
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

11-2019 

ShellNet: Efficient point cloud convolutional neural networks using ShellNet: Efficient point cloud convolutional neural networks using 

concentric shells statistics concentric shells statistics 

Zhiyuan ZHANG 
Singapore Management University, zhiyuanzhang@smu.edu.sg 

Binh-Son HUA 

Sai-Kit YEUNG 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Graphics and Human Computer Interfaces Commons, and the OS and Networks Commons 

Citation Citation 
ZHANG, Zhiyuan; HUA, Binh-Son; and YEUNG, Sai-Kit. ShellNet: Efficient point cloud convolutional neural 
networks using concentric shells statistics. (2019). Proceedings of the 2019 IEEE/CVF International 
Conference on Computer Vision (ICCV), Seoul, Korea, October 27 - November 2. 1607-1616. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7943 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7943&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


ShellNet: Efficient Point Cloud Convolutional Neural Networks using

Concentric Shells Statistics

Zhiyuan Zhang1 Binh-Son Hua2 Sai-Kit Yeung3

1Singapore University of Technology and Design 2The University of Tokyo
3Hong Kong University of Science and Technology

Abstract

Deep learning with 3D data has progressed significantly

since the introduction of convolutional neural networks that

can handle point order ambiguity in point cloud data. While

being able to achieve good accuracies in various scene un-

derstanding tasks, previous methods often have low train-

ing speed and complex network architecture. In this paper,

we address these problems by proposing an efficient end-

to-end permutation invariant convolution for point cloud

deep learning. Our simple yet effective convolution opera-

tor named ShellConv uses statistics from concentric spher-

ical shells to define representative features and resolve the

point order ambiguity, allowing traditional convolution to

perform on such features. Based on ShellConv we fur-

ther build an efficient neural network named ShellNet to di-

rectly consume the point clouds with larger receptive fields

while maintaining less layers. We demonstrate the efficacy

of ShellNet by producing state-of-the-art results on object

classification, object part segmentation, and semantic scene

segmentation while keeping the network very fast to train.

Our code is publicly available in our project page 1.

1. Introduction

Convolutional neural networks (CNNs) have shown sig-

nificant success in image and pattern recognition, video

analysis, and natural language processing [18]. Extending

this success from 2D to 3D domain has been receiving great

interests. Promising results have been demonstrated for the

long-standing problem of scene understanding. Previously

a 3D scene is often represented using structured representa-

tions such as volumes [26, 21], multiple images [32, 26],

hierarchical data structures [28, 14, 35]. However, such

representations usually face great challenges from memory

consumption, imprecise representation, or lack of scalabil-

ity for tasks such as classification and segmentation.

1https://hkust-vgd.github.io/shellnet/

Figure 1. The accuracy of point cloud classification of different

methods over time and epochs. While being accurate, some meth-

ods are quite costly to train. We address this problem by Shell-

Conv, a simple yet effective convolutional operator based on con-

centric shell statistics. In both equal-time and equal-epoch com-

parisons, our method performs the best. It can achieve over 80%

accuracy within two minutes, and reach 90% on the test dataset

after only 15 minutes of training.

Recently, directly consuming point clouds using neural

networks has shown great promises [25, 27, 42, 20]. Point-

Net [25] pioneers this direction by learning with a symmet-

ric function to make the network robust to point order am-

biguity. Many subsequent works extend this direction by

designing convolution that better captures local features of

a point cloud. While such efforts lead to improved scene un-

derstanding performance, there is often a trade-off between

network complexity, training speed, and accuracy. For ex-

ample, the follow-up work PointNet++ [27] segments point

cloud into smaller clusters and applies PointNet locally in a

hierarchical manner. While achieving better result, the net-

work is more complicated with reduced speed. Pointwise

convolution [12] is simple to implement but inaccurate. Spi-

derCNN [42] extends traditional convolution on 2D images

to 3D point clouds by parameterizing a family of convolu-

tion filters. Although high accuracy is achieved, more time

is taken for training. PointCNN [20] achieves the state-of-

the-art accuracy via learning a local convolution order but

its training is slow to converge. In general, designing a con-

volution for point cloud that can strike a good balance be-

tween such performance factors is a challenging problem.

1607



Based on these observations, we propose a novel ap-

proach to consume point clouds directly in a very simple

neural network which is able to achieve the state-of-the-art

accuracy with very fast training speed, as shown in Figure 1.

Our idea is to split a local point neighborhood such that

point neighboring and convolution with points can be per-

formed efficiently. To achieve this, at each point, we query

the point neighborhood and partition it with a set of concen-

tric spheres, resulting in concentric spherical shells. In each

shell, the representative features can be extracted based on

the statistics of the points inside. By using ShellConv as

the core convolution operator, an efficient neural network

called ShellNet can be constructed to solve 3D scene un-

derstanding tasks such as object classification, object part

segmentation, and semantic scene segmentation.

In general, the main contributions of this work are:

• ShellConv, a simple yet effective convolution operator

for orderless point cloud. The convolution is defined on

a domain that can be partitioned by concentric spherical

shells, simultaneously allowing efficient neighbor point

query and resolving point order ambiguity by defining a

convolution order from the inner to the outer shells;

• ShellNet, an efficient neural network architecture based

on ShellConv for learning with 3D point clouds directly

without having any point order ambiguity;

• Applications of ShellNet on object classification, object

part segmentation, and semantic scene segmentation that

achieves the state-of-the-art accuracy.

2. Related Works

Recent advances in computer vision witness the growing

availability of 3D scene datasets [2, 39, 44], leading to deep

learning techniques to tackle the long-standing problem of

scene understanding, particularly object classification, ob-

ject part and scene segmentation. In this section, we review

the state-of-the-art research in deep learning with 3D data,

and then focus on techniques that enable feature learning on

point clouds for scene understanding tasks.

Early deep learning with 3D data uses regular represen-

tations such as volumes [40, 23, 26, 21] and multi-view

images [32, 26] for feature learning to solve object clas-

sification and semantic segmentation. Unfortunately, vol-

ume representation is very limited due to large memory

footprints. Multi-view image representation does not have

this issue, but it stores depth information implicitly, which

makes it challenging to learn view-independent features.

Recently, deep learning in 3D focuses toward point

clouds, which is more compact and intuitive compared to

volumes. As point cloud is mathematically a set, using

point cloud with deep neural networks requires fundamen-

tal changes to the core operator: convolution. Defining ef-

ficient convolution for point clouds has since been a chal-

lenging, but an important task. Inspired from learning with

volumes, Hua et al. [12] perform on-the-fly voxelization at

each point of the point cloud based on nearest point queries.

Le et al. [17] propose to apply convolution on a regular grid

with each cell containing point features that are resampled

to a fixed size. Tatarchenko et al. [33] perform convolution

on the local tangent planes. Xie et al. [41] generalize shape

context to convolution for point cloud. Liu et al. [22] use a

sequence model to summarize local features with multiple

scales. Such techniques lead to straightforward implemen-

tations of convolutional neural network for point clouds.

However, extra computations are required for the explicit

data representation, making the learning inefficient.

Instead of voxelization, it is possible to make neural

network operate directly on point clouds. Qi et al. [25]

propose PointNet, a pioneering network that learns global

per-point features by optimizing a symmetric function to

achieve point order invariance. The drawback of PointNet

is that each point feature is learnt globally, i.e., no features

from local regions are considered. Recent methods in point

cloud learning are focused on designing convolution opera-

tors that can capture such local features.

In this trend, PointNet++ [27] supports local features

by a hierarchy of PointNet, and relies on a heuristic point

grouping to build the hierarchy. Li et al. [20] propose to

learn a transformation matrix to turn the point cloud to a

latent canonical representation, which can be further pro-

cessed with standard convolutions. Xu et al. [42] propose

to parameterize convolution kernels with a step function and

Taylor polynomials. Wang et al. [38] propose a similar net-

work structure to PointNet by optimizing weights between

a point and its neighbors and using them for convolution.

Shen et al. [30] also improve a PointNet-like network by

kernel correlation and graph pooling. Huang et al. [13] learn

the local structure particularly for semantic segmentation by

applying traditional learning algorithms from recurrent neu-

ral networks. Ben-Shabat et al. [4] use a grid of spherical

Gaussians with Fisher vectors to describe points. Such great

efforts lead to networks with very high accuracies, but the

efficiency of the learning is often overlooked (see Figure 1).

This motivates us to focus on efficiency for local features

learning in this work.

Beyond learning on unstructured point clouds, there have

been some notable extension works, such as learning with

hierarchical structures [28, 14, 35, 36], learning with self-

organizing network [19], learning to map a 3D point cloud

to a 2D grid [43, 8], addressing large-scale point cloud seg-

mentation [15], handling non-uniform point cloud [11], and

employing spectral analysis [45]. Such ideas are orthogo-

nal to our method, and adding them on top of our proposed

convolution could be an interesting future research.

1608



(a) (b) (c) (d)
Figure 2. ShellConv operator. (a) For an input point cloud with/without associated features, representative points (red dots) are randomly

sampled. The nearest neighbors are then chosen to form a point set centered at the representative points. The point sets are distributed

across a series of concentric spherical shells (b) and the statistics of each shell is summarized by a maxpooling over all points in the shell,

the features of which are lifted by an mlp to a higher dimension. The maxpooled features are indicated as squares with different colors (c).

Following the inner to the outer order, a standard 1D convolution can be performed to yield the output features (d). Thicker dot means less

points but each has higher dimensional features.

3. The ShellConv Operator

To achieve an efficient neural network for point cloud,

the first task is to define a convolution that is able to directly

consume a point cloud. Our problem statement is given a set

of points as input, define a convolution that can efficiently

output a feature vector to describe the input point set.

There are two main issues when defining this convolu-

tion. First, the input point set has to be defined. It can be

the entire point cloud, or a subset of the point cloud. The

former case seeks a global feature vector that describes the

entire point cloud; the latter seeks a local feature vector for

each point set that can be further combined when needed.

Second, one has to seamlessly take care of the point order

ambiguity in a set and the density of the points in the point

cloud. PointNet [25] opted to learn global features, but it

has been shown by recent works [27, 20, 38, 42] that local

features can lead to more representative features, resulting

in better performance. We are motivated by these works and

define a convolution to obtain features for a local point set.

To keep our convolution simple but efficient, we propose an

intuitive approach to addresses the challenges, below.

Convolution. We show the main idea of our convolution

in Figure 2. The common strategy in a traditional CNN ar-

chitecture is to decrease the spatial resolution of the input

and output more feature channels at deeper layers. We also

support this strategy in our convolution by combining point

sampling into the convolution, outputting sparser point sets

at deeper layers. Different from previous works that stack

many layers to increase receptive field, our method can ob-

tain a larger receptive field without increasing the number of

layers. Particularly, from the input point set, a set of repre-

Algorithm 1 ShellConv Operator.

Input:

1: p, Ωp, {Fprev(q) : q ∈ Ωp} * Representative point,

point set, and previous layer features of point set.

Output: Fp * Convolutional features of p.

2: {q} ← {q − p : ∀q ∈ Ωp} * Neighbor point q is

localised with p as the center.

3: {Flocal(q)} ← {mlp(q)} * Individually lift each point

q to a higher dimensional space.

4: {F (q)} ← {[Fprev(q), Flocal(q)} * Concatenate the

local and previous layer features.

5: {S} ← {S : q ∈ ΩS} * Determine which shell q

belongs to according the distances from q to center p.

6: {F (S)} ← {maxpool({F (q) : q ∈ ΩS}) : ∀S} *

Get fixed-size feature of each shell by a maxpool over

all points in the shell.

7: Fp ← conv({F (S)}) * Perform a 1D convolution with

all shell features from inner to outer.

8: return Fp

sentative points are randomly sampled (red dots in Figure 2

(a)). Each representative point and its neighbor points de-

fine a point set for convolution (Figure 2 (b)).

Let us now focus on a single representative point p and

its neighbors q ∈ Ωp, where Ωp is the set of neighbors de-

termined by a nearest neighbor query. By definition, the

convolution at p is

F (p)(n) =
∑

q∈Ω
(n)
p

w(q)(n)F (q)(n−1) (1)

where F denotes the input feature of the point set for a par-

1609



Figure 3. ShellNet architecture. For classification, we apply three layers of ShellConv before the fully connected classifier. For semantic

segmentation, we follow a U-net [29] architecture. The encoder is in green and the decoder is in yellow. Point downsampling and

upsampling is also included in our convolution, depending on its use. N0 > N1 > N2 denotes the number of points in the input and after

being sampled in each convolution, and C < C0 < C1 < C2 denotes the output feature channels at each point. S0 > S1 > S2 denotes

the number of shells in each ShellConv operator that is analogous to the convolution kernel size. Given a fixed shell size, when the point

cloud is downsampled, the number of shells also decreases. 1 × S0 × C0 denotes a convolution that convolutes an input features using

kernel (1, S0) and output C0 feature channels.

ticular channel, w is the weight of the convolution. We use

superscript (n) to denote the data or parameters of layer n.

Note that F (p) and F (q) denote the features of point p and

q. They are disregarded of the order of p and q in the point

cloud because we simply treat the point cloud as a mathe-

matical set. The only issue with this convolution here is how

to define the weight function. The weights have to be suit-

able for training, i.e., w has to be discretized into a fixed-

size vector of trainable parameters. Defining w for each

point is not practical because the points are not ordered.

To address this issue, our observation here is that we

can exploit the partitioning of the neighborhood into regions

such that w is well defined and the output can be computed

efficiently. Particularly, to facilitate neighbor queries, we

use a set of multi-scale concentric spheres to define the re-

gions (Figure 2(c)). The region between two spheres forms

a spherical shell. The union of the concentric spherical

shells yields the domain Ωp. Therefore, we can define our

convolution as

F (p)(n) =
∑

S∈Ω
(n)
p

w
(n)
S F (S)(n−1) (2)

Note that as the shells are naturally ordered (from the in-

ner most to the outermost), there is no ambiguity among the

shells and the convolution is well defined, with weight wS

for each shell. What remains ambiguous is the order of the

points in the shells. To address this problem, we propose

a statistical approach to aggregate features of the points in

each shell such that it yields an order-invariant output. Par-

ticularly, we choose to represent the features by only the

maximum value in each feature channel:

F (S) = maxpool({F (q) : q ∈ ΩS}) (3)

where ΩS denotes a shell S. Theoretically, the maximum

value is a crude approximation to the underlying distribu-

tion, but because each point often has tens or hundreds of

feature channels, the information from many points in the

shell can still be represented. The detailed steps of Shell-

Conv is presented in Algorithm 1.

Spherical Shells Construction. We use a simple heuris-

tics approach to establish the spherical shells as follows.

We first compute the distance between the neighbor points

to the representative point at the center. We then sort the

distances, and distribute points to shells based on their dis-

tances to the center, from inner to outer. We assign a fixed

number of points to each shell, i.e., n points per shell in our

1610



implementation. Particularly, we first grow a sphere from

the center until n points falls inside the sphere. This is the

innermost shell. After that, the sphere continues to grow

to collect another n points that forms the second shell, and

so on. We found that this approach of shells construction

provides a good stratification of point distributions in the

shells. It is also easy to implement and has low overhead.

4. ShellNet

We now proceed to design a convolutional neural net-

work for point cloud feature learning. We draw inspirations

from typical 2D convolutional neural networks and build an

architecture named ShellNet which uses ShellConv in place

of traditional 2D convolution (see Figure 3). This archi-

tecture can be used for multiple scene understanding tasks.

Particularly, the classification and segmentation networks

both share the encoder part, and only differ in the part af-

ter that. Since ShellConv is permutation invariant for input

points, ShellNet is able to consume point sets directly.

Our network for point cloud deep learning has three lay-

ers. In the classification stage, we pass all the input points

through three ShellConv operators. The points are grad-

ually subsampled into less representative points denoted as

N0 > N1 > N2 respectively, while the output feature chan-

nels increases layer by layer, denoted as C0 < C1 < C2

respectively. In Figure 3, Ni represented as blue dots with

thicker shape that indicates a higher dimension. This design

is similar to a typical 2D convolutional neural network: the

number of representative points decreases while the number

of output channels increases. After three layers of Shell-

Conv, we obtain a matrix of size N2 × C2, where N2 is the

final number of representative points extracted from the in-

put point cloud with each one contains a high dimensional

feature vector of size C2. This matrix is fed into the mlp

module size of (256, 128) to produce the probability map

for object classification. Finally, we obtain a 128×kcls ma-

trix with kcls indicates the number of classes. The specific

parameter settings are discussed in Section 5.1

The segmentation network follows U-net [29], an

encoder-decoder architecture with skip connections. The

deconvolution part starts with the set of N2 points from the

encoder, passing through the ShellConv operators until the

point cloud reaches the original resolution. The deconvo-

lution layers gradually output more points but less feature

channels. Skip connections retain features from earlier lay-

ers and concatenate them to the output features of the de-

convolution layers. Such strategy is shown to be highly

effective for dense semantic segmentation on images [29],

which we adopts here for point clouds. Note that we use

ShellConv for both convolution and deconvolution. The

output N × C is also fed into an mlp to produce the prob-

ability map for segmentation, where we obtain a 64 × kseg
matrix with kseg indicates the number of segment labels.

5. Experimental Results

In this section, we perform the experiments with three

typical point cloud learning tasks: object classification, part

segmentation, and semantic segmentation. We evaluate our

method under different settings to justify the results. In gen-

eral, our method achieves the state-of-the-art performance

for both accuracy and speed in all the experiments.

5.1. Parameter Setting

ShellNet has three encoding layers, each of which con-

tains a ShellConv. The parameters are Ni, Si, and Ci that

denote the number of representative points, the number of

shells, and output channels in each layer respectively. From

the first to third layers, Ni is set to 512, 128, 32, Si is set to

4, 2, 1, and Ci is set to 128, 256, and 512 for i = 0, 1, 2 re-

spectively. C is set to 64 at the last convolution for segmen-

tation. We define the number of points contained in each

shell as shell size, which is set to 16 for classification and 8

for segmentation. So the number of neighbors for each rep-

resentative point is Si×16 and Si×8, which is equal to 64,

32, and 16 for the three layers of classification, and 32, 16,

8 for segmentation, respectively. During training, we use a

batch size of 32 for classification and 16 for segmentation.

The optimization is done with an Adam optimizer with ini-

tial learning rate set to 0.001. Our network is implemented

in TensorFlow [1] and run on a NVIDIA GTX 1080 GPU

for all experiments.

5.2. Object Classification

The classification is tested on ModelNet40 [40] which

is composed of 40 object classes and has 9, 843 models for

training and 2, 468 models for testing. We use the point

cloud data of ModelNet40 provided by Qi et al. [25] as in-

put, where 1024 points are roughly uniformly sampled from

each mesh. Only the geometric coordinates (x, y, z) of the

sampled points are used in the experiment. We follow the

Method Core Operator input OA

FPNN [21] 1D Conv. P 87.5

Vol. CNN [26] 3D Conv. V 89.9

O-CNN [35] Sparse 3D Conv. O 90.6

Pointwise [12] Point Conv. P 86.1

PointNet [25] Point MLP P 89.2

PointNet++ [27] Multiscale Point MLP P+N 90.7

PointCNN [20] X-Conv P 92.2

ShellNet (ss=8) ShellConv P 91.0

ShellNet (ss=16) ShellConv P 93.1

ShellNet (ss=32) ShellConv P 93.1

ShellNet (ss=64) ShellConv P 92.8

Table 1. Comparisons of classification accuracy (overall accuracy

%) on ModelNet40 [40] with input type denoted as O (Octrees), V

(Voxels), P (Points) and N (Normals). Performance of ShellNet is

tested with different shell size (ss)

1611



train-test split from PointNet [25]. The data is augmented

by randomly perturbing the point locations. The compari-

son results are shown in Table 1.

As we can see, our results have achieved the state-of-the-

art. While ShellNet with shell size (ss) of 16 is the default

setting for classification, other ss are also tested. When de-

creasing ss to 8, the receptive fields become smaller and

less overlapped and accuracy also decreases slightly but still

around 91.0%. When ss increases, receptive field is en-

larged so that more spatial context information is captured.

ShellNet achieves 93.1% accuracy with ss is 32. However,

this does not mean the larger the better, since too large re-

ceptive field can also wash out the high frequency fine struc-

ture of the features [24]. We can see that when ss is set

to 64, the accuracy drops to 92.8%. To balance between

speed and accuracy, we set ss to 16 for object classifica-

tion. Figure 1 provides an accuracy plot under equal-time

and equal-epoch setting. As can be seen, our method out-

performed all tested methods, being the fastest and most ac-

curate towards convergence. Compared to PointCNN [20],

one of the fastest method in this experiment, we use a much

simpler network architecture. To turn the point cloud into

a latent canonical representation, their X-Conv operator re-

quires to learn a transformation matrix while our method

only requires a statistical computation to aggregate features.

This allows our convolution to be more intuitive and easy to

implement but able to achieve high performance. We also

provide per-class accuracy in the supplementary document.

5.3. Segmentation

Segmentation aims to predict the label for each point,

which can also be seen as a dense pointwise classification

problem. In this subsection, both object part segmenta-

tion and semantic scene segmentation are performed. We

use ShapeNet dataset [44] for part segmentation, which

contains 16, 880 models (14, 006 models for training and

2, 874 models for testing) in 16 categories, each annotated

with 2 to 6 parts and there are 50 different parts in to-

tal. For semantic segmentation, we use ScanNet [7] and

S3DIS dataset [2] for indoor scenes, and Semantic3D [9] for

outdoor scenes. ScanNet consists of 1513 RGB-D recon-

structed indoor scenes annotated in 20 categories. S3DIS

contains 3D scans from Matterport scanners in 6 indoor ar-

eas including 271 rooms with each point is annotated with

one of the semantic labels from 13 categories. Semantic3D

is an online large-scale, outdoor LIDAR benchmark dataset

comprising more than 4 billion annotated points with 8

classes. We follow PointCNN [20] to prepare the datasets.

Object Part Segmentation. Our results are reported in Ta-

ble 2. Per-class accuracies can be found in the supplemen-

tary document. It can be seen that our method outperforms

most of the state-of-the-art techniques. Qualitative compar-

isons between our prediction and the ground truth are shown

Method ShapeNet ScanNet S3DIS Semantic3D

mpIoU OA mIoU mIoU

SyncCNN [45] 82.0 - - -

SpiderCNN [42] 81.7 - - -

SplatNet [31] 83.7 - - -

SO-Net [19] 81.0 - - -

SGPN [37] 82.8 - 50.4 -

PCNN [3] 81.8 - - -

KCNet [30] 82.2 - - -

KdNet [14] 77.4 - - -

3DmFV-Net [4] 81.0 - - -

DGCNN [38] 82.3 - 56.1 -

RSNet [13] 81.4 - 56.5 -

PointNet [25] 80.4 73.9 47.6 -

PointNet++ [27] 81.9 84.5 - -

PointCNN [20] 84.6 85.1 65.4 -

TMLC-MSR [10] - - - 54.2

DeePr3SS [16] - - - 58.5

SnapNet [5] - - - 59.1

SegCloud [34] - - - 61.3

SPG [15] - - 62.1 73.2

Ours 82.8 85.2 66.8 69.4

Table 2. Comparisons of segmentation tasks. Object part segmen-

tation is performed on ShapeNet dataset [6], and semantic seg-

mentation is performed on ScanNet [7], S3DIS dataset [2], and

Semantic3D [9] respectively.

P
re

d
ic

ti
o

n
G

ro
u

n
d

 t
ru

th

Figure 4. Object part segmentation with the ShapeNet dataset. The

example objects are a chair, lamp, skateboard, airplane, and a car.

Overall, our method produces accurate predictions.

in Figure 4. It can be seen that ShellNet method can run ro-

bustly on many objects. Noted that our method only trains

20 hours to achieve such accuracy.

Indoor Semantic Scene Segmentation. The mIoU accu-

racies of indoor benchmarks ScanNet [7] and S3DIS [2]

are shown in Table 2. ShellNet ranks 1st on ScanNet and

ranks 1st on S3DIS. For the latter, we also list the per-class

scores (mIoU) in the supplementary document. The qual-

itative results are presented in Figure 5. We can see some

misclassification are between wall, caseboard, and window

as these categories are quite similar in pure geometries, and

need other features like color or normal vectors to improve.

Outdoor Semantic Scene Segmentation. The Seman-

tic3D [9] is more challenging as it is a real-world dataset

1612



Figure 5. Semantic segmentation for indoor scenes in the S3DIS dataset [2].

Figure 6. Semantic segmentation for outdoor scenes in the Semantic3D dataset [9]. Left: colored point clouds (for visualization only).

Right: our segmentation. Note that the ground truth of the test set is not publicly available.

of strongly varying point density. For a fair comparison, we

excluded results without a publication. ShellNet performs

well on this dataset with accuracy ranked 2nd (Table 2).

Per-class accuracy can be found in the supplementary doc-

ument. The qualitative results are presented in Figure 6.

Note that our method only takes the 3D coordinates as in-

put while previous methods such as [15] also used color or

postprocess with CRFs.

5.4. Network Efficiency

We measure network complexity by the number of train-

able parameters, floating point operations (FLOPs), and

running time to analyze the network efficiency. With batch

size 16, point cloud size 1024 from the ModelNet40 dataset,

the statistics are reported in Table 3. For all three metrics,

ShellNet is better than existing methods. While being much

less complex in time and space, ShellNet can still converge

to the state-of-the-art accuracy very efficiently as shown in

the plot in Figure 1.

The improvement in speed and memory of our work

comes from the effective use of mlp and 1D convolution

in our network. Particularly, on top of the proposed system-

atic approach based on concentric shells for point grouping,

which naturally handles multi-scale features, we only need

a single mlp to learn point features in a shell, and a 1D con-

volution to relate features among the shells (Figure 2). This

simplicity greatly reduces the number of trainable parame-

ters and computation.

In ShellNet, the receptive field is directly controlled by

the shell size. Thus, we can further analyse the performance

of ShellNet with different shell sizes (Figure 7). In equal-

time comparison, ShellNet with shell size 16 performs best,

achieving high accuracy in very short time. When shell size

is 64, it performs slightly worse. In equal-epoch setting,

using shell size 8 is not as good as the others because of

smaller receptive fields. Having a receptive field that bal-

ances between size and speed yields the best convergence.

5.5. Neighboring Point Sampling

Let the network in Figure 3 as the baseline (Setting A),

we conduct a series of experiments to verify the effective-

ness of our network architecture and justify how neighbor

points can be sampled.

1613



Methods Params FLOPs Time

(Train/Infer) (Train/Infer)

PointNet [25] 3.5M 44.0B / 14.7B 0.068s / 0.015s

PointNet++ [27] 12.4M 67.9B /26.9B 0.091s / 0.027s

3DmFV [4] 45.77M 48.6B /16.9B 0.101s / 0.039s

DGCNN [38] 1.84M 131.4B /44.3B 0.171s / 0.064s

PointCNN [20] 0.6M 93.0B /25.3B 0.031s / 0.012s

ShellNet 0.48M 15.8B /2.8B 0.066s / 0.023s

with small RF 0.48M 9.51B /1.5B 0.025s / 0.011s

Table 3. Trainable parameters, FLOPs and running time compar-

isons. Compared to previous methods, ShellNet is lightweight

and fast while being accurate. Reducing the receptive field (small

RF) by setting a smaller shell size can make the computation even

faster as neighbor query becomes cheaper.

Figure 7. The accuracy of point cloud classification versus time

and epochs with different shell sizes.

Here we compare four settings. Particularly, Setting A

is the default configuration of our classification experiment,

in which random sampling is used to obtain neighbor points

and each concentric shell contains a fixed number of points.

Setting B, C, D are obtained by varying the neighbor sam-

pling strategies. In Setting B, we change neighbor sampling

to farthest point sampling. In Setting C, we divide a local

region into equidistant shells, leading to shells that contain

a dynamic number of points. In Setting D, we search near-

est neighbors in the feature space instead of the 3D coordi-

nate space. The results are shown in Table 4. It shows that

accuracies are similar across variants, and Setting A is the

most efficient for the classification task. For segmentation,

we also conduct the same experiment and found that Set-

ting B works best in this case. The reason is that farthest

point sampling in Setting B results in more uniform point

distribution that can cover more geometry details, leading

to more accurate segmentation.

Our method is without limitation. Particularly, we found

that while our method can work with sparse and partial data,

more investigations into its robustness is required. Here we

provide an example of object part segmentation to demon-

strate the robustness of ShellConv in Figure 8. The mpIoU

accuracies for the original, sparse and partial segmentation

are 82.4%, 80.2%, 72.6% respectively. For partial data, the

boundary points are less accurate.

(A) (B) (C) (D)

1. Sampling Random Farthest Random Random

2. Shell size Fixed Fixed Dynamic Fixed

3. KNN type xyz xyz xyz Features

Accuracy (%) 93.1 93.1 92.7 92.4

Train Time 0.066s 0.078s 0.118s 0.081s

Infer. Time 0.023s 0.024s 0.033s 0.029s

Table 4. Experiments with neighbor point sampling. Setting (A)

is the default strategy. Setting (B), (C), (D) are modified from

(A) based on point sampling type, shell size, and neighbor query

features. As can be seen, setting (B) – furthest point sampling,

(C) – equidistant shells, (D) – latent features for neighborhood

construction, produces similar accuracy but training and inference

time becomes slower.

Figure 8. Part segmentation on sparse and partial point clouds. For

partial data, points on the boundaries appear to be less accurate.

6. Conclusion

We introduced a novel approach for deep learning with

3D point clouds based on concentric spherical shells con-

structed from local point sets. We designed a new con-

volution operator named, ShellConv, which supports con-

volution of a point set efficiently based on shells and their

statistics. This structure not only solves the convolution or-

der problem naturally but also allows larger and more over-

lapped receptive field without increasing the number of net-

work layers. Based on ShellConv, we build simple yet ef-

fective neural network that achieves the state-of-the-art re-

sults on object classification and segmentation tasks with

pure point cloud inputs.

Together with recent advances in deep learning with

point cloud data, our work leads to several potential future

research. With the fast capability of local feature learning,

it would be interesting to see how object detection and se-

mantic instance segmentation can benefit from our work.

It is also interesting to extend this work for learning with

meshes. Finally, it would be of great interest to apply our

approach to build autoencoders for point cloud generation.

Acknowledgements. The authors acknowledge support

from the SUTD Digital Manufacturing and Design Cen-

tre funded by the Singapore National Research Foundation,

and an internal grant from HKUST (R9429).

1614



References

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A

system for large-scale machine learning. In 12th {USENIX}
Symposium on Operating Systems Design and Implementa-

tion ({OSDI} 16), pages 265–283, 2016. 5

[2] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis

Brilakis, Martin Fischer, and Silvio Savarese. 3d semantic

parsing of large-scale indoor spaces. In Computer Vision and

Pattern Recognition, pages 1534–1543, 2016. 2, 6, 7

[3] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point

convolutional neural networks by extension operators. ACM

Transactions on Graphics, 37(4), 2018. 6

[4] Yizhak Ben-Shabat, Michael Lindenbaum, and Anath Fis-

cher. 3dmfv: Three-dimensional point cloud classification

in real-time using convolutional neural networks. IEEE

Robotics and Automation Letters, 3:3145–3152, 2018. 2, 6,

8

[5] Alexandre Boulch, Bertrand Le Saux, and Nicolas Audebert.

Unstructured point cloud semantic labeling using deep seg-

mentation networks. In Eurographics Workshop on 3D Ob-

ject Retrieval, volume 2, page 7, 2017. 6

[6] Angel X. Chang, Thomas A. Funkhouser, Leonidas J.

Guibas, Pat Hanrahan, Qi-Xing Huang, Zimo Li, Silvio

Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong

Xiao, Li Yi, and Fisher Yu. Shapenet: An information-rich

3d model repository. CoRR, abs/1512.03012, 2015. 6

[7] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Niessner. Scan-

net: Richly-annotated 3d reconstructions of indoor scenes.

In Computer Vision and Pattern Recognition, pages 5828–

5839, 2017. 6

[8] Thibault Groueix, Matthew Fisher, Vladimir G Kim,

Bryan C Russell, and Mathieu Aubry. A papier-mâché ap-

proach to learning 3d surface generation. In Computer Vision

and Pattern Recognition, pages 216–224, 2018. 2

[9] Timo Hackel, Nikolay Savinov, Lubor Ladicky, Jan D Weg-

ner, Konrad Schindler, and Marc Pollefeys. Semantic3d.net:

A new large-scale point cloud classification benchmark. In

ISPRS Annals of the Photogrammetry, Remote Sensing and

Spatial Information Sciences, pages 91–98, 2017. 6, 7

[10] Timo Hackel, Jan D Wegner, and Konrad Schindler. Fast

semantic segmentation of 3d point clouds with strongly

varying density. ISPRS annals of the photogrammetry, re-

mote sensing and spatial information sciences, 3(3):177–

184, 2016. 6

[11] Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vázquez, Àlvar

Vinacua, and Timo Ropinski. Monte carlo convolution for

learning on non-uniformly sampled point clouds. ACM

Transactions on Graphics, 2018. 2

[12] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Point-

wise convolutional neural network. In Computer Vision and

Pattern Recognition, pages 984–993, 2018. 1, 2, 5

[13] Qiangui Huang, Weiyue Wang, and Ulrich Neumann. Re-

current slice networks for 3d segmentation on point clouds.

In Computer Vision and Pattern Recognition, pages 2626–

2635, 2018. 2, 6

[14] Roman Klokov and Victor Lempitsky. Escape from cells:

Deep kd-networks for the recognition of 3d point cloud mod-

els. In International Conference on Computer Vision, pages

863–872, 2017. 1, 2, 6

[15] Loic Landrieu and Martin Simonovsky. Large-scale point

cloud semantic segmentation with superpoint graphs. In

Computer Vision and Pattern Recognition, pages 4558–

4567, 2018. 2, 6, 7

[16] Felix Järemo Lawin, Martin Danelljan, Patrik Tosteberg,

Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg.

Deep projective 3d semantic segmentation. In International

Conference on Computer Analysis of Images and Patterns,

pages 95–107, 2017. 6

[17] Truc Le and Ye Duan. Pointgrid: A deep network for 3d

shape understanding. In Computer Vision and Pattern Recog-

nition, pages 9204–9214, 2018. 2

[18] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep

learning. Nature, 521(7553):436, 2015. 1

[19] Jiaxin Li, Ben M Chen, and Gim Hee Lee. So-net: Self-

organizing network for point cloud analysis. In Computer

Vision and Pattern Recognition, pages 9397–9406, 2018. 2,

6

[20] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,

and Baoquan Chen. Pointcnn: Convolution on x-transformed

points. In Advances in Neural Information Processing Sys-

tems, pages 820–830, 2018. 1, 2, 3, 5, 6, 8

[21] Yangyan Li, Soeren Pirk, Hao Su, Charles R Qi, and

Leonidas J Guibas. Fpnn: Field probing neural networks

for 3d data. In Advances in Neural Information Processing

Systems, pages 307–315, 2016. 1, 2, 5

[22] Xinhai Liu, Zhizhong Han, Yu-Shen Liu, and Matthias

Zwicker. Point2sequence: Learning the shape representa-

tion of 3d point clouds with an attention-based sequence to

sequence network. In Association for the Advancement of

Artificial Intelligence, 2019. 2

[23] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-

volutional neural network for real-time object recognition. In

International Conference on Intelligent Robots and Systems,

pages 922–928, 2015. 2

[24] Bartlett W. Mel and Stephen M. Omohundro. How recep-

tive field parameters affect neural learning. In R. P. Lipp-

mann, J. E. Moody, and D. S. Touretzky, editors, Advances

in Neural Information Processing Systems, pages 757–763.

Morgan-Kaufmann, 1991. 6

[25] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In Computer Vision and Pattern Recogni-

tion, pages 652–660, 2017. 1, 2, 3, 5, 6, 8

[26] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai,

Mengyuan Yan, and Leonidas J Guibas. Volumetric and

multi-view cnns for object classification on 3d data. In Com-

puter Vision and Pattern Recognition, pages 5648–5656,

2016. 1, 2, 5

[27] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

1615



point sets in a metric space. In Advances in Neural Informa-

tion Processing Systems, pages 5105–5114, 2017. 1, 2, 3, 5,

6, 8

[28] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger.

Octnet: Learning deep 3d representations at high resolutions.

In Computer Vision and Pattern Recognition, pages 3577–

3586, 2017. 1, 2

[29] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical image com-

puting and computer-assisted intervention, pages 234–241.

Springer, 2015. 4, 5

[30] Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. Min-

ing point cloud local structures by kernel correlation and

graph pooling. In Computer Vision and Pattern Recognition,

pages 4548–4557, 2018. 2, 6

[31] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,

Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.

SPLATNet: Sparse lattice networks for point cloud process-

ing. In Computer Vision and Pattern Recognition, pages

2530–2539, 2018. 6

[32] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik

Learned-Miller. Multi-view convolutional neural networks

for 3d shape recognition. In International Conference on

Computer Vision, pages 945–953, 2015. 1, 2

[33] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-

Yi Zhou. Tangent convolutions for dense prediction in 3d.

In Computer Vision and Pattern Recognition, pages 3887–

3896, 2018. 2

[34] Lyne Tchapmi, Christopher Choy, Iro Armeni, JunYoung

Gwak, and Silvio Savarese. Segcloud: Semantic segmen-

tation of 3d point clouds. In International Conference on 3D

Vision, pages 537–547, 2017. 6

[35] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,

and Xin Tong. O-cnn: Octree-based convolutional neu-

ral networks for 3d shape analysis. ACM Transactions on

Graphics, 36(4):72, 2017. 1, 2, 5

[36] Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong.

Adaptive o-cnn: A patch-based deep representation of 3d

shapes. ACM Transactions on Graphics, 2018. 2

[37] Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neu-

mann. Sgpn: Similarity group proposal network for 3d point

cloud instance segmentation. In Computer Vision and Pat-

tern Recognition, pages 2569–2578, 2018. 6

[38] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,

Michael M. Bronstein, and Justin M. Solomon. Dynamic

graph cnn for learning on point clouds. ACM Transactions

on Graphics, 2019. 2, 3, 6, 8

[39] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

shapenets: A deep representation for volumetric shapes.

In Computer Vision and Pattern Recognition, pages 1912–

1920, 2015. 2

[40] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

shapenets: A deep representation for volumetric shapes.

In Computer Vision and Pattern Recognition, pages 1912–

1920, 2015. 2, 5

[41] Saining Xie, Sainan Liu, Zeyu Chen, and Zhuowen Tu. At-

tentional shapecontextnet for point cloud recognition. In

Computer Vision and Pattern Recognition, pages 4606–

4615, 2018. 2

[42] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.

Spidercnn: Deep learning on point sets with parameterized

convolutional filters. In European Conference on Computer

Vision, pages 87–102, 2018. 1, 2, 3, 6

[43] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-

ingnet: Point cloud auto-encoder via deep grid deformation.

In Computer Vision and Pattern Recognition, pages 206–

215, 2018. 2

[44] Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen,

Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Shef-

fer, and Leonidas Guibas. A scalable active framework for

region annotation in 3d shape collections. ACM Transactions

on Graphics, 2016. 2, 6

[45] Li Yi, Hao Su, Xingwen Guo, and Leonidas J Guibas. Sync-

speccnn: Synchronized spectral cnn for 3d shape segmen-

tation. In Computer Vision and Pattern Recognition, pages

2282–2290, 2017. 2, 6

1616


	ShellNet: Efficient point cloud convolutional neural networks using concentric shells statistics
	Citation

	ShellNet: Efficient Point Cloud Convolutional Neural Networks Using Concentric Shells Statistics

