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a b s t r a c t

Current methods of dental identification are mainly based on 2D dental radiographs which suffer from
speed and accuracy limitations. In this paper, we present an efficient dental identification approach
based on 3D dental models. We propose a novel shape descriptor, the Signed Feature Histogram (SFH),
which is highly discriminative and can be easily computed to describe the local surface. Based on the
SFH, a learning keypoint detection method is adopted to accurately detect the desired keypoints on both
antemortem (AM) and postmortem (PM) models. For a given PM model, the optimal initial alignment to
the AM model to be matched can be found efficiently and robustly by matching the SFHs between the
keypoints. The final matching score is obtained by running the iterative closest point algorithm which
further refines the initial alignment. We have performed comparative experiments for the SFH on a
public dataset, and state-of-the-art performance is achieved. We also test the identification method on a
database of 200 AM models and tested the performance of the proposed approach on 3 different PM
datasets comprising complete, incomplete and single tooth models respectively. The experimental re-
sults show that both high accuracy and efficiency are achieved with 100% Rank-1 identification accuracy
on both complete and incomplete PM models and 74% Rank-1 accuracy on single tooth PM models. The
running time is only 300 s on average which is about 80 times faster than many 2D methods which can
take several hours to identify one subject.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Dental identification has emerged as a new biometric strategy
and received substantial attention in recent years [1–9]. Compared
to other identifiers such as face, fingerprint and palm print, the
dental record is regarded as the most promising trait for human
identification in the unfortunate and tragic events of homicide and
mass disasters as it is the hardest and the most indestructible part
of human body [10]. In the mass disasters like 9/11 terrorist attack
and the Asian tsunami of 2004, dental identification has shown to
be more reliable and effective than other means [11,12]. It even
outperforms DNA identification as about 75% of the victims were
identified using dental records while DNA only helped identify
0.5% victims in the case of the Asian tsunami [13].

Most existing dental identification approaches rely on 2D
radiographs. Radiographs taken before death are stored in an

antemortem (AM) database, while a radiograph obtained after
death is saved as a postmortem (PM) image which will be used to
match against the AM database [14]. Traditional dental identifi-
cation usually requires forensic odontologists to manually search
the AM database and find the best match to the given PM image
based on distinctive features such as missing teeth, crown and root
morphology, pathology and dental restorations [15]. Since such a
manual process is less accurate and time-consuming, automatic or
semiautomatic approaches have been developed over the past few
years. Jain et al. [1] introduced a semiautomatic dental identifi-
cation method which requires manual selection of region of in-
terest (ROI). The tooth contours are then extracted and the iden-
tification result is obtained by matching the PM and AM tooth
contours. To make it more efficient, Jain and Chen [2] proposed a
segmentation algorithm to detect ROI and a probabilistic method
to automatically find the contours of teeth. However, human in-
tervention is still needed to initialize certain algorithmic para-
meters and correct errors for poor quality images. While these two
semiautomatic methods [1,2] were shown to be feasible on a small
database, they performed poorly for blurred images or partially
occluded query shapes. In [5], Nomir and Abdel-Mottaleb
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presented an automatic tooth segmentation technique based on
iterative and adaptive thresholding. Signature vectors are used to
describe the extracted teeth contours, and the similarities of the
AM and PM tooth contours are obtained by matching the sig-
natures. In their later work, they showed that the accuracy and
speed can be further improved through a hierarchical contour
matching algorithm [16] or a fusion scheme [17].

Despite the popularity of using contours for dental identifica-
tion, poor image quality often plagues accurate tooth contour ex-
traction and makes the identification unreliable. This has led to the
use of more features to improve the robustness. For instance,
Nomir and Abdel-Mottaleb [6] showed that the accuracy could be
improved by using both tooth contours and tooth appearance
which are represented by Fourier descriptors and forcefield energy
respectively. Dental works such as crowns, bridges, and fillings
which appear as bright regions and are more distinct than teeth
can also be used for identification [3,7]. Chen and Jain [3] pre-
sented a dental identification system based on matching tooth
contours and regions of dental work. Tooth contours are matched
using a shape registration strategy while dental work is matched
on overlapping areas using an area-based metric. The matching
accuracy was improved by fusing these two measurements. Lin
et al. [7] proposed to use both contours of teeth and dental works
for identification. The tooth contours are matched in the spatial
domain, while the contours of dental works are matched in both
spatial and frequency domains. To reduce alignment error, a point-
reliability method as well as an outlier detection and pruning
method are designed for contour matching. With these techni-
ques, promising experimental results were obtained. However,
these 2D radiograph based approaches still suffer from several
limitations. (1) X-ray radiographs are usually noisy and blurred,
which makes the tooth segmentation and contour extraction time-
consuming and inaccurate. Chen and Jain [3] reported that 14 out
of 25 subjects in their database could not be identified. Further-
more, human intervention is often required in preprocessing.
(2) Some important features are distorted in radiographs. For ex-
ample, the dental arch which is considered to be unique among
individuals [18] is usually distorted in 2D radiographs. (3) 2D
radiographs are less informative compared to 3D records since 2D
images are projections of 3D teeth. 3D dental feature details such
as the ridges and grooves on each tooth are lost in 2D images.

To overcome the inherent limitations of 2D based methods, 3D
dental identification approaches were proposed based on match-
ing 3D dental records [8,9]. In [9] for example, salient points were
automatically detected which are used to register the PM model to
the AM model, and the iterative closest point (ICP) [19] was
adopted to compute the matching scores. It achieved 80% Rank-1

recognition rate on 60 PM to 200 AM subjects, and took 45 min on
average to identify one subject from 200 subjects (on a PC with a
Core 2 Dual CPU 2.5 GHz and 4 GB RAM). We can see that there is
still much room for improving the accuracy and speed.

In this work, we propose an efficient 3D dental identification
approach via learning based feature point extraction and a novel
shape descriptor called the Signed Feature Histogram (SFH). An
overview of our approach is shown in Fig. 1. In the offline part, we
establish a small training dataset which is a subset of the AM
database and label a series of keypoints at the desired positions.
The local surface of every labeled keypoint is then described by the
SFH which can be efficiently computed. The labeled keypoints
along with the descriptors are used to train a Random Forest (RF)
model, based on which the keypoints on both AM and PM models
can be accurately detected. In the online part, the given PM model
is efficiently identified by matching the SFHs to those of AM
models followed by ICP refinement. The main contributions of this
work are:

� A machine learning based keypoint detection method is used to
accurately detect a sparse set of keypoints on the dental models.

� A novel shape descriptor is proposed to describe the local shape
which can be easily and efficiently computed.

� A highly efficient dental identification approach is presented by
matching the descriptors of the keypoints followed by ICP
refinement.

� Comparative experiments are conducted on a public dataset to
evaluate the SFH performance with results showing that SFH
outperforms the state-of-the-art descriptors.

� Comparative experiments are conducted on 3 different PM
dental datasets containing complete, incomplete and single
tooth respectively. Both high accuracy and efficiency are
achieved.

The remainder of this paper is organized as follows. In Section
2, we describe the data acquisition and preprocessing steps. In
Section 3, we introduce a machine learning approach for keypoint
detection and the Signed Feature Histogram descriptor for re-
presenting the local information of the keypoints. An efficient
dental identification method is presented in Section 4. In Section 5,
comparison experiments are conducted to testify the performance
of the proposed descriptor and the identification method. The
computational time statistics are also presented. Finally, we con-
clude our work in Section 6.

Fig. 1. Block diagram of the proposed 3D dental identification approach.
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2. Data acquisition and preprocessing

In this section, we describe the antemortem (AM) and post-
mortem (PM) dataset acquisition and 3 critical preprocessing steps
including decimation, segmentation, and remeshing.

2.1. Data acquisition

Antemortem (AM) models: Plaster samples are taken from 200
subjects whose ages range from 12 to 35 years. These plaster
samples are then scanned using the Minolta VIVID 900 Surface
Laser Scanner with the spatial scanning resolution of 0.2 mm.

Postmortem (PM) models: Postmortem (PM) models are taken
independently by another investigator in the following year using
the same laser scanner. This time, 20 subjects are selected from
the 200 subjects sampled previously. To verify the effectiveness of
our method, we construct three PM datasets: complete, in-
complete and single tooth datasets. Details can be found in Section
5.

2.2. Preprocessing

The raw data is noisy and requires between 14 MB and 40 MB
of storage per mouth. We perform 3-step preprocessing on the AM
models and PM models including decimation, segmentation, and
remeshing.

Decimation: Since the scanning is performed under high re-
solution, the resulting models have 340,000–400,000 triangle fa-
ces. We reduce the models to 10% of the original size for higher
computational speed. The simplification method proposed in [20]
is employed as it can output a high quality approximation. Fig. 2
(b) shows an example of the decimated model.

Segmentation: In the second step, we perform automatic seg-
mentation to remove the bottom part of the digitized plaster
where tooth information does not exist. The Principal Component
Analysis (PCA)-plane passing through the centroid of the model is
used to cut the model into two parts (Fig. 2(c)).

Remeshing: Remeshing [21] is another important preprocessing
step which makes the model vertices regularly distributed (e.g. all
edges have approximately the same lengths). Comparing Fig. 2
(d) and (e), it is clear that the vertices are more regularly dis-
tributed after remeshing.

3. Learning based keypoint detection

A keypoint, also referred to as interest point or feature point,
plays a crucial role in many computer vision applications such as
retrieval [22], object registration [23], object recognition [24,25],
and face recognition [26]. In this section, we introduce a robust 3D
dental keypoint detection scheme. The following criteria are well-
recognized for good keypoint detection methods.

Repeatability: The keypoints should be highly repeatable, that
is, the keypoints are detected consistently across different in-
stances of the same object.

Descriptiveness: There should be enough information around
keypoints so that descriptive features can be extracted.

Small quantity: Fewer but representative keypoints are pre-
ferred. A small number of keypoints can significantly reduce
computational complexity and improve matching accuracy.

In existing works [27–29], keypoints are usually detected based
on the metric of curvature or saliency, resulting in a large number
of redundant keypoints. To achieve efficiency, the detected key-
points should not only be of high repeatability and high descrip-
tiveness but should also be small in number. To this end, we in-
troduce a learning based keypoint detection scheme which com-
prises mainly three steps: (1) we label a very small number of
representative dental keypoints on the training datasets. (2) For
each labeled keypoint we build a novel shape descriptor to re-
present the local surface. (3) The descriptors of the labeled key-
points are fed into the Random Forest to train a model, based on
which the keypoints can then be predicted. We detail these steps
in the following subsections.

3.1. Keypoint labeling

We classify the teeth into 4 categories: incisor, canine, molar,
and premolar. The center of the masticating surface of each tooth
is labeled as the keypoint (Fig. 3). Such labeling has the advantages
that useful information is gathered on the masticating surface, and
each model can be represented by a very small number of key-
points (one keypoint per tooth). 280 keypoints have been labeled
on 40 dental models. Each keypoint is assigned a class label (in-
cisor, canine, premolar, or molar), and the local surface patch will
be described by descriptors which are used to train a classifier.

3.2. An novel shape descriptor

To train the classifier, we need to construct shape descriptors

Fig. 2. Preprocessing procedure: (a) original dental model; (b) dental model after decimation; (c) principal component analysis (PCA) plane construction; (d) the upper part
is kept as segmentation result; (e) final dental model after remeshing.
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for the keypoints to describe the local characteristics so that the
classifier knows the types of vertices that are keypoints. There are
many available descriptors ranging from simple single-value based
descriptors like curvature [27] and saliency map [28,29] to more
complex signature or histogram based descriptors such as spin
images [30], SHOT [31], RoPS [32]. Creusot et al. [33] detected fa-
cial keypoints using both simple and complex descriptors. How-
ever, they reported that complex descriptors could decrease
identification efficiency.

In this work, we propose a novel shape descriptor named the
Signed Feature Histogram (SFH) that is highly discriminative and
can also be efficiently computed. The proposed descriptor is an
extension of our previous work [34]. The major improvements lie
in three aspects. First, SFH is a 3D descriptor encoding more in-
formation. Second, SFH is more discriminative as two out of the
three dimensions are associated with signs. Third, a highly reliable
and repeatable Local Reference Axis is used to make the descriptor
more stable.

3.2.1. Local Reference Axis
The Local Reference Axis (LRA) or Local Reference Frame (LRF)

is crucial for robust feature description. The descriptor could be
more stable and discriminative if a transformation invariant LRF or
LRA is provided. Some early works used the single normal vector
as the LRA [30,35,36] which lack descriptiveness. Recent works
[31,37,32] emphasized the importance of the LRF.

However, the main problem of the LRF is the instability of the
x- and y-axes. In [37], for example, the x-axis is the direction from
the keypoint to the point with largest angle between its normal
and the z-axis, which is unstable in the presence of noise. Recent
popular methods construct the LRF by finding the major direction
of the scatter vectors [31,32]. The stability is largely improved
while the sign ambiguity of the x and y axes still exists. Another
disadvantage of the LRF is that more computational time is re-
quired compared to LRA. This problem becomes more obvious

when a large number of descriptors need to be built. Based on
these considerations, we use a highly repeatable and reliable LRA
instead of the LRF to build the descriptor, since the former can be
efficiently computed without the sign ambiguity problem of the x
and y axes.

Given a keypoint p on the surface and a support radius r, we
construct the LRA as the weighted sum of normals of all the ver-
tices within the local support, that is

∑=
( )=

w nLRA
1i

N

i i
1

where N is the number of vertices within local support, and wi is
computed as

∑= ( − | − |) ( − | − |)
=

w r p p r p p/ .i i
i

N

i
1

Here, pi is a neighboring vertex within the local support. wi

measures the distance from the keypoint to the neighboring pi. We
assign a greater weight to a neighboring vertex which is close to p,
and assign a smaller weight to a vertex which is far away from p.

3.2.2. Signed feature histogram
With the Local Reference Axis (LRA), we now are able to con-

struct the shape descriptor called Signed Feature Histogram (SFH
for short), which is an extension of our previous work [34]. This
time, the new descriptor is extended into 3D and more signed
features are encoded. The SFH is constructed as follows.

For a keypoint p on the surface (Fig. 4, left), the local surface
within radius r is defined as Sp which is mapped into the 3D do-
main by using the following equation:

α β θ θ→ ( ) = (|( − ) × | ·( − )· · ) ( )S x p D x p D, , LRA , LRA , , 2p p p x1 2

where LRAp is the Local Reference Axis (LRA) computed at p, LRAx

is the LRA of a neighboring vertex x in the local support. θx re-
presents the included angle between LRAp and LRAx which is
computed by ( · )arccos LRA LRAp x . D1 is the sign of the perpendicular
distance from x to the tangent plane determined by

=
+ ·( − ) >
−

⎧⎨⎩D
x p1, LRA 0

1, otherwise
p

1

and D2 is the sign of the angle between LRAp and LRAx determined
by

=
+ ·( − ) < ·( − )
−

⎧⎨⎩D
x p x p1, LRA LRA

1, otherwise
p x

2

When x is above the tangent plane D1 is assigned +1, otherwise it
is assigned −1. For D2, it is assigned +1 when LRAx point towards
LRAp, otherwise it is assigned −1.

After mapping the vertices within Sp into the 3D domain, we
uniformly divide the range of the three dimensions into k bins. The
SFH is constructed by allocating the vertices of Sp into different

Fig. 3. For each of training model, the desired keypoints on incisor, canine, molar,
and premolar are manually labeled whose local surface patches will be described
by descriptors and fed into a classifier for training.

Fig. 4. Signed Feature Histogram (SFH) construction.
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bins according to their 3D values. The value of a particular bin is
the number of vertices that fall into this bin. The final SFH is
shown on the right of Fig. 4 where the axis ranges from 0 to r
indicates the perpendicular distance to the LRAp, the axis ranges
from −r to +r represents the perpendicular distance from x to the
tangent plane, and the axis ranges from π− to π+ represents the
signed angle. We build SFHs for all the keypoints in the training
set, which will then be fed into a classifier for learning. The key-
points in our case are from four classes: incisor, canine, premolar
and molar. Therefore, a multiclass classification technique is re-
quired. Popular classifiers such as neural networks [38], naive
Bayes [39], extensions of support vector machines [40,41] and
Random Forest [42] are applicable to this problem. In this study,
we use the Random Forest for our task because it is a natural
multiclass classifier having the appealing advantages of high ac-
curacy, robustness, and high computational efficiency in both
training and classification.

3.3. Keypoint detection via Random Forest

The proposed descriptor Signed Feature Histogram (SFH) re-
presents the local surface of any vertex in a canonical form, thus
allowing us to train a classifier which can then be used to predict
the desired keypoints. Here, we employ the Random Forest [42]
for this task due to its competitive accuracy and high efficiency.
Learning based keypoint detection commonly involves two stages:
offline training and online prediction.

3.3.1. Training
In the training stage, 20 complete dental models are collected.

We annotate the keypoints on each model at the desired positions,
as shown in Fig. 3, as well as the class labels (incisor, canine,
premolar or molar). The keypoints are represented by SFHs which
encode the local surface characteristics in a canonical form. Finally,
we obtain a training dataset comprising 280 keypoints associated
with SFHs and class labels denoted as { = ( )}D S c,i i i , where Si is the
SFH descriptor and ci is the class label.

The Random Forest trains each tree independently following a

random sampling scheme in order to increase the robustness and
avoid overfitting on the training data. For keypoint detection, a
subset of training samples for each class is randomly selected.
Then, the tree is trained in a recursive way, where, for each node of
the tree, a subset of features out of Si is chosen randomly based on
which, the best split is calculated. The process is repeated for the
left and right child nodes. The tree is fully grown without pruning
until a stopping criterion is met [42]. After training, a non-leaf
node is labeled with a split function ( ) ∈ ( )Φf S 0, 1i which optimally
separates the training samples, while each leaf of the tree is la-
beled with a probability distribution over the classes.

3.3.2. Prediction
The trained Random Forest classifier can be used for dental

keypoint prediction. As an ensemble classifier, it consists of a
collection of decision trees where each individual tree gives a
probability distribution. The final prediction result is determined
by averaging the probability distributions given by each tree. Fig. 5
illustrates how an input vertex is predicted by the Random Forest.
The vertex on a dental model is first described by the Signed
Feature Histogram (SFH) which goes down each decision tree of
Random Forest. The class membership probability P(c) for the
current input is generated at the leaf node of the tree. In Fig. 5, the
vertex (blue point) to be predicted is close to the desired molar
keypoint position. Thus, the probability to the molar class (blue
bar) is much higher, indicating that it is more likely to be a molar
keypoint. By examining the average probability distribution over
all the trees, we can classify the input as a keypoint when certain
probability value of the average distribution is high enough.

An example of dental keypoint detection is shown in Fig. 6. For
efficiency, we set the tooth centered part as the Region of Interest
(ROI) and discard the points close to the model boundary. SFHs are
computed for the points in ROI and fed into the Random Forest for
prediction. Since there are four classes (incisors, canines, pre-
molars or molars), we have four probability maps as shown in the
second row of Fig. 6. The vertex with a high probability (red) is
more likely to be a member of that class, and thus should be se-
lected as a keypoint. From the four maps, we see that most of the

Fig. 5. Dental keypoint prediction via Random Forest: the vertex to be predicted is described by SFH which traverses each tree of the Random Forest from the root node to
the corresponding leaf node. The path direction (blue path) is routed by the split function at the non-leaf node. The leaf node gives a probability distribution over classes
indicating the membership probability that the input sample belongs to a specific class. The final prediction result is determined by analyzing the probability distribution
over classes computed by averaging the distributions of the leaf nodes reached in every tree. The taller blue bar in this example means that the input sample is more likely to
be a molar keypoint. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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high probability points are aggregated at the desired keypoint
positions. For the premolar map, however, some points on the
molar also possess high probabilities. This indicates that the local
characteristics of these points are similar to those of the premolar.
To filter them out, we set a threshold value t¼0.95 and select
vertices with probabilities above t as keypoints (third row of
Fig. 6). Such a selection still produces multiple keypoints at each
desired position as nearby vertices possess similar characteristics.
To further suppress the non-max probability keypoints, only the
local maxima are considered as final keypoints (bottom row of
Fig. 6).

4. Dental identification

The identification procedure has been shown in Fig. 1. This
procedure consists two parts. In the offline part, every model in
the AM database is pre-processed and the keypoints are detected
using the method described above. Local shape descriptors (SFHs)
are then constructed for all the keypoints. In the online part, the
same processes are implemented for a given PM model. However,
the non-maximum probability keypoints are not suppressed for
the AMmodels to make sure that each keypoint of a PM model has
a corresponding keypoint on the AM model.

To identify a given PM model, we need to compare it to each of

the AM models and choose the most similar one as the correct
match. Given a pair of AM and PM models (denoted as M1 and M2)
to be compared, we denote their keypoints as K1 and K2 respec-
tively (| | < | |K K2 1 ). To measure their similarity the following steps
are conducted. First, we build a list containing L potential corre-
spondences for each keypoint of K2 from K1 ( ⪡| |L K1 ) by checking
the similarities of the SFHs. That is, for each element of K2, the l2
distances between its SFH and the SFHs of all the elements of K1
are calculated and sorted in an ascending order. The first L ele-
ments from K1 are chosen as the potential correspondences for the
current keypoint of K2. In the second step, we randomly select
three different keypoints from K2 whose potential corresponding
keypoints are selected from their potential lists. This results in
⁎ ⁎L L L different 3-to-3 combinations. For each possible combina-
tion, we compute the rigid transformation matrix to transform the
PM model to the AM model. The mean square error (MSE) be-
tween the two models after transformation is used to estimate the
transformation accuracy. In most cases, the above procedure can
output an accurate transformation based on which we can finally
obtain the final similarity between these two models. However, to
enhance the robustness we iterate this procedure N times and
choose the one with minimum MSE as the best initial alignment
which is then refined by the iterative closest point (ICP) [19] al-
gorithm. The ICP result serves as the final measurement of the
similarity of the given pair. The matching procedure is

Fig. 6. Given a dental model (top row), the Region of Interest (ROI) is defined as the tooth centered region by setting the region close to the boundary as non-ROI. SFHs are
computed for the points of ROI which are fed into the Random Forest for prediction. The probability maps (second row) of the 4 teeth classes are generated using Random
Forest. From left to right, the maps for incisor, canine, premolar and molar are shown with range from 0 (blue) to 1 (red). The vertices with higher probability value (e.g.
above threshold value t) are considered as potential keypoints (third row). The fourth row shows the aggregation of the potential keypoints of all the four classes. The local
maxima are detected as final keypoints (bottom row). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this
paper.)
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summarized in Algorithm 1, with N¼100, L¼5.

Algorithm 1. Matching a pair of dental models.

Input:
Antemortem (AM) and Postmortem (PM) Models: M1, M2;
Keypoints sets of M1 and M2: K1, K2 with ⊆K K2 1;
SFHs at the keypoints of M1 and M2: S1, S2;

1: ←| |×LIST 0K L2

2: for each keypoint in K2 do
3: find L potential correspondences from K1 by checking the

similarities of the SFHs, and stored as potential list;
4: end for
5: ←n 0; ←minDist Inf ; ϕ←Tbest ;
6: repeat
7: Randomly select 3 keypoints P from K2; For each of their

potential correspondences Q in | |×LISTK L2

8: if ( )COMPATIBLE P Q, then
9: Compute the rigid transformation matrix T and do rigid

transformation; Compute the Mean Square Error (MSE) d
between the two models after transformation;

10: if ≤d minDist then
11: ←minDist d; ←T Tbest ;
12: end if
13: end if
14: ← +n n 1;
15: until >n N
16: Do rigid transformation with Tbest and run ICP algorithm

for refinement; compute the MSE S between the two
models after ICP refinement.

Output
The similarity score: S

Algorithm 2. Check the compatibility of two groups of keypoints.

1: procedure COMPATIBLE(P, Q)
2: if | | ≠ | |P Q then
3: return false
4: else
5: ← | |n Q ;
6: ←flag true;
7: for = → −i n1 1 do
8: for = →j n2 do
9: ← ∥ ( ) − ( )∥d P i P j1
10: ← ∥ ( ) − ( )∥d Q i Q j2
11: ← ⁎ ( )thr d d0.2 min 1, 2
12: ← ( − )s abs d d1 2 ;
13: if >s thr then
14: flag ’false
15: end if
16: end for
17: end for
18: end if
19: return flag;
20: end procedure

It is worth noting that it is unwise to apply ICP directly for iden-
tification because without good initial alignment, ICP is computa-
tionally expensive and easily gets stuck in local minima. The initial
alignment is established robustly and efficiently in our algorithm
because of the descriptive descriptor and the learning keypoints.

5. Experimental results

In this section, we evaluate the performances of the Signed
Feature Histogram (SFH) and dental identification method. For the
SFH, the discriminative power is analyzed on a public dataset and
comparisons are made with another 3 state-of-the-art descriptors.
The performance of dental identification method is investigated
on three different PM datasets comprising complete, incomplete
and single tooth PM models, respectively. We also test the running
time in each experiment. The codes are written in Matlab and run
on a laptop with Pentium Dual-Core CPU 2.5 GHz and 4 G RAM
without any program optimization.

5.1. Performance of the SFH

The choice of descriptor is crucial for both keypoint detection
and matching. We use SFH for these tasks because it is easy to
compute and highly discriminative. To verify its appealing prop-
erties, we compare SFH with another 3 state-of-the-art descriptors
including Spin Image [30], SHOT [31], and RoPS [32] on a public
dataset.

5.1.1. Dataset and evaluation methodology
The SFH is tested on the Bologna Dataset [31] comprising

6 models and 45 scenes. The 45 scenes are built up by randomly
rotating and translating different subsets of the 6 models to create
clutter. The transformation matrices are saved, from which we can
easily obtain the ground truth correspondences between the ver-
tices of each model and their instances in the scene. Noise occurs
in image acquisition and will thus lead to dissimilarity between
the PM and AM dental models of the same subject. To evaluate the
robustness of our algorithm, three levels of Gaussian noise corre-
sponding to 10%, 30% and 50% of the average mesh resolution (mr
for short) are added to the scene data. A scene example and its
noisy versions are shown in Fig. 7.

For each model, 1000 feature points are randomly selected. The
corresponding feature points are extracted from the scenes. All the
feature points are described by descriptors. The scene feature
points are matched against all the model feature points by
matching the descriptors. If the Euclidean distance between de-
scriptors for a particular pair of feature points is below a set
threshold, we call this pair a match. A correct positive indicates a
match where the two feature points correspond to the same
physical location, while a false positive is a match where two
feature points are from different physical locations. We employ
recall (3) vs. 1-precision (4) (RP) curve to evaluate the performance
which is generated by varying the threshold.

=
( )

recall
number of correct positives

total number of positives 3

− =
( ) ( )

1 precision
number of false positives

total number of matches correct or false 4

The top left corner of the RP curve is the point where the feature
obtains both high recall and precision which represents a perfect
test.

5.1.2. SFH parameters
The support radius r and number of bins L are two parameters

that affect the performance of SFH. The support radius controls the
amount of local region encoded into the SFH descriptor. With a
large r, SFH can capture more local information and thus become
more informative and descriptive. However, the sensitivity to oc-
clusion and clutter is also increased. On the contrary, a small r is

Z. Zhang et al. / Pattern Recognition 60 (2016) 189–204 195



more robust to occlusion and clutter at the cost of low descrip-
tiveness. Thus, r can be set depending on the practical application
and actual data distribution. For the descriptor evaluation, the
radius r is set as 10 times mr, which is considered as a tradeoff on
the Bologna Dataset.

Another important parameter is the number of bins L com-
puted as × ×k k k. Here, k is the number of divisions along each
SFH axis. A SFH with larger L has more discrimination power, as
the distribution of the local surface is described more precisely.
However, very fine bin quantization does not mean high recall and
precision because the descriptor will become sparse and sensitive
to noise. The performance of the SFH is accessed with respect to
different numbers of bins where k is set as 4, 6, 8, 10, and 12. The
experimental results are shown in Fig. 8. In general, the perfor-
mance is improved by increasing the number of bins. Significant
improvement is observed by varying k from 4 to 6. This indicates
that the local surface is not fully described by the SFH with k
smaller than 6. However, for k between 6 and 12, the variances
between the RP curves are not distinct because SFH with k¼6 well
describes the local surface and there is no much room for im-
provement. For the scenes with 0.5 mr noise (Fig. 8(d)), large k can
even decrease the SFH performance. We see that the SFH with
k¼12 performs slightly worse than that with k¼10.

5.1.3. Comparisons with other descriptors
The SFH is compared with Spin Image [30], SHOT [31], and

RoPS [32]. The parameter values for the descriptors to be

compared are listed in Table 1. For a fair comparison, the same
support radius (10 mr) is set for all the descriptors. The rest of the
parameters are tuned to achieve the optimal performance in terms
of the RP Curve. Again, to test the robustness to noise, the ex-
periments are conducted on both noisy free scenes and the scenes
with different levels of noise. The comparison results are shown in
Fig. 9.

Overall, SFH outperforms the other 3 descriptors on both noise
free and noisy scene data. For the noise free scenes (Fig. 9 (a)), the
results of SFH and RoPS are almost equal with SFH performing
slightly better than RoPS followed by SHOT and Spin Image. With
increasing noise (Fig. 9(b)–(d)), SFH is still the best with much
higher recall and precision than others. For the scenes with noise
levels of 10% mr and 30% mr, SHOT works better than RoPS while
RoPS performs better than SHOT for the scenes with 50% mr noise.
This is consistent with the conjecture made by [32] that RoPS is
more competent than SHOT under high level of noise. As the noise
level increases, the performance of Spin Image deteriorates shar-
ply. This is due to the fact that the Spin Image as a 2D descriptor is
less informative than SHOT and SFH. Our SFH outperforms other
descriptors in all the cases. The robustness of our SFH descriptor
can be explained by two facts. First, signed feature encoding
makes SFH much more discriminative, so that SFH can robustly
find the correct correspondences for both noise free and noisy
scenes. Second, the LRA is more stable than LRF. LRA is computed
by weighting the neighboring mesh faces and examining the
normal vector direction, while the LRF comprises three axes where

Fig. 7. A scene example (a) and its noisy versions with Gaussian noise of 10% mr (b), 30% mr (c), and 50% mr (d) are shown. The zoom-in pictures (red rectangles) show the
noise levels in detail. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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the x and y are unstable and suffer from the sign ambiguity
problem.

From the comparisons, we note that the performances of SFH-6
and SFH-8 are quite similar with SFH-8 slightly better than SFH-6.
However, the SFH-8 length is two times longer than SFH-6, and
longer length can decrease the matching efficiency. Thus, in the
subsequent experiments, we choose SFH-6 as it is discriminative
enough for our application.

5.1.4. Timing
Besides the discriminative power of SFH, the computational

time is another reason that we choose SFH. We run the four de-
scriptors 1000 times and the computational time is shown in Ta-
ble 2. We can see that SFH runs faster than SHOT and RoPS but
lightly slower than Spin Image. This is another important aspect

that needs to be considered since in reality the descriptor usually
runs tens of thousands of times.

5.2. Performance of dental identification

The performance of the proposed dental identification method
is evaluated on 3 datasets including complete, incomplete, and
single tooth PM models respectively.

5.2.1. Parameter setting
Before starting the experiments, we need to set several para-

meters. The number of bins of SFH descriptor is set as × ×6 6 6 as
stated in Section 5.1.2. The local support radius r is set as 6 which
ensures sufficient local region coverage as well as resistance to
clutter. For the ICP algorithm which is used to refine the initial
matching, we set the maximum number of iterations Niter and the
minimum error change err as 200 and 0.0001 respectively since
such settings can generate accurate matching scores without los-
ing the efficiency.

5.2.2. Performance of complete dental identification
In this experiment, we investigate the performance of our

proposed identification method on 20 complete PM dental mod-
els. The quantitative identification results are shown in Table 3,
from which we see that our method outperforms [9] by achieving
100% Rank-1 accuracy for all 20 PM models. Such an excellent

Fig. 8. Recall vs. 1-Precision curves for testing the performance with respect to different numbers of bins on matching the scenes with 0% (a), 10% (b), 30% (c), and 50% (d) mr
levels of noise respectively.

Table 1
Descriptor parameters.

Name Radius (mr) Dimensionality Length

Spin image 10 15�15 225
SHOT 10 × × ×8 2 2 10 320
RoPS 10 × × ×3 3 3 5 135
SFH-6 10 × ×6 6 6 216
SFH-8 10 × ×8 8 8 512
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result is mainly due to the robust keypoint detection and the ef-
fective matching algorithm we have proposed. On the one hand,
fewer representative keypoints can largely reduce the failure cases
since a larger number of keypoints can produce more possible
matches and thus increase the failure chance. On the other hand,
learning based keypoint detection can produce keypoints precisely
located at the desired positions so that the correspondences be-
tween the keypoints of the PM and AM models can be found

accurately. Based on the correspondences, the subsequent initial
alignment can be accomplished and the ICP refinement can ro-
bustly converge to the global minimum and generate an accurate
matching score. By analyzing the keypoint correspondences, we
see that the failure cases usually occur when the initial 3-to-3
correspondences are wrongly established. We select 6 pairs of
dental models (PM 1, 2, 4, 11, 13, 15) and plot the initial 3-to-3
correspondences found by the two methods in Fig. 10. By analyz-
ing the keypoint correspondences, we see that the failure case
occurs when the initial 3-to-3 correspondences are wrongly es-
tablished. Our method can always find the correct 3-to-3 corre-
spondences, while [9] fails in the PM15 which causes incorrect
identification.

5.2.3. Performance of incomplete dental identification
Due to violence or accident, the PM model may become in-

complete, e.g., for the same person the PM model can only par-
tially match the AM model (see Fig. 11). In such cases, an identi-
fication method that can handle partial matching would be re-
quired. Most 2D methods relying on tooth contours assume no
missing teeth in the images and the performance may decrease
when this assumption is violated. In the 3D method [9], feature
matching and the ICP algorithm are employed to match in-
complete dental models. Despite the promising results, PM models
with too many missing teeth cannot be well recognized.

Fig. 9. Recall vs. 1-Precision curves of different methods for matching scenes with 0% (a), 10% (b), 30% (c), and 50% (d) mr levels of noise respectively.

Table 2
Time cost for building 1000 descriptors.

Spin image SHOT RoPS SFH
4.1 7.5 12.8 4.33

Table 3
Accuracy of complete dental identification.

PM 1–10 1 2 3 4 5 6 7 8 9 10

This work 1 1 1 1 1 1 1 1 1 1
Zhong et al. [9] 1 1 1 1 1 1 1 1 1 1

PM 11–20 11 12 13 14 15 16 17 18 19 20

This work 1 1 1 1 1 1 1 1 1 1
Zhong et al. [9] 1 1 1 1 2 1 1 1 1 1
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In this experiment the performance of the proposed method is
tested on 20 incomplete PM models. The identification results are
reported in Table 4. All the PM models are correctly identified with
100% Rank-1 accuracy. Compared with [9] which matches feature
points based on a single value descriptor, our descriptor SFH is
more informative and discriminative. Based on the powerful SFH
and the effective matching scheme, the correspondences between
the keypoints of AM and PM models can be robustly established
even for a partial model. The matching examples are shown in

Fig. 11. We select the same 6 model pairs (PM 1,2,4,11,13,15) as in
matching complete dental models and plot the correspondences
between the dental keypoints found by our method and [9]. For
some models with very large missing parts like PM4 and PM15,
our algorithm is still able to accurately find the correspondences.
Again, we find that the PM models with incorrect correspondences
happen to be the failure cases in Table 4. Thus, we can conclude
that the robust initial keypoint matching is crucial to the identi-
fication result, and our method is able to achieve the goal.

Fig. 10. The correspondences (blue lines) found by our method (a) and Zhong et al. [9] (b) between the keypoints of the complete PM (cyan) and AM (golden) models. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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It also should be noted that in this experiment the retained
order and relative placement of the teeth are also important to
achieve the high recognition results on incomplete dental identi-
fication. For an incomplete model with distinct change of tooth
order and relative placement, our method cannot work well since

matching the whole PM model against the AM models cannot
produce a correct score. In this case, a method which is able to
identify single teeth is required.

Fig. 11. The correspondences (blue lines) found by our method (a) and Zhong et al. [9] (b) between the keypoints of the incomplete PM (cyan) models and AM (golden)
models. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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5.2.4. Performance of single tooth identification
Under certain severe conditions such as fire or collision, the

jawbone may be broken into pieces, and only scattered teeth are
available. In this case, single tooth identification becomes im-
perative. This is a more challenging task since one tooth contains
much less information compared to the complete and incomplete
dental models. To the best of our knowledge, there is no previous
research on this topic.

The PM single tooth dataset is created by manually clipping the
complete PM models into single tooth pieces. For each of the 20
complete PM models, we pick four teeth from the clipped pieces
with one tooth per type (incisor, canine, premolar and molar).
Finally, we obtain a test dataset containing 80 single tooth models.
Each tooth is matched against all the AM models. There are 200
AM models in the database with each containing 14 to 16 teeth.
Thus, each PM tooth needs to be matched against approximately
3000 teeth. Traditional methods cannot handle such a challenging
identification problem because very little information is contained
in one tooth and there are too many possible matches in the
database.

Thanks to the robust keypoint detection and discriminative
descriptor, our method is able to identify the single tooth by
matching the descriptors and Local Reference Frames (LRFs) of the
keypoints. We cannot directly apply our method (see Section 4) for
this task since only one keypoint is detected on the single tooth
and the initial alignment that transforms the given tooth to the
potential tooth requires at least three corresponding keypoints to
compute the transformation matrix. To solve this problem, we
superimpose three additional points at each keypoint using the
endpoints of the three axes of LRF. The method of [32], which is
shown to be highly stable and repeatable, is employed to compute
the LRF. Equipped with LRF, the matching problem is transformed
into matching the LRFs. Fig. 12 shows the matching procedure.
Given a single tooth as input, we detect the keypoint which is
associated with the LRF and the descriptor SFH. To determine its
identity, the input LRF is matched against the LRFs of all the

keypoints in the database. For each matching, we determine the
optimal orientation between the LRFs such that the input tooth
can fit well with the AM tooth. The final score is obtained by the
ICP refinement.

The Cumulative Match Characteristic (CMC) is employed to il-
lustrate the identification performance. As shown in Fig. 13, the
horizontal axis represents the rank of retrieved subjects while the
vertical axis indicates the identification accuracy. We can see that
73.75% Rank-1 accuracy is achieved. We also present some of the
matching examples in Fig. 14, from which we see that most PM
single tooth models are matched correctly while some failures
occur on incisor models as indicated by the circles. This is mainly
because an incisor contains too few distinctive features, and thus
cannot be differentiated from other incisors even with a dis-
criminative descriptor.

5.2.5. Timing
The mean computational time of each step of the dental

identification method on the three types of PM dental models is
shown in Table 5. The running time for preprocessing, SFH com-
putation, and keypoint detection replies on the number of vertices
involved. Thus, it takes more time on complete PM dataset than
other two types of datasets for these three steps. Take the com-
plete PM dataset for example. The preprocessing step takes 1 s on
average. The number of vertices after preprocessing ranges from
9200 to 13,600. It takes around 14 s to construct SFHs for every
vertex based on which keypoints are predicted. Since the Random
Forest has been trained offline, the online keypoints prediction can
be finished within 1.0 s. The matching step, which is the most time
consuming part, involves searching the database and matching AM
models one by one via initial alignment and ICP refinement. In our
approach, this step can be done within 300 s. This is 9 times faster
than the 3D method [9] which takes 45 min on average, and about
80 times faster than the 2D method which takes 7 h for the
identification of one subject. It is also noted that the single tooth
identification takes more time on matching step, since a single
tooth is matched against approximately 3000 teeth in the AM
database.

We also analyze the time for matching step with regard to the
database size (Fig. 15). For the three categories, it takes more time
with the AM database size increases. In the future, we can accel-
erate the process by adopting other method to filter out large
number of irrelevant models. For instance, we can extract and
match the dental arches first to efficiently filter out many AM
models.

Table 4
Accuracy of incomplete dental identification.

PM 1–10 1 2 3 4 5 6 7 8 9 10

This work 1 1 1 1 1 1 1 1 1 1
Zhong et al. [9] 3 1 1 4 1 3 1 1 1 1

PM 11–20 11 12 13 14 15 16 17 18 19 20

This work 1 1 1 1 1 1 1 1 1 1
Zhong et al. [9] 1 1 1 1 2 1 1 1 1 1

Fig. 12. Single tooth matching procedure: (a) Local Reference Frames (LRFs) are created at the keypoints of PM single tooth model and the tooth of AM model using the
method proposed in [32]. Here, the ′x , ′y and ′z form the LRF of the PM tooth, while the LRF of the desired tooth is constructed by x, y and z. The rigid transformation
comprising rotation R and translation t is computed with regard to the LRFs. (b) Then, the initial alignment can be achieved by transforming the single tooth model. (c) The
final matching score is calculated by refining the initial alignment via the Iterative Closest Point algorithm [19].
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6. Conclusions

In this work, we introduce an efficient dental identification
method through learning based keypoint detection and a novel
shape descriptor named Signed Feature Histogram (SFH). A

Random Forest (RF) model is trained by pre-labeled keypoints and
associated SFHs. With the RF model, the keypoints on both AM and
PM models are accurately detected. Finally, based on the detected
keypoints and the associated SFHs, an efficient identification ap-
proach is proposed. To verify the proposed method, we conduct

Fig. 13. CMC curve of single tooth identification.

Fig. 14. The correspondences (blue lines) found by our method between the keypoints of the single tooth PM (cyan) models and AM (golden) models. (For interpretation of
the references to color in this figure caption, the reader is referred to the web version of this paper.)
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experiments on three different datasets containing complete, in-
complete and single tooth models respectively. Experimental re-
sults show that our method achieves superior performance in both
accuracy and efficiency. We obtain 100% Rank-1 accuracy on both
complete and incomplete datasets and 73.75% Rank-1 accuracy on
the single tooth dataset. To test the performance of our method for
PM models having large rotations with respect to the AM models,
we also perform an experiment on PM models with various rota-
tions. Experimental results confirm that the proposed method is
rotation and translation invariant. And the running time is only
300 s on average to identify one complete PM dental model from
200 AM models. This is about 80 times faster than many 2D
methods which usually take several hours to identify one subject.

The success of our method mainly lies in three aspects. First, we
use a learning scheme to accurately detect the keypoints on the
dental models. These keypoints, which are in very small size, can
largely accelerate the matching process and decrease the matching
error. Second, the proposed local shape descriptor SFH is in-
formative and discriminative which can be fast computed. Base on
the SFHs, the correspondences can always be correctly established.
Third, the matching algorithm proposed in Section 4 can robustly
identify the PM dental model in a very efficient manner.
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Table 5
Dental identification time statistics of each step of our proposed approach.

Model
type

Preprocess SFH Comp. Keypoint Det. Matching Total

Complete 1.2 13.4 0.7 267.8 284.1
Incomplete 0.7 9.2 0.5 178.2 181.2
Single 0.1 1.2 0.1 307.5 310.5

Fig. 15. Computational time with regard to the database size.
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