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Abstract 

For improving manufacturing efficiency and minimizing costs, design for additive 

manufacturing (AM) has been accordingly proposed. The existing design for AM methods are 

mainly surrogate model based. Due to the increasingly available data nowadays, machine 

learning (ML) has been applied to medical diagnosis, image processing, prediction, 

classification, learning association, etc. A variety of studies have also been carried out to use 

machine learning for optimizing the process parameters of AM with corresponding objectives. 

In this paper, a ML integrated design for AM framework is proposed, which takes advantage 

of ML that can learn the complex relationships between the design and performance spaces. 

Furthermore, the primary advantage of ML over other surrogate modelling methods is the 

capability to model input-output relationships in both directions. That is, a deep neural network 

can model property-structure relationships, given structure-property input-output data. A case 

study was carried out to demonstrate the effectiveness of using ML to design a customized 

ankle brace that has a tunable mechanical performance with tailored stiffness.  
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1 Introduction 

Additive Manufacturing (AM) fabricates products from digital 3D models in a piece-by-piece, 

line-by-line or layer-by-layer manner, which is different from conventional manufacturing 

processes (Jiang et al. 2019; Jiang, Xu, and Jonathan Stringer 2019; Jiang, Xu, and Stringer 

2019a; Wei et al. 2020; J. Xiong et al. 2020). This gives AM more freedom on design as AM 

can fabricate more complicated parts, theoretically in any shape, without spending more efforts 

on manufacturing processes. AM bonds, places, and/or transforms volumetric primitives or 

elements (voxels) of raw material to fabricate the final products. The size and shape of each 

voxel and the bonding strength between voxels depend on the raw material properties, the AM 

machine (e.g., nozzle diameter), and the process parameters (e.g., print temperature, print speed, 

laser power). Therefore, design for additive manufacturing (DfAM) was proposed with the aim 

of designing and optimizing the product together with its manufacturing systems to increase the 

product’s quality and performance, and to minimize the development time and cost (Gibson et 

al. 2010; Huang et al. 2020; Kim et al. 2019).  

DfAM actually is a type of Design for Manufacturing and Assembly (DfMA) but is quite 

different from traditional DfMA. The unique capabilities of AM technologies make designers 

re-think the traditional DfMA process applied in AM as AM can fabricate complex structures 

that are impossible in conventional manufacturing techniques. AM also eliminates the assembly 

process as AM can manufacture the whole product in a single fabrication process. This leads to 

the new term of DfAM (Thompson et al. 2016), which considers the unique capabilities of AM 

and the difference between traditional manufacturing and AM techniques. Compared with 

traditional manufacturing processes, AM mainly has the following four unique capabilities: (1) 

shape complexity: as AM is a layer-by-layer process, it is possible to fabricate virtually any 

shape; (2) hierarchical complexity: hierarchical multiscale structures can be designed and 

manufactured from the microstructure through geometric mesostructure to the part-scale 

macrostructure; (3) material complexity: material can be processed one point/layer at a time in 

AM processes; and (4) functional complexity: fully functional assemblies and mechanisms can 

be fabricated directly in a single AM process. These capabilities also, however, bring new 

challenges in design search and optimization due to the increased number of design variables 

and their complicated interactions over multiple domains. Many studies have been carried out 

for accommodating all these design variables and reflecting their interactions, as discussed in 

(Y. Xiong et al. 2019), for example, and will not be detailed here. However, all these DfAM 

approaches are based on traditional surrogate models.  In fact, machine learning (ML) can now 



be applied for DfAM due to the increasingly available AM data and the powerful ability of ML 

to learn complex relationships among data. Table 1 compares the disadvantages and advantages 

between conventional surrogate model based DfAM and ML based DfAM. 

 

Table 1 Advantages and disadvantages of conventional surrogate model based and ML based 

DfAM 

 Advantages  Disadvantages  

Conventional 

surrogate model 

based DfAM 

-- No need to obtain large amount of 

data from experiments 

-- Comparatively low-cost 

-- Hard to establish relationship equations and 

sometimes even impossible, especially for complex 

optimization problems where there are many 

design variables and their interactions are 

complicated and unclear 

-- Need to explore the design spaces of variables 

-- Hard/impossible to achieve reversed design 

ML based DfAM -- No need to establish complex 

relationship equations 

-- Easy to achieve reversed design 

-- Not limited by the complexity of 

the design problem 

-- Require large amount of data 

 

The definition of ML is “allowing computers to solve problems without being specifically 

programmed to do so” (Samuel 1959). The application of ML techniques has increased 

tremendously over the past years due to the availability of large amounts of data, computer 

technology development and the increased power of available ML tools (Zhao et al. 2017). ML 

has also been used in AM with different aims, including process optimization, dimensional 

accuracy analysis, manufacturing defect detection and material property prediction. In this 

paper, a comprehensive ML integrated DfAM framework is proposed to take advantage of ML. 

The framework is mainly based on using ML to learn process-structure-property (PSP) 

relationships proposed by (Rosen 2014). ML based DfAM can achieve reversed design without 

the need of establishing complex relationship equations since an ML-based output-input model 

can be constructed readily, given input-output data. Hence, property-structure relationships can 

be modelled directly, even though data were generated as structure-property relationships. 



Furthermore, ML based models have virtually no limitations on the complexity of the design 

problem if enough data are available. 

The main contribution of this paper is establishing a ML integrated DfAM framework and 

detailing the process of design from property to structure through ML. Furthermore, the primary 

advantage of ML over other surrogate modelling methods is the capability to model input-

output relationships in both directions, which can achieve reversed design. The proposed ML 

integrated design approach can obtain the objective design directly through inputting the 

property requirements, which traditional surrogate model based design process cannot achieve. 

Section 2 reviews the literature on traditional surrogate model based design and the existing 

applications of ML in AM. Then Section 3 details the proposed ML integrated DfAM 

framework. Section 4 demonstrates an ankle brace case study to show the design process using 

ML. The last section provides conclusions. 

2 Literature review 

In this section, literatures related to conventional surrogate model based design and ML 

applications in AM are briefly reviewed. 

2.1 Surrogate model based design 

In conventional surrogate model based design processes, design exploration and exploitation 

are often adopted which are the two main strategies to provide insight into the design space. 

Malak et al. (2009) proposed a combined model for conceptual design, considering both multi-

attribute utility theory and the perspective of set-based design. With the aim of designing 

heterogeneous scaffolds for tissue engineering, Weiss et al. (2005) built multi-stage Bayesian 

surrogate models to describe the relationship between the design parameters and the therapeutic 

response. Pacheco et al. (2003) proposed a covariance-based method to establish multistage 

surrogate models in the conceptual design stages for a thermal design problem. Bayesian 

network classifier (BNC) based design exploration methods were proposed by Morris et al. 

(2018) and Matthews et al. (2016) to design negative stiffness metamaterials with better 

mechanical stiffness and loss properties. In addition, Shahan and Seepersad (2012) proposed a 

Bayesian network classifiers model to classify the design space into unsatisfactory or 

satisfactory regions for designing a spring and an unmanned aerial vehicle. These BNC methods 

formulated relationships between design spaces in the analysis direction (e.g., structure to 

property), then used back-propagation to invert the relationships. Unal et al. (2017) combined 

model-based simulation and set-based design to obtain the design space for designing seismic-



resisting structural frames. Choi et al. (2008) developed an inductive design exploration method 

for designing robust multiscale materials. However, since these design approaches are surrogate 

model based, each requires an iterative approach to inverting an input-output relationship that 

is central to their design process. It is recognized that Bayesian network classifiers are often 

considered as a ML method. 

2.2 Machine learning in design for AM 

Machine learning has already been used in AM with different aims such as process optimization 

and manufacturing defect detection. Table 2 lists the available studies that can be seen as using 

ML for some DfAM considerations with corresponding objectives. They mainly focus on using 

ML to improve or optimize the process parameters for AM techniques with corresponding 

property requirements. However, they are not proposed in a systematic way for DfAM.  

References (Li et al. 2019; Mahapatra and Sood 2012) used ML to predict surface roughness of 

AM printed parts in different process parameters in material extrusion (MEX) (informally 

called fused deposition modeling (FDM)), while others (W. Zhang et al. 2017) used ML to 

predict the surface roughness of AM fabricated Ti-6Al-4V parts in powder bed fusion. 

References (Lao et al. 2020) and (H. Chen and Zhao 2015) used ML to predict the surface 

qualities of AM fabricated parts in 3D Concrete Printing and binder jetting, respectively. The 

above studies can be used to design AM products with required surface quality. ML has been 

applied to predict geometric accuracy and dimensional variations of AM printed parts using 

MEX (Khanzadeh et al. 2018) (Tootooni et al. 2017)  and  in polymer powder bed fusion (PBF) 

(Baturynska et al. 2019).  Several groups have applied ML to predict deposit sizes in directed 

energy deposition, including bead width and height in wire-arc DED (J. Xiong et al. 2014) and 

printed part height in laser-based DED (Lu et al. 2010). Thermal deformation of printed parts 

has been modeled using ML for PBF parts (Chowdhury and Anand 2016). These studies can 

be used to design AM products with geometric requirements. Jiang et al. (2019) used ML to 

predict printable bridge length in different process parameters that can be used to design support 

structures in AM. All the above research works can be seen as process-structure relationship 

studies from the viewpoint of DfAM.  

Regarding mechanical and physical properties, some groups have developed process-property 

relationships using ML. One group (Baturynska 2019) applied ML to predict the mechanical 

properties of polymer powder bed fusion manufactured polyamide 2200 parts. Vijayaraghavan 

et al. (2015) used ML to predict wear strength of printed parts in MEX. Mohamed et al. (2017) 



used ML to optimize the process parameters for obtaining required viscoelastic properties of 

fabricated parts in MEX. ML has also been applied in (Negi and Sharma 2016) to optimize the 

process parameters for obtaining required shrinkage behaviour of printed PA 3200GF 

specimens in PBF. These studies can be used to design AM products with mechanical 

requirements. However, the research focused on property prediction, not part design from a 

holistic DfAM viewpoint. In contrast, this paper will propose a comprehensive ML integrated 

DfAM framework based on process-structure-property relationships. A case study will be 

carried out to show the ML enabled design process from property to structure. 



Table 2 Available studies on using ML for DfAM 

Objectives  Reference  Machine learning technique used Corresponding AM 

technique 

Predict surface roughness of printed parts in different process parameters 
(Li et al. 2019) Random forests, AdaBoost, Support 

vector machine (SVM) 

MEX 

(Mahapatra and Sood 2012) Artificial neural network (ANN) MEX 

Predict geometric accuracy of printed parts (Khanzadeh et al. 2018) Self-organizing map, KMeans 

unsupervised clustering 

MEX 

Predict dimensional variation in MEX printed parts (Tootooni et al. 2017) 

Sparse representation, K-Nearest 

Neighbors, neural network, naïve 

Bayes, SVM, Decision tree 

MEX 

Predict printable bridge length (Jiang et al. 2019) Back propagation neural network 

(BPNN) 

MEX 

Predict the width and height of printed bead (J. Xiong et al. 2014) Neural network Wire arc DED 

Predict depositing height of printed parts (Lu et al. 2010) BPNN, LS-SVM Laser DED 

Predict surface roughness of printed Ti-6Al-4V parts (W. Zhang et al. 2017) BPNN PBF 

Predict the thermal deformation of printed parts  (Chowdhury and Anand 2016) ANN Laser PBF 

Predict dimensional accuracy of printed parts (Baturynska et al. 2019) Multi-layer perceptron, Convolutional 

neural network (CNN) 

Polymer PBF 

Predict extruded surface quality (Lao et al. 2020) ANN 3D Concrete 

Printing Predict qualities (e.g. surface roughness) of printed parts (H. Chen and Zhao 2015) BPNN Binder jetting 

Predict wear strength of printed parts (Vijayaraghavan et al. 2015) Multi-gene genetic programming, 

ANN, SVM 

MEX 

Optimize process parameters to obtain required viscoelastic properties (Mohamed et al. 2017) ANN MEX 

Optimize process parameters to obtain required shrinkage behaviour of 

printed PA 3200GF specimens 

(Negi and Sharma 2016) ANN PBF 

Predict the mechanical properties of manufactured polyamide 2200 parts (Baturynska 2019) Decision Tree, Gradient Boost, 

AdaBoost 

PBF 



3 Machine learning integrated DfAM 

3.1 Process-structure-property relationships 

A design problem formulation was proposed (Rosen 2007) for computer-aided design (CAD) 

using the process-structure-property (PSP) linkage, as shown in Fig. 1. For example, in the 

MEX process, PSP relationships for polymers relate process conditions such as print 

temperature, to microstructure characteristics such as voids, to mechanical properties such as 

strength. Traditionally, PSP relationships are mainly obtained through surrogate models. 

However, the PSP relationships are generally highly non-linear, high-dimensional and even 

non-convex, which makes it hard to establish the PSP relationships with high accuracy, 

particularly for some complicated problems. In this paper, we propose a ML integrated 

framework to establish the relationships between process, structure and property as shown in 

Fig. 2(a). For instance, the process parameters from AM processes (e.g., print speed, print 

temperature, layer thickness and others) can be the inputs for ML model, while corresponding 

obtained structure parameters (e.g., surface roughness, dimensional accuracy, voids) can be the 

outputs for training the ML model. Then the trained ML model records the process-structure 

relationship that can be used in future design processes. Alternatively, an ML-trained model 

can utilize the structure parameters (e.g., surface roughness, dimensional accuracy) as the inputs 

while the AM process parameters (e.g., print speed, print temperature, layer thickness and 

others) can be the outputs for obtaining the relationship from structure to process. Thus the 

trained ML model can be used for future designs from structure to process. Similarly, other 

relationships among process-structure-property can also be established in whichever direction 

through ML as shown in Fig. 2(b). 

In fact, the studies listed in Table 2 can be categorised into establishing the relationships of 

process-structure or structure-property. However, none of these studies proposed a complete 

framework for ML integrated DfAM based on PSP model. Fig. 2 depicts how the complex 

relationships between process-structure-property can be learned using ML. With the help of 

ML, the analysis process from process to structure then to property and the design process from 

property to structure then to process (as shown in Fig. 1) can now be combined with the help 

of ML (Fig. 2). Next, we will provide and detail a ML integrated DfAM method based on 

property-structure relationships. 



 

Fig. 1 Process-structure-property-based design problem formulation for DfAM proposed in 

(Rosen 2014) 

 

 



Fig. 2 Illustration of ML for PSP relationship establishment; (a) Proposed ML integrated 

framework for establishing process-structure-property relationships; (b) Examples of how to 

establish PSP relationships in whichever direction via ML 

3.2 Design approach 

In this section, we propose a specific ML integrated DfAM method based on property-structure 

relationships. This design method can be used to design products where distributions of 

mechanical properties are desired. The achievement of these mechanical property distributions 

will be achieved by tailoring part geometry, not by using multiple materials. Fig. 3 shows the 

framework of how this design method works. The proposed design method includes four steps. 

Step 1: Determine the desired design space. This includes determining the properties/responses 

that are of interest (e.g., stress-strain responses of an ankle brace) and the design variables that 

are of interest (e.g., the geometric variables of horseshoe structure for ankle brace). Design a 

sampling strategy for the design space, then for each sampled point obtain the corresponding 

mechanical properties through simulation (e.g., ABAQUS). This will record the mechanical 

properties of parts in different geometries. The aim of this step is to get enough data for machine 

leaning model establishment.  

Step 2: Establish the ML model. When choosing the basic structure of ML (e.g., convolutional 

neural network (CNN), deep neural network (DNN)), the following rules can be considered. 

• If the requirement for the mechanical property is to represent a distribution (for example, 

the stress-strain response is required to be the exact curve as shown in Fig. 7(b)), then a 

CNN can be used to establish the model. The image of the stress-strain response, or 

other desired property distribution, can be used for training since CNNs are very 

effective in image classification and recognition (Gu et al. 2018).  

• If the property requirement is only based on one or several points, rather than the entire 

stress-strain curve or other distribution (e.g., the stress is 10 MPa when the strain is 0.3 

in orientation 1 in Fig. 7(b)), then a DNN can be used for establishing the machine 

learning model. The relationship between inputs and outputs with exact values can be 

cast as a regression problem that can be well resolved by DNNs (Liu et al. 2017).  

Step 3: After the ML model is established, the required mechanical properties can be used as 

the input (points data for DNN, images for CNN). Then the ML model can directly output the 

corresponding qualified geometries of the design. 



Step 4: Finally, the obtained part with designed geometries can be sent for fabrication using 

additive manufacturing. 

A case study will be carried out in the next section to illustrate the proposed ML enabled design 

method in detail. 

 

Fig. 3 Framework of the proposed design method 

3.3 Machine learning model  

3.3.1  Deep neural network (DNN) 

A neural network usually contains layers of interconnected nodes (neurons) and links 

connecting the nodes to establish a network. Generally, there are three main components in a 

typical node of a neural network: a weighted sum of the input values (∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=0 ), an activation 

function (g) and a bias (b) as shown in Fig. 4(a). The input values (xi) in each node from 

previous connected nodes are multiplied with a weight (wi), and then summed. The weighted 

sum is then added by a bias (b) to control how easily a node is activated. This value is then 

passed to an activation function (e.g., softmax, Sigmoid or ReLU), gaining the final output 

value (y) of the node. This process can be expressed as Equation 1. The biases (b) and weights 

(wi) are DNN parameters that can be learned and tuned automatically during the training 

process.  

                              𝑦 = 𝑔(∑ 𝑤𝑖
𝑛
𝑖=1 𝑥𝑖 + 𝑏)                                                    (1) 

A network layer comprises a number of nodes and a set of layers can form the neural network. 

Fig. 4(b) shows an example structure of DNN. At least three layers are needed to establish a 

typical neural network: an input layer, a hidden layer and an output layer. Generally, there 

should be only one input layer and one output layer. The number of hidden layers is determined 

by the size and complexity of the relationships being modeled. Once there are several hidden 



layers in a neural network (rather than only one), the neural network is called deep neural 

network (DNN). Among the many activation functions available, the ReLU function is 

comparatively the most efficient and is used frequently. ReLU returns an output equal to the 

input for all positive input values while returning zero for all other input values, as shown in 

Equation 2. The advantage of ReLU is that it can reach convergence much faster than 

Tanh/Sigmoid and it has no vanishing gradients problem (He et al. 2015).  

                                              𝑅𝑒𝐿𝑈(𝑥) = max(𝑥, 0) =  {
𝑥     𝑥 > 0
0        𝑒𝑙𝑠𝑒

                                        (2) 

Generally, the following parameters can be tuned and adjusted during the DNN model 

establishment process: activation function, layer number, the optimizer (Adam, etc.), neuron 

number in each layer, batch size, dropout and normalization. In our proposed DfAM method, 

we suggest to use ReLU as the activation function, Adam as the optimizer, and use 

normalization in DNN. In terms of the layer number, it depends on the complexity of the design 

problem; more layers may be needed for more complex data and relationships to be learned. 

Generally, the more input features and/or output features, the more layers will be needed. The 

best number of layers needs to be determined by testing. The neuron numbers in each layer 

need to be determined as well. Again, complex input-output relationships require more neurons 

in the hidden layers. However, the number of neurons from the first layer to the last layer (layer 

1 to layer 9 in Fig. 4(b)) should be increased first, reach a highest number in the middle layer, 

then decrease. The neuron numbers from the first layer to layer 9 in the example of Fig. 4(b) 

are 10, 20, 40, 60, 80, 60, 40, 20, and 10. 



 

Fig. 4 Illustration of DNN; (a) working principle illustration of a typical neuron; (b) example 

structure of DNN  

3.3.2 Convolutional neural network (CNN) 

Convolutional neural networks (CNN) are a class of deep neural networks. They have the ability 

to analyse visual imagery such as the images of stress-strain curves) (Jin et al. 2017). CNNs 

employ a mathematical operation called convolution which is a specialized kind of linear 

operation for image analysis. CNNs are similar to general neural networks that use convolution 

in place of general matrix multiplication in at least one of their layers. A CNN consists of an 

input and an output layer, as well as multiple hidden layers, similar to any other type of neural 

network. Fig. 5 shows an example of using a CNN to recognize the features of stress-strain 

curves. As illustrated, the CNN extracts the curve features of the input image, then connects the 

specific curve features in each image to its corresponding part geometries. Therefore, CNNs 

can be used for establishing property-structure relationships used for design when the 

mechanical requirements are distributions. 



 

Fig. 5 Example of using CNN to recognize the features of stress-strain curves 

4 Case study 

In this section, the proposed ML integrated design method is applied to design an additively 

manufactured ankle brace that has tailored stiffness requirements. This case study exemplifies 

the utilization of property- structure relationships established by ML. The ankle brace is to be 

fabricated with a stiff polymer material by using a material jetting AM technique. 

4.1 Design problem statement 

When a person’s ankle joint is injured (e.g., acute sprains), ankle braces generally can be used 

as orthoses for assisting rehabilitation. Ankle braces help to prevent further injury to the ankle 

joint while allowing restricted movements. The range of motions and allowable loading 

conditions for joints along the course of recovery can be adaptively adjusted by using the 

optimally designed ankle braces, ensuring tissue healing while avoiding extreme load 

conditions (Thiele et al. 2018). In this case study, the design of the geometric structure of the 

ankle brace is carried out by using ML and compared to results using a different design method 

and surrogate models based on Gaussian process regression [8].  

Fig. 6(a) shows a 3D foot model and Fig. 6(b) shows the flattened ankle brace. The design goal 

is to achieve the required motion range in all three orientations, as shown in the figure, by filling 

the whole ankle brace with designed geometric structures. In this case study, the ankle brace 

was designed as a 2D geometric structure optimization problem, thus can be fabricated in 

additive manufacturing without support material consumption to save material wastes (Jiang et 

al. 2018a, 2018b; Jiang, Xu, and Stringer 2019b). Based on the studies of (J. Chen et al. 1988; 

Siegler et al. 1988), the typical ranges of motions during the recovery process are listed in Table 

3. The design domain is further divided into three zones as shown in Fig. 6(b), based on their 

different contributions for limiting the range of motions in three orientations. As depicted in 

Fig. 6(a), the ankle joint can be considered as a ball joint that has its pivot point located at the 



origin of the defined coordinate. The equilibrium of moments can then be constructed to specify 

design requirements for each zone. In order to simplify the analysis, only axial deformations in 

two orthogonal orientations are evaluated. More complex deformations can be decomposed into 

these two orientations. As illustrated in Fig. 6(b), the stiff and soft orientations are denoted as 

orientations 1 and 2, respectively. Considering the allowable strain and original geometry, the 

stress-strain requirements for each zone are specified as shown in Table 4 (Y. Xiong et al. 

2019). In this case study, a horseshoe structure unit cell (a type of flexible lattice structure), 

shown in Fig. 7(a), was used as the basic design unit to tailor the stress-strain response of each 

zone. The horseshoe structure has a nonlinear stress-strain response and is highly stretchable 

(Jang et al. 2015). There are two advantages when using the horseshoe structure. Firstly, the 

nonlinear J-shape stress-strain response of these horseshoe structures is similar to the 

mechanical behaviour of biological soft tissues, requiring only small efforts to move the ankle 

until it reaches the maximum allowable motion range, when its stiffness increases significantly, 

as shown in Fig. 7(b). In addition, the anisotropic mechanical property allows different ranges 

of motions in two different orientations.  

The stress-strain response can be tuned through designing the geometric structure of horseshoe. 

As displayed in Fig. 7(a), the geometric structure of horseshoe has five design variables: width 

W, radius R, length L, angle α and angle β. Once these variables are determined for meeting the 

motion requirements (stress-strain requirements), the designed horseshoe structure can then be 

fabricated by additive manufacturing.  

 

Fig. 6 (a) 3D foot model; (b) flattened ankle brace 

Table 3 One set of maximum torque and range of motions for an ankle joint 

 Maximum torque Range of motion 

X 20 Nm ± 20º 

Y 17.5 Nm ± 5º 



Z 17.5 Nm ± 5º 

 

Table 4 Stress-strain requirements for each zone 

 Orientation Stress (MPa) Strain 

Zone 1 1 0.47 0.3 

2 0.24 0.1 

Zone 2 1 0.28 0.1 

2 0.28 0.1 

Zone 3 1 0.43 0.1 

2 0.49 0.1 

 

 

Fig. 7 (a) A quad horseshoe structure unit cell and its five design variables and (b) its stress-

strain relationships 

4.2 Machine learning model establishment 

Before using ML to design the required geometric values (W, R, L, α and β) for meeting 

corresponding stress-strain responses, the ML model and the data for training the model should 

be obtained. The ranges of the design variables are listed in Table 5. Thousands of data points 

within the range of each variable were generated randomly and different variable values were 

also combined randomly to obtain different groups of values of the variables. Then, geometric 

models of horseshoe lattice structures representing the data point were fed into 

ABAQUS/STANDARD (Dassault Systèmes®, 2017) to characterize their corresponding 

stress-strain responses in both orientations. This study considers the in-plane deformation only, 

and the structure was therefore modelled as 2D beams using B32H elements. To avoid edge 

effects, a square matrix with a sufficiently large number of horseshoe unit cells (5 × 5) was used 

in the simulation. Nodes on the bottom edge of the horseshoe matrix were fixed with an encastre 

boundary condition; meanwhile, a tensile load was applied through a displacement control of 

nodes on the top edge of the horseshoe matrix.  



 

Table 5 Ranges for design variables of a horseshoe unit cell 

Design variable Width (W) Radius (R) Length (L) Angle (α) Angle (β) 

Range 0.1-0.4 mm 0.8-1.8 mm 0.1-0.2 mm 0.1-1 rad 0.1-0.5 rad 

 

After obtaining the stress-strain responses, a property-structure model was generated by 

training a DNN. The stress-strain responses were the inputs while the corresponding values of 

the W, R, L, α and β variables were used as the output, as shown in the bottom arrow in Fig. 8. 

After the ML model was trained with sufficient accuracy, the required stress-strain response for 

the ankle brace can then be fed into the ML model to obtain the corresponding design geometry 

of horseshoe structure in terms of values of the five design variables. 

 

Fig. 8 Illustration of obtaining stress-strain responses using ABAQUS (top arrow) and using 

ML to obtain the relationship between responses and variables (bottom arrow) 

 

A Deep Neural Network (DNN) was used to establish the ML model for this case study as the 

relationship between inputs and outputs can be cast as a regression problem that can be well 

resolved by DNN. In this case study, a deep neural network model with ten layers (as shown in 

Fig. 4(b)) was used to establish the relationship between the W, R, L, α and β variables and 

stress-strain responses. The corresponding numbers of neurons and activation functions used in 

each layer are listed at the bottom of each layer in Fig. 4(b). The number of neurons should be 

increased and then decreased as the layer number increases. The neuron number in the middle 

layer should be the largest. This is the general case and, in these settings, the machine learning 

model generally can work with better accuracy. In terms of the exact numbers in each layer, we 

tested on the numbers and determined to use these neuron numbers in each layer with the best 

accuracy as shown in Fig. 4(b). The activation function ReLU was used in the first 9 layers.  

Next, we will illustrate the process of using ML to obtain the ankle brace design for Zone 1. 

Design for Zones 2 and 3 is similar to Zone 1. As can be seen from Table 4, the requirement of 



stress-strain responses for Zone 1 is as follows: when the strain is 0.3, the stress should be 0.47 

MPa in orientation 1; when the strain is 0.1, the stress should be 0.24 MPa in orientation 2. 

Therefore, 300 groups of data with stresses between 0.20 to 0.29 MPa in orientation 2 and 0.42 

to 0.55 MPa in orientation 1 when strain is 0.1 were selected to train the ML model. The reason 

of refining the range of stress and strain is for increasing the ML model’s accuracy and 

performance. After tuning the ML model with these data, the best ML model parameters were 

obtained as follows: layers, neuron number in each layer and activation functions as shown in 

Fig. 4(b); the number of epoch was set at 200; batch_size was set as 10; optimizer was set as 

“adam”; and loss and metrics were both set as “mse” (mean squared error). Among these data, 

270 groups of data were used for training while the remaining 30 groups of data were used for 

testing the performance of the ML model. Table 6 shows the results of the ML model’s 

performance. Similarly, ML models were also established accordingly for Zones 2 and 3. The 

performances on Zones 2 and 3 are also shown in Table 6. As can be seen, the ML model has 

satisfactory accuracy. 

Table 6 Mean squared errors of established Zone 1 ML model  

 Training data Testing data 

Zone 1 0.000003638 0.000002867 

Zone 2 0.000009832 0.000008503 

Zone 3 0.000004439 0.000005729 

 

4.3 Results 

The corresponding ankle brace design with the requirements as listed in Table 4 can be obtained 

now using the established ML model. For the horseshoe geometry of Zone 1, the corresponding 

stresses of 0.47 and 0.24 were fed into the ML model to obtain the geometric values W, R, L, α 

and β. Similarly, Zones 2 and 3 were designed using their ML models. Fig. 9 shows the 

corresponding inputs and design outputs for the three zones. To evaluate the real stress-strain 

responses of these three zones, the corresponding outputs shown in Fig. 9 were used for running 

simulations in ABAQUS. The real stress-strain responses using design variable values in Fig. 

9 are displayed in Fig. 10. As can be seen, the stress values and corresponding strains are all 

close to the required values as listed in Table 4. The maximum deviations from the targets are 

all less than 0.05 MPa, which was deemed to be acceptable (Y. Xiong et al. 2019). Therefore, 

the ankle brace can be designed using the ML model outputs. All zones in the 2D structure were 

populated and filled with these horseshoe designs. In the adjacent areas, boundaries of different 



designs were connected by joining open-ended struts to their nearest neighbours. If a unit cell 

is cut by a boundary, the resulting struts are connected to the neighbouring unit cell across the 

boundary. This guarantees a connected structure without hanging struts.  It may result in slightly 

different properties along the boundary, but these deviations will be small. The design was then 

stored in STL files and fabricated using a material jetting process (Stratasys® Polyjet J750). 

The material used for fabrication was the Vero Cyan material, a stiff photopolymer (Poisson’s 

ratio: around 0.5 and Young’s modulus: around 1.7 GPa) from Stratasys®. Fig. 11 shows the 

final fabricated ankle brace that was folded to conform to the surface of the ankle.  

 

Fig. 9 Inputs and obtained design outputs of the three zones by using ML 



 

Fig. 10 Real stress-strain responses in the three zones using the ML obtained design 



 

Fig. 11 Final fabricated ankle brace with close views in each zone 

4.4 Discussion 

The ankle brace design problem was first formulated and solved using Gaussian process 

regression surrogate models (Y. Xiong et al. 2019), which required the use of optimization to 

compute design variable values, given desired stress-strain relationships. Optimization was 

required since the structure-property relationship was modelled using the GPR model, and 

attempts to use GPR to model property-structure relationships were not successful. In this 

paper, we used a ML enabled design approach to solve the same problem. The primary 

advantage of our proposed DfAM method is the capability to model input-output relationships 

in both directions. That is, a deep neural network can model property-structure relationships, 

given structure-property input-output data, which enables the direct computation of design 

variable values without the need to invert the structure-property relationship. Table 7 compares 

the real stress and strain values obtained according to the final design in (Y. Xiong et al. 2019) 

and the obtained design in this paper. As can be seen, the obtained stress values from the 

designed brace in this paper are closer to the required values than the design in (Y. Xiong et al. 

2019) in terms of orientation 1 of Zone 1 and orientation 1 of Zone 3. However, all the values 

are quite close and both the design from (Y. Xiong et al. 2019) and this paper are acceptable. 

Table 7 Comparison between obtained stress values from designs in (Y. Xiong et al. 2019) 

and this paper 

 Orientation Strain Required 

Stress 

(MPa) 

Obtained 

stress from 

ML model  

Relative 

error 

Obtained stress from 

surrogate model (Y. 

Xiong et al. 2019)   

Relative 

error 

Zone 

1 

1 0.3 0.47 0.464 0.006 0.484 0.014 

2 0.1 0.24 0.233 0.007 0.235 0.005 

1 0.1 0.28 0.237 0.043 0.268 0.012 



Zone 

2 

2 0.1 0.28 0.262 0.018 0.265 0.018 

Zone 

3 

1 0.1 0.43 0.415 0.015 0.411 0.019 

2 0.1 0.49 0.447 0.043 0.451 0.039 

 

To illustrate the advantage of the ML based method, computation times will be considered for 

determining design variable values. Our ML method only takes 2ms or so to compute the design 

once the ML model has been established. For the conventional surrogate model in (Y. Xiong et 

al. 2019), it takes about 19s to get the design, about 5 orders of magnitude difference. The 

effectiveness of our method is based on the ability of ML to establish the process-structure-

property relationship in whichever direction as shown in Fig. 2. This paper only shows the 

example of “from property to structure” due to the current limited data from AM. However, as 

additional AM data and relationships are determined, more complete and powerful PSP models 

can be established in the future directly through ML to support a wide range of design problems. 

5 Conclusions 

In this paper, a ML integrated DfAM framework is proposed to establish process-structure-

property relationships, which can be helpful to design for additive manufacturing. With the help 

of ML, the analysis and design processes based on PSP no longer need to establish complex 

surrogate models which are also unable to establish the relationships of PSP in a reversed 

direction. The relationships between process, structure, and property can be established simply 

through ML in whichever direction is desired using the available AM data. DNNs for point data 

and CNNs for distributions and image data were proposed as the specific ML techniques for 

the proposed DfAM framework. An ankle brace design problem was used to illustrate the 

application of the proposed framework. DNNs modelled property-structure relationships used 

for ankle brace design. 

Based on the results, it was demonstrated that the property-structure DNN models were 

significantly more computationally efficient than conventional surrogate models in computing 

design variable values, given desired property values. The conventional surrogate models 

(Gaussian process regression models) needed to be inverted using an optimization method to 

enable design variable calculation. The property-structure DNN models were trained with the 

same number of data points as the GPR models and proved to be as accurate. This example 

helps validate the proposed DfAM framework. 



The DfAM framework proposed the use of process-structure-property relationships; however, 

only structure-property and property-structure relationships were investigated in this paper. 

Thus, more research is needed to extend the models and method for the larger PSP scope. The 

property-structure relationships modelled using DNNs in this work related stress-strain values 

to five design variables (2 inputs, 5 outputs). It is an open issue to determine how well more 

general, larger, and more complex relationships can be modelled using DNNs and CNNs.  
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