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Abstract

Recent progresses in 3D deep learning has shown that it is
possible to design special convolution operators to consume
point cloud data. However, a typical drawback is that rota-
tion invariance is often not guaranteed, resulting in networks
that generalizes poorly to arbitrary rotations. In this paper,
we introduce a novel convolution operator for point clouds
that achieves rotation invariance. Our core idea is to use low-
level rotation invariant geometric features such as distances
and angles to design a convolution operator for point cloud
learning. The well-known point ordering problem is also
addressed by a binning approach seamlessly built into the
convolution. This convolution operator then serves as the ba-
sic building block of a neural network that is robust to point
clouds under 6-DoF transformations such as translation and
rotation. Our experiment shows that our method performs
with high accuracy in common scene understanding tasks
such as object classification and segmentation. Compared
to previous and concurrent works, most importantly, our
method is able to generalize and achieve consistent results
across different scenarios in which training and testing can
contain arbitrary rotations. Our implementation is publicly
available at our project page 1.

1. Introduction
Recent 3D deep learning has led to great progress in solv-

ing scene understanding problems like object classification,

semantic and instance segmentation with high accuracies by

training a neural network with 3D data. Researches in this

area have been continuing to grow and diverse as 3D data

becomes more widely and easily available from consumer

devices.

Among various data presentations, 3D point cloud is a

strong candidate for scene understanding tasks thanks to

its availability, compactness, and robustness compared to

volumetric or image representations. Point clouds can be

acquired by various methods and hardware including mul-

1https://hkust-vgd.github.io/riconv/

tiple view geometry in dual-lens cameras and structured

light or time-of-flight sensing in depth and LiDAR cameras.

However, learning with point clouds is deemed challenging

because a point cloud does not contain a regular structure

such as that in an image or a volume. Performing convolu-

tion on point cloud therefore requires some special designs

in the convolution operator that takes care of this irregularity.

A wide body of works [24, 26, 12, 17, 19, 35, 39, 3] have

recently been proposed to solve this problem, demonstrat-

ing state-of-the-art performance in scene understanding with

point cloud data.

Nevertheless, there remains a fundamental problem with

existing convolution operator with point clouds: most previ-

ous works do not allow the input point cloud to be rotation
invariant. During training, data is simply augmented with

some rotations which can cause the network not able to gen-

eralize well to unseen rotations. A few convolution operators

that allows rotation invariance exist [8, 27] but consistent

predictions with arbitrarily rotated data are still not achieved.

In this work, we propose a novel convolution operator

for point clouds that can achieve high accuracies in scene

understanding tasks while still preserving the rotation in-

variance property. Particularly, our convolution is based on

low-level geometric features that are translation and rotation

invariant. Such features are used in tandem with a binning

approach that addresses point ordering issue in point cloud

convolution, resulting in a single convolution that is robust

to both issues. In summary, our contributions are:

• A robust feature extraction scheme suitable for convolu-

tion that supports both rotation and translation invariant

features based on low-level geometric cues;

• A novel convolution operator that is agnostic to both point

cloud rotations and point orders. To address the point

ordering issue, we devise a simple binning approach that

can be seamlessly combined with the feature extraction

step;

• A compact convolutional neural network based on the

proposed convolution for object classification and object

part segmentation. We demonstrate highly consistent and

accurate performance under different rotations.
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2. Related Works
The availability of 3D object and scene datasets [36, 41,

2, 11, 6] has made scene understanding in 3D feasible. Com-

mon tasks such as object classification, semantic segmenta-

tion, and retrieval can now achieve highly accurate results.

We briefly summarize the development of 3D deep learning

below.

3D deep learning is more diverse compared to image-

based deep learning because there are various representa-

tions for learning with 3D data. In early stage of 3D deep

learning, volume representation [37, 23, 25, 20], or multiple

view images [31, 25] are often adopted for neural networks

since they are straightforward extensions from learning with

images. However, such representations do not scale well

due to large memory requirements and limited resolution in

representing 3D geometry.

Recently, PointNet [24, 26] sparked the research interest

in deep learning with 3D point clouds by showing that it is

possible to learn features of a point set with a special network

that is robust to input point orders. This opens the capabil-

ity for object classification and semantic segmentation with

point clouds. Several subsequent works are built along this

line of research. Alternatives to make convolution operator

compatible to point cloud is to summarize point features into

a regular grid and apply a traditional convolution [12, 17],

performing convolution on a local space such as tangent

planes [32], learning to transform point clouds into a canoni-

cal latent space [19]. Such techniques perform competitively

to PointNet while being able to exploit features from a local

region on the point cloud.

The trend of deep learning with point cloud data has

been continuing to grow diversely. Recent methods explores

convolution kernels that exploit geometric features [30],

add edges on top of points [35], parameterize convolution

using polynomials [39], and leverage shape context [38].

Some methods are specially design to be lightweight for

real-time applications [3], or to combine with recurrent neu-

ral network [13] and sequence model [21]. Some methods

exploit hierarchical structures and clustering for scalabil-

ity [28, 15, 33, 34, 16], mapping point cloud to two dimen-

sional space [40, 9, 18], applying spectral analysis [42], or

addressing non-uniform point distribution [10].

Our method is a part of this trend. We explore how to

perform convolution on local point features and at the same

time achieve rotation invariance. Compared to deep learning

with images, rotation invariance is an important property and

a more critical issue for robustness because in 3D, there is

no convention about how to align 3D shapes. In geometric

deep learning [4], one can achieve rotation invariance with

geodesic convolution on Riemannian manifolds with angular

maxpooling [22]. Such convolution, however, needs shape

surfaces to operate. By contrast, our convolution is for point

sets, and defined directly in the Euclidean space.

The most relevant work to ours is the concurrent work

by Rao et al. [27]. They showed that point clouds can be

mapped to an icosahedral lattice on which a rotation invari-

ance convolution can be implemented. The key difference

here is that we do not need a spherical domain for rotation in-

variance. Instead, we define convolution with rotation invari-

ant features, which is much simpler and intuitive. In addition,

there are a few previous works about learning local descrip-

tors from point clouds for feature matching [43, 14, 7], some

of which [7] can be rotation invariant. These works are how-

ever orthogonal to ours mainly because they are targeted for

point cloud registration.

3. Rotation Invariant Convolution
In this section, we detail the RIConv operator construc-

tion procedure. Our goal is to seek a simple but efficient

way to perform traditional convolution on features extracted

from an input point cloud. We design a feature extraction

scheme such that the local features are invariant to both

translation, rotation, and point orders. Different from previ-

ous works that rely on a spherical convolution for rotation

invariance [8], we show that it is possible to achieve rota-

tion invariance directly in the Euclidean space by utilizing

low-level geometric cues.

3.1. Rotation Invariant Local Features

Our feature extraction can be explained as in Figure 1.

Given a reference point p (red), K nearest neighbors are

determined to construct a local point set. The centroid of

the point set is denoted as m (blue). We use vector #   »pm as a

reference to extract translation and rotation invariant features

for all points in the local point set. Particularly, for a point x
in this set, its features are defined as

RIF (x; #   »pm) = [d0, d1, α0, α1] . (1)

Figure 1. Rotation invariant feature extraction for a point set. At

each point (grey), we compute distances and angles to a reference

vector established from a reference point (red) and the centroid

(blue). Such geometric cues can be directly computed in the Eu-

clidean space, facilitating the design of our convolution operator.
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(a) (b) (c)
Figure 2. RIConv operator construction. (a) For an input point cloud with/without associated features, representative points (red dots) are

sampled via farthest point sampling. (b) For a reference point p, K neighbors are queried to yield a local point set. Also, the centroid of

this point set is computed and denoted as m (blue dot). Vector #   »pm serves as the reference orientation and the point set is transformed into

rotation invariant features using the method described in subsection 3.1, which is further lifted to a high-dimensional space by a shared

multi-layer perceptron (MLP). (c) The local space is then uniformly divided into several bins along #   »pm and the points of each bin are

summarized by maxpooling. Finally, a 1D convolution can be performed to obtain the final features.

Here, d0 and d1 represent the distances from x to p and to

m, respectively. α0 and α1 represent the angles from x to-

wards p and m, as shown in Figure 1. Since such low-level

geometric features are invariant under rigid transformations,

they are very well suited for our need to make a translation

invariant convolution with rotation invariance property. Note

that the reference vector #   »pm can also serve as a local orien-

tation indicator and we will use it to build a local coordinate

system for convolution, in the subsequent step.

A caveat from the feature extraction scheme is that the

reference vector #   »pm can degenerate when p and m become

a single point. Such cases occur when the neighbors are

distributed evenly around the reference point. In such case,

we select the farthest point to p as m to avoid singularity.

In fact, within such a smooth distribution, points that are

equidistant to the reference point are expected to have similar

features, and thus the degeneration does not negatively affect

the features.

3.2. Convolution Operator

After obtaining rotation invariant features, we are now

ready to detail the main idea of our convolution in Figure 2.

A key issue here is how to perform convolution that is ag-

nostic to input point orders. PointNet [24] extracts a global

feature vector from the entire input point cloud by maxpool-

ing the features from a shared MLP. Here, we build our

convolution on local features and use a binning approach

with shared MLP to solve this issue. This idea is relevant

to shell based convolution [44] in that both apply binning to

resolve the ordering issue of point sets and output fixed size

features.

Particularly, we start by sampling a set of representative

points through farthest point sampling strategy which is

able to generate uniformly distributed points. From each of

which we perform a set of K-nearest neighbors to obtain local

point sets. For each point, the rotation invariant features are

extracted as described in the previous section. The features

are lifted to a high-dimensional space by a shared multi-layer

perceptron (MLP).

To proceed with convolution, we have to define an order

so that kernel weights in the convolution can be applied to

the corresponding points. Here we devise a simple binning

approach and turn the convolution into 1D. Such process

has been shown to be highly efficient for local feature learn-

ing [44]. In this work, the steps are as follows. We use the

reference vector #   »pm and split the point distribution into N

cells along this vector. The feature of each cell is maxpooled

from all points participating in the cell. As the cells are

ordered, convolution thus becomes possible. We apply a 1D

convolution on the fixed-size feature vector from the cells

to obtain the output features of our operator. All steps are

summarized in Algorithm 1 (see Appendix).

In addition, traditional convolutional neural networks of-

ten allows downsampling and upsampling to manipulate the

spatial resolution of the input. We build this strategy into

our convolution by simply treating the reference point set as

the downsampling/upsampling points.

4. Neural Networks
We use our convolution operator as the core to build

neural networks for two common scene understanding tasks:

object classification and object part segmentation. These

two tasks are commonly used to benchmark the performance

of deep learning with point cloud data [24]. Our network is

206



RI
Conv

RI
Conv

RI
Conv

RI
Conv

mlp RI
Conv

RI
Convmlp

Airplane
Bag
Chair
...

...

Figure 3. Our proposed network architecture. We follow a convolutional neural network design for classification and part segmentation. Skip

connections are further used to combine features from the encoding stage to the decoding stage in part segmentation.

shown in Figure 3.

The object classification network consists of three rotation

invariant convolution operators followed by a classifier to

output labels for the input point cloud. As our convolution

operator is already designed to handle arbitrary rotation and

point orders, we can simply place each convolution one after

another. By default, each convolution is followed by a batch

normalization and an ReLU activation.

The object part segmentation network follows an encoder-

decoder architecture with skip connections similar to U-

net [29]. We assume a general condition that the object

category is unknown when part segmentation is performed.

The classification network acts as the encoder, yielding the

features in the latent space that can be subsequently decoded

into part labels.

In the decoding stage, after each feature is concatenated

by skip connections, we apply a MLP before passing the

features for deconvolution. Our deconvolution is basically

similar to convolution except that it gradually outputs denser

points with less feature channels until the output reaches the

original number of points.

Convolution Parameters. Unless otherwise mentioned,

we use 1024 points for classification, and 2048 points for

part segmentation, respectively. In the encoding stage, the

point cloud is downsampled to 256, 128, and 64, respectively

for classification task, and 512, 128, and 32, respectively for

segmentation task. The nearest neighbor size is set to 64, 32,

and 16 respectively for the three layers of convolutions. We

empirically set the number of bins for handling point orders

in each convolution as 4, 2, 1, respectively, which strikes

a good balance between accuracy and speed. This setting

ensures that each bin contains 16 points approximately. In

general, the neighborhood has to be large enough for captur-

ing the point distribution and features robustly but not too

large that causes too much overhead.

5. Experimental Results

We report our evaluation results in this section. We im-

plemented our network in Tensorflow [1]. We use a batch

size of 32 for classification training and 16 for segmentation

training. The optimization is done with an Adam optimizer.

The initial learning rate is set to 0.001. Our training is exe-

cuted on a computer with an Intel(R) Core(TM) i7-6900K

CPU equipped with a NVIDIA GTX 1080 GPU.

We evaluate the proposed convolution and neural net-

work with two tasks: object classification and object part

segmentation. The point cloud size is 1024 for classification

and 2048 for segmentation. It takes about 3 hours for the

training to converge for classification, and about 18 hours

for part segmentation. Unless otherwise stated, for object

classification, we train for 250 epochs. The network usually

converges within 150 epochs. For object part segmentation,

we train for 300 epochs, and the network usually converges

within 200 epochs.

Following Esteves et al. [8], we perform experiments

in three cases: (1) training and testing with data aug-

mented with rotation about gravity axis (z/z), (2) training

and testing with data augmented with arbitrary SO3 rotations

(SO3/SO3), and (3) training with data by z-rotations and test-

ing with data by SO3 rotations (z/SO3). The first case is

commonly adopted by previous methods in handling rotated

point clouds, and the last two cases are for evaluating rota-

tion invariance. In general, it is expected that a convolution

with rotation invariance should generalize well in case (3)

even though the network is not trained with data augmented

with SO3 rotations.

In general, our result demonstrates the effectiveness of the

rotation invariant convolution we proposed. Our networks

yield very consistent results despite that our networks are

trained with a limited set of rotated point clouds and tested

with arbitrary rotations. To the best of our knowledge, there

is no previous work for point cloud learning that is able
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Method Input Input size Parameters z/z SO3/SO3 z/SO3 Acc. std.

VoxNet [13] voxel 303 0.9M 83.0 87.3 - 3.0

SubVolSup [25] voxel 303 17M 88.5 82.7 36.6 28.4

SubVolSup MO [25] voxel 303 17M 89.5 85.0 45.5 24.2

Spherical CNN [8] voxel 2× 642 0.5M 88.9 86.9 78.6 5.5

MVCNN 12x [31] view 12× 2242 99M 89.5 77.6 70.1 9.8

MVCNN 80x [31] view 80× 2242 99M 90.2 86.0 81.5 4.3

PointNet [24] xyz 1024× 3 3.5M 87.0 80.3 12.8 41.0

PointNet++ [26] xyz 1024× 3 1.4M 89.3 85.0 28.6 33.8

PointCNN [19] xyz 1024× 3 0.60M 91.3 84.5 41.2 27.2

Ours xyz 1024 ×3 0.70M 86.5 86.4 86.4 0.1

Table 1. Comparisons of the classification accuracy (%) on the ModelNet40 dataset. The accuracy is reported on three test cases: training

and testing with z/z, SO3/SO3 and z/SO3 rotation, respectively. Our method has good accuracy and lowest accuracy deviation in all cases.

to achieve the same level of consistency despite that some

methods [8] demonstrated good performance when trained

with a particular set of rotations. We detail our evaluations

below.

5.1. Object Classification

The classification task is trained on the ModelNet40 vari-

ant of the ModelNet dataset [37]. ModelNet40 contains

CAD models from 40 categories such as airplane, car, bottle,

dresser, etc. By following Qi et al. [24], we use the pre-

processed 9, 843 models for training and 2, 468 models for

testing. The input point cloud size is 1024, with each point

represented by (x, y, z) coordinates in the Euclidean space.

We followed Li et al. [19] and use multiple feature vec-

tors to train the classifier. Particularly, our network outputs

64 feature vectors of length 512 to the classifier. Each of

these vectors is passed through an mlp implemented by

fully connected layers, resulting in 64 × 40 category pre-

dictions. During training, we apply cross entropy loss to

all such predictions. During testing, we take the mean of

such predictions to obtain the final category prediction. In

Section 5.3, we further evaluate this strategy and show that

it leads to better performance than networks with a single

feature vector.

The evaluation results are shown in Table 1. Following the

work of [8], we perform experiments in three cases: training

and testing with data rotated about the gravity axis (z/z),

training and testing with arbitrary SO3 rotations (SO3/SO3),

and training with z-rotations and testing with SO3 rotations

(z/SO3). The first case is commonly adopted by previous

methods in handling rotated point clouds, and the last two

cases are for evaluating rotation invariance.

We use two criteria for evaluation: accuracy and accuracy

standard deviation. Accuracy is a common metric to mea-

sure the performance of the classification task. In addition,

accuracy deviation measures the consistency of the accuracy

scores in three tested cases. In general, it is expected that

methods that are rotation invariant should be insusceptible to

the rotation used in the training and testing data and therefore

has a low deviation in accuracy.

As can be seen, our method performs favorably to the

state-of-the-art techniques. On one hand, our method

achieves very good accuracy in all cases despite that there

are no clear winner for all cases in our experiment. On the

other hand, and more importantly, our method has the lowest

accuracy deviation. Previous methods exhibit large accu-

racy deviations especially in the extreme z/SO3 case. This

case is exceptionally hard for methods that rely on data aug-

mentation to handle rotations [24, 26]. In our observation,

such techniques are only able to generalize within the type

of rotation they are trained with, and generally fail in the

z/SO3 test. This applies to both voxel-based and point-based

learning techniques. By contrast, our method has almost no

performance difference in three test cases, which confirms

the robustness of the rotation invariant geometric cues in our

convolution. We also evaluate the accuracy of the classifica-

tion task per object category. Please see the full results in

the supplemental document.

Network Parameters. The capability to handle rotation

invariance also has a great effect on the number of network

parameters. For networks that rely on data augmentation

to handle rotations, it requires more parameters to ‘memo-

rize’ the rotations. Networks that are designed to be rotation

invariant, such as spherical CNN [8] and ours, have very

compact representations. In terms of number of trainable pa-

rameters, our network has 0.70 millions (0.70M) of trainable

parameters, which is the most compact network in our evalu-

ations. Among the tested methods, only spherical CNN [8]

(0.5M) and PointCNN (0.6M) have similar compactness.

Our network has 5× less parameters than PointNet (3.5M),

about 2× less than PointNet++ (1.4M). The well balance

between trainable parameters, accuracy and accuracy devia-

tions makes our method more robust for practical use.

5.2. Object Part Segmentation

We also evaluated our method with the object part seg-

mentation task that aims to predict the part label for each
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Method input SO3/SO3 z/SO3

PointNet [24] xyz 74.4 37.8

PointNet++ [26] xyz+normal 76.7 48.2

PointCNN [19] xyz 71.4 34.7

DGCNN [35] xyz 73.3 37.4

SpiderCNN [39] xyz+normal 72.3 42.9

Ours xyz 75.5 75.3

Table 2. Comparisons of object part segmentation performed on

ShapeNet dataset [5]. The mean per-class IoU (mIoU, %) is used

to measure the accuracy under two challenging rotation modes:

SO3/SO3 and z/SO3.

input point. In this task, we train and test with the ShapeNet

dataset [5] that contains 16, 880 CAD models in 16 cate-

gories. Each model is annotated with 2 to 6 parts, resulting

in a total of 50 object parts. We follow the standard train/test

split with 14, 006 models for training and 2, 874 models for

testing, respectively.

The evaluation results are shown in Table 2. As can

be seen, our method outperforms previous methods signifi-

cantly in z/SO3 test case and achieves similar performance in

SO3/SO3 case. This result aligns well with the performance

reported in the object classification task. Our method also

has consistent performance for both rotation cases, which

empirically confirms the rotation invariance in our convolu-

tion. Visualization of our prediction and the ground truth

object parts are shown in Figure 4. It is easy to observe

that our predictions are the closest to the ground truth. Ta-

ble 5 and Table 6 further report per-class accuracies for both

SO3/SO3 and z/SO3 case. Our method performs best in

3 out of 16 categories in SO3/SO3 case, and 15 out of 16

categories in z/SO3 case.

5.3. Evaluations of Network Designs

In this section, we perform experiments on object classifi-

cation to analyze the performance and justify the design of

the proposed convolution operator and network architecture.

Inspired by the fact that there are negligible improvement

after 150 epochs of training (Section 5.1), we only train the

networks with 160 epochs in this ablation study.

Ablation Study. We first experiment by turning on/off

different components in our network. The result of this ex-

periment is shown in Table 3. In this table, the Base column

indicates a simple network similar to that in Figure 3 but

only contains RIConv operators to extract local features for

classification. The MLP indicates the use of an MLP layer

to lift rotation invariant features to a high-dimensional fea-

ture space. The next two columns indicate the geometric

attributes used in RIConv. The last row shows that when

all components are used, we achieve the best accuracy of

86.5%. Without high-dimensional feature learning by MLP

Base MLP Distance Angle Acc.

�
�
�
�

�
�
�

�

�
�

�
�

�

83.4

84.6

84.8

86.5

Table 3. Ablation study of our method. The results show that com-

bining low-level geometric features such as distances and angles

lead to better performance. Besides, using MLP for higher dimen-

sional feature learning can also considerably boost the performance.

# Layers 1 2 3 4

Accuracy (%) 46.8 78.2 86.5 86.8

Time per epoch (s) 43.8 59.5 74.5 138.7

# Points 128 256 512 1024

Accuracy (%) 76.0 80.8 84.4 86.5

# Features Multiple PointNet style [24]

Accuracy (%) 86.5 84.8

Table 4. Classification accuracy (%) with different number of con-

volution layers, input points, and features for classifiers.

(first row), the performance drops by almost 3%. If we either

use angle or distance features (second and third row), the ac-

curacy also drops about 1%. This confirms that our network

architecture is plausible and yield good performance.

Number of Layers. We vary the number of convolution

layers as follows. Let us denote the convolution layers in our

network in Figure 3 with L0, L1, L2 from left to right. Here

we compare our current architecture with those that have L2

or L1 and L2 removed, or have an additional convolution

L−1 added before L0. Note that we skip point sampling in

L−1 to keep the same number of input points. The results in

Table 4 (first section) shows the accuracy when the number

of layers vary from 1 to 4. We can see that with only 1 layer,

the accuracy drops dramatically to 46.8%, which means a

single convolution cannot extract effective features. With

more convolutions, the accuracy is improved but this comes

with the cost of longer training time. Thus, in this work,

we choose the architecture of 3 layers for best speed and

accuracy balance.

Number of Input Points. We evaluated our network with

point clouds of input sizes from 128 to 1024 points. Par-

ticularly, we retrained and tested the network with point

clouds of corresponding number of points. The results are

shown in Table 4 (middle section). It shows that our network

generalizes well to different input size.
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Network aero bag cap car chair earph. guitar knife lamp laptop motor mug pistol rocket skate table

PointNet [24] 81.6 68.7 74.0 70.3 87.6 68.5 88.9 80.0 74.9 83.6 56.5 77.6 75.2 53.9 69.4 79.9

PointNet++ [26] 79.5 71.6 87.7 70.7 88.8 64.9 88.8 78.1 79.2 94.9 54.3 92.0 76.4 50.3 68.4 81.0

PointCNN [19] 78.0 80.1 78.2 68.2 81.2 70.2 82.0 70.6 68.9 80.8 48.6 77.3 63.2 50.6 63.2 82.0
DGCNN [35] 77.7 71.8 77.7 55.2 87.3 68.7 88.7 85.5 81.8 81.3 36.2 86.0 77.3 51.6 65.3 80.2

SpiderCNN [39] 74.3 72.4 72.6 58.4 82.0 68.5 87.8 81.3 71.3 94.5 45.7 88.1 83.4 50.5 60.8 78.3

Ours 80.6 80.2 70.7 68.8 86.8 70.4 87.2 84.3 78.0 80.1 57.3 91.2 71.3 52.1 66.6 78.5

Table 5. Per-class accuracy of object part segmentation on the ShapeNet dataset in SO3/SO3 scenario. Our method works equally well to

previous methods in this scenario.

Network aero bag cap car chair earph. guitar knife lamp laptop motor mug pistol rocket skate table

PointNet [24] 40.4 48.1 46.3 24.5 45.1 39.4 29.2 42.6 52.7 36.7 21.2 55.0 29.7 26.6 32.1 35.8

PointNet++ [26] 51.3 66.0 50.8 25.2 66.7 27.7 29.7 65.6 59.7 70.1 17.2 67.3 49.9 23.4 43.8 57.6

PointCNN [19] 21.8 52.0 52.1 23.6 29.4 18.2 40.7 36.9 51.1 33.1 18.9 48.0 23.0 27.7 38.6 39.9

DGCNN [35] 37.0 50.2 38.5 24.1 43.9 32.3 23.7 48.6 54.8 28.7 17.8 74.4 25.2 24.1 43.1 32.3

SpiderCNN [39] 48.8 47.9 41.0 25.1 59.8 23.0 28.5 49.5 45.0 83.6 20.9 55.1 41.7 36.5 39.2 41.2

Ours 80.6 80.0 70.8 68.8 86.8 70.3 87.3 84.7 77.8 80.6 57.4 91.2 71.5 52.3 66.5 78.4

Table 6. Per-class accuracy of object part segmentation on the ShapeNet dataset in z/SO3 scenario. Our method significantly outperforms

previous methods thanks to the rotation invariance features from our convolution operators.

Number of Features for Classifiers. For object classifi-

cation, our network outputs 64 vectors of length 512 to the

classifier. We compared this strategy with the one in Point-

Net [24] which only outputs a single vector of 512 by max-

pooling all features of all points. The results in Table 4

(last section) shows that more output feature vectors yield

slightly higher accuracy. Such boost is due to the fact that

multiple vectors can convey richer features from different

latent spaces that facilitate feature clustering in the classifier.

5.4. Limitations

Our method is not without limitations. First, the geomet-

ric features we used is by no means complete. It is possible

to use other more sophisticated low-level geometry features

such as curvature to design the convolution. Second, while

our convolution is robust and consistent to arbitrary rotations,

when there is no rotation or simple rotations as in the z/z

case in the classification task, our method is less accurate

compared to state-of-the-art classification. This is because

the original point coordinates are not retained in low-level

geometric feature extraction, trading some discriminative

features for rotation invariance.

We perform an additional experiment in which we remove

the proposed geometric features, and replace them with the

original 3D coordinates of the input point cloud. This makes

our convolution no longer robust to SO3 rotations but in re-

turn, the convolution features are more discriminative. This

allows us to achieve state-of-the-art accuracy (91.8% overall

accuracy) in the classification task. Fusing original coor-

dinates and geometric features into the same feature space

would be therefore a very interesting extension to this work.

6. Conclusion

We presented a novel convolution operator for point cloud

feature learning that can handle point clouds with arbitrary

rotations. Given a point set as input, we determine a refer-

ence orientation based on a reference point and the centroid,

from which rotation invariant features built upon geometric

cues such as distances and angles can be constructed for

each point. Combined with a binning strategy, our method

handles both rotation invariance and point order issue in

a single convolution. We then built a simple yet effective

end-to-end convolutional neural network for point cloud clas-

sification and segmentation. Experiments demonstrate that

our method achieves good performance on both classifica-

tion and segmentation tasks with the best consistency with

arbitrary rotation test cases. This is in contrast to existing

methods that often perform quite inconsistently for different

types of rotations.

Our method leads to several potential future researches.

First, the low-level rotation invariance features for convolu-

tion are hand-crafted, which we aim to generalize by apply-

ing unsupervised learning to learn such features. Second, our

convolution could be beneficial to more scene understanding

applications such as object detection and retrieval. It would

be also of great interest to extend our method to achieve

invariance to rigid and non-rigid transformations.
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Figure 4. Qualitative results of object part segmentation task with z/SO3 scenario. Our method has the state-of-the-art performance while

previous methods fail to generalize to SO3 rotations.

Algorithm 1 RIConv operator.

Input: Reference point p, point set P , current point features Fprev;

Output: Convoluted features F ;

1: m← avg(P ); * Compute the centroid of P
2: #   »pm← m− p; * Determine the reference orientation (Section 3.2)

3: fr ← {RIF (x; #   »pm) : ∀x ∈ P}; * Find rotation invariant features (Section 3.1)

4: Fr ← mlp(fr); * Transform each feature fr to high-dimensional feature Fr

5: Fin ← [Fprev, Fr]; * Concatenate the local and previous layer features

6: {S} ← P ; * Divide local space into s bins along #   »pm
7: {Fpool} ← {maxpool({Fin(x) : ∀x ∈ s}) : ∀s ∈ S} * Compute max pooling features for each bin of {S}
8: F ← conv({Fpool}); * 1D convolution of the bin features

9: return F ;
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