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Abstract

We study inductive matrix completion (matrix completion
with side information) under an i.i.d. subgaussian noise as-
sumption at a low noise regime, with uniform sampling of the
entries. We obtain for the first time generalization bounds with
the following three properties: (1) they scale like the standard
deviation of the noise and in particular approach zero in the
exact recovery case; (2) even in the presence of noise, they
converge to zero when the sample size approaches infinity;
and (3) for a fixed dimension of the side information, they
only have a logarithmic dependence on the size of the mat-
rix. Differently from many works in approximate recovery,
we present results both for bounded Lipschitz losses and for
the absolute loss, with the latter relying on Talagrand-type in-
equalities. The proofs create a bridge between two approaches
to the theoretical analysis of matrix completion, since they
consist in a combination of techniques from both the exact
recovery literature and the approximate recovery literature.

Introduction
Matrix Completion (MC), the problem which consists in
predicting the unseen entries of a matrix based on a small
number of observations, presents the rare combination of
(1) a rich mathematical playground rife with fundamental
unsolved problems, and (2) a wealth of unexpected applica-
tions in lucrative and meaningful fields, from Recommender
Systems (Yao and Kwok 2019; Chen and Li 2017; Aggarwal
2016) to the prediction of drug interaction (Li et al. 2015).

One of the most celebrated algorithms for standard matrix
completion is the Softimpute algorithm (Mazumder, Hastie,
and Tibshirani 2010), which solves the following optimiza-
tion problem:

min
ZPRmˆn

1

2
}PΩpZ ´ Rq}2Fr ` λ}Z}˚, (1)

where PΩ denotes the projection on the set Ω of observed
entries, R is the ground truth matrix, } .}˚ denotes the nuclear
norm (the sum of the matrix’s singular values) and } .}Fr
denotes the Frobenius norm. The idea of the algorithm is
to encourage low-rank solutions in a similar way to how L1

*Corresponding author
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

regularization encourages component sparsity. The parameter
λ must be tuned with cross-validation.

Inductive matrix completion (IMC) (Herbster, Pasteris,
and Tse 2019; Zhang, Du, and Gu 2018; Menon and Elkan
2011; Chen et al. 2012) is another closely related model
which assumes that additional information is available in
the form of feature vectors for each user (row) and item
(column). It assumes that the side information is summarized
in matrices X P Rmˆa and Y P Rnˆb. IMC then optimizes
the following objective function

min
MPRaˆb

1

N
}PΩpXMY J ´ Rq}2Fr ` λ}M}˚. (2)

An interesting question is whether one can provide sample
complexity guarantees for the optimization problem above.
Typically, doing so requires minor modification to the prob-
lem for technical convenience. There are several such ana-
logues optimization problems (1) and (2), depending on the
type of statistical guarantee expected and the assumptions:
in exact recovery (with the assumption of perfectly noise-
less observations), the Frobenius norm is replaced by a hard
equality constraint, whilst in approximate (noisy) recovery,
the nuclear norm regrulariser is replaced by a hard contraint.

More precisely, exact recovery results study the following
hard version of the optimization problem:

min
ZPRmˆn

}Z}˚ subject to

Zi,j “ Ri,j @pi, jq P Ω. (3)

In the case of IMC, the equivalent hard version is:

min
MPRaˆb

}M}˚ subject to

rXMY Jsi,j “ Ri,j @pi, jq P Ω. (4)

The study of problem (3) is the earliest branch of the related
literature: it was shown in a series of papers (Candès and Tao
2010; Candès and Recht 2009; Recht 2011, to name but a
few) that if the number of samples is ě rOpnrq (where r is
the rank and n is the size of the matrix, i.e. the number of
rows or columns, which ever is larger), then it is possible
to recover the whole matrix exactly with high probability as
long as the entries are sampled uniformly at random. There
has also been some more recent interest in the problem (4):
it was shown in (Xu, Jin, and Zhou 2013) that assuming the
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side information X,Y is made up of orthonormal columns,
exact recovery is possible as long as the number of samples
N “ |Ω| satisfies rOparq ď N ď rOpabrq. Here, the rO
notation hides logarithmic factors in all relevant quantities
(including the size m ˆ n of the matrix).

Approximate recovery results typically study modified
problems such as the problem below, for which Equation (1)
can be interpreted as a Lagragnian form):

min
Z

1

|Ω|

ÿ

pi,jqPΩ

ℓpRi,j , Zi,jq subject to

}Z}˚ ď M, (5)

for some loss function ℓ which is typically assumed to be
bounded and Lipschitz, and some constant M which must
be tuned through cross-validation in a way analogous to the
tuning of λ in equation (1) in real-life applications. In the
case of IMC, the equivalent problem is:

min
M

1

|Ω|

ÿ

pi,jqPΩ

ℓprXMY Jsi,j , Zi,jq subject to

}M}˚ ď M. (6)

Approaching the problem this way allows one to deploy the
machinery of Rademacher complexities from traditional stat-
istical learning theory to obtain uniform bounds on the gener-
alization gap of any predictor in the given class. Using such
techniques, bounds of rO

`
a

nr
N

˘

(resp. rOpa2r{
?
Nq, more

recently rO
`
a

ar
N

˘

) were shown for approximate recovery
MC (resp. IMC) under uniform sampling (MC: see (Shamir
and Shalev-Shwartz 2011, 2014), IMC, see (Chiang, Dhil-
lon, and Hsieh 2018; Ledent et al. 2021), cf. also related
works). In the distribution-free case, the corresponding rates

are rO

ˆ

b

n3{2r1{2

N

˙

and rO

ˆ

b

a3{2r1{2

N

˙

.

The above rates do not make any assumptions on the noise
whatsoever, and depend only on explicit dimensional quantit-
ies: they are classified as "uniform convergence" bounds in
the classic paradigm of statistical learning theory. In particu-
lar, while they do also apply to the noiseless case, they are
subsumed by the exact recovery results in this case provided
the exact recovery threshold is reached.

Thus the most striking hole in the existing theory is the
chasm between exact recovery and approximate recovery in
Inductive Matrix Completion: on the one hand, we know that
if the entries are observed exactly, solving problem (4) will
eventually recover the whole matrix exactly with high prob-
ability given enough entries. On the other hand, we know
from the approximate recovery literature that regardless of
the noise distribution, solving a properly cross-validated ver-
sion of problem (6) will allow us to approach the Bayes
error at speed at least 1{

?
N as we observe more entries. It

seems reasonable to expect that in real life, neither of these
approaches fully explains the statistical generalization land-
scape of the problem: we never expect to observe the entries
exactly, and the ground truth is probably not exactly low-rank
either, but we still do not expect convergence to the Bayes
error to be as slow as in the worst case. What would be more

reasonable to expect is a sharp decline of the error around
a threshold value before which no method can work even
if the entries are observed exactly, followed by a slower de-
cline as the model refines its predictions and evens out the
noise in the observations. This can be observed practically as
well, as can be seen from Figure 1 in the experiments section:
the decay of the error as the number of samples increases is
neither convex (unlike the functions 1{

?
N and 1{N ), nor

completely abrupt (as exact recovery results suggest), which
indicates the presence of a threshold phenomenon.

In this paper, we theoretically capture this phenomenon
through generalization error bounds for the solutions to prob-
lem (2) when the ground truth matrix is observed with some
subgaussian noise of subgaussianity constant σ. In addition,
our results completely remove the orthogonality assumptions
on the side information matrices X,Y which are present in
the related work (Xu, Jin, and Zhou 2013), thus improving
the state of the art even in the exact recovery case.

In summary, we make the following important contribu-
tions:

1. We prove (cf. Theorem 1) that exact recovery is possible
for IMC (when the entries are observed exactly) with
probability 1 ´ ∆ given rO

`

µ5r2pa ` bqσ´4
0 log

`

mn
∆

˘˘

samples or more. This is a significant extension of the
results in (Xu, Jin, and Zhou 2013) in that we remove
most many of their assumptions. In the formula above, µ
is a measure of incoherence, and σ0 denotes the smallest
singular value of X or Y assuming they are normalized
so that the largest singular value is 1 in each case. This
means that after suitable scaling, σ0 can be replaced by
the ratio between the largest and smallest singular values
of either X or Y . The presence of this factor underpins
one of the main differences between (Xu, Jin, and Zhou
2013) and our work. Indeed, the most limiting assumption
in (Xu, Jin, and Zhou 2013) is that the columns of the side
information matrices X and Y are orthonormal, which is
equivalent to assuming that σ0 “ 1.

2. We experimentally observe the two-phase phenomenon
described above via synthetic data experiments.

3. We prove generalization bounds (cf. Theorem 2) which
capture this phenomenon in the case of bounded loss
functions such as the truncated L2 loss. Indeed, we
show that as long as N exceeds the threshold from
the exact recovery result, the expected loss scales as
rO
´

σ´2
0 σ µ

?
a3b?
N

log3pN{∆q

¯

, where σ is the subgaus-
sianity constant of the noise. If σ is very small, this implies
that before the exact recovery threshold (ERT) is reached,
the best available bounds are the uniform convergence
bounds (which are vacuous at that regime), whereas as
soon as the ERT is crossed, our bounds become valid
and already have a small value, which continues to drop
further as the number of samples increases. This partially
explains the sharp drop in the reconstruction error around
the ERT even in the noisy case.

4. Using Talagrand-type inequalities, we further prove a sim-
ilar result (cf. Theorem 3) which applies to the absolute
loss ℓpx, yq “ |x´y|, despite the fact that it is unbounded.
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Note as a side benefit that both of the last two results apply
to the Lagrangian formulation of the IMC problem, unlike
most of the existing literature on approximate recovery.

Our second result creates a bridge between the approxim-
ate recovery literature and the exact recovery literature: as the
subgaussianity constant of the noise σ converges to zero, so
does the error: the result then reduces to our exact recovery
result. Furthermore, our proof techniques also marry both
approaches: we rely both on the geometry of dual certific-
ates (the tool of choice in the exact recovery literature) and
Rademacher complexities to reach our result. Beyond our
current preliminary results, we believe that the direction we
initiate here will prove fertile and that many improved results
can be proved, bringing us closer to a complete understanding
of the sample complexity landscape of nuclear norm based
Inductive Matrix Completion.

Related Work
Perturbed Exact Recovery with the Nuclear Norm: For
Matrix Completion without side information, bounds which
capture the two-phase phenomenon by incorporating a mul-
tiplicative factor of the the variance of the noise have
been shown: in (Candès and Plan 2010), a bound of order

O

ˆ

b

n3

N σ `σ

˙

is shown for the L2 generalisation error

of matrix completion with noise of variance σ (Cf. equation
III.3 on page 7). The proof relies on a perturbed version
of the exact recovery arguments presented in (Candès and
Tao 2010). The result considers a different loss function and
does not consider side information and the proof is purely
based on directly computing various norms without relying
on Rademacher complexities. In a recent and very impress-
ive contribution (Chen et al. 2020) provided some bounds
in the same setting with a finer multiplicative dependency
on the size of the matrix n that matches the order of mag-
nitude of the exact recovery threshold (when expressed in
terms of sample complexity). The proof is very involved and
contrary to our work, the results do not apply to inductive
matrix completion.
Exact Recovery with the Nuclear Norm: In (Recht 2011),
extending and simplifying earlier work of (Candès and Tao
2010; Candès and Recht 2009), the author proves that exact
recovery is possible for matrix completion with the nuclear
norm with rOpnrq entries. The result is extended to the case
where side information is present in (Xu, Jin, and Zhou 2013)
where it is shown exact recovery is possible with rOppa`bqrq

observations, where a, b are the sizes of the side informa-
tion. However, the result only applies as long as this side
information consists of orthonormal columns, significantly
reducing the applicability. Other variations of the results exist
with improved dependence on certain parameters such as the
incoherence constants (Chen 2015).
Perturbed Exact Recovery for other Algorithms in learn-
ing settings other than nuclear norm minimization, there is
some work with low-noise regimes where the bounds also
approach zero as the noise approaches zero (for large enough
N ). For instance, some work on max norm regularisation
has this property (Cai and Zhou 2016). Some results of order

rO
`

σ
a

nr
N

˘

were also obtained for matrix completion with a
special algorithm that requires explicit rank restriction (Ke-
shavan, Montanari, and Oh 2009; Wang et al. 2021).
Approximate Recovery Results: There is a wide body
of works proving uniform-convergence type generalization
bounds for various matrix completion settings. the vast ma-
jority are of order rOp1{

?
Nq, with most bounds differing

from each other in their dependence on other quantities such
as m,n, r, µ, σ and (in IMC) a, b. For matrix completion,
(Shamir and Shalev-Shwartz 2011, 2014) proves bounds of

order rO

ˆ

b

n3{2r1{2

N

˙

in the distribution-free setting with

replacement, as well as rO

ˆ

nr logpnq

N `

b

logp1{δq

N

˙

in the

transductive setting (i.e. for uniform sampling without re-
placement). In the case of inductive matrix completion, rates

of rO
´
b

rab
N

¯

were shown in (Chiang, Dhillon, and Hsieh
2018; Chiang, Hsieh, and Dhillon 2015; Giménez-Febrer,
Pagès-Zamora, and Giannakis 2020) in a distribution-free
situation, whilst (Ledent et al. 2021) provides rates of order

rO
`
a

ra
N

˘

and rO

ˆ

b

r1{2a3{2

N

˙

in the uniform sampling and

distribution-free cases respectively. Similar rates were impli-
citly proved in the more algorithmic contribution (Ledent,
Alves, and Kloft 2021) under very strict assumptions on the
side information X,Y . It is also worth noting that although
the component of our result which involves the subgaussian-
ity of the noise is vacuous when the size of the side inform-
ation approaches that of the matrix, that is also the case of
every approximate recovery result for IMC to date except
the very recent paper (Ledent et al. 2021), whose results are
also uniform convergence bounds. Our bounds are far tighter
those in all of those works when the noise is small.
Matrix Sensing: Matrix sensing is a learning setting with
some similarities to inductive matrix completion where rank-
one measurements xvwJ, Ry of an unknown matrix R are
taken, and the matrix R is estimated. There are a wide variety
of results depending on the assumptions on the matrix and the
sampling distribution (Gross et al. 2010; Kueng, Rauhut, and
Terstiege 2017; Tanner, Thompson, and Vary 2019; Zhong,
Jain, and Dhillon 2015). In most cases, the measurements
are sampled i.i.d. from some distribution, which introduces
some substantial technical differences to the IMC setting.
Often, the underlying measurements need to satisfy the re-
stricted isometry property, which is not directly comparable
to the joint incoherence assumptions on the side information
matrices made in this paper and in the IMC literature. In ad-
dition, most results relate to pure exact recovery rather than a
low-noise model such as the one studed here.

Notation and Setting
We assume there is an unknown ground truth matrix R P

Rmˆn that we observe noisily. To draw a sample from the
distribution, we first sample an entry ξ “ pξ1, ξ2q “ pi, jq

from the uniform distribution over rmsˆrns. We then observe
the quantity Rpi,jq ` ζpi,jq where ζpi,jq is the noise, whose
distribution can depend on the entry pi, jq. The samples are
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drawn i.i.d.
We suppose we have a training set of N samples and we

write Ω for the set of sampled entries ξ1, ξ2, . . . , ξN . It is pos-
sible to sample the same entry several times (which results in
potentially different observations due to the i.i.d. nature of
the noise). However, for simplicity of notation we will some-
times write

ř

pi,jqPΩ fpRpi,jqq instead of
ř

ξPΩ fpRξ1,ξ2 , ξq

as long as no ambiguity is possible. We are given two side
information matrices X P Rmˆa and Y P Rnˆb. Throughout
this paper, } .} denotes the spectral norm, } .}Fr denotes the
Frobenius norm, } .}˚ denotes the nuclear norm, and for any
integer l, rls “ t1, 2, . . . , lu.

We make the following assumptions throughout the paper:

Assumption 1 (Realizability). There exists a matrix M˚ P

Raˆb such that R “ XM˚Y
J.

Assumption 2 (Assumptions on the subgaussian noise). We
assume the noise is σ subgaussian: Epζq “ 0 and Pp|ζ| ě

tq ď 2 expp´t2{p2σ2qq for all t.

We will write sX and sY for the matrices obtained by nor-
malizing the columns of X,Y and we will write Σ1,Σ2 for
the diagonal matrices containing the singular values of X,Y .
Similarly we will also write Ď

ĎX “ sXΣ1 etc.
We also make the following incoherence assumption.

Assumption 3. There exists a constant µ such that the fol-
lowing inequalities hold.

}X̄}8 ď

c

µ

m
, }Ȳ }8 ď

c

µ

n
,

}A}8 ď

c

µ

a
, }B}8 ď

c

µ

b
, (7)

Here the matrices A,B are from the SVD decomposition
of the ground truth core matrix M˚ “ ADBJ for some
diagonal D.

Note that we do not make the assumption that the matrices
X,Y have orthonormal columns (and in particular constant
spectrum) as in (Xu, Jin, and Zhou 2013). Therefore, to cope
with such extra difficulty (7) is needed in the general non
orthogonal case. Whilst that reference simply assumes that
the column spaces of X,Y are µ incoherent, our assumption
requires that each individual eigenspace corresponding to
each singular value of X , Y and M be µ-incoherent. In the
supplementary we explain to what extent this slightly stronger
assumption is necessary in the non-orthogonal case.
Optimization problem: whether considering inductive mat-
rix completion or matrix completion with the nuclear norm,
it is common to assume that the entries are sampled exactly
(without noise) and that the algorithm used to recover the
ground truth is the following:

argmin
`

}M}˚ s.t. @pi, jq P Ω, rXMY Jsi,j “ Ri,j

˘

. (8)

This is also the optimization problem we study in the exact
recovery portion of our results.

In real situations where there is some noise, some relaxa-
tion of the problem is necessary. From an optimization per-
spective, the most common strategy is to minimize the L2

loss on the observed entries plus a nuclear norm regularisa-
tion term:

min
1

N

ÿ

ξPΩ

ˇ

ˇrRξ ` ζξs ´ XMY J
ˇ

ˇ

2
` λ}M}˚, (9)

where λ is a regularization parameter. The problem we will
consider in this paper is the one defined by equation (9). We
will also need to impose the following conditions on λ:

σ σ2
0

C
?
aN

ď λ ď
C σ σ2

0?
aN

(10)

for some constant C. It is assumed that λ has been tuned to
reach a value which satisfies these conditions.

Main Results
Exact Recovery
We have the following extension of the main theorem in (Xu,
Jin, and Zhou 2013):
Theorem 1. Assume that the entries are observed without
noise and that the strong incoherence assumption (7) is satis-
fied for a fixed µ. For any ∆ ą 0 as long as

N ě rO
´

µ5r2pa ` bqσ´4
0 log

´mn

∆

¯¯

,

with probability ě 1 ´ ∆ we have that any solution Mmin to
the optimization problem below

Mmin P argmin }M}˚ s.t.

@pi, jq PΩ, rXMY Jsi,j “ Ri,j , (11)

satisfies
XMminY

J “ R.

Here, as usual, the rO notation hides further log terms in the
quantities m,n, σ´1

0 , logpmn
∆ q.

Remark: The above optimization problem can be seen as
a limiting case of (9) with λ Ñ 0.
Remark: The above theorem has several advantages over the
main theorem in (Xu, Jin, and Zhou 2013):
1. It is expressed entirely in terms of a fixed high probability

1´∆ (as opposed to relying on dimensional quantities in
the expression for the high probability).

2. It works without assuming that the side information
matrices have unit singular values. This is quite a sig-
nificant improvement as the result in (Xu, Jin, and Zhou
2013) only holds when the side information matrices be-
long to a given set of measure zero. There is a quadratic
dependence on σ´1

0 (the inverse of the smallest singular
value of either X or Y ), which matches the dependence
in (Jain and Dhillon 2013) (although that paper works
with a completely different optimization problem away
from traditional nuclear norm regularization).

3. It holds for any value of N , whereas the result in (Xu,
Jin, and Zhou 2013) required N ď rOpabrq and the result
in (Recht 2011) (which concerns standard MC without
side information) required N ď mn.
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Approximate Recovery in a Low-Noise Setting
Below we present theorems which provide generalization
bounds for the IMC model (2) with the favourable property
that they improve when the noise is reduced, and they reduce
exactly to the exact recovery result when σ “ 0.

The following theorem provides a generalization bound

of order rO
´

a3{2
?
bµσ´2

0 σ
b

1
N

¯

for a bounded Lipschitz
loss.
Theorem 2. Let ℓ be an Lℓ-Lipschitz loss function bounded
by Bℓ. Assume that condition (10) on λ holds. For any ∆ ą 0,
with probability 1 ´ ∆ as long as

N ě rO
´

µ5r2pa ` bqσ´4
0 log

´mn

∆

¯¯

,

we have the following bound on the performance of the solu-
tion pR to the optimization problem (2):

Epi,jq„U pℓp pRpi,jq, rR ` ζspi,jqqq ď (12)

O

˜

a3{2
?
bµσ´2

0 σ Lℓ log
3

ˆ

Nmn

∆

˙

c

1

N
` Bℓ

logp 1
∆ q

N

¸

,

where U stands for the uniform distribution on the entries
rms ˆ rns.

Next, our proof techniques also allow us to prove results
which apply to the absolute value loss, despite the fact that it
is unbounded. Indeed, a bound of order

?
N on the nuclear

norm of the difference between the solution and the ground
truth is a byproduct of the approximations we perform be-
fore applying Rademacher arguments. It can also be used to
provide a bound on the effective value of Bℓ, still yielding
an overall rate of 1{

?
N thanks to the fact that the last term

in equation (12) has the strong decay 1{N . This is a result
of our use of the more fine-grained, talagrand-type results
from (Bartlett, Bousquet, and Mendelson 2005) and would
not have been possible if we had used standard results on
Rademacher complexities such as (Bartlett and Mendelson
2001).
Theorem 3. Assume that condition (10) on λ holds. For any
∆ ą 0, with probability 1 ´ ∆ as long as

N ě rO
´

µ5r2pa ` bqσ´4
0 log

´mn

∆

¯¯

,

we have

Epi,jq„U

ˇ

ˇ

ˇ

pRpi,jq ´ rR ` ζspi,jq

ˇ

ˇ

ˇ
ď

O

˜

a3{2
?
bµσ´2

0 σ Lℓ log
3

ˆ

Nmn

∆

˙

c

1

N

¸

. (13)

Here, U stands for the uniform distribution on the entries
rms ˆ rns.

Proof Strategy
The main ideas of our proof are (1) to redefine a norm on
Rmˆn matrices that captures the effect of the side informa-
tion matrices, and (2) to combine proof techniques from both

the approximate recovery literature and the exact recovery
literature: we perturb the analysis from the exact recovery
literature to obtain a bound on the discrepancy between the
ground truth and the recovered matrix, and then bootstrap
the argument by exploiting the i.i.d. nature of the noise and
results from traditional complexity analysis to yield a gener-
alization bound.

In this informal description, we sometimes write formulae
with such as PΩp pR ´ Rq, denoting the projection of pR ´ R
onto the set of matrices whose non zero entries are in Ω,
which requires assuming that each entry was sampled only
once. However, this assumption is made purely for simplicity
of exposition and it is not made or needed in the formal
proofs in the supplementary.

Background on Existing Techniques
The main strategy of the proof of the exact recovery results
in both (Xu, Jin, and Zhou 2013) and (Recht 2011), which
goes back to earlier work (Candès and Tao 2010; Candès
and Recht 2009; Candès and Plan 2010) is to use the duality
between the nuclear norm and the spectral norm to study the
behavior of the nuclear norm around the ground truth.

It is easiest to explain the strategy in the case of standard
matrix completion (as in Recht 2011; Candès and Plan 2010
etc.). For a given matrix R with singular value decomposition
EDFJ, if the columns and rows of W are orthogonal to
those of R and it satisfies }W } ď 1, the matrix Y :“ EFJ `

W is a subgradient to the nuclear norm at R, and a solution
to the maximization problem

max
Y

xY, Ry subject to

}Y} ď 1.

The subgradients as above allow us to understand the local
behavior of the nuclear norm around the ground truth, and
one of the most important observations in the early exact
recovery analysis of matrix completion is that exact recovery
is guaranteed if there exists such a subgradient whose non
zero entries are all in the set of observed entries and whose
spectral norm is ă 1. A subgradient with this property is
referred to as a dual certificate. Indeed, we have the following
result from (Candès and Plan 2010):
Lemma 4. If there exists a dual certificate Y , then for any
Z with Zi,j “ 0 @pi, jq P Ω we have

}R ` Z}˚ ě }R}˚ ´ p1 ´ PTJ pYqq}PTJ pZq}˚. (14)

In particular, R is the unique solution to the optimization
problem (8). Here PT pZq “ ZPF ` PEZ ´ PEZPF where
PE and PF are the projection operators onto the column and
row spaces of the ground truth respectively.

The high-level intuition behind such a result is that if the
set of "observable" matrices whose entries are constrained to
lie in the set of observed entries is big enough to contain suit-
able subgradients, then it is big enough to make the solution
to (8) unique.

Whilst most of the early works in the field (Candès and Tao
2010; Candès and Recht 2009) work with sampling without
replacement and rely on complex combinatorial arguments
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to prove the existence of a dual certificate, the breakthrough
in the work of (Recht 2011) is to sample with replacement
(simplifying the concentration arguments) and to show that
the existence of an approximate dual certificate is also enough
to guarantee uniqueness. More precisely, let Z P RΩJ

be a
matrix with zeros in all entries outside Ω, and let U,UJ be the
canonical subgradients of R and PT pZq respectively. Assume
there is an approximate dual certificate Y with the property
that }U ´ PT pYq}Fr is very small and PTJ pYq ă 1{2, then
we have

}R ` Z}˚

ě
@

U ` UJ, R ` Z
D

“ }R}˚ `
@

U ` UJ, Z
D

“ }R}˚ ` xU ´ PT pYq, PT pZqy

`
@

UJ ´ PTJ pYq, PTJ pZq
D

ě }R}˚ ´ }U ´ PT pYq}Fr}PT pZq}Fr

` }PTJ pZq}˚ p1 ´ }PT pYq}qq . (15)
As long as }PT pYq} ă 1, }U ´ PT pYq}Fr is small enough
and }PT pZq}˚ is not too large in relation to }PTJ pZq}˚, the
solution will thus be unique.

In (Xu, Jin, and Zhou 2013) these ideas are extended to the
case where side information matrices X,Y with orthonormal
columns is provided. The key here is that with this assumption
on the columns, }XMY J}˚ “ }M}˚ for any matrix M ,
so that most of the arguments above still hold with minor
modification, even after replacing the projection operator PT

by its inductive analogue PT pZq “ PXZPF ` PEZPB ´

PEZPF .

Removing the Homogeneity Assumption: Proof
Strategy
In our case, where X,Y are arbitrary (they can without
loss of generality be assumed to have orthogonal columns,
though not necessarily of norm 1), it is no longer true that
}XMY J}˚ “ }M}˚ for any M . To tackle this issue, we
define a norm }Z}I,˚ on the set of matrices Rmˆn which
equals the minimum possible nuclear norm of a matrix M
such that XMY J “ Z:

}Z}I,˚ “ min
`

}M}˚ : XMY J “ Z
˘

. (16)
A key observation is that both this norm and its dual can

be computed easily. Indeed, it is easy to see that }Z}I,˚ “

Σ2
1X

JZY Σ2
2 where Σ1,Σ2 are matrices containing the sin-

gular values of X,Y . Furthermore, we also show in the sup-
plementary that in fact the dual norm } .}I,σ is simply the
spectral norm of the matrix XJRY . These modifications
mean that during the proof, we must manipulate 5 different
norms (} .}, } .}˚, } .}I,σ, } .}I,˚ and } .}Fr), sometimes incur-
ring factors of the smallest singular value σ0 of X,Y .

We note that removing the homogeneity assumption has
consequences in the proofs, including the need for a stronger
incoherence assumption.

Fast Decay in Low-Noise Settings: Proof Strategy
In addition, we need to account for the noise, thus instead of
perturbing the matrix R only by a matrix Z with PΩpZq “ 0,

we also perturb it by a matrix H with PΩJ pHq “ 0 cor-
responding to the difference between the recovered matrix
and the ground truth on the observed entries. Thus our re-
covered matrix, the solution to algorithm (2), pR, can be writ-
ten pR “ R ` H ` Z.

Our next step is to perform a perturbed version of the cal-
culation in equation (15) taking into account the difference
H “ PΩp pR ´ Rq. This is the calculation performed in the
proof of Lemma C.1. As previously we write U for a sub-
gradient of }R}I,˚ and UJ for a subgradient of }PT pZq}I,˚.
We start by expressing } pR}I,˚ as

@

R ` H ` Z,U ` UJ
D

and after some calculations we obtain the following conclu-
sion:

}R}I,˚ ě } pR}I,˚

ě }R}I,˚ ´ 2}H}I,˚ `
1

4
}PTJ pZq}I,˚, (17)

which holds as long as several concentration phenomena
occur (which will happen with high probability as long as N
is large enough).

Our next step is to bound }H}I,˚. With high probability,
the noisily observed entries of R on Ω (the Rξ ` ζξ ) are
close to the actual entries R, which in turn implies that the
entries of H will not be too large (see the beginning of the
proof of Theorem D.2).

This yields a bound of order rOp
?
Nνq for }H}I,˚, and

then via equation (17), on }PT pZq}˚. Together with further
modifications, this eventually yields a bound on the nuclear
norm of Z `H “ pR´R. This means that our perturbed ver-
sion of the exact recovery results places the recovered matrix
pR inside of the smaller function class of matrices within a
bounded spectral norm of the ground truth matrix. At this
point, we can leverage classical results on the Rademacher
complexity of the function class of matrices with bounded
nuclear norm (see Lemma 5 below for the inductive version
we use in practice) to further bound the generalization gap.
Several further steps are needed to process the final result
into an elegant formula that holds for any value of N . The
details are in the supplementary material.
Lemma 5 (Chiang, Dhillon, and Hsieh 2018). The function
class

␣

XMY J : }M}˚ ď M
(

satisfies

RpFMq ď xyM
c

1

N
, (18)

where x :“ }XJ}2,8 and y :“ }Y J}2,8.

Proof. Follows directly from Theorem 1 in (Kakade, Srid-
haran, and Tewari 2009), together with the duality between
the nuclear and spectral norms (Fazel, Hindi, and Boyd 2001).
Cf. also (Chiang, Dhillon, and Hsieh 2018).

Experiments
In this paper, we have posited that an accurate understand-
ing of the sample complexity landscape of inductive matrix
completion requires treating the noise component differently
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Figure 1: } pR ´ R}Fr as a function of N, σ

from the ground truth entries for the purposes of complexity.
In this section we present the experiments we ran to confirm
that a two-phase phenomenon as suggested by our bounds
does in fact occur in practice.

We considered random matrices of size 100 ˆ 100 and of
rank 101, and created random orthonormal side information
of rank 40, ensuring that the singular vectors of the ground
truth matrix are in the span of the relevant side information,
but with the orientation being otherwise uniformly random.
The ground truth matrices were normalized to have Frobenius
norm 100, and we then added i.i.d. Np0, σ2q gaussian noise
to each observation. We performed classic inductive matrix
completion (with the square loss) on the resulting training
set, cross-validating the parameter λ on a validation set, and
evaluated the RMSE distance between the resulting trained
matrix and the ground truth. We performed this whole pro-
cedure for a wide range of different values for the number of
samples N . For each value of N we perform the procedure
on 40 different random matrix and side information.

The results are presented in Figure 1 below. The graph on
the left contains box plots for our simulation with σ “ 0.15
whilst the graph on the right presents our results, averaged
over the 40 simulations, for several values of σ.

As can be observed in the figure, the graph of the error
as a function of N is not convex, despite the fact that tradi-
tional approximate recovery bounds rOp1{

?
Nq are convex.

Instead, the graph looks like a sigmoid: we can clearly ob-
serve a thresholding phenomenon where the performance is
very poor initially, but very quickly improves past a minimum
number of entries. Furthermore, as can be expected, after the
threshold is crossed the error decreases slowly (at least as
rOp σ?

N
q as per the bounds in Theorem 2 above), confirm-

ing that inductive matrix completion in low-noise settings
exhibits a two-phase phenomenon matching our theoretical
results. Furthermore, the fact that the post threshold error
curve scales as σ is also apparent from the graphs.

1To generate such a random matrix, we generate matrices U, V P

R100ˆ10 with i.i.d. gaussian entries, then we form the matrix UV J

and we normalize it to have Frobenius norm 100.

Conclusion and Future Directions

In this paper, we have studied Inductive Matrix Completion
with nuclear norm regularisation in low-noise regimes. Our
first contribution is an exact recovery result which general-
izes the existing ones to the case where the side information
is no longer assumed to be orthonormal, and to an arbit-
rary sampling regime (previously, the number of samples
was required to be bounded above by rOpabrq). Our second
contribution consists in generalization bounds composed of
two components: (1) the requirement that the number of
samples should exceed a given threshold and (2) a term of

order rOpσ σ´2
0 a3{2

?
b log3pN{∆q

b

1
N q (ignoring incoher-

ence constants and other constant quantities), which is dir-
ectly proportional to the subgaussianity constant σ of the
noise. In particular, the result forms a bridge between exact
recovery results and approximate recovery results: at the re-
gimes where exact recovery is possible, the error converges
to zero when the noise converges to zero.

We believe our result and proof strategy open the door to a
new and unexplored direction of research. Possible future dir-
ections include improving the dependence on N from 1{

?
N

to 1
N , extending the results to non-trivially non uniform dis-

tributions or providing analogues of our results for other
low-rank learning problems such as density estimation (Song
et al. 2014; Vandermeulen and Ledent 2021; Kargas and
Sidiropoulos 2019; Anandkumar et al. 2014; Vandermeulen
2020; Amiridi, Kargas, and Sidiropoulos 2020, 2021) or more
complex recommender systems models that involve impli-
cit feedback or graph/cluster information (Zhang and Chen
2020; Alves et al. 2020; Wu et al. 2021; Steck 2019; Vančura
et al. 2022; Lin et al. 2022; Shen et al. 2021). Improving the
dependence on a, b to match the scaling of the ERT is also a
very ambitious and interesting aim.

Acknowledgements

Rodrigo Alves thanks Recombee for supporting his re-
search. Marius Kloft acknowledges support by the Carl-Zeiss
Foundation, the DFG awards KL 2698/2-1, KL 2698/5-1,
KL 2698/6-1, and KL 2698/7-1, and the BMBF awards
01|S18051A, 03|B0770E, and 01|S21010C.

8453



References
Aggarwal, C. C. 2016. Recommender Systems: The Text-
book. Springer Publishing Company, Incorporated, 1st edi-
tion. ISBN 3319296574.
Alves, R.; Ledent, A.; Assunção, R.; and Kloft, M. 2020. An
Empirical Study of the Discreteness Prior in Low-Rank Mat-
rix Completion. Proceedings of Machine Learning Research
(PMLR): NeurIPS 2020 Workshop on the Pre-registration
Experiment: An Alternative Publication Model For Machine
Learning Research.
Amiridi, M.; Kargas, N.; and Sidiropoulos, N. D. 2020. Low-
rank Characteristic Tensor Density Estimation Part I: Found-
ations. arXiv e-prints, arXiv:2008.12315.
Amiridi, M.; Kargas, N.; and Sidiropoulos, N. D. 2021. Low-
rank Characteristic Tensor Density Estimation Part II: Com-
pression and Latent Density Estimation. arXiv e-prints,
arXiv:2106.10591.
Anandkumar, A.; Ge, R.; Hsu, D.; Kakade, S. M.; and Tel-
garsky, M. 2014. Tensor Decompositions for Learning Latent
Variable Models. Journal of Machine Learning Research, 15:
2773–2832.
Bartlett, P. L.; Bousquet, O.; and Mendelson, S. 2005. Local
Rademacher complexities. The Annals of Statistics, 33(4):
1497 – 1537.
Bartlett, P. L.; and Mendelson, S. 2001. Rademacher and
Gaussian Complexities: Risk Bounds and Structural Results.
In Helmbold, D.; and Williamson, B., eds., Computational
Learning Theory, 224–240. Berlin, Heidelberg: Springer Ber-
lin Heidelberg. ISBN 978-3-540-44581-4.
Cai, T. T.; and Zhou, W.-X. 2016. Matrix completion via
max-norm constrained optimization. Electronic Journal of
Statistics, 10(1): 1493 – 1525.
Candès, E. J.; and Recht, B. 2009. Exact Matrix Completion
via Convex Optimization. Foundations of Computational
Mathematics, 9(6): 717.
Candès, E. J.; and Tao, T. 2010. The Power of Convex
Relaxation: Near-Optimal Matrix Completion. IEEE Trans.
Inf. Theor., 56(5): 2053–2080.
Candès, E.; and Plan, Y. 2010. Matrix Completion With
Noise. Proceedings of the IEEE, 98: 925 – 936.
Chen, H.; and Li, J. 2017. Learning Multiple Similarities of
Users and Items in Recommender Systems. In 2017 IEEE
International Conference on Data Mining (ICDM), 811–816.
Chen, T.; Zhang, W.; lu, Q.; Chen, K.; Zheng, Z.; and Yu, Y.
2012. SVDFeature: A Toolkit for Feature-based Collaborat-
ive Filtering. The Journal of Machine Learning Research.
Chen, Y. 2015. Incoherence-Optimal Matrix Comple-
tion. IEEE Transactions on Information Theory, 61(5):
2909–2923.
Chen, Y.; Chi, Y.; Fan, J.; Ma, C.; and Yan, Y. 2020. Noisy
matrix completion: Understanding statistical guarantees for
convex relaxation via nonconvex optimization. SIAM journal
on optimization, 30(4): 3098–3121.
Chiang, K.-Y.; Dhillon, I. S.; and Hsieh, C.-J. 2018. Using
Side Information to Reliably Learn Low-Rank Matrices from
Missing and Corrupted Observations. J. Mach. Learn. Res.

Chiang, K.-Y.; Hsieh, C.-J.; and Dhillon, I. S. 2015. Mat-
rix Completion with Noisy Side Information. In Cortes,
C.; Lawrence, N.; Lee, D.; Sugiyama, M.; and Garnett, R.,
eds., Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc.
Fazel, M.; Hindi, H.; and Boyd, S. P. 2001. A rank minim-
ization heuristic with application to minimum order system
approximation. In Proceedings of the 2001 American Control
Conference. (Cat. No.01CH37148), volume 6, 4734–4739
vol.6.
Giménez-Febrer, P.; Pagès-Zamora, A.; and Giannakis, G. B.
2020. Generalization Error Bounds for Kernel Matrix Com-
pletion and Extrapolation. IEEE Signal Processing Letters,
27: 326–330.
Gross, D.; Liu, Y.-K.; Flammia, S. T.; Becker, S.; and Eisert, J.
2010. Quantum State Tomography via Compressed Sensing.
Phys. Rev. Lett., 105: 150401.
Herbster, M.; Pasteris, S.; and Tse, L. 2019. Online Matrix
Completion with Side Information. CoRR, abs/1906.07255.
Jain, P.; and Dhillon, I. S. 2013. Provable Inductive Matrix
Completion. CoRR, abs/1306.0626.
Kakade, S. M.; Sridharan, K.; and Tewari, A. 2009. On
the Complexity of Linear Prediction: Risk Bounds, Margin
Bounds, and Regularization. In Koller, D.; Schuurmans, D.;
Bengio, Y.; and Bottou, L., eds., Advances in Neural Inform-
ation Processing Systems 21, 793–800. Curran Associates,
Inc.
Kargas, N.; and Sidiropoulos, N. D. 2019. Learning Mix-
tures of Smooth Product Distributions: Identifiability and
Algorithm. In Chaudhuri, K.; and Sugiyama, M., eds., Pro-
ceedings of the Twenty-Second International Conference on
Artificial Intelligence and Statistics, volume 89 of Proceed-
ings of Machine Learning Research, 388–396. PMLR.
Keshavan, R.; Montanari, A.; and Oh, S. 2009. Matrix Com-
pletion from Noisy Entries. In Bengio, Y.; Schuurmans,
D.; Lafferty, J. D.; Williams, C. K. I.; and Culotta, A., eds.,
Advances in Neural Information Processing Systems 22, 952–
960. Curran Associates, Inc.
Kueng, R.; Rauhut, H.; and Terstiege, U. 2017. Low rank
matrix recovery from rank one measurements. Applied and
Computational Harmonic Analysis, 42(1): 88–116.
Ledent, A.; Alves, R.; and Kloft, M. 2021. Orthogonal In-
ductive Matrix Completion. IEEE Transactions on Neural
Networks and Learning Systems, 1–12.
Ledent, A.; Alves, R.; Lei, Y.; and Kloft, M. 2021. Fine-
grained Generalization Analysis of Inductive Matrix Comple-
tion. In Ranzato, M.; Beygelzimer, A.; Dauphin, Y.; Liang,
P.; and Vaughan, J. W., eds., Advances in Neural Informa-
tion Processing Systems, volume 34, 25540–25552. Curran
Associates, Inc.
Li, R.; Dong, Y.; Kuang, Q.; Wu, Y.; Li, Y.; Zhu, M.; and Li,
M. 2015. Inductive matrix completion for predicting adverse
drug reactions (ADRs) integrating drug–target interactions.
Chemometrics and Intelligent Laboratory Systems, 144: 71 –
79.

8454



Lin, W.-Y.; Liu, S.; Ren, C.; Cheung, N.-M.; Li, H.; and
Matsushita, Y. 2022. Shell Theory: A Statistical Model of
Reality. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(10): 6438–6453.

Mazumder, R.; Hastie, T.; and Tibshirani, R. 2010. Spectral
Regularization Algorithms for Learning Large Incomplete
Matrices. J. Mach. Learn. Res., 11: 2287–2322.

Menon, A. K.; and Elkan, C. 2011. Link Prediction via
Matrix Factorization. In Machine Learning and Knowledge
Discovery in Databases, 437–452. Springer Berlin Heidel-
berg.

Recht, B. 2011. A Simpler Approach to Matrix Completion.
J. Mach. Learn. Res., 12(null): 3413–3430.

Shamir, O.; and Shalev-Shwartz, S. 2011. Collaborative
Filtering with the Trace Norm: Learning, Bounding, and
Transducing. In Proceedings of the 24th Annual Conference
on Learning Theory, volume 19 of Proceedings of Machine
Learning Research, 661–678. PMLR.

Shamir, O.; and Shalev-Shwartz, S. 2014. Matrix Completion
with the Trace Norm: Learning, Bounding, and Transducing.
Journal of Machine Learning Research, 15: 3401–3423.

Shen, W.; Zhang, C.; Tian, Y.; Zeng, L.; He, X.; Dou, W.;
and Xu, X. 2021. Inductive Matrix Completion Using Graph
Autoencoder. CoRR, abs/2108.11124.

Song, L.; Anandkumar, A.; Dai, B.; and Xie, B. 2014. Non-
parametric Estimation of Multi-View Latent Variable Models.
In Xing, E. P.; and Jebara, T., eds., Proceedings of the 31st
International Conference on Machine Learning, volume 32
of Proceedings of Machine Learning Research, 640–648.
Bejing, China: PMLR.

Steck, H. 2019. Embarrassingly Shallow Autoencoders for
Sparse Data. In The World Wide Web Conference, WWW ’19,
3251–3257. New York, NY, USA: Association for Computing
Machinery. ISBN 9781450366748.

Tanner, J.; Thompson, A.; and Vary, S. 2019. Matrix Rigidity
and the Ill-Posedness of Robust PCA and Matrix Completion.
SIAM Journal on Mathematics of Data Science, 1(3): 537–
554.
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