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Abstract

Recent advances in deep learning for 3D point clouds
have shown great promises in scene understanding tasks
thanks to the introduction of convolution operators to con-
sume 3D point clouds directly in a neural network. Point
cloud data, however, could have arbitrary rotations, espe-
cially those acquired from 3D scanning. Recent works show
that it is possible to design point cloud convolutions with
rotation invariance property, but such methods generally
do not perform as well as translation-invariant only con-
volution. We found that a key reason is that compared to
point coordinates, rotation-invariant features consumed by
point cloud convolution are not as distinctive. To address
this problem, we propose a novel convolution operator that
enhances feature distinction by integrating global context
information from the input point cloud to the convolution.
To this end, a globally weighted local reference frame is
constructed in each point neighborhood in which the local
point set is decomposed into bins. Anchor points are gener-
ated in each bin to represent global shape features. A con-
volution can then be performed to transform the points and
anchor features into final rotation-invariant features. We
conduct several experiments on point cloud classification,
part segmentation, shape retrieval, and normals estimation
to evaluate our convolution, which achieves state-of-the-art
accuracy under challenging rotations.

1. Introduction

Scene understanding has long been a challenging prob-

lem in computer vision. Recently, there have been signifi-

cant advances in applying deep learning [16] to train neu-

ral networks for numerous tasks such as object classifica-

tion and semantic segmentation. With the wide availabil-

ity of consumer-grade depth sensors, acquiring 3D data has

become more intuitive and robust with many 3D datasets

∗Corresponding author

available [35, 4, 12, 6, 2, 38, 31]. This leads to increased

interests in tackling scene understanding in the 3D domain.

Among the representations for 3D data, a promising di-

rection is to let neural networks consume point cloud data

directly since point cloud data is the common data format

acquired from depth sensors such as RGB-D or LiDAR

cameras. However, since a point cloud is a mathematical

set and so it fundamentally differs from an image, passing a

point cloud to a traditional neural network like those in the

image domain does not work. In principle, it is necessary to

design a convolution-equivalent operator in the 3D domain

that can take a point cloud as input and output its per-point

features. Several attempts have been made with promising

results [22, 24, 13, 17, 37, 41].

Despite such research efforts, a problem often over-

looked in point cloud convolution is that the operator does

not exhibit rotation invariance. A viable solution in 2D deep

learning is to augment training data with random rotations.

However, in 3D, such data augmentation becomes less ef-

fective due to the additional degree of freedom in represent-

ing 3D rotations, which can make training prohibitively ex-

pensive. A few works turn to learn rotation-invariant fea-

tures [40, 25, 21, 7, 5], which allows consistent predictions

given arbitrarily rotated point clouds.

Unfortunately, a limitation from previous works is that

rotation-invariant convolution does not yield features that

are as distinctive as translation-invariant convolution. This

makes performing object classification with aligned data

more accurate than performing the same task with data with

arbitrary rotations. For exact rotation invariance, it is ex-

pected that the rotation-invariant convolution is as accurate

as its translation-invariant sibling.

In this paper, we propose a novel approach to perform

rotation-invariant convolution for point clouds. Our key ob-

servation is that when rotation invariance is added, it intro-

duces some ambiguities and thus reduces feature distinc-

tiveness. To address this problem, we propose to integrate

global context information from the input point cloud to the

convolution, resulting in a global context aware convolution
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for 3D point clouds. The main contributions of this work

are:

• GCAConv, a novel rotation-invariant convolution op-

erator that output features from local point sets and

global anchors. Each anchor is built from subdivided

spaces using a globally-weighted local reference frame

at each keypoint. By explicit encoding the relation be-

tween local point sets and the global anchors, GCA-

Conv can capture both local and global context;

• GCANet, a neural network architecture that uses

GCAConv for learning rotation-invariant features for

3D point clouds. The network allows consistent

performance across training/testing scenarios that in-

volves different rotation modes;

• Applications of GCANet on object classification, ob-

ject part segmentation, shape retrieval, and normals es-

timation that achieve the state-of-the-art performance

under challenging rotations.

2. Related Works

Deep learning in the 2D domain has witnessed great

success in solving scene understanding tasks such as ob-

ject classification, semantic segmentation, normal estima-

tion, etc. Drawing from this inspiration, techniques for deep

learning in the 3D domain has recently been developed with

promising results. In this section, we review the state-of-

the-art research in deep learning with 3D data, and then

focus on techniques that enable feature learning on point

clouds for scene understanding tasks.

Early research in 3D deep learning focus on regular and

structured representations of 3D scenes such as multiple 2D

images [28, 23, 9], 3D volumes [23, 18], hierarchical data

structures like octree [26] or kd-trees [15, 33]. Such rep-

resentations yield good performance. However, they face

challenges from a practical point of view due to memory

consumption, imprecise representation, or lack of scalabil-

ity when high-resolution data is employed.

Many recent works in 3D deep learning switched to in-

vestigate how to learn with 3D point cloud, a more compact

and intuitive representation compared to volumes and im-

age sets. However, performing deep learning with 3D point

clouds is not as straightforward as extending 2D image con-

volution to 3D because mathematically, a point cloud is a

set. To define a valid convolution for a point cloud, it is nec-

essary to ensure that the output features from a convolution

is invariant to the permutation of the point set. PointNet [22]

pioneered such a solution to output global features by max-

pooling per-point features from MLPs. Several follow-up

works focus on designing convolutions that can learn local

features for a point cloud efficiently [13, 24, 17, 37, 34, 41].

Please also refer to the technical report by Guo et al. [11]

for further summary of many deep learning techniques for

3D point clouds.

A fundamental missing feature in the previously men-

tioned convolution for point clouds is that rotation invari-

ance is not supported. A common solution is to augment

the training data with arbitrary rotations, but a limitation of

doing so is that generalizing the predictions to unseen rota-

tions is challenging, not mentioning that the training time

becomes longer due to the increased amount of training

data. Instead, it is desirable to have a point cloud convo-

lution with rotation-invariant features.

To this end, Rao et al. [25] map a point cloud to a

spherical domain to define a rotation-invariant convolution.

Zhang et al. [40] proposed a convolution that operates on

features built from Euclidean distances and angles. Poule-

nard et al. [21] proposed to integrate spherical harmon-

ics to a convolution. You et al. [39] transform the point

cloud onto spherical voxel grids and apply convolution in

the transformed domain. A great benefit of such techniques

is that it allows consistent predictions across training/testing

scenarios with or without rotations being applied to the

data, and they can generalize robustly to inputs with un-

seen rotations. Despite that, so far these techniques share a

common limitation: their performance is inferior to that in

translation-invariant point cloud convolution. A typical ex-

ample is the accuracy in object classification task on Mod-

elNet40 dataset [35]. State-of-the-art techniques such as

PointNet [22], PointNet++ [24], PointCNN [17], or Shell-

Net [41] report between 89% to 93% of accuracy while

techniques with rotation-invariant convolution only report

up to 86% of accuracy [40, 21]. Our work in this paper is

dedicated to analyze and address this problem.

3. Background
Let us first analyze the performance of existing point

cloud convolutions and their rotation-invariant counterparts.

We select object classification task as the key task for our

analysis. An observation is that the classification accuracy

drops when rotation-invariant convolution is applied. We

further dissect this phenomenon by visualizing the latent

space learnt by the neural networks using t-SNE [32]. The

results are shown in Figure 1.

In this figure, we follow Esteves et al. [8] and Zhang

et al. [40] to evaluate three scenarios for object classifica-

tion: z/z, SO3/SO3, and z/SO3. In case z/z, we use data

augmented with rotation about gravity axis for training and

testing. In case SO3/SO3, we use data augmented with ar-

bitrary rotations for training and testing. In case z/SO3, we

train with data by z-rotations and test with data by SO3 ro-

tations. The first scenario has been extensively evaluated by

previous point cloud convolution methods. The second and

third scenario is specially designed to evaluate rotation in-

variance. The third scenario is the most challenging as it is
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Figure 1. t-SNE comparisons of the latent features for Point-

Net++ [24], RIConv [40], and our method under three different

rotation settings. The clusters in the t-SNEs show that to make

good decisions in object classification, it is desirable to have the

cluster boundaries as separated as possible.

designed to test whether a convolution can generalize well

to unseen rotations.

As can be seen, latent space learnt by rotation-invariant

convolution such as RIConv by Zhang et al. [40] does

not exhibit good discrimination among classes. The main

difference between such convolution and traditional point

cloud convolution is that it no longer works with point coor-

dinates at start. In the case of RIConv, the points are trans-

formed into Euclidean based features including distances

and angles, which are not as unique as point coordinates

since many points can share the same distance and angles.

This is well reflected into the t-SNE in the first column (z/z)

in Figure 1. PointNet++ [24] has a good separation among

the clusters while RIConv [40] has more condensed clusters

in the center, resulting in more ambiguities during classifi-

cation.

Similarly, in the second column (SO3/SO3), PointNet++

and RIConv has similar clustering, which explains their

similar performance in the classification (see more quan-

titative comparisons in Table 1). Finally, the third column

(z/SO3) highlights the strength of rotation-invariant convo-

lutions as they can still maintain consistent predictions and

generalize well to unseen conditions. In this case, the t-

SNEs show that PointNet++ cannot generalize effectively.

The goal of our work is to devise a convolution that can

output highly distinctive rotation-invariant features. Here

we achieve this by introducing features from a global con-

text to design a new rotation-invariant convolution. We are

inspired by the fact that for each point in a point cloud,

its 3D coordinates encode global information. Such global

information is lost when one converts the coordinates into

some rotation-invariant features such as distance and angles

as done by Zhang et al. [40].

4. Our Method
Our rotation-invariant convolution is built upon two key

concepts: a repeatable and robust local reference frame and

a global context using anchors. The idea of using local ref-

erence frames is related to spatial transformer [14] which

is also leveraged by PointNet [22]. However, as spatial

transformer is data-driven, it does not work well to unseen

conditions such as the z/SO3 test in Figure 1. To achieve

robustness, we build local reference frames (LRFs) at the

keypoints of the point cloud so that features can be learnt

in such local spaces. At a keypoint, not only points in its

local neighborhood can strongly affect the construction of

the reference frame, but non-neighboring points can also

contribute to such construction. It is well known that re-

peatable and robust LRFs are keys to traditional 3D point

descriptors [30].

After the LRFs are constructed, theoretically we can sim-

ply proceed to learn features of the local point sets. How-

ever, as previously mentioned, global shape information are

also useful for feature learning. We also retain such global

information and integrate them into the convolution. Here

we achieve this through anchors. Each anchor is defined

as a representative point in each subspace formed by the

axes of the LRF. Given a LRF, it is possible to construct

eight subspaces. At each LRF, the anchors thus approx-

imate global features of the point cloud and we integrate

such features to define our convolution.

4.1. Globally Weighted Local Reference Frames

For an input point set, we use farthest point sampling to

select a set of keypoints which can fully cover the underly-

ing point cloud and denoted as Q. For each keypoint p ∈ Q,

we use it as a query to obtain local region Ωp centroid at p.

We wish to use deep learning to extract rotation invariant

features from the local region. To begin with local features

learning, it is necessary to construct a local reference frame

(LRF) such that the 3D coordinates can be transformed into

rotation invariant features. The unit vectors of the LRF at

p can be determined by normalizing the eigenvectors of the

covariance matrix

Σp =

Nsub∑

i=1

(xi − p)(xi − p)�, (1)

where Nsub is the number of points in the local region and

xi ∈ Ωp. However, the LRF via such computation is un-

stable and sensitive to noise. Slight point variations can af-

fect the LRF and make it not repeatable. Moreover, when

a local region Ωp undergoes some rotations, ambiguity can
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Figure 2. Global context aware convolution (GCAConv) for learning point cloud features comprises of two main steps: (1) Transform

into rotation-invariant feature space: for an input point cloud (the upper left plane model), the red dots indicate the keypoints extracted

by farthest point sampling. At each keypoint (e.g. the pink dot), we first establish a local reference frame (LRF) by employing weights

from all other keypoints. The 3D coordinates of the keypoint neighbors are projected to the local space spanned by the LRF to obtain

rotation invariant features; and (2) Global feature learning with anchors: eight anchors are constructed to represent eight bins that spans

the half-spaces due to the LRF. The local-global relation between the points in a neighborhood and the shape approximates in anchors are

folded by a 1D convolution to output final rotation-invariant features.

arise, reducing the distinctiveness of the local features. For

example, it is hard to tell apart a corner region on a bed and

on a floor/wall/ceiling in the presence of arbitrary rotations.

To solve these problems, we establish more reliable LRFs

by utilizing all query points of Q in the construction:

Σq =

N∑

i=1

wi(qi − p)(qi − p)�, (2)

where wi is the weight that controls how a point in the point

set contributes to the matrix. The weight is defined by

wi =
m− ‖qi − p‖

∑N
i=1 m− ‖qi − p‖

, (3)

where m = maxi=1..N (‖qi − p‖). Intuitively, this weight

allows nearby points of p to have large contributions to the

covariance matrix, and thus greatly affect the LRF. Points

further away from p however can contribute globally to the

robustness of the LRF. Such weighted LRF construction is

a fundamental step in 3D hand-crafted features [30], which

can be easily integrated into our proposed convolution.

A typical problem in defining LRFs is the sign flip-

ping, i.e., the LRF signs should not vary for the same point

set [30]. There are multiple ways to resolve the ambigu-

ity; here we disambiguate the signs of the eigenvectors by

orienting them to the global vector O defined by

O =

N∑

i=1

wi(qi − p), (4)

which represents the main orientation of the whole model

from the perspective of point p.

4.2. Anchor Point Generation

Theoretically, it is possible to perform convolution on

the point set transformed into local coordinates using the

constructed LRF. However, it is wasteful to discard global

information from the original coordinates as such informa-

tion can further improve feature distinctiveness. Our idea

here is to use anchor points to retain such information in a

compact way.

Specifically, to establish the anchors, we divide the

whole input point cloud into eight bins, as shown in Fig-

ure 2. In each bin, we use the barycenter of the local point

set in that bin as the anchor point. Such anchors are crude

approximations to the global input shape, and therefore they

convey useful information for the convolution.

It is worth noting that there are many ways to define an-

chors in our case. For example, one can choose to use more

bins or all the original point coordinates as anchors, but

those will significantly increase computation time for the

convolution. We empirically use eight bins as it strikes a

balance between the amount of global information retained

and the running time.

4.3. Global Context Aware Convolution

With the LRFs and anchors points defined, we are now

ready to construct our Global Context Aware Convolution

(GCAConv) to learn the rotation invariant features. Let us
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consider a point set P = {xi} where xi represents 3D co-

ordinates of the point i. Let Ωi be a local point set centered

at xi. A typical convolution to learn the features of Ωi can

be written as

f(Ωi) = σ(A({T (fxi) : ∀i})) (5)

This formula indicates that features of each point in the

point set are first transformed before being aggregated by

the aggregation functionA and passed to an activation func-

tion σ. A popular choice of A is maxpooling, which sup-

ports permutation invariance in the orders of the input point

features [22]. There are a few ways to define the transfor-

mation function T . In PointNet [22], it is defined by

T (fxi
) = wi · fxi

(6)

where · indicates the element-wise product, and wi is the

weight parameter to be learned by the network. This prod-

uct however ignores the contribution of features from neigh-

boring points xj to center xi. To further incorporate such

neighbor information, Liu et al. [19] proposed to define the

weights by a mapping from a relation vector hij between a

point xi and its neighbor xj .

Here our goal is to define the weights by using the local

point set and the anchors. We project both the local point set

and anchor points onto the LRF system such that the global

3D coordinates are transformed to a local frame:

x′
i = LRF (xi), a′i = LRF (ai). (7)

where xi and ai represents the global point and anchor, and

x′
i and a′i represents the local point and anchor, respectively.

From here, we aim to relate the weights to such coordinates.

Given a pair of a local point x′
i and an anchor a′j , we define

their relation as

h(x′
i, a

′
j) = (x′

i − a′j , ‖x′
i − a′j‖) (8)

which can be represented by a 1 × 4 vector. We stack the

features over eight anchors into an 8× 4 matrix.

Our convolution can then be defined as a 1D convolution

K that transforms such matrix into a feature vector. The

kernel of the convolution is 1× 8.

T (fΩi
) = wi · fxi

= (K � hi) · fxi
(9)

Note that in this formula, we operate on local coordinates,

and we use the anchors a′i to approximate features from

neighboring points. This allows us to have two main ad-

vantages. First, our convolution only needs local features

to operate. Second, the LRFs allow that the learnt features

are rotation invariant by definition, without the need of data

augmentation during training. Our features can generalize

easily to unseen rotations, and we also save a lot of compu-

tation during training.

Airplane

...

...

Classification

GCA-Conv

GCA-Deconv
MLP

Segmentation

Normals
Point
cloud

Figure 3. Our network architecture with the proposed point cloud

convolution. We use three convolution layers to extract point cloud

features before fully connected layers for object classification. We

use the same encoder-decoder style architecture with skip connec-

tions for object part segmentation and normal estimation task.

4.4. Network Architecture

We use the proposed convolution to design three neural

networks for object classification, object part segmentation,

and normals estimation, respectively. The architecture is

shown in Figure 3. Our classification network has a stan-

dard architecture and uses three consecutive layers of con-

volution (with point downsampling) followed by fully con-

nected layers (256, 128) to output the probability map. In

three layers of convolutions, the output channels are set as

128, 256, 512 respectively, and the downsampling numbers

are set as 512, 128 and 32 respectively. The neural network

for object part segmentation and normal estimation has a de-

coder branch that includes skip connections and gradually

upsamples the point cloud to the original resolution. We

use MLP after a skip connection to unify and transform the

combined features to have a valid size before deconvolution.

Our deconvolution is defined similarly to GCAConv. The

minor difference is that it gradually outputs denser points

with fewer features.

5. Experimental Results
In this section, we evaluate our method on the 3D ob-

ject classification, object part segmentation, shape retrieval,

and normal estimation task. We implemented our method

in TensorFlow [1] with a batch size of 32 to train ob-

ject classification and 16 to train object part segmentation,

shape retrieval, and normal estimation. The training is per-

formed with Adam optimizer with an initial learning rate

set to 0.001. The experiments are conducted on a machine

with an Intel(R) Core(TM) i7-6900K CPU equipped with

an NVIDIA GTX TITAN X GPU.

5.1. Classification on ModelNet40

Object classification is the main task in our evaluation.

We train the classification network by using the Model-

Net40 variant of the ModelNet dataset [36]. ModelNet40
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Method Format Input size Params. z/z SO3/SO3 z/SO3 Average acc. Acc. std.

VoxNet [20] voxel 303 0.9M 83.0 87.3 - 85.2 3.0

SubVolSup [23] voxel 303 17M 88.5 82.7 36.6 69.3 28.4

Spherical CNN [8] voxel 2× 642 0.5M 88.9 86.9 78.6 84.8 5.5

MVCNN 80x [28] view 80× 2242 99M 90.2 86.0 81.5 85.9 4.3

PointNet [22] xyz 1024× 3 3.5M 87.0 80.3 21.6 63.0 41.0

PointNet++ [24] xyz 1024× 3 1.4M 89.3 85.0 28.6 67.6 33.8

PointCNN [17] xyz 1024× 3 0.60M 91.3 84.5 41.2 72.3 27.2

RS-CNN [19] xyz 1024× 3 1.41M 90.3 82.6 48.7 73.9 22.1

RIConv [40] xyz 1024 ×3 0.70M 86.5 86.4 86.4 86.4 0.1

SPHNet [21] xyz 1024 ×3 2.9M 87.0 87.6 86.6 87.1 0.5

SFCNN [25] xyz 1024 ×3 - 91.4 90.1 84.8 88.8 3.5

ClusterNet [5] xyz 1024 ×3 1.4M 87.1 87.1 87.1 87.1 0.0

Ours (w/o anchor) xyz 1024 ×3 0.21M 86.3 86.2 86.2 86.2 0.0
Ours xyz 1024 ×3 0.39M 89.0 89.2 89.1 89.1 0.0

Table 1. Comparisons of the classification accuracy (%) on the ModelNet40 dataset. On average, our method has the best accuracy and

lowest accuracy deviation in all cases.

contains CAD models from 40 categories such as airplane,

bottle, chair, dresser, vase, etc. We use the preprocessed

data from PointNet [22] that consists of 9, 843 models for

training and 2, 468 models for testing. We use point clouds

of size 1024 in this task. Each point is represented by

(x, y, z) coordinates in the Euclidean space. The training

takes approximately 11 hours to converge in 250 epochs.

Following Esteves et al. [8] and Zhang et al. [40], we

evaluate the performance of object classification with three

scenarios: (1) using data augmented with rotation about

gravity axis (z/z) for training and testing, (2) using data

augmented with arbitrary rotations (SO3/SO3) for training

and testing, and (3) training with data by z-rotations and

testing with data by SO3 rotations (z/SO3). It is expected

that rotation-invariant convolutions should work well in the

z/SO3 scenario.

Table 1 details the results of this experiment, which con-

firms the effectiveness of the proposed rotation-invariant

convolution. As can be seen, on average, not only

our classification accuracy outperforms the state-of-the-

art translation-invariant point cloud convolution, the per-

formance is also consistent across three scenarios. For

rotation-invariant convolutions, our method outperforms the

accuracy of RIConv [40], SPHNet [21], and ClusterNet [5]

by a good margin. Our method is slightly more accurate

than SFCNN [25] but much more consistent.

5.1.1 Ablation Studies

Network Design. We conduct an ablation study on the

ModelNet40 dataset for the classification task (Table 2). We

examine four settings in our convolution: (1) the globally

weighted LRFs with main orientation (Weight), (2) the use

of main orientation to resolve the LRF sign ambiguity (O
vector), (3) the use of anchors for global context (Anchor),

and (4) the data augmentation with rotations used for the

training (Rot. Aug.). Five models (A-E) are used to study

the effects of these settings by turning them on/off.

Model A is our baseline setting with all settings on.

Model B tests the importance of the weights for computing

LRFs and the main orientation. It can be seen that without

such weights, the accuracy decreases to 87.1%. The main

reason is that the LRFs and the main orientation are more

noisy and less repeatable in such case. Next, in model C we

further turn off the O vector to test the stability of the LRFs

without sign correction. The accuracy further decreases to

86.7%. This verifies that constructing stable LRFs is key

to good network performance. In model D, we turn off the

global anchor. In this case, only the local points are used

for feature extraction. Thanks to the LRFs, the local fea-

tures are still effective despite of mild accuracy drop. In

model E, we test the performance without rotation augmen-

tation scheme during the training procedure. We find the

Model Weight O
Vector

Anchor Rot.

Aug.

Acc.

A

B

C

D

E

�

�
�

�
�

�
�

�
�
�

�

�
�
�
�

89.2

87.1

86.7

86.6

89.2

Table 2. An evaluation of our network design. It shows that

weighted LRF, resolving LRF sign ambiguity, and global anchor

play an important role for good performance.
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Number of Anchors 1 2 4 8

Accuracy 87.3 87.8 88.5 89.2

Table 3. Classification accuracy (%) on ModelNet40 [36] with dif-

ferent number of anchors.

accuracy is not affected by data augmentation as GCAConv

already achieves exact rotation invariance.

Comparison to learned LRFs. It is generally tempting

to learn the LRFs to design rotation-invariant convolution.

Here we compare this method to our proposed LRFs. We

use a two-layer MLP to predict the LRFs and then use them

to transform the input point coordinates into a local coordi-

nates before proceeding for convolution as described in the

main paper. We found that predicting LRFs works well in

z/z and SO3/SO3 mode, with both scenarios achieved ac-

curacies of 89.3% and 89.2%, respectively. However, us-

ing data-driven LRFs makes the convolution only rotation-
aware, but not exactly rotation-invariant. Such convolution

fails to generalize to unseen rotations in the z/SO3 scenario

with the accuracy of 36.2%.

Number of Anchors. From the ablation studies, we see

that without global anchors, the performance is decreased.

Here, we further analyze the effects of the number of an-

chors by investigating the performance on ModelNet40 with

a different number of anchors. The qualitative results are

shown in Table 3. We can see that with only one anchor,

the accuracy decreases to 87.3%, but still higher than RI-

Conv which is around 86.4%. This shows the advantages

of global information. With the number goes on, the accu-

racy also increases. We empirically use eight anchors as it

strikes a balance between the amount of global information

retained and the running time.

5.2. Object Part Segmentation on ShapeNet

In addition to object classification, we evaluate our

method to output a label for each point in the point cloud,

resulting in object part segmentation. We use the 3D mod-

els in ShapeNet [4] to train our network with point size of

2048 in this task. It takes roughly 36 hours for the training

to complete 300 epochs.

The quantitative and qualitative results are shown in Ta-

ble 4 and Figure 4, respectively. In this task, we achieve

start-of-the-art results for both SO3/SO3 and z/SO3 scenar-

ios. Our method outperforms RIConv [40] by almost 2%
of accuracy. From Figure 4, we can clearly see that with

z/SO3 mode methods like PointNet++ and SpiderCNN can

not work well. This is easy to explain as these methods

use the raw xyz coordinates as input for training, thus can-

not well understand unknown rotations. RIConv [40] works

Method input SO3/SO3 z/SO3

PointNet [22] xyz 74.4 37.8

PointNet++ [24] xyz+normal 76.7 48.2

PointCNN [17] xyz 71.4 34.7

DGCNN [34] xyz 73.3 37.4

SpiderCNN [37] xyz+normal 72.3 42.9

RS-CNN [19] xyz 72.5 36.5

RIConv [40] xyz 75.5 75.3

Ours (w/o anchor) xyz 73.2 73.6

Ours xyz 77.3 77.2

Table 4. Comparisons of object part segmentation performed on

ShapeNet dataset [4]. The mean per-class IoU (mIoU, %) is used

to measure the accuracy under two challenging rotation modes:

SO3/SO3 and z/SO3.

Figure 4. Qualitative comparisons of part segmentation for GCA-

Conv, RIConv [40], PointNet++ [24], SpiderCNN [37] under the

z/SO3 rotation mode (from the left column to the right column).

better as it converts xyz coordinates into rotation invariant

format like distances and angles before training. However,

it still has difficulties in recognizing the boundaries while

our method can treat these regions well by incorporating

global context information (see column 2 and 3 in Figure 4).

5.3. Shape Retrieval

A popular evaluation of rotation invariance on 3D shape

is the shape retrieval task [27]. Here we conducted ex-

periments on ShapeNet Core [36], following the perturbed

protocol of the SHREC’17 3D shape retrieval contest [27]

and the experiment setting of SFCNN [25]. We use the

same output features from the bottleneck layer in the net-

work (similar to features used in the classification task;

see Figure 3). We compare with methods proposed in

SHREC’17 [10, 29, 3] and two recent methods on rotation-

invariant convolution [8, 25]. The results are shown in Ta-

ble 5. It can be seen that our method achieves the state-of-

the-art accuracy, outperforming previous methods for most

evaluation metrics.
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micro macro

Method PN R@N F1@N mAP NDCG PN R@N F1@N mAP NDCG Score

Furuya [10] 81.4 68.3 70.6 65.6 75.4 60.7 53.9 50.3 47.6 56.0 56.6

Tatsuma [29] 70.5 76.9 71.9 69.6 78.3 42.4 56.3 43.4 41.8 47.9 55.7

Zhou [3] 66.0 65.0 64.3 56.7 70.1 44.3 50.8 43.7 40.6 51.3 48.7

Spherical CNN [8] 71.7 73.7 - 68.5 - 45.0 55.0 - 44.4 - 56.5

SFCNN [25] 77.8 75.1 75.2 70.5 81.3 65.6 53.9 53.6 48.3 58.0 59.4

Ours 82.9 76.3 74.8 70.8 81.3 66.8 55.9 51.2 49.0 58.2 61.2
Table 5. Comparisons of 3D shape retrieval on the ShapeNet Core [36]. The accuracy (%) is reported based on the standard evaluation

metrics including precision, recall, f-score, mean average precision (mAP) and normalized discounted cumulative gain (NDCG).

Method z/z SO3/SO3 z/SO3 Err. std.

PointNet++ [24] 0.34 0.55 0.81 0.24

RS-CNN [19] 0.26 0.50 0.83 0.29

RIConv [40] 1.33 1.30 1.30 0.02

Ours 0.42 0.42 0.44 0.01

Table 6. Comparisons of the normal estimation on ModelNet40.

The accuracy is reported on three test cases: training and testing

with z/z, SO3/SO3 and z/SO3 rotation, respectively. Our method

has good accuracy and lowest accuracy deviation in all cases.

5.4. Normals Estimation

Normals estimation for point clouds is instrumental in

many applications such as point cloud rendering, feature

extraction, and surface reconstruction. Here we conduct

normals estimation on point clouds using the ModelNet40

dataset. For each model, we uniformly sample 1024 points

from the original data for training. We compute a loss based

on the cosines between the predicted unit vectors and the

ground truth normals to guide the training. Our results are

shown in Table 6.

In this table, our method achieves the best consistency in

predicting normals across three test scenarios. In SO3/SO3

and z/SO3 case, our method is the most accurate. It out-

performs other methods by a wide margin. The predicted

normals are depicted in Figure 5. We quantize the errors

by calculating the angles between the predicted and ground

truth normals. In Figure 5, the blue and red vectors depict

normals with less than 30◦ and greater than 90◦ of error. It

can be seen that our method is the most accurate visually.

It is worth noting that RIConv [40] performs poorly in the

normals estimation task because it uses rotation-invariant

features that discard the reference coordinate frames, and

so the normals of RIConv is not globally consistent.

6. Conclusion
In this work, we introduced a novel approach to de-

sign rotation-invariant convolution for 3D point clouds. We

Figure 5. Qualitative comparisons of normal estimation for GCA-

Conv, RIConv [40], RS-CNN [19], and PointNet++ [24] under the

z/SO3 rotation mode (from the left column to the right column).

show that building robust and repeatable local reference

frames is critical to boosting the performance of rotation-

invariant object classification. In this task, our newly pro-

posed convolution can match the performance of state-of-

the-art translation-invariant convolutions. Our work opens

up opportunities to narrow down the performance gap be-

tween rotation-invariant and translation-invariant convolu-

tion in general 3D deep learning, making robust convolu-

tions for 3D point clouds feasible.

Here we detail a few potential ideas for future research.

First, while our method achieves good performance, it is not

clear whether local reference frames can be set robustly by

a neural network. There is a recent work [42] that attempts

to solve this problem, but the performance on object clas-

sification needs further investigation. Second, generalizing

point cloud convolutions to support non-rigid transforma-

tions and deformable objects could further improve overall

robustness. Finally, more thorough benchmarking rotation-

invariant convolutions with real-world data [31] is neces-

sary to understand the impact of such data on the learning

of rotation-invariant features.
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