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Subgraph Centralization:
A Necessary Step for Graph Anomaly Detection

Zhong Zhuang∗ Kai Ming Ting∗ Guansong Pang† Shuaibin Song∗

Abstract

Graph anomaly detection has attracted a lot of interest
recently. Despite their successes, existing detectors have
at least two of the three weaknesses: (a) high compu-
tational cost which limits them to small-scale networks
only; (b) existing treatment of subgraphs produces sub-
optimal detection accuracy; and (c) unable to provide
an explanation as to why a node is anomalous, once it
is identified. We identify that the root cause of these
weaknesses is a lack of a proper treatment for subgraphs.
A treatment called Subgraph Centralization for graph
anomaly detection is proposed to address all the above
weaknesses. Its importance is shown in two ways. First,
we present a simple yet effective new framework called
Graph-Centric Anomaly Detection (GCAD). The key
advantages of GCAD over existing detectors including
deep-learning detectors are: (i) better anomaly detec-
tion accuracy; (ii) linear time complexity with respect
to the number of nodes; and (iii) it is a generic frame-
work that admits an existing point anomaly detector to
be used to detect node anomalies in a network. Sec-
ond, we show that Subgraph Centralization can be in-
corporated into two existing detectors to overcome the
above-mentioned weaknesses.

1 Introduction

Attributed networks are omnipresent in various appli-
cations because they are a powerful means to represent
node information as well as the relationship between
nodes well. Examples are: (a) In a social network [16]
(e.g., Facebook, Blog, LinkedIn), users with attribute
information following or being followed by other users
can be seen as nodes and connections in an attributed
network. (b) In a citation network [8] of scientific publi-
cations, authors denote nodes, and the connections be-
tween nodes denote joint publications between authors.

Anomalous node detection in an attributed network
has many applications, e.g., fraud detection, social spam
detection and academic misconduct detection.

∗National Key Laboratory for Novel Software Technology,
Nanjing University, {zhuangz,tingkm,songsb}@lamda.nju.edu.cn

†Singapore Management University, gspang@smu.edu.sg

Figure 1: (a) Three example subgraphs of a (not-shown)
network in the space of given node vectors. The red
node represents the source node v of a subgraph G(v).
M denotes a similarity measure between subgraphs. (b)
In the translated space, each centralized subgraph G′(v)
has all its nodes translated to the same extent as source
node v is translated to the origin. G′(v1) = G′(v2)
because they have the same structure.

Existing anomalous node detectors can be catego-
rized into two approaches, i.e., full-graph-based detec-
tors and subgraph-based detectors. The former has high
computational cost which limits them to small-scale net-
works only. We discover that the latter does not use
subgraphs to their full potential resulting in suboptimal
detection accuracy. In addition, both types of detectors
are unable to provide an explanation as to why a node
is anomalous, once it is identified.

The importance of subgraphs can be understood
from the fact that each node v is influenced by all
the nodes connected to it directly and transitively in
a subgraph centered at v. The nodes connected via
many hops outside the subgraph have negligible or no
influence. Therefore, the similarity between subgraphs
determine whether a subgraph is normal or anomalous.

Though the second existing approach has the same
understanding, the methodology has a serious weakness,
i.e., no centralization is performed before computing the
similarity between subgraphs. As a result, the similarity
between subgraphs can be misleading. An example is
shown in Figure 1(a): subgraph G(v1) is deemed to be
more similar to G(v3) than G(v2) simply because the
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node positions of the first two graphs are closer, i.e.,
the node positions play a more important role than the
graph structures in the similarity calculation.

Intuitively, the similarity between subgraphs rely
primarily on the graph structure, and the absolute
positions in the space of the given node vectors shall
play no role in the calculation. This can be achieved
by translating all nodes of a subgraph G(v) to the
same extent as the source node v is translated to the
origin. Figure 1(b) shows the translated subgraphs (in
the translated space) of those shown in Figure 1(a) (in
the original space). Indeed, the similarity between the
translated subgraphs G′(v1) and G′(v2) is unity because
they have the same structure; and each of the them is
less similar to G′(v3) due to the difference in structures.

We call this technique Subgraph Centralization. We
show that it is a necessary step in a proposed new graph
anomaly detection framework and in addressing all the
above-mentioned weaknesses of existing detectors.

Our main contributions are summarized as follows:

1. Formally define normal and anomalous nodes in a
network. As far as we know, we are the first to pro-
vide such definitions on graph anomaly detection.

2. Propose a simple but effective new framework
called Graph-Centric Anomaly Detection or GCAD
which employs Subgraph Centralization as a neces-
sary step. GCAD is capable of detecting anomaly
on large-scale networks and providing an explana-
tion why a node is anomalous/normal. The frame-
work also admits an existing point anomaly detec-
tor to be used to perform graph anomaly detection.

3. Demonstrate that Subgraph Centralization can be
applied to two existing detectors to improve their
detection accuracy, and empower their ability to
explain their predictions.

GCAD is distinguished from the two existing ap-
proaches with two unique features, i.e., the use of cen-
tralized subgraphs as the basis for similarity measure-
ment and explainability. Subgraphs are the key to
the definition of node anomalies and the design of the
GCAD framework. The centralization is simple yet
crucial to the success of GCAD. The explainability of
GCAD depends on the centralized subgraphs, but inde-
pendent of the point anomaly detector used in GCAD.

2 Related Work

To detect anomalies, it is vital to model some charac-
teristics of a network that represent the normality of
the network. We categorize existing works into two ap-
proaches, along the line whether the entire network or
subgraphs are used in the modeling:

The full-graph-based approach is to model some form
of normal characteristics from an entire network.
ANOMALOUS [26] selects attributes on the space of
features based on the structure of a network and applies
residual analysis to detect anomalies. DOMINANT [5]
combines GCN [12] with an autoencoder to reconstruct
the network (via both the attribute matrix and adja-
cency matrix) such that the normal nodes are recon-
structed with small errors. A few other works [7, 13]
have followed the same methodology with some im-
provements. Oddball [1] models the normal character-
istics of a network via a power-law model. OCGNN [22]
applies GCN and hypersphere learning [18] to perform
representation learning on a network.
The subgraph-based approach utilizes various ways to
extract subgraphs from a network. CoLA [15] generates
a large set of positive and negative subgraphs, where
a normal subgraph depicts the normal relationship be-
tween each node and its neighbouring structure in the
network; and a negative subgraph does not. This set is
used to train a classifier. ANEMONE [9] and SL-GAD
[27] employ self-supervised learning by generating sub-
graphs surrounding target nodes and performing patch-
level and contextual-level contrastive learning.
However, none of them utilize Subgraph Centralization,
leading to the problem we mentioned in Section 1.

3 Node Anomaly: Definitions

Let G = {V, E ,X} be an undirected attributed network,
where V = {v1, . . . , vn} denotes the set of nodes, E
denotes the set of edges, X ∈ Rn×d denotes the attribute
matrix of nodes, and each node vector has d attributes.

Node anomaly detection is defined as:

Definition 1. (Node Anomaly Detection)
The task of node anomaly detection in a network
G = {V, E ,X} is to identify the few node anomalies
which have characteristics different from the majority
of the nodes in the network, and to rank all the nodes
on the basis of their anomaly scores such that the node
anomalies are ranked higher than the normal ones.

To operationalize the above generic definition, a
method must be devised to provide a score for each
node. We propose to use h-subgraphs as the basic means
to do this in the next subsection.

3.1 Node Anomalies Based on h-subgraphs

Definition 2. (h-subgraph) An h-subgraph Gh(v) =
(V,E,X) is a subgraph rooted at source node v such that
the shortest path between any node in Gh(v) and v has
length ≤ h, where h ∈ N is the maximum depth of the
subgraph.
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Given a network G = {V, E ,X} having n nodes,
there are a total of n h-subgraphs. Among the n h-
subgraphs, the ones which are few and different in terms
of some measure from the majority of the h-subgraphs
are regarded as anomalous; and the source nodes of
these h-subgraphs are regarded as node anomalies in G.
We propose to use a similarity measure to characterize
the differences between h-subgraphs.

The node anomaly based on h-subgraphs is defined
as follows. Let the set of nodes V consists of two subsets
VA and VN which denote the sets of anomalous nodes
and normal nodes, respectively, where |VN | ≫ |VA|,
and M(·, ·) be a similarity measure between two h-
subgraphs.

Definition 3. Node u in G = {V, E ,X} is

• A normal node if Gh(u) is similar to most other h-
subgraphs, i.e., 1

|V|
∑

v∈V M(Gh(u),Gh(v)) is large.

• An anomalous node if Gh(u) is dissimilar to most
other h-subgraphs, i.e., 1

|V|
∑

v∈V M(Gh(u),Gh(v))
is small.

In practice, the difference can be parameterized as: u
is an anomalous node if 1

|V|
∑

v∈V M(Gh(u),Gh(v)) < τ ;

otherwise u is a normal node. Or simply select the top
m anomalous nodes which have the lowest similarities.

4 Proposed Framework: GCAD

We propose a new framework called GCAD (Graph-
Centric node Anomaly Detection) to detect node
anomalies in a network. GCAD scores every node by
examining the similarity between h-subgraphs extracted
from a network. A node v has a high score if the h-
subgraph with v as the source node is dissimilar to most
other h-subgraphs in the network.

The proposed framework consists of four main
components: subgraph extraction and centralization,
subgraph embedding, anomaly detection and subgraph
depth-based weighted anomaly scoring, as shown in
Algorithm 1.

As the base unit of operation is h-subgraphs, the
algorithm begins to extract n h-subgraphs from a given
network consisting of n nodes.

To enable similarity measurements among h-
subgraphs, one key step is to centralize all these h-
subgraphs to nullify the unwanted interference of node
positions in the node vector space, since we are not in-
terested in their absolute difference in the node vec-
tor space. Only then it is meaningful to examine the
(dis)similarity between h-subgraphs, purely based on
the structure of individual h-subgraphs. This process is

Algorithm 1 GCAD

Require: Network: G = (V, E ,X ); subgraph depth: h;
the parameter of depth-based weighted score: λ

Ensure: Anomaly Scores Ŷ for all v ∈ V
1: S ←SEC(G, h); (Extract & Centralize Subgraphs)
2: for each Gh(v) ∈ S do
3: ev = ϕ(Gh(v)); (Embed each Gh to a vector)
4: end for
5: Let E be the matrix of embedded vectors ev for all v ∈ V
6: Y ← Detector(E); (Score v ∈ V with a point detector)
7: Compute the reweighted scores Ŷ via Eq. 4.4;
8: return Ŷ

subgraph centralization. Both the extraction and cen-
tralization are conducted in line#1 in Algorithm 1).

Then, an embedding method is required to gener-
ate an embedded representation for each h-subgraph
(line#3 in Algorithm 1). An existing point anomaly
detector can then be applied on the set of embedded vec-
tors to detect node anomalies which are different from
the majority in the set, as shown in line#6 in Algo-
rithm 1. Since each h-subgraph is derived from a source
node, the anomaly score of each h-subgraph denotes the
anomaly score of its source node.

Finally, to derive the final score of a node u (line#6
in Algorithm 1), a weighted anomaly scoring method is
used to aggregate the anomaly scores of source nodes of
all h-subgraphs which contain node u.

We provide the details of the four steps in the
following four subsections.

4.1 Subgraph Extraction and Centralization
(SEC). Figure 2a provides an illustration of the sub-
graph extraction process. Given an h setting, extracting
h-subgraphs from a given network is straightforward:
each node in the network is treated as a source node u;
and the h-subgraph with source node u is extracted via
connected nodes up to depth h. The two 1-subgraphs
are in the top-right corner in Figure 2b.

The aim, according to Definition 3, is to compare
the structures of individual h-subgraphs which are de-
termined from the relative positions of nodes in an h-
subgraph, but independent of the absolute positions of
the nodes in the node vector space. To achieve this
aim, the subgraph centralization component maps all
source nodes of h-subgraphs to the origin of the node
vector space. To ensure that the structure of every
h-subgraph remains unchanged, every node in an h-
subgraph is translated to the same extent in which its
source node is translated to the origin. This centraliza-
tion nullifies the unwanted interference of the original
positions in the node vector space, and enables only the
structures of the h-subgraphs to be compared. The pro-

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited705

D
ow

nl
oa

de
d 

08
/0

6/
23

 to
 2

02
.1

61
.5

5.
34

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



Figure 2: Overview of the GCAD framework. Only the first three components are shown here, i.e., h-subgraph
extraction and centralization, subgraph embedding, and anomaly scoring. (a) The red node v1 in the node vector
space Rd is an anomalous node because it has connections with two distant nodes v4 and v5 while the other nodes
are connected to neighbouring nodes only. Each dotted loop indicates an h-subgraph, extracted from the given
network, where h = 1. (b) The two example 1-subgraphs are centralized such that their source nodes are translated
to the origin. For clarity, the source nodes v1 and v2 are drawn besides the origin without overlapping (two parallel
doted lines extended from the origin). Subfigure (c) shows the embeddings of the centralized subgraphs in the
embedded Rd(k+1) space. ϕ(G(v1)) is an outlier which is different from other points in this space.

cess is illustrated in Figure 2b. The detailed procedure
of the above two processes is shown in Algorithm 2.

Algorithm 2 SEC

Require: Network: G = (V, E ,X ); subgraph depth: h
Ensure: Set of centralized h-subgraphs S
1: Initialize S = {};
2: for each v ∈ V do
3: Extract Gh(v) = (V,E,X);(subgraph extraction)
4: for each u ∈ V do (V includes the source node v)
5: X(u)← X(u)−X (v); (Centralization)
6: end for
7: S ← S ∪ {Gh(v)};
8: end for
9: return S

Once the above process is completed, the majority
of centralized h-subgraphs which are similar to each
other constitute the normal h-subgraphs in a network.
The few centralized h-subgraphs which are dissimilar to
the normal ones are anomalies.

To facilitate such a comparison, we need to embed
each h-subgraph into a vector, which is the topic of the
next subsection. For brevity, we use Gh(v) to denote a
centralized h-subgraph with source node v hereafter.

4.2 Subgraph Embedding. A subgraph embed-
ding method ϕ to map each centralized h-subgraph
Gh(v) into a vector ϕ(Gh(v)). We use the widely-
used subgraph embedding method, Weisfeiler-Lehman
(WL) [20, 25]. More specifically, for every h-subgraph
Gh(v) = {V,E,X}, we utilize the WL scheme in the
node vector space to get the embedding for every node

of an h-subgraph. The key idea is to create an explicit
propagation scheme that leverages and iteratively up-
dates the current node vector by averaging over the node
vectors in the neighbourhoods.

Let the node vector X0(u) = X(u) ∈ Rd for each
node u ∈ V. The node vector of the kth iteration
Xk(u), for k ≥ 1, is computed via WL as follows:
(4.1)

Xk(u) =
1

2

Xk−1(u) +
1

deg(u)

∑
w∈N(u)

Xk−1(w)

 ,

where deg(u) denotes the degree of node u, and N(u)
is set of the one-hop neighbours of node u in the h-
subgraph Gh(v).

Definition 4. The WL-embedded vector of a node u in
an h-subgraph Gh(v) = {V,E,X} is defined as ϕ(u) ∈
Rd(k+1):

(4.2) ϕ(u) = [X0(u), . . . ,Xk(u)]⊤.

Note that the concatenation of embedding from each
iteration is different from other GNN-based methods
in that GNN-based embedding does not concatenate
outputs of different layers.

Definition 5. The WL-embedded vector ev of the en-
tire h-subgraph Gh(v) is defined as the mean embedding
of all nodes in the h-subgraph:

(4.3) ev = ϕ(Gh(v)) = 1

|V|
∑
u∈V

ϕ(u).

Because the largest k for an h-subgraph is h.
Therefore, we have set k = h.
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4.3 Point Anomaly Detector. Given a set of em-
bedded vectors, an existing unsupervised anomaly de-
tector can then be used to detect anomalies that are
different from the majority in the set.

Let E be the matrix of the embedded vectors ev.
We assume that Detector(E) is trained from E and
produces output Y which is a one-dimensional matrix
of anomaly scores yv for all nodes v in the network. Any
existing point anomaly detector can be used here.

4.4 Depth-based Weighted Score. The point
anomaly detector in the last subsection produces a score
yv for node v which is the source node of h-subgraph
Gh(v) for every node in a given network. The score
can be used directly as the anomaly score of each node.
But, we introduce a depth-based weighted score here for
further improvement.

Let u be the node of interest; and Vu be the set of
all source nodes of h-subgraphs which contain u. The
depth-based weighted score aggregates scores from all
h-subgraphs in Vu. The idea is to place a larger weight
(less than 1) to the score yv of Gh(v) if u is closer to v.

The weight is formulated using a parameter λ as
λℓ(v,u), where 0 ≤ λ < 1; and ℓ(v, u) is the number of
hops from v to u in Gh(v).

The final anomaly score ŷu for node u is defined as:

(4.4) ŷu =

∑
v∈Vu

λℓ(v,u)yv∑
v∈Vu

λℓ(v,u)
.

5 Applying Centralization to Two Existing
Detectors

Here we show that Subgraph Centralization is applica-
ble to an existing subgraph-based detector CoLA [15],
and an existing full-graph-based detector OCGNN [22].
They are described in the next two subsections.

5.1 Centralize a Subgraph-based Detector -
CoLA. Contrastive self-supervised Learning frame-
work for Anomaly detection on attributed networks
(CoLA) [15] is a recent state-of-the-art graph anomaly
detection that uses contrastive learning of subgraphs
to learn a classifier so that it can be used to produce
an anomaly score for each node. We show below that
our subgraph centralization can be easily plugged into
CoLA to enhance its detection accuracy by performing
Subgraph Centralization to CoLA’s subgraphs before
learning a classifier. Particularly, as shown in Figure 3,
the new version called CoLA SC takes three steps to
obtain the centralized subgraphs. The first step is to
traverse each node in random order as the target node
within every epoch. Then, for a given target node, a

Figure 3: CoLA SC performs Subgraph Centralization
after the subgraphs have been sampled from a network.
The red node denotes the target node in this example.

positive subgraph and a negative subgraph are sampled
via random walk with restart (RWR) [21]. The positive
subgraph is generated from the target node; and the
negative subgraph is from a node different from the tar-
get node. The first two steps are the same as the way in
[15]. In the third step, both the positive and negative
subgraphs are centralized as the way in Algorithm 2.
After obtaining the centralized subgraphs, exactly the
same training steps are used to learn a CoLA detector.
The details can be found in [15].

5.2 Centralize a Full-Graph-based Detector -
OCGNN. One-class graph neural network (OCGNN)
[22] integrates GNNs and one-class hypersphere learn-
ing to provide an end-to-end detector. The en-
hanced version with Subgraph Centralization is called
OCGNN SC. The additional functionalities are given as
follows. Before training the end-to-end detector, ran-
dom walk [21] is used to generate a subgraph for each
node, and then each subgraph is centralized to the origin
of the node vector space, as described before. An aver-
age pooling function is employed as the readout function
for GNN, followed by the same hypersphere learning as
in OCGNN.

6 Experimental Design and Results

The experiments are designed to answer the following
questions:

i. Is Subgraph Centralization a necessary step in the
problem of graph anomaly detection?

ii. How does Subgraph Centralization derive its ex-
plainability?

To answer the first question, we use the following
baseline methods:

• Oddball [1] is a detector specially designed to
detect the types of node anomalies which have
clique and star. It learns a power-law model of a
network to represent the normal neighbourhoods,
and computes the deviation of each node from the
expected value of the model as the anomaly score.
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• DOMINANT [5] is a GCN-Autoencoder-based
method, denoted as DOM. It applies two decoders
to reconstruct the attribute and adjacency matrix.
The anomaly score is computed by combining two
reconstruction errors with a trade-off coefficient.

• CoLA [15] is a contrastive learning method that
trains a GCN-based model to discriminate node
anomalies from normal nodes in a network

• OCGNN [22] is a method utilizing GCN [12] and
hypersphere learning [18] to detect anomalies.

In GCAD 1, we use the recent Isolation Distribu-
tional Kernel [19] (IDK for short) as the point anomaly
detector in line#6 in Algorithm 1. We also examine al-
ternative existing unsupervised anomaly detectors in an
ablation study later. And other experimental settings
are given in the Appendix [11].

# Nodes # Edges # Attributes # Anomalies
Watts-Strogatz 500 1500 2 24

SBMstru 1000 5839 10 25
RGGs 500 2195 2 20
RGGl 500 60639 2 20
Latticel 1200 2340 2 20
Lattices 1220 2410 2 99
ACM 16484 82175 8337 597
Cora 2708 5803 1433 150

Citeseer 3327 5139 3703 150
Pubmed 19717 46424 500 600

Table 1: Data characteristics of datasets used

The investigation for the first question is reported
in Section 6.1. The answer to the second question is pre-
sented in Section 6.2. Two additional experiments, that
examine the effect of h in h-subgraphs and a scaleup
test, are reported in the following two subsections.

6.1 Main Evaluation. This evaluation employs two
sets of datasets, i.e., synthetic datasets and existing
datasets. Their data characteristics are given in Table
2. They are briefly described as follows.

Synthetic datasets. We create six synthetic
datasets using four classical graph generation models
[10, 23, 4, 3]. For RGG and Lattice, we create two
types of datasets, whose normal node in one is the
anomalous node in the other. Such setting can help us
evaluate the ability of the methods in detecting different
types of anomalies apart from the type found in the real
datasets. (See the Appendix [11] for details).

Existing datasets. Like previous work, the orig-
inal citation network datasets, i.e., Cora, Citeseer,

1Code is available at https://github.com/IsolationKernel/

Codes/tree/main/IDK/GraphAnomalyDetection.

Oddball DOM CoLA OCGNN GCAD
Orig SC Orig SC

Watts-Strogatz .63 .63 .72 .82 .24 .77 .82
SBMstru 1.00 1.00 1.00 1.00 .21 1.00 1.00
RGGs .56 .70 .70 .84 .43 .86 .91
RGGl .99 .93 1.00 1.00 .40 .40 1.00
Latticel .94 .95 .80 .83 .30 1.00 1.00
Lattices 1.00 .92 .65 .73 .55 .92 .96
ACM .75 .81 .82 .88 .37 .79 .85
Cora .77 .90 .88 .90 .24 .88 .92

Citeseer .73 .93 .90 .92 .26 .93 .95
Pubmed .74 .91 .95 .95 .37 .89 .92

Rank 4.8 3.85 3.85 2.95 6.95 3.7 1.85
P-value .0076 .0038 .0086 .1020 .0010 .0059 -

Table 2: Detection accuracy in terms of AUC of different
methods. ‘Orig’ denotes the original method; and
‘SC’ denotes a method is modified with Subgraph
Centralization. The last row shows the p-value obtained
from a pair-wise significance test in comparison with
GCAD. The second last row shows the ranking of each
method, average all datasets.

Pubmed and ACM, are assumed to have no anomalies
and two types of anomalies are injected. They are the
same as used in [15].

Overall results. Observations from Table 2 are:

• GCAD is the best. It performs the best in seven out
of the ten datasets, and the second best in the other
three exceptions. It is also significantly better than
each of the other six contenders at the p = 0.01
significance level. The only exception is CoLA SC
which employs the Centralization.

• Subgraph Centralization significantly improves the
performance of CoLA and OCGNN close to the
level of GCAD. The improvement over OCGNN
is huge on almost all datasets2. Similarly, the
improvement over CoLA is on all datasets that
have room for improvement, albeit the degree of
improvement is smaller.

6.2 Explainability. Table 3 shows examples of
anomalous and normal nodes identified by GCAD via
h-subgraphs. This explanation via visualization is pos-
sible because of the use of Subgraph Centralization be-
fore the anomaly detection. The top two normal h-
subgraphs indicate the typical h-subgraphs that exist
in a network (ranked at the bottom in the ranked list).

2There is no improvement for OCGNN SC on RGGl owing to
the fundamental limitation of SVDD, i.e., SVDD always regards
points far away from the data centroid as anomalies. This dataset

has anomalies at the data centroid and the normal points are
further away from the data centroid.
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Normal Abnormal

Watts

RGGs

RGGl

Cora

Table 3: Examples of anomalous and normal nodes iden-
tified by GCAD via h-subgraphs. Each red node denotes
the source node of a centralized h-subgraph. These visu-
alizations uses 1-subgraphs only. Note that many (nor-
mal) nodes of RGGl have many long connections and
the few anomalous ones have short connections, unlike
those in the other three datasets.

The top two anomalous h-subgraphs indicate the most
unusual h-subgraphs in the network. The examples in
Table 3 demonstrate that the h-subgraphs of the de-
tected anomalies are significantly different from those
normal h-subgraphs in each dataset.

Interestingly, this explainability depends on the use
of centralized subgraphs only, and is independent of the
point anomaly detector used in line#6 in Algorithm 1.

As none of the existing three detectors, i.e., CoLA,
DOMINANT and OCGNN employ Subgraph Central-
ization for detection, they are unable to provide such a
visualization to explain their detection outcomes. How-
ever, after utilizing Subgraph Centralization, CoLA SC
and OCGNN SC have the same explainability.

6.3 The Effect of Parameter h on GCAD is
examined here. GCAD performs the best when h = 1
on nine out of ten datasets and the only exception
is RGGs. This means that the simplest 1-subgraphs
are sufficient to detect the anomalies on almost all the
datasets. Figure 6 in the Appendix [11] shows the effect
of h on different datasets.

6.4 Scaleup Test and Time Complexity. Figure
4 shows the result of a scaleup test for GCAD, DOMI-
NANT and CoLA on Watts-Strogatz where the number
of nodes is increased from 103 to 106. For a fair compar-
ison, we measure the time each algorithm takes under
the same environment.
The result shows that GCAD needs far fewer compu-
tations and can deal with large-scale million-node net-
works. DOMINANT and CoLA took a prohibitively
long time when applied to the million-node network.
The time complexities of different components of GCAD
are given in Table 4. GCAD has linear time complexity
since m≪ n and the other parameters are constant.

Note that the time complexities for CoLA and
OCGNN do not include the deep learning time.

GCAD

Subgraph Extraction O(nm)
Subgraph Centralization O(nmf)
Subgraph Embedding (WL scheme [20]) O(feh)
Detector IDK [19] O(ntψ)
Total of GCAD O(n(mf + tψ) + feh)

CoLA Subgraph Generation O(mnR(m+ δ))
OCGNN One GCN layer O(pfu)

Table 4: The time complexities of different components
in GCAD. f and n denote the number of dimensions (of
node vectors) and the number of nodes of a network.
m and e denote the maximum numbers of nodes and
edges, respectively, in a subgraph. R and δ denote the
sampling rounds and the average degree in a network,
respectively. p and u are the number of non-zero
elements in adjacency matrix and the number of feature
maps of the weight matrix, respectively.

Figure 4: Scaleup test for GCAD, CoLA, and DOMI-
NANT on the Watts-Strogatz dataset.

7 Ablation Studies on GCAD

In this section, we conduct two ablation studies. The
first examines the effects of the two components in
GCAD, i.e., Subgraph centralization and Depth-based
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IDK iForest OCSVM LOF

Centralization % ! % ! ! ! !

Weighted score % % ! ! ! ! !
Watts-Strogatz .57 .82 .66 .82 .82 .82 .82

SBMstru .58 1.00 .60 1.00 1.00 .99 1.00
RGGs .56 .90 .59 .91 .92 .93 .95
RGGl .88 1.00 .89 1.00 .51 .52 1.00
Latticel .57 1.00 .60 1.00 1.00 1.00 .98
Lattices .50 .96 .51 .96 .98 .96 .97
ACM .73 .82 .76 .85 .71 .85 .83
Cora .64 .90 .64 .92 .85 .92 .92

Citeseer .59 .94 .59 .95 .81 .95 .95
Pubmed .69 .89 .74 .92 .82 .94 .87
Rank 6.6 3.3 5.8 2.5 4.1 2.85 2.85
P-value .0010 .0206 .0010 - .0315 .5 .1238

Table 5: Results of two ablation studies on GCAD
w.r.t. subgraph centralization, weighted score and point
anomaly detectors in terms of AUC.

weighted score. The second investigates the generic na-
ture of the GCAD framework by using different existing
point anomaly detectors in line#6 in Algorithm 1. The
unsupervised point anomaly detectors investigated are
Isolation Forest (iForest) [14], OCSVM [17], and Local
Outlier Factor (LOF) [2] and IDK [19] (we have used
IDK as the default in the previous sections).

The results of the first study are shown in the second
to the fifth columns in Table 5; and the results of the
second study are shown in the fifth to the last columns.

We summarize the outcomes of these studies as:

• Subgraph centralization is a crucial component
of GCAD. The accuracies of GCAD decline signif-
icantly on all the datasets without the component.

• Weighted score. The weighted score compo-
nent provides a small AUC improvement on some
datasets. It is useful especially when anomalous
nodes are connected such as cliques. Through the
depth-based weighted score, an anomalous node in-
creases the anomaly scores of its anomalous neigh-
bours. Therefore, all the anomalous nodes are
ranked higher than without the weighted score.

• Point anomaly detectors. The results in the
last three columns in Table 5 show that IDK per-
forms better than iForest at p = 0.05 significance
level. Overall, IDK has comparable accuracy as
OCSVM and LOF. OCSVM performs poorly on
RGGl for the same reason stated in footnote 2 wrt
OCGNN in Section 6.1 because they make the same
assumption. The example runtimes on the Pubmed
dataset of GCADs with IDK, iForest, OCSVM and
LOF are 23, 40, 588 and 583 seconds, respectively.

IDK is the recommended point anomaly detector
at this point in time because it has the highest ac-
curacy and run fastest.

8 Discussion

Anomalous Node Definitions. The importance of
the definition of anomalous nodes can not be under-
estimated. Without a clear definition, how an anomaly
relates to the normal ones is unclear. We cannot find
such a definition in all the current works listed in the
related work section. This has two implications. First,
the analysis of the reason why (or the condition un-
der which) a detector work or not becomes difficult,
if not impossible. Second, anomalies are often implic-
itly/explicitly assumed to belong to a very restricted
kind in existing works. For example, a node anomaly
is assumed to be far away from an existing node in a
network [5, 6]. This assumption is made on the basis
that normal nodes are close to each other.

One crucial ingredient is missing in the above
assumption, i.e., anomalies are rare and normal ones are
plentiful in a network. It is possible that a network may
contain two (or more) types of normal nodes in different
parts. For example, one part has many subgraphs
with close neighbouring nodes, and the other has many
subgraphs with far away neighbouring nodes. As a
result, anomalies in one part becomes normal ones in the
other. Using the assumption misses all the anomalies
in one part of the network, as we have identified with
OCGNN in Section 6.1.

Note that the GCAD framework is generic, not
coupled with any particular detector (as reported in
Section 7). It is also not tied to any specific similarity
measure, and it even admits no measure.
Anomaly Types in a Graph. We have identified
that the commonly used datasets are likely to belong
to one type of anomaly, where only relative positions
of node vectors matter. That is why the proposed
method works better than existing methods which do
not employ subgraph centralization. It is possible that
there are other types of graphs in which the proposed
method does not work. Two possible example types are
that anomalous nodes are due to (a) node vectors only
but not graph structure, and (b) the absolute positions
of node vectors play an important role in addition to
graph structure. The former is not a graph problem
and the node anomalies can be identified with a point
anomaly detector. The latter is an open problem.

9 Conclusion

We show that Subgraph Centralization is a necessary
technique in graph anomaly detection that has a signif-
icant influence on detection accuracy, and it empowers
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any detectors to gain explainability that would other-
wise be impossible. As this technique has time complex-
ity linear to the number of nodes, it enables a detector
to deal with large scale datasets. These advantages are
shown in our proposed framework GCAD that incorpo-
rates Subgraph Centralization. Our empirical evalua-
tion verifies that (i) GCAD is superior to four existing
detectors in terms of its detecting accuracy, run time
and scalability; and (ii) two existing detectors CoLA
and OCGNN can reap at least two out of the three
above-mentioned benefits of Subgraph Centralization if
it is integrated into their algorithms.
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