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Investment and Risk Management with Online News and
Heterogeneous Networks

GARY ANG and EE-PENG LIM, Singapore Management University, Singapore

Stock price movements in financial markets are influenced by large volumes of news from diverse sources
on the web, e.g., online news outlets, blogs, social media. Extracting useful information from online news
for financial tasks, e.g., forecasting stock returns or risks, is, however, challenging due to the low signal-to-
noise ratios of such online information. Assessing the relevance of each news article to the price movements
of individual stocks is also difficult, even for human experts. In this article, we propose the Guided Global-
Local Attention-based Multimodal Heterogeneous Network (GLAM) model, which comprises novel attention-
based mechanisms for multimodal sequential and graph encoding, a guided learning strategy, and a multitask
training objective. GLAM uses multimodal information, heterogeneous relationships between companies and
leverages significant local responses of individual stock prices to online news to extract useful information
from diverse global online news relevant to individual stocks for multiple forecasting tasks. Our extensive
experiments with multiple datasets show that GLAM outperforms other state-of-the-art models on multiple
forecasting tasks and investment and risk management application case-studies.

CCS Concepts: • Computing methodologies→ Neural networks; Artificial intelligence; Knowledge

representation and reasoning; Information extraction;

Additional Key Words and Phrases: Graph neural networks, transformers, attention mechanisms, time-series
forecasting, networks, multimodality, embeddings, finance, natural language processing
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1 INTRODUCTION

Financial forecasting tasks, i.e., forecasting financial time-series such as stock returns or volatilities
at the next timestep or some time horizon in the future, are more challenging than other forecasting
tasks due to the low signal-to-noise ratios and the non-stationary nature of financial time-series
distributions and inter-series relationships [19]. Financial time-series are also influenced by di-
verse sources of information, such as local (company-specific) stock prices, global (non-company-
specific) news, and network effects due to inter-company relationships, i.e., networks comprising

This research is supported by the National Research Foundation, Singapore under its Strategic Capabilities Research Cen-
tres Funding Initiative. Gary Ang is supported by a Monetary Authority of Singapore Postgraduate Scholarship. Any opin-
ions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect
the views of National Research Foundation, Singapore, nor the Monetary Authority of Singapore.
Authors’ address: G. Ang (corresponding author) and E.-P. Lim, Singapore Management University, 80, Stamford Road,
Singapore 178902, Singapore; emails: gary.ang.2019@phdcs.smu.edu.sg, eplim@smu.edu.sg.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1559-1131/2023/03-ART8 $15.00
https://doi.org/10.1145/3532858

ACM Transactions on the Web, Vol. 17, No. 2, Article 8. Publication date: March 2023.

https://orcid.org/0000-0001-5922-8956
https://orcid.org/0000-0003-0065-8665
https://doi.org/10.1145/3532858
mailto:permissions@acm.org
https://doi.org/10.1145/3532858
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3532858&domain=pdf&date_stamp=2023-03-27


8:2 G. Ang and E.-P. Lim

company nodes with inter-company relationships forming edges between the company nodes. In
this article, we address these challenges and propose a model designed for multiple financial fore-
casting tasks.

While structured numerical information has traditionally been used as information for forecast-
ing stock price movements, the influence of unstructured textual news information on stock price
movements has also been studied in recent works [1, 11, 23, 43, 55]. These works show that both
traditional and online textual news contain valuable information that can be used to forecast stock
price movements. Extracting useful information from online news for financial tasks is, however,
more challenging than from structured numerical information or traditional textual news infor-
mation for a number of reasons.

First, sources of online news are more diverse, ranging from online news outlets to blogs and
social media, with vastly different writing styles. Second, the signal-to-noise ratios of online news
is lower. A larger proportion of online news is of low quality or false, as most online news are not
subject to the same editorial processes and controls as traditional news. Finally, the relevance of
each online news article to individual stock prices is difficult to determine, even for human experts,
due to the high volume, velocity, and variety of online news.

To address the above challenges, this article introduces several key ideas premised on the fol-
lowing observations relating to online news information, financial time-series, and inter-company
networks:

• First, unlike a piece of structured information such as stock price and trading volume histo-
ries, which are explicitly associated with specific companies and thus local in nature, a piece
of unstructured online news may not be associated with specific companies but relevant to
multiple companies, an entire industry sector, or the entire market. Hence, we consider these
online news global. For example, a published news article on disruptions in the operations of
a main semiconductor supplier can affect many other companies not only in the semiconduc-
tor sector, but also other companies in the downstream industries such as automobiles and
computing equipment. Hence, global information could influence local information. This de-
gree of global information’s influence differs based on the relevance and quality of global
information, e.g., high-quality news on a company that is verified to be true will have a
more sustained effect on the stock prices of the company than low-quality news that turns
out to be false. Local information may also influence global information, e.g., a sustained
decline in stock prices or trading volumes of a key company in a property sector could lead
to news articles discussing the vulnerabilities of the entire sector. Such mutual effects of local

information and global information could be leveraged for extraction of relevant information.
• Both global and local information often come from different modalities, e.g., local numerical

price-related information and global textual news information, as mentioned earlier. As the
evolution of local stock-specific information from one modality could provide important
signals that can be leveraged to extract relevant global information from another modality,
a multimodal approach to modeling them is thus necessary.
• Next, the ex-post effects of local information can provide valuable signals that can be uti-

lized to extract relevant global information and address the low signal-to-noise ratio, e.g., a
personal scandal related to the CEO of Company A might not be related to its core business,
but could spark an online-led boycott of Company A’s products and lead to a significant de-
cline in its stock price. Such significant ex-post responses of local information, i.e., stock prices,
therefore provide an important set of signals that can be isolated to learn the relevance of
different global information to each company.
• Fourth, different types of inter-company relationships and linkages capture different influ-

ences among them. For example, an online negative news article about a Company B could
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Investment and Risk Management with Online News and Heterogeneous Networks 8:3

Fig. 1. Motivating example: Effects of news relating to Alibaba’s Ant Financial’s initial public offering (IPO)

being suspended on the immediate stock prices of different companies varies based on heterogeneous re-

lationships. The significance and duration of such effects also varies based on the news content and such

heterogeneous relationships.

have negative effects on the stock prices of all its suppliers and customers, but positive effects
for its known competitor; a regulatory crackdown on Company C based in a country due to a
shift in government policy could affect companies of the same industry in the same country
negatively but have positive effects for companies of the same industry in other countries.
Such heterogeneous relationships between companies, both direct and indirect, can provide
structure for learning the relevance of different online news to individual stock prices.

We illustrate these observations with an example in Figure 1. News on the suspension of Al-
ibaba’s Ant Financial’s initial public offering (IPO) in October 2020 led to a significant decline in
the stock price of Alibaba (green line) after that. Stock prices of its competitors—Baidu (blue line),
Amazon (orange line), and Google (red line)—in the technology sector rise, but to varying degrees
after the event. Baidu, being a competitor to Alibaba in the same home country, i.e., China, appears
to increase the most (see the different types of relationships in Figure 1). The longer-term effect
of news on the suspension of Alibaba’s Ant Financial’s IPO on the stocks prices of the different
companies also varies. The decline in Alibaba’s stock price and rise in Baidu’s stock price are more
sustained, whereas the changes in stock prices of Google and Amazon level off after November
2020. Stock prices of Pfizer (purple line), a pharmaceutical company without direct links to Alibaba,
is relatively unaffected by this news.

In our literature survey, we have noticed several limitations of existing works. Most existing
works in this area model financial information of a single modality [13, 23, 43] and do not model
the mutual relevance of information from different modalities, or the effects of heterogeneous inter-
company relationships. Some works [17, 55] model both unimodal financial information and the
effects of inter-company relationships, but not multimodal information. Ang and Lim [1] utilizes

ACM Transactions on the Web, Vol. 17, No. 2, Article 8. Publication date: March 2023.



8:4 G. Ang and E.-P. Lim

multimodal numerical and global textual information as well as inter-company relationships but
does not capture the heterogeneity of inter-company relationships. All these works also do not
explicitly isolate the more significant ex-post responses of stock prices to learn the relevance of
different global information to each company.

Most existing works also focus on forecasting stock prices or returns for trading decisions at
the next timestep and do not study the effect of online news on the dynamics of stock prices over
a longer future horizon, covering multiple timesteps [23, 43]. Hence, another set of key ideas that
motivates our article relates to the need for a multivariate multitask setting for forecasting the dy-
namics of stock prices over a longer future horizon. Such a setting is important for investment and
risk management applications such as portfolio management and risk forecasting. Investment and
risk managers are not only interested in investment returns but also investment risks and other
aspects of investment and risk management. Investment and risk managers make investment and
risk management decisions over a longer term horizon and are hence also interested in the ex-
pected returns and risks (volatilities) of stocks over a longer term horizon, rather than just stock
price movements at the next timestep. Investment and risk managers also manage large numbers
of stocks in portfolios and are hence also interested in how changes in correlations between stocks
affect the overall returns of the portfolio. Therefore, financial forecasting for investment and risk
management naturally involves a multivariate multitask setting, where there is a need to manage
the returns and risks of financial portfolios that comprise many stocks, and forecast stock mean
returns and risks over a future horizon to balance potential returns and risks when making invest-
ment decisions, as well as forecast correlations between stocks in portfolios over a future horizon.
Designing a model that can be used in a multivariate multitask setting has other potential advan-
tages, as it could enable complementary information from other variables and related tasks to be
used to improve overall forecasting performance, and also lower the risk of over-fitting on any one
task. Such forecasts can also be utilized in portfolio allocation optimization [35] and Value-at-Risk
(VaR) [32] forecasting applications.

To address the above-mentioned challenges in utilizing global online news information in a
multivariate multitask setting for investment and risk management based on these key ideas, we
propose the Guided Global-Local Attention-based Multimodal Heterogeneous Network (GLAM)

model. GLAM incorporates several important components: (i) a time-sensitive global-local trans-
former to learn relevant global online text information and sequentially encode multimodal in-
formation (i.e., time-series stock prices and time-stamped news articles); (ii) an attention-based
heterogeneous network encoder to leverage heterogeneous inter-company relationships and fu-
ture correlations; coupled with (iii) auxiliary channels for guided learning from significant ex-post
effects of online news. GLAM is trained in a multivariate setting on multiple tasks—forecasting
means, volatilities, and correlations over a future horizon. We also demonstrate how such fore-
casts could be used for portfolio allocation optimization and risk management applications in
case-studies. Our key contributions are as follows:

• To our knowledge, this is the first work to propose a model for capturing global and local in-
formation from multiple modalities and heterogeneous networks for multivariate multitask
financial forecasting tasks for investment and risk management applications.
• We propose a time-sensitive global-local transformer module that encodes sequences of

global textual information, local numerical information, and associated time features jointly
and extracts the relevant global information.
• To improve extraction of relevant global information, we couple the global-local transformer

module with auxiliary channels that enable the significant changes in stock dynamics to be
isolated for guiding the learning of global information relevant to each company.

ACM Transactions on the Web, Vol. 17, No. 2, Article 8. Publication date: March 2023.
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• We design a heterogeneous network encoding module that uses different types of inter-
company relationships to propagate multimodal sequential information across companies.
The heterogeneous network encoding module also leverages correlation forecasts to improve
parameter learning.
• We train the model on multiple forecasting tasks to lower the risk of over-fitting and demon-

strate the effectiveness of GLAM on forecasting tasks and real-world applications against
state-of-the-art baselines on real-world datasets.

2 RELATED WORK

As this work involves time-series forecasting and network learning, we review key related works
in these areas.

2.1 Stock Price Forecasting Using Time Series Modeling

Classical methods, which include univariate Autoregressive Integrated Moving Average (ARIMA)
[47], Generalized AutoRegressive Conditional Heteroskedastic (GARCH) [5]; and multivariate Vec-
tor Auto-Regressive (Vector AR) [34] and Dynamic Conditional Correlation (DCC)-GARCH [14]
models are commonly applied to time-series forecasting. However, such classical methods are de-
signed for numerical data but not unstructured textual information.

To learn time-series information in a data-driven manner and to capture other types of informa-
tion, deep learning models have been increasingly applied to time-series forecasting. They include
feed-forward networks [8, 10, 11, 36, 58], convolutional neural networks [2, 6, 38, 51], recurrent
neural networks [18, 31, 33, 41, 42], and transformers [53, 60]. A detailed review of these works can
be found in Faloutsos et al. [16], Jiang [24], Lim and Zohren [30], Özen et al. [37], Petropoulos et al.
[40], Torres et al. [46]. TST [60] is a recent model based on the transformer encoder architecture.
It is, however, designed for local numerical information. A number of recent works have studied
the use of textual information from traditional and online news [1, 11, 13, 23, 43, 55] for financial
forecasting. Most of these works [23, 43] utilize news articles that have been manually tagged to
specific companies as inputs, i.e., local textual information. FAST [43] is a recent model that uses
Time-aware LSTMs [3] to encode sequences of local textual news information. HAN [23] utilizes
attention mechanisms to learn the importance of each local news article and each timestep. SE [13]
is a recent model that does not manually assign company tags to news articles but instead uses the
dot product of stock embeddings and news representations to extract relevant global news via a
data-driven approach. SE utilizes bidirectional GRUs to encode unimodal textual information but
does not capture numerical information or inter-company relationships.

2.2 Heterogeneous Network Learning and Stock Price Forecasting

Graph Neural Networks (GNN) compose messages based on network features and propagate them
to update the embeddings of nodes and/or edges over multiple neural network layers [20]. In
particular, Graph Convolutional Network (GCN) [27] aggregates features of neighboring nodes
and normalizes aggregated representations by node degrees. Graph Attention Network (GAT) [50]
assigns neighboring nodes with different importance weights during aggregation. Such GNNs are
designed for homogeneous networks with static node attributes and cannot be directly applied to
heterogeneous networks where attributes are evolving time series.

GNNs have also been applied to heterogeneous networks. Relational Graph Convolutional Net-
works (RGCN) [44] and Graph Convolutional Matrix Completion [48] use multiple GCNs to en-
code embeddings of multiple adjacency matrices, one for each edge type, before aggregating them.
Heterogeneous Graph Attention Network [52] and General Attributed Multiplex Heterogeneous
Network [7] use multiple GNN-based layers to encode networks formed from different metapaths
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8:6 G. Ang and E.-P. Lim

[12] before using an attention mechanism to aggregate the embeddings. HGT [22] uses atten-
tion mechanisms to encode sub-graphs with different node and edge-types iteratively. Similarly,
such GNNs are designed for heterogeneous networks with static node attributes and cannot be di-
rectly applied to heterogeneous networks where attributes are evolving time series. GNN models
have been designed for spatio-temporal networks where the nodes have time-varying attributes
[9, 28, 59, 61]. However, these models are designed for traffic-related numerical information and
not suitable for networks where the node attributes are multimodal financial time series.

A few recent works extend different GNNs to prediction tasks on financial time-series data. RSR

[17] uses LSTM to generate representations for local numerical time-series stock prices before feed-
ing the latter to learn stock embeddings in a heterogeneous network using a GCN-based model
but does not consider global textual information. Reference [55] captures heterogeneous relation-
ships using a RGCN-based model but is designed for forecasting with different types of company
announcements and not news. Our earlier work KECE [1] captures numerical and global textual
information and uses a GAT-based model to capture homogeneous inter-company relationships
but does not capture the heterogeneity of inter-company relationships. KECE also uses the dot
product of stock embeddings and news representations to extract relevant global news informa-
tion, rather than attention mechanisms based on transformers proposed in this work.

In general, these related forecasting and network learning works are also not designed for
the multitask setting of forecasting means, volatilities, and correlations of stock returns that are
important for investment and risk management applications. They are designed for single tasks,
and either predict prices or returns or price movement directions for trading applications. Further,
they do not isolate the significant ex-post changes in local stock dynamics to improve the learning
of global information relevant to each company.

3 GUIDED GLOBAL-LOCAL ATTENTION-BASED MULTIMODAL HETEROGENEOUS

NETWORK MODEL

GLAM represents companies in a network G = (V ,E,X ), where V represents a set of company
nodes, E consists of edges of R different relationship types, i.e., E = E1 ∪ · · · ∪ ER , X represents se-
quences of multimodal numerical and textual attributes. In this article, we utilize heterogeneous re-
lationships between companies extracted from Wikidata knowledge graphs. Other inter-company
relationships, e.g., based on domain knowledge, can also be used, but will be explored in future
work. Given a timestep t , we define the local numerical features of a companyvj , X

num,local
j (t ), to

be the sequence of numerical price-related data associated with vj over a window of K timesteps

up to t − 1, i.e., Xnum,local
j (t ) = [xnum,local

j (t −K ), . . . ,xnum,local
j (t − 1)]. We use Xnum,local (t ) to

represent the |V | × K matrix containing the Xnum,local
j (t ) of all companies. The pre-encoded tex-

tual news features that are global in nature and not associated with any company are denoted as
X txt,дlobal (t ) = [x txt,дlobal (t−K ), . . . ,x txt,дlobal (t−1)] over the same window period [t−K , t−1],
with varying number of news articles |Nt−k | at each timestep t − k in [t − K , t − 1]. Alternative
local and global inputs, e.g., local social media information such as tweets from the company’s
social media account, and global economic indicators, e.g., gross domestic product of countries of
the company’s key markets, are also possible within our framework, but we focus on global on-
line news and local stock-price related numerical information in this article and will explore other
inputs in future work.

As shown in Figure 2, the Guided Global-Local Transformer (GLT) module in GLAM first uti-
lizes local numerical information Xnum,local (t ) (over the time window [t −K , t − 1]) to extract and
sequentially encode relevant global textual information X txt,дlobal (t ) in the same time window.
The resultant sequence of representations for each company (Hi (t )[t − K], . . . ,Hi (t )[t − 1]) are

ACM Transactions on the Web, Vol. 17, No. 2, Article 8. Publication date: March 2023.



Investment and Risk Management with Online News and Heterogeneous Networks 8:7

Fig. 2. Architecture of GLAM. Detailed Architecture of Guided Global-Local Transformer (GLT) and Hetero-

geneous Network Encoder (HNE) modules are depicted in Figures 3 and 4, respectively.

then used as inputs to a Heterogeneous Network Encoding (HNE) module that captures the hetero-
geneous relationships between companies. GLAM finally generates forecasts of means, volatilities,
and correlations of financial returns of each companyvi over a selected future horizon of [t , t+K ′].
These financial returns are denoted as

Y returns
i (t ) = [yreturns

i (t ), . . . ,yreturns
i (t + K ′)],

where yreturns
i (t ) = (pricei (t ) − pricei (t − 1))/pricei (t − 1) and pricei (t ) denote the percent-

age return and stock price of vi at time window [t , t + K ′] and timestep t , respectively. We also
use Y returns (t ) and yreturns (t ) to denote the percentage return of all companies at time window
[t , t + K ′] and timestep t , respectively. To facilitate GLT and HNE in learning the relevant global
textual information and important heterogeneous relationships, we add auxiliary channels for

intermediate guided learning to the GLAM model. The auxiliary channels associated with GLT
utilize intermediate forecasts of the most significant means and volatilities of Y returns (t ) across
all stocks to guide learning of GLT parameters. HNE is also guided by the learning of an inner
weightWatt that is utilized in both the heterogeneous network encoding as well as the forecasts
of the correlations of Y returns (t ). We further elaborate on the GLAM modules, auxiliary channels,
and training objectives below.

3.1 Guided Global-Local Transformer

Transformers [49] were originally proposed for natural language applications but have since been
extended to time-series forecasting [29, 53, 60]. Such time-series transformer works [29, 53, 60] use
local information (usually numerical), i.e., information directly associated with specific companies,
or other variables. To extract and learn global textual information relevant to each company, we de-
sign the Guided Global-Local Transformer (GLT), that differs from these past transformer-related
works in a number of important aspects, which we elaborate on below.

As shown in Figure 3, the GLT module in Figure 3(i) comprises multiple GLT layers shown in
detail in Figure 3(ii). We start from the GLT layer as shown in Figure 3(ii).

Time vectorization and projection. First, we utilize learned time matrices [21, 25] to enable
GLT to generate time-sensitive representations. Unlike the usual positional encodings used in

ACM Transactions on the Web, Vol. 17, No. 2, Article 8. Publication date: March 2023.



8:8 G. Ang and E.-P. Lim

Fig. 3. (i) Guided Global-Local Transformer (GLT) comprises multiple GLT layers, which repeatedly extract

relevant global representations across all companies with residual local backcasts as inputs and sums them

up to obtain the final relevant global representations H (t ) for all timesteps in the window [t − K , t − 1].
(ii) Each GLT layer iteratively extracts relevant global representations across the window from t − 1 to t −K
step in a time-sensitive manner and generates backcasts. Figure (ii) shows the process for the t − k step,

which is repeated from the t − 1 to the t − K step.

transformers, the time matrix P (t ) is learned from the set of timestamps T (t ) corresponding to
the day of week, week and month of year of timesteps [t − K , t − 1], as these are most relevant
to the respective inputs. The time matrix P (t ) ∈ RK×d is learned by combining functional
forms and learnable weights. For GLAM, the empirically chosen functional components are
Φ1 = siдmoid (Linear (T (t ))) and Φ2 = cos (Linear (T (t ))), which enable the model to extract
non-linear and seasonality-based temporal patterns in T (t ). We then concatenate these matri-
ces Φ1 and Φ2 and project them via a linear layer to obtain the time matrix: P (t ) = Linear
([Φ1 | |Φ2]).

Concurrently, we project either (i) the original local numerical features Xnum,local (t ) with di-
mension dnum corresponding to stock market price-related information, say, opening, closing,
low, high prices, and trading volumes; or (ii) the residual local numerical features, i.e., the dif-
ference between X̂num,local, (l−1) (t ) and X̂num,local, (l−2) (t ) of the prior layers (which we will elab-
orate on later in this section) to representations Hnum,local (t ) with dimension d . We also project
X txt,дlobal (t ) with dimension dtxt corresponding to the dimensions of average word embeddings
of each news article generated with a pre-trained encoder toH txt,дlobal (t ) with dimension d again

but of different sequence lengths. That is,Hnum,local (t ) ∈ R |V |×K×d ,H txt,дlobal (t ) ∈ R
∑

K

k=1 |Nt−k |×d .
H txt,дlobal (t ) is not specific to any company, and there are varying |Nt−k | number of global news
representations for each timestep. We broadcast the time matrix P (t ) ∈ RK×d by repeating it |V |
times, resulting in a |V | ×K ×d matrix, and add it to the local numerical representations to obtain:
H̃num,local (t ) = Hnum,local (t ) + P (t ). We similarly broadcast the time matrix to match the dimen-
sions of the global news representations, i.e.,

∑K
k=1 |Nt−k | × d , and add them to the global news

representations to obtain: H̃ txt,дlobal (t ) = H txt,дlobal (t ) + P (t ).

ACM Transactions on the Web, Vol. 17, No. 2, Article 8. Publication date: March 2023.



Investment and Risk Management with Online News and Heterogeneous Networks 8:9

Cross attention. Second, in contrast to transformers that apply self-attention to the same se-
quence of representations that are of equal length, we apply cross-attention between the local
numerical representation and |Nt−k | global news representations at each timestep t − k in time
window [t −K , t −1]. We use the local representations H̃num,local (t ) to guide the learning of global
textual features from H̃ txt,дlobal (t ) relevant to each companyvi . As shown in Figure 3(ii), for each
timestep in window [t − K , t − 1], say, t − k , we generate:

Qnum,local (t )[t − k] = LinearQ (H̃num,local (t )[t − k])

K txt,дlobal (t )[t − k] = LinearK (H̃ txt,дlobal (t )[t − k])

V txt,дlobal (t )[t − k] = LinearV (H̃ txt,дlobal (t )[t − k]).

We apply a scaled dot-product attention weighted aggregation step that is different from standard
transformers [49]:

H́ txt,дlobal (t )[t − k] = so f tmax

(
K txt,дlobal (t )[t − k] ·W дatt ·Qnum,local (t )[t − k]ᵀ

√
d

)ᵀ
·V txt,дlobal (t )[t − k], (1)

where W дatt ∈ Rd×d is an inner weight shared across all timesteps in window [t − K , t − 1]
to improve attention extraction of global textual information. The matrix multiplication between
K txt,дlobal (t )[t −k],W дatt and Qnum,local (t )[t −k], after the scaling by

√
d and the so f tmax step,

gives us attention weights of dimensions |Nt−k | × |V |. We then use the transpose of these attention
weights to map the |Nt−k | ×d matrixV txt,дlobal (t )[t −k] to H́ txt,дlobal (t )[t −k],which is of |V | ×d
dimensions. Across all timesteps t −k’s in window [t −K , t − 1], we get H́ txt,дlobal (t ) ∈ R |V |×K×d .
We then apply a series of addition steps, layer normalization, and feed-forward networks as per
conventional transformers [49] to H́ txt,дlobal (t ) as follows: H ′(t ) = LayerNorm(H́ txt,дlobal (t ) +
H̃num,local (t )); followed by H ′′(t ) = LayerNorm(FFN (H ′(t )) + H ′(t )).

Backcast. Third, in contrast to transformers layers that only generate representations for sub-
sequent layers to encode or decode, the GLT layer not only generates H (l ) (t ) = Dense (H ′′(t ))
with H (l ) (t ) ∈ R |V |×K×d but also generates a backcast of the local numerical information
X̂num,local, (l ) (t ) = BC (H ′′(t )) where X̂num,local, (l ) (t ) ∈ R |V |×K×dnum

.
Residual stacking. Fourth, as shown in Figure 3(i), instead of the typical encoder-decoder

architecture in transformers, we stack multiple GLT layers with a residual connection between
the lth GLT layer’s backcast of the local numerical information: X̂num,local, (l ) (t ) and the local
numerical information used as inputs to the lth GLT layer: X̂num,local, (l−1) (t ). The difference be-
tween the backcast of the local numerical information and the prior local numerical information
X̂num,local, (l−1) (t ) is used as inputs to the subsequent l + 1 GLT layer; while the representations
of relevant global information H (l ) (t ) for each of the GLT layers are added to obtain the final
H (t ) =

∑L
l=1 H

(l ) (t ) (∈ R |V |×K×d ). This residual stacking architecture is inspired by Reference [36],
but to our best knowledge has thus far not been applied for the extraction of relevant global in-
formation using transformers. The multiple GLT layers can be viewed as multi-stage extraction of
global information that are relevant to each company. The residual connection removes the part
of the local information that has already been utilized to extract part of the global information
relevant to each company and facilitates the extraction task of the subsequent GLT layers.

Intermediate forecasts. Finally, to enable the GLT module to effectively extract global infor-
mation relevant to each company, we add fully connected layers FC ′M and FC ′V and use the repre-
sentation of the final step t − 1 in the window [t − K , t − 1] to make intermediate forecasts of the
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Fig. 4. Heterogeneous Network Encoder (HNE).

most significant means and volatilities, respectively, of Y returns (t ) across all stocks as follows:

Ŷ ′returns
mean (t ) = FC ′M (H (t )[t − 1])

Ŷ ′returns
vol (t ) = FC ′V (H (t )[t − 1]).

The training loss functions for these intermediate forecasts will be elaborated in Section 3.3. The
intermediate forecasts are also designed to alleviate the over-smoothing in the subsequent network
encoding step [54], which causes representations for all nodes in a network to become very similar
to one another and can lead to poorer performance.

3.2 Heterogeneous Network Encoder

The heterogeneous network encoder utilizes the heterogeneous relationships between companies
to propagate representations between companies based on different relationship types {1, . . . ,R}.
Inspired by References [22, 57], we adapt the scaled dot-product attention module commonly used
in transformers [49] for the GNN message-passing framework to design a Heterogeneous Network
Encoder (HNE), as shown in Figure 4.

The scaled dot-product attention mechanism used in transformers applied to networks utilizes
network structure to compute attention scores between nodes that are neighbors. These atten-
tion scores weigh the messages propagated from the source to target nodes for aggregation. Us-
ing scaled dot-product attention is more effective than the usual message-passing framework em-
ployed in most GNNs, as it allows the model to perform the message composition, propagation,
and update steps in the GNN message-passing framework based on the self-discovered relative
importance of each neighboring source node and relationship-types.

HNE extracts edges linking neighboring source company nodesvs ’s to a target company nodevx

as canonical triplets 〈vs , r ,vx 〉’s (i.e., vs ,vx ∈ V , r ∈ {1, . . . ,R}) from the heterogeneous network.
For each canonical triplet, we first utilize linear layers to encode H (t ) of the company nodes in
time window [t − K ,t − 1] from the prior GLT module as queries, keys, and values:

Qvx
(t ) = LinearQ−H N E (Hvx

(t ))

Kvs
(t ) = LinearK−H N E (Hvs

(t ))

Vvs
(t ) = LinearV−H N E (Hvs

(t )).
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We then compute the attention score AttScore between a target node vx and each neighboring
source node vs ∈ N (vx ) as:

AttScore〈vs ,r,vx 〉 (t ) = so f tmaxvs ∈N (vx )

(
Qvx

(t ) ·Watt,r · Kvs
(t )ᵀ

√
d

)
, (2)

where N (vx ) denotes the neighboring nodes of vx , andWatt,r is a d × d learnable weight matrix.
Next, we use the attention score AttScore to compute the weighted average of features from all
source nodes and use it to update the triplet-specific representation of the target node vx .

H〈vs ,r,vx 〉 (t ) =
∑

vs ∈N (vx )

AttScore〈vs ,r,vx 〉 (t ) ·Vvs
(t ) (3)

At this point, we have the embeddings of the target node vx for each of the canonical triplets
or edges connected to neighboring nodes N (vx ). To learn the importance of different edges, we
use attention-based fusion. A non-linear transformation is applied to the representations to ob-

tain scalars s (vs , r ,vx , t ) = W (1)
ω tanh(W (0)

ω H〈vs ,r,vx 〉 (t ) + bω ), where W (0)
ω and W (1)

ω are learnable
weight matrices and bω is the bias vector. Parameters are shared across modalities. We normalize
the scalars with a softmax function to obtain the weights β (vs ,r,vx ) (t )’s, which are used to fuse
representations across the edges into node vx as zx (t )’s.

β (vs ,r,vx ) (t ) =
exp (s (vs , r ,vx , t ))∑

(vs ,r,vx ) exp (s (vs , r ,vx , t ))
(4)

zx (t ) =
∑

(vs ,r,vx )

β (vs ,r,vx ) (t )H〈vs ,r,vx 〉 (t ) (5)

Repeating these steps across all company nodes and edges results in Z (t ) ∈ R |V |×K×d . We use the
representation of the final step t − 1 in the window [t − K , t − 1], i.e., Z (t )[t − 1] ∈ R |V |×d in
the subsequent steps. Similarly, across all company nodes and edges, we learn R attention weights
Watt,r , each of dimension d × d , and stack them to getWatt of dimension d × d × |R |.

3.3 Forecasting and Loss Functions

We use fully connected layers to generate final forecasts of means and volatilities of stock returns
over the selected horizon period [t , t + K ′]:

Ŷ returns
mean (t ) = FCM (zt−1)

Ŷ returns
vol (t ) = FCV (zt−1),

where zt−1 = Z (t )[t − 1]. As described in Section 3.2, we stack R attention weightsWatt,r , each of
dimension d × d , from HNE to getWatt of dimension d × d × |R | and forecast correlations of asset
returns over the horizon period [t , t + K ′] as:

Ŷ returns
corr (t ) = tanh

(
zt−1 · FCC (Watt ) · zᵀt−1√

d ′

)
, (6)

where FCC is a fully connected layer that projectsWatt from dimensions d ×d × |R | to dimensions
d × d .

The final forecasts Ŷ returns
mean (t ), Ŷ returns

vol
(t ), and Ŷ returns

corr (t ) are utilized alongside the intermedi-

ate forecasts Ŷ ′returns
mean (t ) and Ŷ ′returns

vol
(t ) from GLT, as described in Section 3.1, to learn GLAM’s

parameters. Doing so enables GLT to learn to extract the relevant global news information well
and hence improve the representations that are propagated between companies based on different
relationship types in HNE.
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The respective ground-truths, i.e., actual means, volatilities, and correlations over the horizon
[t , t + K ′] for each stock, i.e., vi , are computed from the observed stock returns as follows:

yreturns
mean,i (t ) =

1

K ′

K ′∑
k ′=0

yreturns
i (t + k ′), (7)

yreturns
vol,i (t ) =

√√√
1

K ′

K ′∑
k ′=0

(yreturns
i (t + k ′) − μi )2, (8)

where μi = y
returns
mean,i (t ). For correlations between any two companies i and j:

yreturns
corr,i, j (t ) =

∑K ′

k ′=0 (yreturns
i (t + k ′) − μi ) (yreturns

j (t + k ′) − μ j )√∑K ′

k ′=0 (yreturns
i (t + k ′) − μi )2

√∑K ′

k ′=0 (yreturns
j (t + k ′) − μ j )2

. (9)

For the main training losses, we compute losses between the forecasts above and respective
ground-truths, i.e., actual means, volatilities, and correlations over the horizon [t , t +K ′] with root
mean squared loss (RMSE) across all companies vi ∈ V :

Lmain =LRMSE

(
Y returns

mean (t ), Ŷ returns
mean (t )

)
+ LRMSE

(
Y returns

vol (t ), Ŷ returns
vol (t )

)
+ LRMSE

(
Y returns

corr (t ), Ŷ returns
corr (t )

)
.

(10)

For the intermediate forecasts, we filter out subsets of the stocks for each training iteration, one
for forecasts of means and one for forecasts of volatilities, i.e., V ′mean ⊆ V and V ′

vol
⊆ V , with the

most significant ex-post response in the horizon period [t , t + K ′] to online news in the window
period [t −K , t −1]. This enables GLT to capture the most significant ex-post effects of online news
and improve its extraction and learning of global textual information relevant to each company.
We further design an adaptive learning process similar to curriculum learning [45] but undertaken
at a much earlier stage of the GLAM model. Curriculum learning is a training strategy that imitates
the way humans learn by gradually increasing the difficulty of the data samples used to train a
model [4]. In the context of this article, more significant ex-post responses to online news, i.e.,
higher than average means and volatilities of returns in the horizon period [t , t + K ′], represent
easier training data samples for the extraction of global textual information relevant to specific
companies. We use thresholds τmean and τvol to select companies forV ′mean andV ′

vol
, respectively.

τmean and τvol are computed as follows:

τmean = Mmean − γ × (Mmean − μmean ), (11)

τvol = Mvol − γ × (Mvol − μvol ), (12)

where

μmean =
1

|V |
∑

vi ∈V
yreturns

mean,i (t ),

μvol =
1

|V |
∑

vi ∈V
yreturns

vol,i (t ).

The maximum of return means and volatilities Mmean and Mvol are defined by: Mmean =

maxvi ∈V yreturns
mean,i (t ) and Mvol = maxvi ∈V yreturns

vol,i
(t ). The parameter γ = e

E
+ η is updated based

on the training epochs e ∈ {1, . . . ,E}, where E refers to the total number of training epochs. The η
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hyper-parameter is set to a fraction, say, 0.5, which represents a base proportion of the company
nodes to be utilized at the start of training.

The subset of company nodes for the most significant ex-post returns means and the subset of
company nodes for the most significant ex-post returns volatilities in the horizon period [t , t +K ′]
are hence:

V ′mean =
{
vi |yreturns

mean,i (t ) > τmean

}

V ′vol =
{
vi |yreturns

vol,i (t ) > τvol

}
.

Hence, for the auxiliary training losses, we compute the auxiliary losses for mean and volatilities
between the intermediate forecasts from GLT, i.e., Ŷ ′returns

mean (t ) and Ŷ ′returns
vol

(t ) and the ground-
truths with RMSE for the subsets of company nodes vi ∈ V ′mean and vi ∈ V ′vol

, respectively:

Laux = LRMSE

(
Y ′returns

mean (t ), Ŷ ′returns
mean (t )

)
+ LRMSE

(
Y ′returns

vol (t ), Ŷ ′returns
vol (t )

)
. (13)

GLAM can be trained with the objective of minimizing total main and auxiliary training losses,
i.e., a simple addition of Lmain and Laux . However, to adaptively balance between these losses,
we introduce the α hyper-parameter. The α hyper-parameter balances between the main and aux-
iliary training objectives with respect to the means and volatilities of returns. A higher weight
is placed on the auxiliary training losses Laux during the initial training epochs to enable the
GLT to extract relevant global information well first, before higher weights are placed on the
main training losses for forecasts of means and volatilities LRMSE (Y returns

mean (t ), Ŷ returns
mean (t )) +

LRMSE (Y returns
vol

(t ), Ŷ returns
vol

(t )) during the later training epochs. The total loss is defined as:

Ltotal = α
(
LRMSE

(
Y returns

mean (t ), Ŷ returns
mean (t )

)
+ LRMSE

(
Y returns

vol (t ), Ŷ returns
vol (t )

))
+ LRMSE

(
Y returns

corr (t ), Ŷ returns
corr (t )

)
+ (1 − α )Laux

(14)

where α = e
E

.

4 EXPERIMENTS

4.1 Datasets

We conduct experiments with four datasets, comprising global textual information of online news
articles from two popular financial news portals on the web and numerical information of daily
stock market price-related information of two stock markets—NYSE and NASDAQ—from 2015 to
2019.

The two online news article sources are: (i) Investing news datasets (IN)1; and (ii) Benzinga news
datasets (BE).2 The datasets contain news articles and commentaries collected from Investing and
Benzinga investment news portals, which are drawn from a wide range of mainstream providers,
analysts, and blogs, such as Seeking Alpha and Zacks.

For the local numerical information, we collected daily stock market price-related information—
opening, closing, low and high prices, and trading volumes—of the two stock markets—NYSE (NY)
and NASDAQ (NA)—from the Center for Research in Security Prices. We filter out stocks from
NYSE and NASDAQ that are not traded in the respective time periods and whose stock symbols
are not mentioned in any articles for the respective news article sources. We could have included
articles not covering these stocks, as GLAM is able to extract relevant global textual information,
but we restrict the choice of stocks and articles for a fair comparison with previous models (e.g.,

1Subset extracted from https://www.kaggle.com/gennadiyr/us-equities-news-data.
2Subset extracted from https://www.kaggle.com/miguelaenlle/massive-stock-news-analysis-db-for-nlpbacktests.
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FAST [43] and HAN [52]) that are designed to only capture local textual news information, i.e.,
news information associated with specific companies in the target company list.

Following the earlier works [1, 17], we utilize relationships between companies extracted
from Wikidata knowledge graphs for the inter-company relationships of the company network
G = (V ,E,X ) from Wikidata dumps dated January 7, 2019. Wikidata is chosen, as it is one of the
largest and most active collaboratively constructed KGs. Companies such as Google, Apple, and
Microsoft are present within the Wikidata KG as entities, and relationships between them, e.g.,
Alphabet as a parent company of Google, and Apple and Microsoft belong to the same industry sector,
can be extracted from Wikidata. We adopted five first-order relationship types and 52 second-
order relationship-types identified by Feng et al. [17] to extract inter-company relationships from
the Wikidata dumps dated January 7, 2019. First-order relationship-type refers to a relationship
extracted directly from a knowledge graph relation, e.g., parent organization relation in Wikidata
knowledge graph where company A is the parent of company B. Second-order relationship-type
involves the use of two Wikidata relations to create an inter-company relationship. For example, a
second-order relationship of companyA sharing key management with another company B can be
constructed from two Wikidata relations: A having a board member M and B having M as its chief
executive officer. Another second-order relationship of companies A and B belonging to the same
industry sector can be constructed from two Wikidata relations: A in industry I and B in industry
I , too. The earliest Wikidata dumps were from 2014. We used Wikidata dumps from January 7,
2019, and not earlier, as we found that knowledge graphs extracted from earlier Wikidata dumps
were too sparse to be useful for our experiments. We did not use more recent Wikidata dumps
to avoid overlap with the time window of testing data sets. Following Reference [1], we also use
a pre-trained Wikipedia2Vec [56] embedding model to pre-encode textual news to capture the
rich knowledge present within the Wikipedia knowledge base, as it offers a relatively compact
representation with dimension of 100, while giving reasonably good performance compared to
other pre-trained encoders, as it captures knowledge-based semantics. The representations of
each news article are the average word embeddings of each news article generated with the
pre-trained Wikipedia2Vec embedding model. Wikipedia2Vec generates representations of words
and entities based on corresponding pages in Wikipedia, placing similar words and entities close
to one another in the representational space.

The coverage of these datasets—across five years, with more than 1.5M articles and 2,000 com-
panies, and more than 50 types of inter-company relationships—is extensive and provides strong
assurance to our experiment findings. We combine them into four datasets (across two news article
sources and two stock markets), each of which covers different number of companies, number of
relationship-types, and news sources, as depicted in Table 1. The number of companies included in
these datasets is relatively large or comparable to most other related works, e.g., References [13, 43]
cover less than 100 companies, [1, 17] cover around 1,000–2,000 companies, while Reference [23]
similarly covers more than 2,000 companies.

To obtain the labelled data samples, we adopt a sliding window approach [53] to extract the
numerical and textual input features in the window [t − K , t − 1] and returns-related labels, i.e.,
the ground-truth means, volatilities, and correlations of returns in the horizon [t , t + K ′]. For
each of the four datasets, we obtain a total of 1,257 data samples and divide these samples into
non-overlapping training/validation/testing sets in the ratios 0.7/0.15/0.15 for all experiments, as
shown in Figure 5.

4.2 Tasks and Metrics

We compare GLAM with state-of-the-art baselines on three predictive tasks: forecasting of (i)

means, (ii) volatilities, and (iii) correlations of stock price percentage returns. We use
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Table 1. Overview of Datasets

IN-NY IN-NA BE-NY BE-NA

No. articles 221,513 1,377,098
No. company nodes 374 402 2,240 2,514
No. relationship-types 58 36 46 34
No. relationships 3,255 1,511 6,436 4,986

Fig. 5. Using a fixed sliding window to extract input features in the window [t − K , t − 1] and labels in the

horizon [t , t + K ′] to obtain labelled data samples and splitting into training, validation, and testing sets.

RMSE, mean absolute error (MAE) and symmetric mean absolute percentage error (SMAPE) as
metrics. RMSE and MAE are common scale-dependent metrics used to evaluate forecasting per-
formance, with RMSE being more sensitive to outliers than MAE. SMAPE is a commonly used
scale-independent metric defined as:

SMAPE =
100%

n

n∑
i=1

|Y returns
i (t ) − Ŷ returns

i (t ) |
( |Y returns

i (t ) | + |Ŷ returns
i (t ) |)/2

, (15)

where n is the number of observations. We choose SMAPE instead of mean absolute percentage
error (MAPE), as SMAPE gives equal importance to both under- and over-forecasts required in
this evaluation context, while MAPE favors under-forecast.

4.3 Baselines and Settings

We compare GLAM against the classical Vector AR [34] model that captures numerical informa-
tion and makes forecasts in an auto-regressive manner, as well as state-of-the-art baselines (see
Section 2): TST [60], which captures numerical information with a conventional transformer en-
coder; HAN [52], which captures local textual information with two sets of attention mechanisms;
SE [13], which captures global textual information with bidirectional GRUs; FAST [43], which cap-
tures local textual information with Time-Aware LSTMs[3]; RSR [17], which captures numerical
information and heterogeneous inter-company relationships with a GCN-based model; KECE [1],
which captures numerical, global textual information, and homogeneous inter-company relation-
ships with a GAT-based model. We also adapt HGT [22] for time-series attributes by adding a GRU
at the start to first encode numerical time-series information before network encoding with HGT.
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Table 2. Overview of Data that Can Be Captured by GLAM Model and Baselines

Model Vector AR TST HAN SE FAST RSR KECE GRU-HGT GLAM
Homogeneous Network × × × × × � � � �
Heterogeneous Network × × × × × � × � �
Local information � � � × � � � � �
Global information × × × � × × � × �

Homogeneous networks are a special case of heterogeneous networks, hence GLAM and baseline models that can
capture heterogeneous networks can also be utilized to capture homogeneous networks.

This model is referred to as GRU-HGT. Table 2 provides an overview of the data captured by
GLAM and the baselines. For every deep learning baseline, we add a fully connected layer to fore-
cast means, volatilities, and correlations of percentage stock returns. For the classical Vector AR
model, we compute the return forecasts in the horizon in an auto-regressive manner and compute
the means, volatilities, and correlations of these forecasts.

We set the default window and horizon periods K = 20 and K ′ = 10 days based on experiments
with different periodsK ,K ′ ∈ {5, 10, 20, 60},which correspond to a trading week, fortnight, month,
and quarter. Differences in performance between GLAM and baselines were generally consistent
across all window and horizon periods. K = 20 corresponds to a trading month, and K ′ = 10 days
corresponds to a global regulatory requirement for VaR computations, which we examined in a
subsequent set of case-studies (see Section 7). Across all models, dimensions of hidden represen-
tations are fixed at 100 and two layers (L = 2) utilized, where applicable. η for GLAM is set to 0.5
based on experiments with different η ∈ {0.25, 0.5, 0.75}. An Adam [26] optimizer with a learning
rate of 1e-3 with a cosine annealing scheduler is used. Models are implemented in Pytorch [39]
and trained for 100 epochs on a 3.60 GHz AMD Ryzen 7 Windows desktop with NVIDIA RTX 3090
GPU and 64 GB RAM. Training GLAM, which has around 6e5 to 8e5 parameters (depending on
the datasets), takes around 12 to 16 hours.

5 FORECASTING RESULTS

Table 3 sets out the results of the forecasting experiments. For each metric, we indicate the best
results in boldface and underline the second best results.

On the task of forecasting means, GLAM clearly outperforms all baselines. The dispersion in
model performances for IN datasets is more narrow than for BE datasets. TST, RSR, and KECE,
which utilize numerical information, generally tend to perform better than the models that only
utilize textual information.

On the tasks of forecasting volatilities, GLAM again outperforms baselines on most metrics.
Compared to the task of forecasting means, the dispersion in model performance for forecasting
volatilities is more significant, which could be due to the task of forecasting volatilities being more
difficult and requiring textual information to be captured more effectively. Hence, we observe
baselines such as SE, FAST, and KECE, which capture textual information performing better on this
task. This could be due to textual news information containing information that may be indicative
of subsequent periods of increased volatility.

On the task of forecasting correlations, GLAM outperforms baselines most significantly. This
is likely due to its utilization of heterogeneous network information. We similarly see RSR and
KECE, baselines that utilize network information, performing better than baselines here. GRU-
HGT, which also utilizes network information, does not perform as well, but this could be due to
its inability to capture sequential information effectively with the simple GRU extension.

In general, GLAM outperforms all baselines by a significant margin on all tasks. Different
baselines perform better on different tasks based on the nature of information that they capture.
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Table 3. Forecast Results

IN-NY IN-NA BE-NY BE-NA

RMSE MAE SMAPE RMSE MAE SMAPE RMSE MAE SMAPE RMSE MAE SMAPE

Means

Vector AR 0.1509 0.0413 1.7718 0.0618 0.0372 1.4357 0.0765 0.0201 1.6669 0.1526 0.0282 1.5673
TST 0.0689 0.0133 1.4860 0.0323 0.0148 1.3349 0.0662 0.0142 1.5216 0.1521 0.0288 1.5511
HAN 0.0689 0.0134 1.6905 0.0322 0.0144 1.3704 0.0664 0.0158 1.5238 0.1499 0.0271 1.5560
SE 0.0689 0.0134 1.4646 0.0323 0.0144 1.3919 0.0676 0.0158 1.5952 0.1666 0.0339 1.5445
FAST 0.0689 0.0134 1.4442 0.0329 0.0162 1.2921 0.0663 0.0144 1.5285 0.1496 0.0276 1.5599
RSR 0.0690 0.0135 1.3785 0.0327 0.0156 1.3128 0.0664 0.0163 1.5050 0.1499 0.0300 1.5581
KECE 0.0688 0.0134 1.4014 0.0324 0.0152 1.2965 0.0662 0.0152 1.6411 0.1465 0.0301 1.6610
GRU-HGT 0.0689 0.0134 1.3853 0.0322 0.0147 1.4299 0.0663 0.0145 1.5311 0.1498 0.0287 1.5540
GLAM 0.0491 0.0107 1.2031 0.0223 0.0116 1.2408 0.0487 0.0118 1.4449 0.1125 0.0208 1.4959

Volatilities

Vector AR 0.3605 0.0871 0.7569 0.1163 0.0542 0.6956 0.2287 0.0662 1.0481 0.4775 0.1183 1.1401
TST 0.2177 0.0482 0.6225 0.1155 0.0587 0.6773 0.2202 0.0627 1.0181 0.4827 0.1200 1.1521
HAN 0.2180 0.0486 0.6226 0.1154 0.0579 0.6719 0.2223 0.0663 1.0361 0.4814 0.1174 1.1682
SE 0.2175 0.0485 0.6319 0.1148 0.0558 0.6547 0.2245 0.0688 1.0209 0.4795 0.1143 1.1286
FAST 0.2179 0.0485 0.6228 0.1145 0.0561 0.6638 0.2217 0.0633 1.0260 0.4789 0.1155 1.1594
RSR 0.2181 0.0487 0.6232 0.1161 0.0590 0.6830 0.2240 0.0724 1.0488 0.4818 0.1253 1.1748
KECE 0.2177 0.0483 0.6239 0.1193 0.0651 0.7167 0.2186 0.0591 1.0486 0.4619 0.1005 1.1545
GRU-HGT 0.2176 0.0483 0.6270 0.1145 0.0577 0.6699 0.2232 0.0684 1.0343 0.4807 0.1174 1.1374
GLAM 0.1435 0.0414 0.6117 0.0835 0.0507 0.6556 0.1632 0.0601 1.0170 0.3578 0.0946 1.0836

Correlations

Vector AR 0.7443 0.5903 1.5869 0.7122 0.5704 1.6241 0.5306 0.3265 1.7658 0.4540 0.2534 1.8834
TST 0.4953 0.4222 1.5009 0.4913 0.4184 1.5402 0.3899 0.2768 1.7220 0.3379 0.2177 1.8082
HAN 0.4943 0.4222 1.4861 0.4914 0.4185 1.5356 0.3902 0.2777 1.7243 0.3386 0.2174 1.7986
SE 0.5090 0.4308 1.5456 0.4980 0.4208 1.5167 0.4023 0.2844 1.7224 0.3395 0.2212 1.7854
FAST 0.4958 0.4223 1.5035 0.4917 0.4176 1.5056 0.3882 0.2752 1.7198 0.3371 0.2167 1.7996
RSR 0.4927 0.4200 1.4299 0.4940 0.4201 1.5145 0.3903 0.2780 1.7233 0.3398 0.2206 1.7943
KECE 0.4958 0.4227 1.5165 0.4916 0.4184 1.5268 0.3891 0.2617 1.7070 0.3381 0.2186 1.8005
GRU-HGT 0.4965 0.4234 1.5287 0.4933 0.4194 1.5193 0.3872 0.2770 1.7290 0.3395 0.2231 1.7874
GLAM 0.4025 0.3248 1.1221 0.4169 0.3437 1.2332 0.3355 0.2382 1.5844 0.3060 0.1979 1.7018

Lower better for all metrics. Best model(s) in bold; second-best model(s) underlined.

Performance differences between GLAM and baselines are more significant for the larger BE
datasets than for the IN datasets due to the larger volume of news textual information. The
differences in performances between GLAM and baselines are more pronounced for volatilities
and correlations forecasting than means forecasting, as these are harder tasks that require the
model to capture global textual news information and the propagation of news effects between
companies based on heterogeneous relationships, which are key features of the GLAM model.

6 ABLATION STUDIES

To further substantiate the earlier findings, we conduct ablation studies on GLAM. Table 4 shows
the results of ablation studies for GLAM on IN-NY and IN-NA for forecasting means, volatilities,
and correlations. We choose IN-NY and IN-NA datasets for ablation studies to represent the two
markets, as the difference in the number of relationship-types and number of relationships is the
most distinct between these two datasets using the same source of news. The impact of differ-
ent changes to the GLAM model vary for different tasks but are generally consistent across both
datasets.

When we do not capture heterogeneous network information and exclude the HNE module,
i.e., (GLT only (L = 2)), the drop in performance for the correlation forecasting task is the most
significant, which highlights the importance of capturing heterogeneous network information ef-
fectively. Nonetheless, we can also see that the GLT module alone (with L = 2 as set in the GLAM
model) is already able to outperform most of the baselines on the tasks of forecasting means and
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Table 4. Ablation Studies

IN-NY IN-NA

RMSE MAE SMAPE RMSE MAE SMAPE

Means

GLT only (L = 2) 0.0508 0.0109 1.2046 0.0244 0.0135 1.3423
GLT only (L = 1) 0.0516 0.0125 1.2102 0.0256 0.0145 1.3446
GLT only (L = 3) 0.0508 0.0108 1.2093 0.0241 0.0134 1.3413
w/o. innerWatt 0.0491 0.0107 1.2042 0.0225 0.0118 1.2415
w/o. GLT guided learning loss 0.0518 0.0126 1.2054 0.0243 0.0126 1.2568
w. subset final forecasts 0.0510 0.0117 1.2091 0.0342 0.0203 1.3221
w. η = 0.25 0.0525 0.0107 1.2034 0.0226 0.0116 1.2494
w. η = 0.75 0.0527 0.0107 1.2045 0.0223 0.0117 1.2447
w/o. adaptive α 0.0511 0.0117 1.2082 0.0232 0.0128 1.2457
w. mean loss 0.0505 0.0113 1.2039 0.0226 0.0123 1.2463
w. vol. loss 0.1420 0.0479 1.5869 0.1594 0.1327 1.8501
w. corr. loss 1.4864 1.4801 1.9908 0.1154 0.0790 1.7290
GLAM 0.0491 0.0107 1.2031 0.0223 0.0116 1.2408

Volatilities

GLT only (L = 2) 0.1492 0.0418 0.6196 0.0854 0.0528 0.6616
GLT only (L = 1) 0.1495 0.0420 0.6194 0.0863 0.0534 0.6626
GLT only (L = 3) 0.1482 0.0413 0.6199 0.0854 0.0523 0.6613
w/o. innerWatt 0.1435 0.0414 0.6117 0.0836 0.0509 0.6566
w/o. GLT guided learning loss 0.1450 0.0425 0.6199 0.0844 0.0520 0.6567
w. subset final forecasts 0.1446 0.0421 0.6125 0.1042 0.0887 0.8508
w. η = 0.25 0.1450 0.0414 0.6123 0.0835 0.0508 0.6569
w. η = 0.75 0.1450 0.0414 0.6123 0.0835 0.0508 0.6559
w/o. adaptive α 0.1445 0.0424 0.6127 0.0843 0.0524 0.6643
w. mean loss 0.3040 0.0692 0.8391 0.1423 0.0750 0.8220
w. vol. loss 0.1436 0.0414 0.6197 0.0836 0.0508 0.6558
w. corr. loss 1.0126 0.9547 1.9990 0.1426 0.0719 0.8651
GLAM 0.1435 0.0414 0.6117 0.0835 0.0507 0.6556

Correlations

GLT only (L = 2) 0.5036 0.4264 1.5320 0.4914 0.4185 1.5392
GLT only (L = 1) 0.5033 0.4265 1.5376 0.4919 0.4190 1.5392
GLT only (L = 3) 0.5046 0.4266 1.5382 0.4912 0.4188 1.5381
w/o. innerWatt 0.4050 0.3275 1.1371 0.4199 0.3555 1.2612
w/o. GLT guided learning loss 0.4050 0.3271 1.1337 0.4193 0.3461 1.2382
w. subset final forecasts 0.4030 0.3257 1.1235 0.4452 0.3780 1.3376
η = 0.25 0.4038 0.3260 1.1496 0.4198 0.3466 1.2359
η = 0.75 0.4037 0.3259 1.1491 0.4169 0.3437 1.2336
w/o. adaptive α 0.4035 0.3268 1.1231 0.4173 0.3452 1.3307
w. mean loss 0.5223 0.4437 1.9759 0.5110 0.4350 1.9537
w. vol. loss 0.5224 0.4437 1.9797 0.5108 0.4348 1.9576
w. corr. loss 1.2713 1.1697 1.6481 0.4175 0.3442 1.2418
GLAM 0.4025 0.3248 1.1221 0.4169 0.3437 1.2332

Lower better for all metrics. Best model(s) in bold; second-best model(s) underlined.

volatilities. We observe similar changes in performance when we do not utilizeWatt (w/o. inner

Watt ) as the inner weight when forecasting correlations. While the impact of not utilizing Watt

is not significant for the tasks of forecasting means and volatilities, there is a material drop in
performance on the task of forecasting correlations.

We also explore the effects of changing the number of layers in GLT, i.e., (GLT only (L = 1)

and GLT only (L = 3)). In general, increasing the number of layers leads to better performance.
However, the selected hyper-parameter of L = 2 for GLT in GLAM achieves a good balance between
model complexity and performance.
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The drop in performance when we exclude the guided learning losses (w/o. GLT guided learn-

ing loss), i.e., excluding Laux from the training objective, is more apparent for the tasks of fore-
casting means and volatilities. This demonstrates the importance of the proposed approach of
using intermediate forecasts for early guidance when learning GLT parameters, which enables
GLT to focus on learning the relevance of global news information by utilizing significant ex-post
responses of stock prices to news. An alternative approach would be to compute the losses for the
final forecasts only on the subset of stocks with such significant ex-post responses (w. subset final

forecasts). However, such an approach leads to poorer performance, particularly for the IN-NA
dataset. This could be due to the generally more volatile price movements of stocks listed on the
NASDAQ market.

We also explore alternative hyper-parameter settings forη. While the differences in performance
for different η (w. η = 0.25 and η = 0.75), are not significant, the chosen η = 0.5 for GLAM generally
gives the best performance across most metrics. We also explore not using the α parameter to
adaptively balance between the different losses (w/o. adaptive α ) and find that it leads to worse
performance across most metrics.

When we vary the multitask aspect of GLAM by training on mean, volatility, or correlation
forecast losses only (i.e., w. mean loss only, w. vol. loss only, w. corr. loss only), we see signif-
icant drops in performance, even on tasks that correspond to the training loss, e.g., performance
of mean forecasts when we train only on mean loss is poorer than when we train GLAM with
multiple tasks.

In general, we see that the key features of GLAM work together to enable it to achieve the best
performance on the multiple tasks. The GLT module and using intermediate forecasts of means
and volatilities for early guidance when learning GLT parameters improves forecasts of means and
volatilities, while the HNE module and utilizingWatt as an inner weight for correlation forecasts
improves performance for the correlation forecasts.

7 APPLICATION CASE STUDIES

In this section, we use model forecasts for important investment and risk management applications
to evaluate the quality of forecasts.

7.1 Portfolio Allocation

Investment portfolio allocation is an important task for many financial institutions. The aim of
investment portfolio allocation is to optimize the proportion of capital invested in each stock
(also known as asset) in a portfolio, by finding an optimal set of weights W that determine how
much capital to invest in each stock, so portfolio returns can be maximized while minimizing
portfolio risk. In this article, we adopt the risk aversion formulation [15] of the mean-variance risk
minimization model by Markowitz [35], which models both portfolio return and risk expressed
as mean (μ) and co-variances (Σ) of return, respectively. Under the risk aversion formulation, the
classical mean-variance risk minimization model by Markowitz [35] is re-formulated to maximize
the risk-adjusted portfolio return by optimizing the asset allocation W, a |V | dimensional
vector:

maxW (Wᵀμ − λWᵀΣW) (16)

subject to Wᵀ1 = 1. λ, known as the Arrow-Pratt risk aversion index, is used to express an
investor’s risk preferences and is typically in the range of 2 to 4 [15]. In our experiments, we set
λ = 2. We observe that higher λ values reduce returns across all models, but the relative differences
in returns between models generally remain consistent. In this article, we use the forecasted
means of asset returns for μ and compute Σ with the forecasted volatilities and correlations
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of asset returns for the selected horizon period [t , t + K ′] defined as follows:

μ̃ = Ŷ returns
mean (t ), (17)

Σ̃ = D (t ) · Ŷ returns
corr (t ) · D (t ), (18)

where D (t ) is the |V | × |V | diagonal (and thus symmetric) matrix filled with Ŷ returns
vol

(t ) along the
diagonals and 0 otherwise. We choose to forecast correlations of asset returns over the selected
horizon period [t , t + K ′] instead of directly forecasting co-variances as the co-variances need to
be positive semi-definite (PSD) so the matrix is invertible [14], which is important for applications
such as portfolio optimization. Forecasting co-variances directly does not guarantee PSD. We
instead forecast volatilities and correlations separately and compute the co-variance matrix using
the forecasted volatilities and correlations.

This application can be viewed as a predictive task as we use the multimodal and network
information (as applicable) from the window period [t − K , t − 1] to make forecasts of mean (μ̃)
and correlation (Σ̃) of asset returns over the future horizon [t , t + K ′], which are in turn used
to determine the asset allocation weights W. W represents an investment portfolio with returns
realized in this future horizon defined as: Er eal = WᵀRr eal , where Rr eal is a vector of realized
percentage stock returns over the future horizon.

Given that the aim is to maximize portfolio returns while minimizing portfolio risk (volatility),
we choose risk-adjusted realized portfolio returns over the future horizon [t , t+K ′] as the evaluation

metric, defined as: Ẽ = Er eal

σ r eal
, where σ r eal is portfolio return volatility in the future horizon [t , t +

K ′]. Portfolio return volatility is defined as one standard deviation of the portfolio returns over

the future horizon [t , t + K ′] and is computed as σ r eal =
√
WᵀΣr eal W, where Σr eal are the co-

variances of realized percentage stock returns over the same future horizon.
For this application, the datasets are similarly divided into non-overlapping train-

ing/validation/testing sets in the ratios 0.7/0.15/0.15, as described in Section 4.1, and we
evaluate performance based on the average of the risk-adjusted realized portfolio returns (Ẽ)
across future horizon periods in the testing set.

Table 5 depicts results for the IN-NY and IN-NA datasets for the portfolio allocation application.
We see that portfolios constructed using GLAM’s forecasts for the IN-NY dataset achieves the
highest average risk-adjusted returns of 1.67%, which is 15% better than the second highest results
from KECE; and portfolios constructed using GLAM’s forecasts for the IN-NA dataset achieves the
highest average risk-adjusted returns of 2.32%, which is 56% better than the second highest results
from GRU-HGT. Baselines utilizing textual information or inter-company relationships (FAST, RSR,
KECE, and GRU-HGT) generally perform better on this application, demonstrating the value of
capturing textual and relational information for selecting optimal portfolios.

7.2 Value-at-Risk (VaR)

VaR [32] is a key measure of risk used in financial institutions for the measurement, monitoring
and management of financial risk. Financial regulators require important financial institutions
such as banks to measure and monitor their VaR over a K ′ = 10 day horizon and maintain capital
based on this VaR as loss buffers. VaR measures the loss that an institution may face in the
pre-defined horizon with a probability of p%. For example, if the 10 day 95% VaR is $1,000,000,
then it means that there is a p = 5% probability of losses exceeding $1,000,000 over a 10-day
horizon.

VaR can be computed as a multiple of the portfolio’s volatility:

VaR (p) = −ϕ−1 (p) × σ , (19)
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Table 5. Portfolio Allocation and VAR

IN-NY IN-NA

Ẽ VaR Breaches % VaR Breaches. Ẽ VaR Breaches % VaR Breaches

Vector AR 0.61% 22 11.6% 0.40% 19 10.1%
TST 1.37% 40 21.2% 0.48% 32 16.9%
HAN 0.66% 34 18.0% 0.10% 35 18.5%
SE 1.32% 28 14.8% 0.95% 28 14.8%
FAST 0.64% 36 19.1% 1.26% 7 3.7%
RSR 1.42% 46 24.3% 1.21% 8 4.2%
KECE 1.45% 59 31.2% 1.21% 12 6.4%
GRU-HGT 1.10% 30 15.9% 1.49% 36 19.1%
GLAM 1.67% 7 3.7% 2.32% 1 0.5%

Higher better for average risk-adjusted percentage returns Ẽ . Lower better for number of VaR breaches (VaR Breaches)
& percentage of VaR breaches (% VaR Breaches). % VaR Breaches is computed by dividing the number of VaR breaches
by the number of data samples in the testing dataset.

where σ is the portfolio volatility, and ϕ is the inverse cumulative distribution function of the
standard normal distribution, for example, if p = 5%, then ϕ−1 (p) = 1.645. Whenever realized
portfolio losses (i.e., negative realized portfolio returns Er eal ) is greater than the forecasted VaR,
it is regarded as a VaR breach, i.e., Er eal ≤ VaR (p).

For this application, the portfolio is constructed based on the approach described for the port-
folio allocation application at each timestep. This mimics a real-world scenario where financial
institutions continually update their portfolios based on market conditions. To evaluate the base-

line models, we use the forecasted portfolio volatility σ̃ =
√

Σ̃, where Σ̃ is computed using the
forecasted volatilities and correlations of asset returns as defined in Equation (18). Similar to the
portfolio allocation application, this can also be viewed as a predictive task, as we are using mul-
timodal and network information (as applicable) from the window period [t − K , t − 1] to make
forecasts over the future horizon [t , t+K ′] and using these forecasts to determine the VaR in the fu-
ture horizon. We evaluate model performances by counting the total number of 95% VaR breaches,
i.e., where the realized portfolio loss is greater than the forecasted VaR in the testing dataset (using
the same training/validation/testing sets as described in Section 4.1). We choose the 95% VaR for
our experiments, as it is a common confidence level used by banks to monitor their risks. Models
that are able to make accurate forecasts of VaR should have less VaR breaches.

Table 5 depicts results for the IN-NY and IN-NA datasets for the VaR application. We see that
GLAM outperforms baselines with significantly less VaR breaches. Similar to the portfolio alloca-
tion application, we observe baselines that utilize textual information or inter-company relation-
ships (SE, FAST, RSR, and KECE) generally performing better on this application.

8 DISCUSSION

Our experimental results demonstrate the value of the proposed time-sensitive guided global-local
transformer in extracting relevant global information for forecasting on multiple tasks. We see
that the proposed GLAM model outperforms other baselines such as SE and KECE, which also
extract and utilize relevant global textual information. In the ablation studies, we observe that
even without the use of the heterogeneous network information and the HNE module, the GLT
module itself is already able to perform better than the baselines on the tasks of forecasting means
and volatilities. Further, we also show that isolating and utilizing significant ex-post stock price
responses to global textual information in the window period improves the extraction of relevant
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global textual information. We also demonstrated the value of capturing heterogeneous network
relationships and using a learned set of attention weights Watt for forecasting correlations. The
use of attention weightsWatt enables heterogeneous inter-company relationships to be captured
and facilitates better performance on the task of forecasting correlations.

We show that the proposed model features are valuable in investment and risk management
applications, which differs from the more common and simpler task of forecasting stock prices or
returns for trading decisions. GLAM forecasts the price dynamics of a portfolio of multiple stocks
over a longer future horizon, i.e., expected returns, volatilities, and correlations of stocks over a
longer term horizon, which are important in enabling investment and risk managers to make effec-
tive decisions over a longer term horizon. Importantly, we also see that designing a model that can
be used in a multivariate multitask setting for investment and risk management applications has
other potential advantages, as forecasting in a multivariate multitask setting enables complemen-
tary information from other variables and related tasks to be used to improve overall forecasting
performance and also lowers the risk of over-fitting on any one task.

The framework proposed in this article could be potentially extended to capture other informa-
tion sources, such as other types of global and local information, e.g., local social media information
such as tweets from the company’s social media account and global economic indicators, e.g., gross
domestic product of countries of the company’s key markets; as well as other static and dynamic
inter-company relationships (i.e., inter-company relationships captured at different timestamps),
e.g., from domain experts, DBPedia, GDELT.

9 CONCLUSION AND FUTURE WORK

In this article, we designed GLAM, a model that comprises a time-sensitive global-local transformer
to learn relevant global online text information with local numerical information and sequentially
encode such multimodal information; and an attention-based heterogeneous network encoder to
leverage heterogeneous inter-company relationships. Auxiliary channels and an adaptive learn-
ing strategy are also utilized in GLAM to facilitate intermediate guided learning of the parame-
ters of the time-sensitive global-local transformer and heterogeneous network encoder modules.
The model performs strongly on three forecasting tasks and two real-world applications, demon-
strating the value of the proposed model features and learning strategies. The datasets used are
extensive and provide strong assurance on the validity of the results across different companies
and textual information. Future work could extend GLAM to different types of global and local
information, as well as other static and dynamic inter-company relationships.
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