[33] Vinod Nair and Geoffrey E Hinton. Rectified linear units
improve restricted boltzmann machines. In ICML, 2010. 5

[34] J Anthony Parker, Robert V Kenyon, and Donald E Troxel.
Comparison of interpolating methods for image resampling.
IEEE Transactions on Medical Imaging, 1983. 4

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS, 2019. 6

[36] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. iCaRL: Incremental classi-
fier and representation learning. In CVPR, 2017. 1, 2, 3, 5,
7

11379

[37] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-
van Pascanu, and Raia Hadsell. Progressive neural networks.
arXiv, 2016. 2

[38] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In ICCV, 2017. 3

[39] Christian Simon, Piotr Koniusz, and Mehrtash Harandi. On
learning the geodesic path for incremental learning. In
CVPR, 2021. 2

[40] Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. A review
on bilevel optimization: from classical to evolutionary ap-
proaches and applications. IEEE Transactions on Evolution-
ary Computation, 2017. 1, 2, 3

[41] Gregory K Wallace. The jpeg still picture compression stan-
dard. Communications of the ACM, 1991. 1, 2

[42] Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan
Zhan. Foster: Feature boosting and compression for class-
incremental learning. arXiv, 2022. 1, 2, 3, 5, 6, 7, 8

[43] Liyuan Wang, Xingxing Zhang, Kuo Yang, Longhui Yu,
Chongxuan Li, Lanqing Hong, Shifeng Zhang, Zhenguo Li,
Yi Zhong, and Jun Zhu. Memory replay with data compres-
sion for continual learning. In ICLR, 2022. 1, 2, 3, 6, 8

[44] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,
Zicheng Liu, Yandong Guo, and Yun Fu. Large scale in-
cremental learning. In CVPR, 2019. 1, 2

[45] Ju Xu and Zhanxing Zhu. Reinforced continual learning. In
NeurIPS, 2018. 2

[46] Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynam-
ically expandable representation for class incremental learn-
ing. In CVPR, 2021. 1, 2, 3, 5, 6, 7

[47] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-
ual learning through synaptic intelligence. In ICML, 2017.
2

[48] Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-
Tao Xia. Maintaining discrimination and fairness in class
incremental learning. In CVPR, 2020. 1, 7

[49] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning deep features for discrimi-
native localization. In CVPR, 2016. 1, 2, 3

[50] Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Co-
transport for class-incremental learning. In Proceedings
of the 29th ACM International Conference on Multimedia,
2021. 5

11380

	Class-incremental exemplar compression for class-incremental learning
	Citation

	Class-Incremental Exemplar Compression for Class-Incremental Learning

