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Abstract—Passenger satisfaction is extremely important for the success of a public transportation system. Many studies have shown

that passenger satisfaction strongly depends on the time they have to wait at the bus stop (waiting time) to get on a bus. To be specific,

user satisfaction drops faster as the waiting time increases. Therefore, service providers want to provide a bus to the waiting

passengers within a threshold to keep them satisfied. It is a two-pronged problem: (a) to satisfy more passengers the transport planner

may increase the frequency of the buses, and (b) in turn, the increased frequency may impact the service operational costs. To address

it, we propose PASS and COSTas the two variants that satisfy different optimization criteria mentioned above. The optimization goal of

PASS is the number of satisfied passengers while the optimization goal of COST is the number of passengers served per unit of driving

time. Consequently, PASS utilizes resources to the maximum to satisfy the highest number of passengers, while COSToptimizes for

both passenger satisfaction and operational costs. Accordingly, we propose two algorithms to solve PASS and COSTrespectively and

evaluate their performance based on real passenger demand data-set.

Index Terms—Bus schedule optimization, dynamic bus scheduling, greedy search, operational cost, waiting time threshold

Ç

1 INTRODUCTION

THE optimal bus scheduling problem has been extensively
studied in recent history under the vision of realising

smart and sustainable urban transportation. More specifi-
cally, in an effort to optimally schedule bus services, objec-
tives, that are both (a) endogenous, such as operational
costs [1], [2] and fleet size [3], [4], and (b) exogenous, such as
spatio-temporal passenger demand variations [4], [5], [6],
[7], [8] and passenger satisfaction (i.e., passenger wait
time) [4], [9], [10], are optimised to achieve near-best bus
schedules. The success of these approaches ultimately leads
to improved system performance (e.g., reduced fleet size
and/or operational cost) and enhanced passenger experi-
ence (e.g., shorter waiting time). However, the problem of
optimal bus scheduling remains challenging, because it con-
cerns multiple dimensions (e.g., spatio-temporal demand
variants, passenger waiting time, operational costs etc.).

Recent years have seen a considerable amount of work
on bus schedule optimisation. The prior focus in this area
was on optimizing (a) passenger waiting time or passenger
satisfaction [4], [9], [10], and (b) operational cost [1], [2]. In
general, these approaches solve the scheduling problem,
independently, while optimisation is considered along any
single dimension. Further, several models were under unre-
alistic assumptions that the arrival rate of passengers at a

bus stop can be modelled as a stochastic process or that
physical bus vehicles are always available to serve a bus ser-
vice when required (in other words, unlimited fleet size).

In this paper, we visualise the bus scheduling as a two-
pronged problem: (a) to satisfy more passengers (measured
by whether the waiting time of a passenger is within a cer-
tain threshold), the transport planner may increase the fre-
quency of bus services, and (b) in turn, the increased
frequency may impact the service operational costs. More
specifically, we focus on the bus services scheduling prob-
lem subjected to a limited number of physical vehicles by
maximising the number of passengers served by bus serv-
ices while minimising the operational cost. To be more spe-
cific, we propose PASS and COST as the two variants that
satisfy different optimisation criteria mentioned above.
PASS aims at optimising the number of satisfied passengers
while COST is to optimize the number of passengers served
per unit driving time, both under the constraint of limited
fleet size (i.e., the number of physical vehicles is limited).
Therefore, PASS greedily utilizes resources to satisfy the
highest number of passengers, while COST optimizes for
both passenger satisfaction and operational costs.

To aid our analyses, in this paper, we specifically focus
on (a) Passenger dataset P, a smart-card generated city-scale
trip data for public buses in Singapore, where the vast
majority of passengers tap-in and tap-out when boarding
and disembarking from a bus, respectively, thereby provid-
ing htimein; origin; destinationi records for individual trips
(a month’s worth of anonymity-preserving smart-card gen-
erated bus trip data accounts to 108 million trips, taken by
� 5 million passengers), and (b) Route network R, obtained
from Singapore’s publicly available government facilitated
portal called DataMall (https://datamall.lta.gov.sg/),
encompasses 5036 bus stops and 715 unique routes with the
fleet size of �4000.
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Key Contributions. Our key contributions are:

� Considering passengers’ tolerance on waiting time. To
the best of our knowledge, previous work [4] is the
only study on bus schedule optimization that consid-
ers passengers’ tolerance on waiting time. It mod-
elled the problem as a submodular optimization and
proposed a constant factor approximation algorithm
if there is no fleet size limitation. In our work, we
propose a constant factor approximation algorithm
(Sequence Greedy) for the same problem while con-
sidering the fleet size limitation.

� Proposing two algorithms namely Bidirectional Greedy
and Sequence Greedy to solve the bus service schedul-
ing problem while using passengers’ tolerance on
waiting time as the optimization goal.

� Designing two optimization techniques to improve the
running time of algorithms; one of them can be
directly applied to previous work [4] as well.

� Introducing three models (Mone, Mss, and Mf ), to share
the limited fleet across multiple routes during the
day, and we evaluate the performance of our algo-
rithms on each of them.

� Conducting the experiments via real city-scale trip data
and bus route network.

2 RELATED WORK

Schedule optimization of transportation networks has been
studied for decades. In this section, we will review existing
approaches that are related to our study and discuss the dif-
ferences between our work and existing approaches based
on: (a) the optimization goals, (b) the way the travel demand
is modelled, and (c) the architecture of the solution.

Base on optimization goals.The main goals of the schedule
optimization problem include reducing (i) total travelling
time, (ii) passenger waiting time, (iii) passenger transfer
time, and (iv) operational cost.

Passengers’ total travel time/travel cost (that includes
both the waiting time to board the bus and the travel time to
reach the destination of each passenger) is a popular optimi-
zation goal, considered in many existing works [5], [11],
[12], [13]. For example, [5] considers, for each origin-desti-
nation pair, the weighted sum of travel time w.r.t. different
route options, weighted by the route probability of selecting
them by passengers.

The passenger waiting time is another commonly used
optimization option. Most of the existing works (e.g., [9],
[10], [14]) only consider the total waiting time or the average
waiting time as the optimization goal. However, it is impor-
tant to note that neither the total waiting time nor the aver-
age waiting time is a precise indicator of passenger
satisfaction, as passenger dissatisfaction does not have a lin-
ear relationship with the waiting time. In an actual scenario,
passenger satisfaction drops faster as the waiting time
increases [15], [16], [17]. A novel optimization goal is pro-
posed in [4] by considering the number of passengers
served within a waiting time threshold.

Transfer time required by transfer passengers, though
less popular, is considered as an optimization goal too by
some works [10], [12], [18]. However, these works only

serve the passengers who need to make transfers when trav-
elling from their origin to their destination, which refers to a
small subset of the entire passenger population.

The other most important aspect of the optimization goal
is the operational cost, which consists of time cost, person-
nel cost, space cost, and vehicle operational cost (e.g., fuel
cost and maintenance cost) [19]. Multiple works have taken
it into account [1], [11], [20] and the works presented [1],
[11] have further abstracted all operational costs into a vari-
able cost per unit distance.

Based on the Model of Demand. Most of the early works
consider the travel demand as a statistical distribution [7],
[8]. They have used datasets collected using surveys and
electronic detection devices such as infrared beams to
derive the probabilistic distribution of the travel demand
over time and routes. However, the recent development of
Automated Fare Collection (AFC) systems allows us to col-
lect more precise data about the travel demand as origin-
destination pairs. Data collected by most AFC systems
include origin-stop, destination-stop, boarding-time, and
alighting-time. Recent studies such as [4], [21] have utilized
them to model more precise travel demand.

Based on Solution Architecture. Studies presented in [9],
[13], [22], [23], [24] use Mixed Integer Linear Programming
(MILP) to model the problem and then solve it using vari-
ous standard methods. Though MILP is powerful enough
to support complex constraints and optimization goals, it
suffers from a major disadvantage, i.e., poor scalability. As
the number of variables grows, the running time increases
exponentially. To address this problem, most of these works
propose approximation methods such as Heuristic Search,
Harmony Search, and Genetic Algorithm (GA) [9], [13],
[18]. The other frequently used approach is bi-level pro-
gramming [2], [12], [25], [26], which divides the problem
into two levels. They have used different optimization tech-
niques such as sub-gradient optimization, MILP, and GA at
each level.

Discussion. Similar to the existing work [4], we aim at
improving the overall passenger satisfaction by scheduling
the physical vehicles such that they can serve more passen-
gers within a given waiting time threshold. In a public
transport network, the bus routes are fixed and the travel-
ling time from one stop to another via a fixed bus route is
not affected by the scheduling much. On the other hand, the
scheduling does affect passengers’ waiting time. Based on
our observations, passengers become unhappy and frus-
trated once the waiting time exceeds a certain threshold.
Though different passengers might have different tolerance
levels to the waiting time, we introduce a waiting time
threshold and aim at serving as many passengers within
their waiting time thresholds as possible by scheduling the
bus services properly. In our work, we consider physical
vehicles as limited resources and propose two problems,
namely PASS and COST. PASS tries to optimize the total
number of satisfied passengers, while COST considers not
only the number of satisfied passengers but also the opera-
tional cost.

Existing work [4] also considers the constraint of limited
physical vehicles and formulates a problem of FASTCO.
However, we want to highlight that though FASTCO and
PASS share a similar optimization goal, their inputs are
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different and FASTCO considers only a special case of
PASS. First, FASTCO assumes the physical vehicles are dis-
tributed across different terminals and takes it as an input,
where a terminal refers to a bus stop that serves as the first
stop of at least one bus route. However, the initial distribu-
tion of physical vehicles directly affects the overall perfor-
mance of the underlying scheduling algorithm and
FASTCO does not discuss that. Second, FASTCO assumes
after a physical vehicle reaches the last stop of a route and
completes the current service, it can serve any route that is
started from the same stop. This is one of the three models
considered by PASS, which will be detailed in Section 3.
Third, we introduce parameters to control the sojourn time
of a vehicle (the duration from the end of the previous ser-
vice to the start of the next service) in a bus terminal, which
effectively avoids the undesirable schedules encountered in
FASTCO, where a physical vehicle is assigned to serve serv-
ices that could meet the demand of many passengers with-
out considering the time gap between services. Last but not
least, the algorithms proposed in this paper can improve
the performance of FASTCO, e.g., SG is able to improve the
performance of FASTCO by 18.03% and 6.96% when the
number of vehicles is set to 1000 and 3000 respectively.
Please refer to Section 5 for more detailed comparisons
between FASTCO and our work.

3 FORMULATING BUS SERVICE SCHEDULING

PROBLEM

In this paper, our main goal is to identify optimal bus sched-
ules, so as to maximise the total number of satisfied passen-
gers or other objectives under the constraint of limited fleet
size. Table 1 lists the major symbols used in the rest of this
paper.

3.1 Preliminary

In a bus route database R, a route r 2 R has the following
attributes: (i) a route number/identifier, denoted by id, and

(ii) a sequence of bus stops hs1, s2, � � � , sjrji visited by r in
chronological order, where r:s1 and r:sjrj denote the first
and the last bus stops of r respectively. Please note that the
same route identifier can be used to denote two routes
r1; r2 2 R that operate in opposite directions. Notation DðrÞ
refers to the total travel time of the bus route r. How to
derive DðrÞ values for different routes is orthogonal to the
work presented in this paper. There are multiple ways to
estimate the travel time – for example, we can adopt a sim-
ple historical average approach to approximate DðrÞ by
computing the average travel time of r over the past x days.

A service (or bus service) bs represents a single trip
instance over a bus route and is denoted by a tuple hr; dti,
where bs:r is the route served by the service bs, and bs:dt is
the departure time of bs from the first bus stop r:s1. We
assume bus service database B consists of all the possible
bus services, e.g., {hr, 5:00i, hr, 5:01i, hr, 5:02i, � � � , hr, 23:00i}
represent all the possible bus services w.r.t. bus route r
under the assumptions that i) bus services start at 5:00 and
end at 23:00 in a city, and ii) the bus scheduling is per-
formed at the granularity of minute.

In typical bus scheduling, each physical vehicle v is
bound to serve multiple services and/or routes in a day.
Intuitively, various policies and models can be devised to
assign the next service bsj after v completes its current ser-
vice bsi. For example, while one model would allow the bsj
to be the service that runs in the opposite direction of bsi,
another model might suggest bsj to be the service that caters
for a route that is high in demand. As the scheduling of the
services depends on various models and applications in
need, we define Aðbsi; bsj;MÞ in Eq. (1) to estimate the
validity of assigning v to bsj after it finishes bsi under a spe-
cific modelM.

Aðbsi; bsj;MÞ ¼
1 bsj after bsi is valid under M

0 otherwise

�

(1)

TABLE 1
Notations for Problem Formulation and Solution

Symbol Description

r A conventional bus route which consists of a sequence of jrj bus stops hs1, s2, � � � , sjrji
R A bus route database with r 2 R referring to a bus route
dt Departure time of a bus service candidate
DðrÞ Total travel time of a bus route r 2 R
Dðr; sa; sbÞ Travel time from stop sa to stop sb on bus route r 2 Rwhere sa; sb 2 r
bs A bus service candidate in the form of fr; dtg, representing a service w.r.t. route r and having dt as the departure

time from the starting stop
B A bus service candidates database with bs 2 B referring to a bus service
seq A sequence of bus services hbs1, bs2, � � � , bsni to be served by a physical vehicle
Seqvalid Set of all valid sequences seq, in the bus service candidate database B
S A bus schedule, a vector of valid bus service sequences hseq1, seq2, � � � , seqmiwhich can be served bym physical

vehicles
V Set of all physical bus vehicles with vi 2 V referring to one vehicle
SetðSÞ Set of all the bus services in the bus schedule S
p a passenger represented by hsb; se; rti, where sb and se denote the boarding stop and the alighting stop

respectively, and rt denotes the time when p reaches sb
P A passenger database, with p 2 P referring to a passenger
u The passenger waiting time threshold
wmin/wmax Minimum/maximum sojourn time for a physical vehicle between two consecutive services



As mentioned above, M represents various models
adopted to schedule the next service to a physical vehicle.
In this paper, we consider three different models to cater
for different applications, namely, Mone, Mss, and Mf ,
referring to one route model, same stop model, and flexible
model, respectively. The sojourn time of a vehicle in a bus
terminal (i.e., the time between any two consecutive serv-
ices assigned to a vehicle) is parameterized by wmin and
wmax to denote the minimum and maximum time gaps.
On the one hand, wmin enforces a break between two serv-
ices assigned to a vehicle, hence, the driver could have
some rest and the vehicle can be cleaned/disinfected
properly; on the other hand, wmax controls the duration of
the break such that each vehicle could achieve a certain
utilization threshold.

To simplify our presentation, let t (¼ bsi:dtþDðbsi:rÞ)
denote the time when the vehicle reaches the last stop to
complete the current service bsi, where bsi:dt denotes the
departure time of bsi from its first stop, andDðbsi:rÞ denotes
the total travel time. We now describe our three models in
detail, below.

� Mone: Each physical vehicle is only assigned to bus
services corresponding to the same route but differ-
ent directions, i.e., Aðbsi; bsj;MoneÞ ¼ 1 , bsi:r:id ¼
bsj:r:id ^ bsi:r:sjbsi:rj ¼ bsj:r:s1 ^ bsj:dt 2 ½tþ wmin; tþ
wmax�.

� Mss: Each vehicle, once finishing a bus service bsi,
can serve another bus service bsj that originates from
the last stop of bsi:r, i.e., Aðbsi; bsj;MssÞ ¼ 1 ,
bsi:r:sjbsi:rj ¼ bsj:r:s1^ bsj:dt 2 ½tþ wmin; tþ wmax�.

� Mf : Each physical vehicle, once finishing a bus ser-
vice bsi, has the flexibility to determine whether it
stays at the same stop or moves to a nearby stop to
serve the next bus service, i.e., Aðbsi; bsj;MfÞ ¼ 1 ,
Dðbsi:r:sjbsi:rj; bsj:r:s1Þ � dmax ^ bsj:dt 2 ½tþ wmin; tþ
wmax�. Here, Dðsa; sbÞ returns the time required by a
vehicle to move from a bus stop sa to another stop sb,
and parameter dmax is introduced to define the maxi-
mum distance (in the form of travelling time) a vehi-
cle could travel under this model.

Definition 3.1. We define a valid sequence of bus services a
physical vehicle vi can serve under a particular model M as
seqi, in the form of hbs1; bs2; . . . ; bsnii, i.e., 8j 2 ½1; niÞ,
Aðbsj; bsjþ1;MÞ ¼ 1.

We introduce the concept of sequence to define the list
of bus services that is served by a vehicle. In other words,
a sequence seqi associated with a vehicle vi describes the
scheduled bus services to be served by vehicle vi. To
facilitate the presentation, operator � is introduced to
append a new bus service to a sequence to extend the
sequence. To be more specific, let seqi be a sequence in
the form of hbs1; . . . ; bsnii. Then, seqi � bsj updates
sequence seqi to hbs1; . . . ; bsni ; bsji or hbsj; bs1; . . . ; bsnii,
dependent on the scheduled departure time of bsj. After
the extension, ni is increased by one to reflect the
updated number of bus services in the sequence seqi. In
addition, we assume only bus service bsj satisfying the
condition Aðbsni ; bsj;MÞ ¼ 1 or Aðbsj; bs1;MÞ ¼ 1 could
be appended to seqi.

Similarly, we can extend � to a schedule S that is defined
in Definition 3.2. To be more specific, notation S �i bsj indi-
cates that a new bus service bsj is appended to sequence
seqi 2 S, i.e., S �i bsj ¼ S � fseqig þ fseqi � bsjg.
Definition 3.2. We define a bus schedule S w.r.t. a vehicle data-

base V and a model M as a set of sequences corresponding to
vehicles in V under the constraint that all the sequences in S
have zero overlap, i.e., S ¼ [vi2Vseqi ^ 8vi; vj 2 V, seqi \
seqj ¼ ;. Here, seqi refers to a valid sequence corresponding to
a vehicle vi 2 V under the modelM.

In a passenger database P, a passenger p 2 P is in the
form of a tuple hsb; se; rti, where p:sb denotes the boarding
stop, p:se denotes the alighting stop, and p:rt denotes the
time when p reaches sb [4].

Definition 3.3.We define that a bus service bsj hr; dti can serve a
passenger p, w.r.t. a given waiting time threshold up, if r passes
stops p:sb and p:se in order, and 0 � dtþDðr; r:s1; p:sbÞ �
p:rt � up, where Dðr; r:s1; p:sbÞ denotes the travel time required
by the bus service bsj from r:s1 to p:sb via the bus route r.

Based on Definition 3.3 and work presented in [4], we
formally introduce Serðbsj, pk, up) to denote the service of
bsj to passenger pk under the waiting time threshold up, as
presented in Eq. (2).

Serðbsj; pk; upÞ ¼
1 if bsj can serve pk

0 otherwise

�
(2)

Then, for bus service schedule S, its services to a passen-
ger pk can be derived by Eq. (3). Note that SerðS; pk; upÞ ¼ 1
as long as any bus service bsj 2 S can serve pk; otherwise,
SerðS; pk; upÞ ¼ 0. Accordingly, the total number of passen-
gers that can be served by a given schedule S can be calcu-
lated by Eq. (4).

SerðS; pk; upÞ ¼ 1�
Y

bsj2S
ð1� Serðbsj; pk; upÞÞ (3)

GðS; upÞ ¼
X

pk2P
SerðS; pk; upÞ (4)

3.2 Problem Definition

We study the bus scheduling problem under the constraint
of a limited number of physical vehicles. To ease our pre-
sentation, let Seqvalid define the complete set of all possible
valid bus service sequences.

We first introduce PASS(short for Passenger Oriented Bus
Scheduling). PASS maximizes a set function from Seqvalid to
the total number of satisfied passengers, where the cardinal-
ity constraint is that the total number of sequences shall be
equivalent to the number of physical vehicles jVj (i.e., fleet
size). To be more specific, for a given fleet size V, PASS aims
at finding S such that jSj ¼ jVj and S 	 Seqvalid that can
maximize GðS; upÞ, as defined in Eq. (5).

Spoptimal ¼ argmaxS	Seqvalid^jSj¼jVjGðS; upÞ (5)

We then introduce COST, which stands for Cost Effective
Bus Scheduling. Different from PASS, COST considers the
total number of passengers served per unit cost. Without
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loss of generality, to estimate the operational cost, we con-
sider the total mileage, as it directly affects the fuel con-
sumption (e.g., the fuel consumption of a full-sized city bus
is around 2.5–3 km per litre), the number of drivers
required, and maintenance cost. As vehicles in a city, travel
at a relatively stable speed, we measure the mileage by
adopting the time duration DðrÞ of a route r instead of the
travel distance, as defined in Eq. (6). With that assumption,
we consider the number of passengers served per unit vehi-
cle-operation-time as the optimization goal for COST.
Accordingly, COST aims at finding S such that jSj ¼ jVj
and S 	 Seqvalid that can maximize

GðS;upÞ
MðSÞ , as defined in

Eq. (7).

MðSÞ ¼
X

seqi2S
X

bsj2seqi
Dðbsj:rÞ (6)

Scoptimal ¼ argmaxS	Seqvalid^jSj¼jVj
GðS; upÞ
MðSÞ (7)

3.3 Problem Analysis

In the following, we perform a theoretical analysis on PASS
and COST. First, we prove PASS is submodular and mono-
tonically increasing in Theorem 3.1, while COST is not sub-
modular nor increasing in Theorem 3.2. A submodular
function fðEÞ is a set function with diminishing returns. In
other words, the difference of the value increment (i.e.,
fðE [ fegÞ � fðEÞÞ when a new element e is added to the
input set E decreases as size jEj of the input set E grows.
We will report how this property is used to obtain a con-
stant-factor approximation algorithm for PASS in Section 4.
Next, we discuss the hardness of both PASS and COST in
Theorem 3.3.

Theorem 3.1. PASS is submodular and monotonically
increasing.

Let X 
 Y 
 Seqvalid, where Seqvalid denotes all valid bus
service sequences, and X;Y are two potential bus sched-
ules. In addition, seq refers to a bus service sequence in
SeqvalidnY . According to [27], GsðV Þ is submodular if it satis-
fies: GsðX [ seqÞ � GsðXÞ � GsðY [ seqÞ � GsðY Þ.

To facilitate the proof, we define Xs ¼ X [ seq, Ys ¼
Y [ seq, GsðXÞ ¼ GðXs; upÞ � GðX; upÞ, and GsðY Þ ¼
GðYs; upÞ � GðY; upÞ. Further, for the simplicity, we write
SerðX; pkÞ for SerðX; pk; upÞ. Then, we have:

GsðXÞ � GsðY Þ
¼

X
pk2P
ðSerðXs; pkÞ � SerðX; pkÞÞ

�
X

pk2P
ðSerðYs; pkÞ � SerðY; pkÞÞ (8)

If we prove Inequality (9) for any pk 2 P, then we can
show the submodularity of G,

SerðXs; pkÞ � SerðX; pkÞ � SerðYs; pkÞ þ SerðY; pkÞ � 0 (9)

According to whether pk can be served by bus services in
X or bus services in Y nX or bus service sequence seq, there
are in total four cases corresponding to Inequality (9).

X 
 Y Y seq 2 Seqvalid

case 1 ✓ - -
case 2 ✗ ✓ -
case 3 ✗ ✗ ✓
case 4 ✗ ✗ ✗

Case 1: pk can be served by a bus service in sequence seq0 2
X. Then, we have SerðX; pkÞ ¼ SerðXs; pkÞ ¼ SerðY; pkÞ ¼
SerðYs; pkÞ ¼ 1, because X 	 Xs and X 
 Y 	 Ys. Thus,
SerðXs; pkÞ � SerðX; pkÞ � SerðYs; pkÞþ SerðY; pkÞ ¼ 0.

Case 2: pk cannot be served by a bus service in any
sequence seq0 2 X but it can be served by a bus service in a
sequence seq1 2 Y nX. Then, we have SerðX; pkÞ ¼ 0,
SerðXs; pkÞ � 0 and SerðY; pkÞ ¼ SerðYs; pkÞ ¼ 1. Thus,
SerðXs; pkÞ � SerðX; pkÞ � SerðYs; pkÞ þ SerðY; pkÞ � 0.

Case 3: pk cannot be served by a bus service in any
sequence seq0 2 Y and can be served by a bus service in the
sequence seq. Then we have SerðX; pkÞ ¼ SerðY; pkÞ ¼ 0 and
SerðXs; pkÞ ¼ SerðYs; pkÞ ¼ 1. Thus, SerðXs; pkÞ � SerðX; pkÞ
�SerðYs; pkÞ þ SerðY; pkÞ ¼ 0.

Case 4: pk cannot be served by a bus service in any
sequence seq0 2 Y or a bus service in the service sequence
seq. Then, we have SerðX; pkÞ=SerðXs; pkÞ=SerðY; pkÞ ¼
SerðYs; pkÞ ¼ 0. Thus, SerðXs; pkÞ � SerðX; pkÞ � SerðYs; pkÞ
þSerðY; pkÞ ¼ 0. The above shows the correctness of
Inequality (9).

Based on Eq. (8) and Inequality (9), we conclude that G is
a submodular function.

To show that G is increasing, we have to show that if X 

Y ) GðY; upÞ � GðX; upÞ � 0. Again, we assume X 
 Y 

Seqvalid. Then, we have

GðY; upÞ � GðX; upÞ ¼
X
pk2P

SerðY; pkÞ �
X
pk2P

SerðX; pkÞ

¼
X

pk2P
SerðY; pkÞ � SerðX; pkÞð Þ (10)

Similarly, we try to prove Inequality (11) for any pk 2 P
in order to prove that G is increasing.

SerðY; pkÞ � SerðX; pkÞ � 0 (11)

There are three cases in total depending on whether pk
can be served by bus services inX; Y .

Case 1: pk can be served by a bus service in sequence
seq0 2 X. Then, we have SerðX; pkÞ ¼ SerðY; pkÞ ¼ 1 because
X 
 Y , i.e., SerðY; pkÞ � SerðX; pkÞ ¼ 0.

Case 2: pk cannot be served by any bus service in X but a
bus service in sequence seq0 2 Y nX. Then, we have
SerðX; pkÞ ¼ 0 and SerðY; pkÞ ¼ 1 because X 
 Y , i.e.,
SerðY; pkÞ � SerðX; pkÞ ¼ 1.

Case 3: pk cannot be served by any bus service in X or Y .
Then, we have SerðX; pkÞ ¼ SerðY; pkÞ ¼ 0 because X 
 Y ,
i.e., SerðY; pkÞ � SerðX; pkÞ ¼ 0.

The above cases show the correctness of Inequality (11).
It proves that G is monotonically increasing and our proof
completes. tu
Theorem 3.2. COST is neither submodular nor monotonically

increasing.



The optimization function of COST is OptcostðSÞ ¼ GðS;upÞMðSÞ .
First, we provide a counterexample to show that the func-
tion is not submodular. Let X 	 Y 	 Seqvalid. Then, accord-
ing to the definition of submodular, Optcost should satisfy
Eq. (12), if it is submodular.

OptcostðX [ seqÞ �OptcostðXÞ
� OptcostðY [ seqÞ �OptcostðY Þ (12)

To eaze the presentation, we assume lhs ¼ OptcostðX [
seqÞ �OptcostðXÞ and rhs ¼ OptcostðY [ seqÞ �OptcostðY Þ.
Let consider a situation whereX;Y both serve only one pas-
senger with MðXÞ ¼ 1 and MðY Þ ¼ 2. Then, we have
GðX; upÞ ¼ 1 and GðY; upÞ ¼ 1. Let seq 2 SeqvalidnY , GðseqÞ ¼
0 and MðseqÞ ¼ 1. We have lhs ¼ 1

2� 1
1 ¼ � 1

2 and rhs ¼
1
3� 1

2 ¼ � 1
6 . As lhs < rhs, it can be concluded that Optcost is

not submodular.
Further note that in above example X 
 Y but

OptcostðXÞ > OptcostðY Þ. It contradicts with Eq. (11). There-
fore, COST is not monotonically increasing. Our proof com-
pletes. tu
Theorem 3.3. Both PASS and COST are NP-complete.

In the following, we try to prove that PASS is NP-Com-
plete. First, it is important to note that PASS is NP because
we can use a simple procedure to determine whether a
given schedule S can serve the given number of passengers.
We skip the details because it is obvious.

Then, we prove the problem is NP-hard by reducing the
Vertex Cover Problem into PASS. Given a graph GðV;EÞ
and a positive integer k, the Vertex Cover Problem is to find
whether there is a subset V 0 of vertices of size at most k,
such that every edge in the graph is connected to some vertex
in V 0. We map each vertex in V into a service-sequence in
Seqvalid such that jV j ¼ jSeqvalidj, and map each edge in E to a
passenger inP . Note that passengers are placed in such away
that a passenger (represented by an edge eðv1; v2Þ) can only be
served by any of the two sequences corresponding to v1 and
v2. Then, we map the positive integer k into the number of
available vehicles jVj. Based on the above arrangements, the
Vertex Cover Problem is equivalent to decidingwhether there
is a schedule S that can serve all the passengers. Since the Ver-
tex Cover Problem is a well-known NP-Complete problem,
we can conclude that PASS isNP-Complete.

Next, we can show that the Vertex Cover Problem can be
reduced to a special configuration of COST. For this, we are
going to consider a bus network with 8r 2 R, DðrÞ ¼ t,
where all the bus services share the same duration t. The
duration within which the bus services are provided is set
to T with T approaching 2t but smaller than 2t. In other
words, each sequence contains one and only one bus ser-
vice. Further note that for any final solution S, the number
of sequences included in S (i.e., jSj) equals the number of
available vehicles jVj. Under these special arrangements, we

can say Optcost ¼ GðS;upÞt�jVj , where ðt� jVjÞ is a constant. We
can ignore 1

t�jVj as optimization process does not depend on
a constant multiplier. In other words, we can map the Ver-
tex Cover problem into COST as same as PASS and we can
conclude that COST is also NP-Complete.

4 SOLUTION

We introduce two algorithms to solve PASS and COST,
namely Bidirectional Greedy (BG) and Sequence Greedy (SG). In
addition,we also propose a few techniques to further improve
search efficiency. To ease the presentation, we focus on PASS.
However, we can easily replace the objective function from
Eq. (5) to Eq. (7) so that the algorithms can support COST.

4.1 Bidirectional Greedy (BG) Search

Bidirectional greedy search tries to allocate available
vehicles to bus services with the highest marginal gains. To
be more specific, among all the possible bus services, it initi-
alizes a sequence with the bus service having the highest
gain and slowly expands and completes the sequence by
repeatedly appending valid bus services with the highest
marginal gains to the sequence.

There are different ways to implement the above men-
tioned principle. For example, we can follow the service-
first strategy to locate a bus service with the highest gain
and include the identified service in a suitable sequence. In
this way, we actually expand all jVj sequences in the final
solution concurrently. Alternatively, we can follow the
sequence-first strategy by performing the search to com-
plete one sequence first before starting allocating bus serv-
ices to another sequence.

Algorithm 1. Bidirectional Greedy ðB;M;V; upÞ
Input: a candidate bus database B, Sequencing Model M,

available bus vehicles V, passenger waiting time
threshold up

Output: a bus service schedule S
1: S  ;
2: for each vi 2 V do
3: seq argmaxbsi2BðGðS [ fbsig; upÞ � GðS; upÞÞ
4: B  B=fbsig
5: while True do
6: bsfirst  seq½1�, bslast  seq½jseqj�
7: Bpossible  fbsi 2 BjAðbsi; bsfirst;MÞ ¼ 1 _ Aðbslast; bsi;

MÞ ¼ 1g
8: if Bpossible ¼ ; then
9: break
10: bsbest  argmaxbsi2BpossibleðGðS [ fseq � bsig; upÞ � G

ðS [ fseqg; upÞÞ
11: seq seq � bsi, B  B=fbsig
12: S  S [ seq
13: return S

After some preliminary evaluation, we find that the
sequence-first strategy outperforms the service-first strat-
egy. This is because the service-first strategy associates a
vehicle with a bus service bsi (corresponding to route r) that
could achieve a very high gain. Though vehicles assigned to
route r can be assigned to other routes, the initial assign-
ment is very critical (e.g., model Mone does not allow a vehi-
cle assigned to route r to serve another route, and Mss only
allows a vehicle to serve a route that starts from the bus
stop that the vehicle is located). The fact that route r is in
high demand during the service of bsi does not guarantee
that route r always has a relatively high demand. Conse-
quently, it might allocate vehicles to serve the routes with
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very high demand in a very short duration which affects the
overall performance. Consequently, we only include the
bidirectional greedy based on the sequence-first strategy in
this paper.

Algorithm 1 lists the pseudo-code for BG. It uses a FOR
loop to complete jVj sequences. Within each iteration, it
focuses on one single sequence that will be assigned to a
physical vehicle. It identifies the bus service bsi with the
highest gain and initiates a new sequence seq with bus ser-
vice bsi (Lines 3-4). Thereafter, it slowly expands and com-
pletes this sequence seq by repeatedly including valid bus
services with the highest marginal gain to the sequence. Fol-
lowing the idea of greedy search, we can just locate a bus
service with the highest gain and then check whether the
current sequence seq could accommodate it. However, this
process could be very time-consuming, as many services
might not be valid, dependent on the first/last bus services
in the sequence. To improve the search performance and
avoid evaluating bus services that cannot be added to the
current sequence, we only consider valid bus services from
B that can be added to the current sequence seq under M to
form a candidate bus service set Bpossible. It then locates the
one bsbest with the highest gain from this candidate set and
inserts it to seq (Lines 6-11). This process continues until the
candidate set Bpossible becomes empty.

4.2 Sequence Greedy (SG)

Bidirectional Greedy examines bus services one by one
and tries to include bus services with higher gains into
the solution earlier. However, an insertion of a bus ser-
vice to a sequence has a direct impact on the services that
could be inserted into the same sequence later on and
hence the overall gain achieved by the sequence. A
sequence containing a bus service with the highest gain
might not be able to achieve an overall high gain. Conse-
quently, we propose our second algorithm that employs
sequence as the unit to evaluate the gain for the entire
sequence when we construct the solution, namely
Sequence Greedy (in short SG).

SG search follows the greedy approach proposed [27]
over the set of all valid service sequences Seqvalid and it is
guaranteed to achieve (1 - 1/e)-approximation, according
to the proof provided by [27]. We iterate over all vehicles
in V. In each iteration, we find the sequence with the high-
est marginal gain and assign it to the vehicle. The size of
Seqvalid, the set of all valid service sequences, is exponen-
tial and at a very large scale, because it includes all possi-
ble combinations of bus services that can be served by a
physical vehicle under the given model M. For example,
Seqvalid in our experiments has over 1020þ combinations,
when we consider 700+ bus routes over 5,000+ bus stops,
use minute as the smallest scheduling unit, and have wmin

and wmax set to 10 minutes and 40 minutes respectively.
Therefore, it is extremely expensive, if not possible, to
evaluate all possible sequences to find the one with the
highest gain. However, the way we introduce the model
M allows us to utilize dynamic programming to find the
sequence with the highest gain in a polynomial time.
Details of the implementation of dynamic programming
are presented in Section 4.3.

Algorithm 2. Sequence GreedyðB;M;V; upÞ
Input: a candidate bus database B, Sequencing Model M,

vehicles V, passenger waiting time threashold up
Output: a bus service schedule S

1: S  ;
2: for vi 2 V do
3: seqbest  ;, gbest  0
4: for each bus service bsj 2 B do
5: hgj; seqji  best seq startfromðbsj;S;B;M; upÞ
6: if gj > gbest then
7: gbest  gj, seqbest  seqj
8: S  S [ seqbest, B  B=fbs0jbs0 2 seqbestg
9: return S;
10: Function 1 best_seq_startfromðvi; bss;S;B;M; upÞ:
11: seqbest  Oslash; , gbest  0
12: for each bsj 2 B do
13: gj; seqj  best seq startfromðvi; bss;S;B;M; upÞ
14: if gj > gbest then
15: gbest  gj, seqbest  seqj
16: return seqbest;

The pseudo-code for SG search is listed in Algorithm 2.
In each iteration, it picks the bus service sequence seq 2
Seqvalid with the highest marginal gain, such that seq ¼
argmaxseqi2SeqvalidðGðS [ seqi; upÞ � GðS; upÞÞ and assigns it to
a physical vehicle. This process is continued until it assigns
a sequence to each available vehicle. It uses a recursive
search (i.e., best seq startfromðS;B;M; upÞ) to find the
sequence with the highest marginal gain. The search space
of the recursive search is exponential but it is reduced to
OðjBjÞ via a dynamic programming approach. More details
will be presented next.

4.3 Optimization Techniques

Indexes. The computation of the marginal gain for schedul-
ing one bus service is the first bottleneck faced by both algo-
rithms proposed above. To address this issue, we use
several indexes that are similar to the indexes proposed
by [4], including forward list, current marginal gains, backward
list and served passengers. The forward list is a mapping from
B to a set of passengers from P who can be served by partic-
ular bus service in B. The current marginal gains is a mapping
from B to its current marginal gain, i.e., the number of pas-
sengers served by particular bus services. The backward list
is a mapping from P to a set of bus services that can serve
them. In addition, we keep the set of already served passen-
gers as served passengers in a binary search tree. Whenever
we include a new bus service in the schedule, we can find
the list of passengers who can be served by the bus service
using forward list and meanwhile ignore already served pas-
sengers and use backward list to find all the bus services
which could have served those passengers. Then, we sub-
tract them from current marginal gains. Further, we maintain
two indexes, namely next bus services and previous bus serv-
ices. For a given bus service bs, we often want to access the
list of valid next bus services (fbsi 2 BjAðbs; bsi;MÞ ¼ 1g)
and the list of valid previous bus services (fbsi 2 BjAðbsi;
bs;MÞ ¼ 1g). Therefore, instead of iterating over all the bus
services in B, we pre-process the data and keep them in next
bus services and prev bus services.



Dynamic Programming. Function best seq startfromðS,
B;M; upÞ (invoked in Line 5 of Algorithm 2 and defined as
Function 1 in Lines 10-16 of Algorithm 2) is a recursive func-
tion. It utilizes a divide and concur approach to find the
sequence with the highest gain. Since jSeqvalidj is exponen-
tial, it is impossible to solve this recursive function within a
practical time duration. To address this issue, we use the
well-known Dynamic Programming approach [28]. To be
more specific, we use a hash map to cache the results. The
key of the hash map is the starting bus service bss and the
value of the hash map is the value returned by Function 1.

Priority Queues. In both algorithms presented above, we
aim at finding the service with the highest marginal gain.
Since the marginal gain of any service could change in each
iteration, we have to scan all the services again to find the
service with the highest gain. To avoid repeatedly re-calcu-
lating the gain for each service in each iteration, we use a
priority queue data structure that has an insert and update
time complexity of Oðlog ðjBj)). Whenever we include a bus
service bs to the schedule, we update the marginal gain of
only affected services, i.e., all the services that can serve at
least one passenger served by bs fbs0 2 Bj9p 2 P; Serðbs;0 p;
upÞ ¼ 1 ^ Serðbs; p; upÞ ¼ 1g.

Sequence Gain Upper Bound. Whenever we include a new
service to the existing schedule, it will serve some passen-
gers, which will reduce the marginal gains of all the bus
services that could serve those passengers. Therefore, given
a sequence seq formed by m (m � 1) bus services, its mar-
ginal gain will not increase but might be decreased in each
iteration, as a newly scheduled bus service might serve
some passengers who are initially served by bus services
included into seq and hence reduce, but definitely not
increase, the gain of the sequence seq.

We depict an example in Fig. 1 to facilitate the under-
standing. Each circle in the example represents a bus service
and the number within the circle stands for the correspond-
ing gain it can achieve at the current iteration. A direct link
from a circle w.r.t. bus service bsi to another circle w.r.t. bus
service bsj indicates that a vehicle is able to serve the bus
service bsj after it finishes the service bsi, i.e., Aðbsi; bsj;
MÞ ¼ 1. It is noticed that, as compared with Iteration 1,
some gains in Iteration 2 decrease their values. This is
caused by the fact that a newly scheduled bus service in
Iteration 1 serves certain passengers, which affects the gain
of other bus services.

We use this fact to reduce the branching factor of Func-
tion 1. To be more specific, given a starting bus service bss,
the first value gbest returned by Function 1 corresponds to
the highest gain of any sequence starting from bss. Similarly,

in Line 13 of Algorithm 2, the value of gj does not increase
but might decrease in subsequent iterations. Therefore, the
value corresponding to gj from the previous iteration pro-
vides an upper bound of gj returned by subsequent itera-
tions. We use gprevj and gj to denote the value of gj returned
in the previous iteration and that returned in the current
iteration respectively. Accordingly, we have gj � gprevj .

In an iteration, given the starting bus service bss, we evalu-
ate a potential sequence seq in the form of hbss; bsj; bsjþ1; � � �i.
The marginal gain of seq is GðSj �i bss; upÞ � GðS; upÞ, with
Sj ¼ S [ hbsj; bsjþ1; � � �i. We want to compare it with gbest at
Function 1. In addition, we have gprevj and marginal gain of
bss: GðS �i bss; upÞ � GðS; upÞ. From the second function call
afterwards, we have a value for gprevj . If gprevj þ GðS �i

bss; upÞ � GðS; upÞ � gbest, then it is guaranteed that GðSj �i

bss; upÞ � GðS; upÞ � gbest, i.e., the if condition listed in Func-
tion 1 will NOT bemet. Accordingly, we can safely ignore bsj
(and hence all the sub-sequences that start from bsj).

5 EXPERIMENT

In this section, we first present the experimental setup; we
next conduct experiments to verify the improvements intro-
duced by different optimization techniques presented in
Section 4.3; we then compare the performance of the two
newly proposed algorithms against three baselines under
different parameter settings; we finally present a case study
to demonstrate the potential savings (in terms of the num-
ber of bus vehicles saved and the total vehicle travelling
time shortened) that could be brought by newly proposed
algorithms in a real setup.

5.1 Experimental Setup

Dataset. We collect the bus route network of Singapore from
Land Transport Datamall (https://datamall.lta.gov.sg/
content/datamall/en.html). In total, there are 715 routes.
The length of bus routes ranges from 2 to 105 bus stops,
with an average length of 36.34 bus stops. 475 out of 715
routes (66.4%) are in the form of a loop, corresponding to
example Route 1 and Route 2 in Fig. 2. In our experiments,
we only consider those 475 routes that form closed loops.
Other routes (e.g., Route 3 and Route 4 in Fig. 2) are not con-
sidered in our bus network as we are not very sure how
vehicles serving those routes are mobilized. However, we
want to highlight that most of the removed routes are not
regular routes (e.g., only in operation during certain dura-
tion on certain days) and the 475 routes considered in our
experiments cover more than 97% of the daily travel
demand from passengers. In addition, we crawl Gothere
API (https://gothere.sg/maps) to get the travel time (D)
between every two consecutive stops of every route.

Fig. 1. Sequence gain for any Bs does not increase in each iteration.

Fig. 2. Example forms of bus routes.
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For the passenger database (P), we use the real bus touch-
on record data on a single day (15 February 2016) in Singa-
pore, which contains 3.4million trip records. Each trip record
captures the details of a real bus ride, including i) the corre-
sponding bus route; ii) the IDs of the boarding and alighting
bus stops; and iii) the timestamps of the boarding and alight-
ing. Since the real trip records do not capture when the pas-
sengers reached the boarding bus stops, we assume
passengers spend x minutes waiting for their buses, with x
following a randomdistribution between 1 and 5minutes.

For the bus service database (B), we adopt minute as the
minimum unit when we schedule bus services (e.g., if the
daily bus service starts at 5:00 am in the morning, we can
schedule bus services at 5:00 am, 5:01 am, 5:02 am and so
on). We assume daily bus services are operated within a
duration T (e.g., it is from 5:00 in the morning until 11:00 at
night in our study), within which we generate all possible
services for each bus route.

Key Parameters. Table 2 lists the parameters and their val-
ues, with their default values underlined.

Baselines.Our bus scheduling algorithms consider the
number of passengers served within a waiting time thresh-
old as the main optimization goal. To the best of our knowl-
edge, previous work FASTCO [4] is the only work sharing a
similar optimization goal. Hence, we have adapted
FASTCO to support PASS and COST as a baseline, and com-
pare its performance with the two methods proposed in this
work, including bidirectional greedy (in short BG) and
sequence greedy (in short SG). In addition, we also imple-
ment two general bus scheduling baselines namely Top-K,
and Fixed-Interval. The three baselines are briefly explained
below. Top-K picks the k bus sequences with the highest
gains and allocates them to jVj vehicles with k ¼ jVj. Note,
that when Top-K derives the gain of a sequence, it does not
consider the impact of other sequences on its gain. Fixed-
Interval schedules vehicles on all routes using a fixed
time interval. In this paper, we set the interval to the
maximum possible frequency achievable based on V, i.e.,P

r2RðDðrÞþwminÞ
jVj . FASTCO [4] adopts a greedy algorithm to

support an objective function that is similar to PASS under
the modelMss. We want to highlight that we have improved
FASTCO (as compared with the original FASTCO proposed
in [4]) from multiple aspects, including i) an initial alloca-
tion of vehicles to starting bus stops based on real demands,
i.e., the number of vehicles allocated to a starting bus stop is
proportional to the demand; ii) priority queue technique
which manages to save the average running time of
FASTCO by up to 96% (to be detailed in Section 5.2); and iii)
the consideration of wmin and wmax to avoid the cases of
assigning vehicles to services with high gains without

considering the time gap and hence forcing vehicles to have
long idle time that is not preferable.

Experiment Environment. All codes are implemented in C
++. Experiments are conducted on a machine with an 8-
Core 1.8 GHz CPU and 16 GB memory running Ubuntu
Operating System.

5.2 Optimization Techniques

In our first set of experiments, we evaluate the contribution
of different optimization techniques proposed in Section 4.3
to the search efficiency. We mainly adopt running time as
the performance metric. There are in total four optimization
techniques proposed. However, indexes and dynamic pro-
gramming are essential, without which the search algo-
rithms (especially SG) are not able to be performed.
Consequently, we are only able to demonstrate the
improvement achieved by Priority Queues and Sequence Gain
Upper Bound by switching off each of these two optimization
techniques when running the algorithms.

As these two techniques affect SG the most, we report the
performance of SG with neither technique, the performance
of SGwith both techniques implemented and that of SGwith
either priority queue or sequence gain upper bound in
Fig. 3a. As observed, both optimization techniques are able
to improve the search efficiency significantly. For example,
when there are 3000 vehicles, priority queue optimization is
able to reduce the overall running time of SG from 2213
minutes to 1830 minutes; upper bound optimization could
reduce SG’s overall running time from 2213 minutes to 193
minutes. Though the upper bound optimization technique is
observed to bemore effective, wewant to highlight that these
two optimization techniques address different aspects of the
problem. The priority queue reduces the number of route
services we need to check in order to find the highest gain
route service by keeping them in a heap. Upper bound opti-
mization reduces the search space of sequences by avoiding
low gain branches in the search tree. The effect of the Priority
Queue optimization technique is negligible without the
upper bound optimization because the search space of
sequences is huge and the sequence search dominates the
overall running time of SG. However, the saving achieved by
Priority Queue optimization becomes more significant when
the upper bound optimization is also adopted, e.g., using
both techniques together can reduce the running time of SG
from 2213minutes to just 26minutes when jVj ¼ 3000.

In addition, we want to highlight that the priority queue
is applicable to FASTCO. As reported in Fig. 3b, it can help
reduce the average running time of FASTCO by up to 96%.

5.3 Algorithm Performance Under PASS

In our second set of experiments, we report the performance
of the two newly proposed algorithms and that achieved by
baselines when supporting PASS. Without loss of general-
ity, we follow the definition of PASS and use the total num-
ber of satisfied passengers as the main performance metric,
which is reported in the form of the percentage of jPj (as jPj is
fixed). In the following, we first report the overall perform-
ances of different algorithms; we then evaluate the impact
of major parameters, including wmin, wmax, and u, on differ-
ent algorithms. In each experiment, we adjust the value of

TABLE 2
Parameters and Their Settings

Parameter Values

Model Mone,Mss,Mf

No Vehicles jVj 1000, 2000, 3000, 4000, 5000
wmin (in minutes) 6, 8, 10, 12, 14
wmax (in minutes) 20, 30, 40, 50, 60
up (in minutes) 1, 3, 5, 7, 9



one parameter within the value range listed in Table 2,
while keeping the other parameters at their default values.

Overall Comparison. The results with respect to the avail-
able number of vehicles are depicted in Fig. 4, under three
different models. SG performs consistently the best for each
model. This is likely contributed by the fact that SG evalu-
ates the performance achieved by the entire sequence when
scheduling the bus services, while all other algorithms focus
on one bus service at a time. BG achieves the second-best
performance for all models. Recall that BG schedules the
bus services by completing one sequence first before con-
structing another sequence, which again demonstrates that
focusing on one sequence is a better strategy. Fixed Interval
improves its performance as jVj increases because we set
the interval to the maximum frequency that can be achieved
based on available V. When jVj ¼ 5000, the interval is set to
a very small number and all the passengers will be satisfied.

As the overall performance trends of different algorithms
remain relatively stable under different models M, we only
report the experimental results under the Mss model when
we evaluate the impacts of major parameters to save space
and minimize redundancy.

Impact of wmin. Parameter wmin sets the minimum gap
between two consecutive bus services assigned to a vehicle.

Intuitively, its value determines the total number of services
each vehicle can serve. As reported in Fig. 5a, when wmin

increases its values, all algorithms serve fewer passengers.
This is consistent with our expectation, as a larger wmin

enforces all the vehicles to have a longer break after they fin-
ish the current bus services and hence the total number of
services assigned to each vehicle becomes smaller.

Impact of wmax. The impact of wmax is slightly different.
Parameter wmax determines the maximum gap between two
consecutive bus services assigned to the same physical vehi-
cle. A larger wmax allows each vehicle to stay longer before
being assigned to another service, which provides more
opportunities for each vehicle to be assigned to a service
with higher marginal gain and meanwhile reduces the total
number of services assigned to each vehicle. In other words,
the increase of wmax brings both positive impact and nega-
tive impact on the performance of different algorithms. For
FASTCO and BG, the negative impact is dominant, as
shown in Fig. 5b. Those algorithms follow a greedy
approach when selecting the next bus service to be served.
Consequently, when vehicles are allowed to rest longer
before being assigned to new services, they might be able to
find services with higher marginal gains to be served next.
However, the assigned services to be served next have a

Fig. 3. Impacts of different optimization techniques on the search performance of SG and FASTCO.

Fig. 4. Performances of PASS versus different jVj.

Fig. 5. The impacts of different parameters on the performances of PASS.
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direct impact on the subsequent services to be assigned, and
both algorithms only consider the next services but not
those to be assigned in the future. Eventually, the physical
vehicles serve less number of services in total, resulting in a
reduction of the total gain they can achieve. However, SG
considers the whole sequence, which provides room for the
positive impact to demonstrate its power. When wmax

becomes larger, there are more valid sequences to be consid-
ered. Since SG selects the highest gain sequence by checking
all possible sequences, it gives more freedom to choose the
service sequence that does not decrease the gain.

Impact of u. Parameter u is the threshold to simulate the tol-
erance level of passengers when waiting for bus services. As
u increases, all the passengers are willing to wait longer for
buses before they become unsatisfiedwith the services. Natu-
rally, it becomes easier for all the algorithms to serve more
passengers within their waiting time threshold, as shown in
Fig. 5c. However, its impact on Top-K is minor, as Top-K
picks the highest gain sequences while the gain of a sequence
is derivedwithout considering the impact of other sequences.

5.4 Algorithm Performance Under COST

Next, we study the performance of different algorithms
under COST. In addition to the number of passengers that
can be served within a waiting time threshold up by a given
schedule S, COST also considers the total travelling distan-
cesMðSÞ of physical vehicles as an indicator of the cost cor-
responding to the given schedule. Consequently, we adopt
GðS;upÞ
MðSÞ , namely score, in the experimental results to be pre-
sented next, as the performance metric.

First, Fig. 6 reports the scores achieved by different algo-
rithms under the three models, when the available number
of physical vehicles changes. The primary observation is
that unlike in PASS, the score does not increase but
decreases as more vehicles become available. This is
because COST is neither monotone nor submodular, as
stated in Theorem 3.2. The count of satisfied passengers
(i.e., GðS; upÞ) is submodular but not the total vehicle driving
time MðSÞ. Consequently, when more vehicles become
available, the number of satisfied passengers increases at a
slower pace, while driving time increases without a con-
straint, resulting in a decreased score.

Second, SG is still the best performer while its advantage
over others becomes less significant, especially with more
vehicles. According to our observations, the reason for this
is that SG tends to cover more passengers by driving a long
distance. We also report both GðS; upÞ andMðSÞ in Table 3
for jVj ¼ 3000. Note that the satisfied passenger percentage

(i.e., GðS; upÞ) of SG and BG is significantly higher than that
of other baselines (including FASTCO).

In the following, we investigate the impacts of different
parameters on the performance of various algorithms when
supporting COST. Again, we focus on model Mss only for
space saving.

Impact of wmin. The impact of wmin is significantly differ-
ent from that in PASS. It is observed that wmin has a positive
impact on the score, as shown in Fig. 7a. This is consistent
with our expectations. As wmin increase its value, vehicles
are forced to rest longer between two consecutive services.
Accordingly, it helps reduce the total driving time of each
vehicle. Even though it could also decrease the satisfied pas-
senger count as happened in PASS, the impact of driving
time seems to be significant enough to increase the score.

Impact of wmax.The impact of wmax is also different from
that in PASS but again is still within our expectations. wmax

has a positive impact on the score, as reported in Fig. 7b.
wmax is the longest allowed duration between two consecu-
tive services. The increase of wmax will allow all algorithms
to pick services with a higher score while resting longer
between two consecutive services.

Impact of u. The impact of u under COST is almost the
same as it under PASS, as shown in Fig. 7c. As u increases,
all passengers are willing to wait longer for a service; there-
fore, it becomes easier for all algorithms to serve more pas-
sengers with a shorter total driving time, resulting in an
increased score.

Fig. 6. Performance of COST versus different jVj.

TABLE 3
Duration and Satisfied Passengers % of COST With

3000 Vehicles

Model Algorithm Duration
hours (�103)

Satisfied Passengers %

Mone

TOP-K 34.96 44.96
FIXED-IN 45.52 70.90
FASTCO 38.29 78.56
BG 35.80 82.71
SG 36.87 84.14

Mss

TOP-K 34.85 44.11
FIXED-IN 45.52 70.90
FASTCO 36.97 85.87
BG 37.90 87.18
SG 36.69 87.25

Mf

TOP-K 34.88 43.81
FIXED-IN 45.88 70.90
FASTCO 37.62 81.78
BG 38.43 87.46
SG 36.74 87.49



5.5 Sensitivity

All the previous experiments are based on a passenger data-
set that is derived from the real commuting records on a sin-
gle day (15 February 2016). In order to verify that the
performance comparisons among different algorithms and
our observations are reliable, we report the performance of
different algorithms using different passenger datasets. To be
more specific, we construct 7 passenger datasets, again based
on real commuting records on a single day in one week from
Wednesday 10 February 2016 to Tuesday 16 February 2016.
The results w.r.t. jVj ¼ 3000 underMss are reported in Fig. 8.

It is observed that the results corresponding to different
days do not differ much. The only noticeable deviation is
that COST has a slightly lower score on 13 February and 14
February. This is because 13 February and 14 February are
weekends, and the corresponding passenger databases are
relatively smaller.

5.6 Case Study

In our following set of experiments, we compare our algo-
rithmswith the actual vehicle allocation of the Singapore bus
network. We first collect the frequency of the actual schedule
from Transitlink eGuide (https://www.transit- link.com.
sg/eservice/eguide/service_idx.php); we then derive the
minimum vehicle count required, say vreq, to operate the
buses under this frequency. Thereafter, we calculate the per-
formance (e.g., the number of satisfied passengers under
PASS) of the actual bus services operated based on the fixed
schedules served by vreq vehicles. Considering the perfor-
mance w.r.t. actual schedule as the target, we execute our
proposed algorithms to find out the required number of
vehicles in order to achieve the same performance. This is to
demonstrate the potential savings that could be achieved if
bus services are scheduled in a dynamic manner guided by
real travel demands (as supported by the two algorithms
proposed in this paper) instead of fixed schedules.

Since we do not know the exact number of vehicles used
by the Transport Authority, we calculate it according to the
following approach. We first assume that they do not share
vehicles between multiple routes, so vehicles have to oper-
ate as a loop within their route repeatedly (model Mone).
The transit link website provides time intervals, in terms of
ranges, between consecutive services for peak and off-peak
hours, as shown in Table 4. Accordingly, we consider three
actual scenarios namely Min, Avg, and Max, which corre-
spond to minimum, average, and maximum intervals
respectively. For example, given a frequency of 7-13
minutes, Min, Avg, and Max will schedule a service every 7,
10 and 13 minutes. We calculate the required number vreq of
vehicles to operate in given frequencies for each route, and
add them up based on vreq ¼

P
r2RðDðrÞ þ wminÞ=Tr, whose

values are reported in Table 5.
Tr is the time interval between two services of the route r

collected from Transitlink, i.e., Frequency listed in Table 4.
vreq is the required number of vehicles, with its values corre-
sponding to different scenarios/time periods reported in

Fig. 7. The impacts of different parameters on the performances of COST.

Fig. 8. Sensitivity test of different algorithms of commuting demands (10-
16 February 2016, jVj ¼ 3000) underMss.

Fig. 9. Comparison with actual scenario.
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Table 5. As vreq is related to Tr that has different values at dif-
ferent periods, we consider the largest vreq, indicated by va in
Table 5. Given va vehicles serving the bus routes based on
the fixed frequencies, we are able to derive the performance
(e.g., the total number of passengers served under PASS).

We then derive the numbers of vehicles required by
other algorithms, in order to achieve the same performance,
with the numbers and the corresponding total driving dura-
tion (of all the vehicles) reported in Fig. 9. It is observed that
our algorithms achieve significant savings. For example, as
compared with the actual scenario Avg, SG reduces the
number of required vehicles by 37% and shortens the total
driving time by 26% for PASS; it reduces vehicles by 26%
and shortens the total driving time by 29% for COST. One
important thing to notice is that FASTCO performs signifi-
cantly poorer than the actual scenario in all cases. According
to our observation, this is highly related to the initial vehicle
distribution. For example, FASTCO initially allocates
vehicles to the highest gain route services, leading to
uneven distribution of vehicles throughout the network.
Top-K tends to stagnate around 70-60% of the passenger sat-
isfaction even under 10000 vehicles, and still, it does not
reach the satisfaction level of the actual scenario. Therefore
we have excluded it from the case-study section.

In the previous comparison, we allow algorithms to uti-
lize all vehicles anytime. However, in the actual scenario,
not all the vehicles are operated during the off-peak period.

Thus, it gives a competitive advantage to our algorithms. To
provide a fairer comparison, we perform a second experi-
ment by assuming that the actual schedule operates at the
highest frequency throughout the whole day, i.e., all periods
listed in Table 4 share the same frequency. The results are
reported in Fig. 10. In this setup, SG also achieves a 23%
reduction in the required vehicle count and a 9% reduction
in the total travel time under PASS. In terms of COST, SG is
able to reduce the vehicle counts by 10% and shorten the
total driving time by 12%.

5.7 Running Time

In the last set of experiments, we evaluate the running time
of all the algorithms. Fig. 11 reports the experimental results
with 5000 vehicles. Out of all five algorithms, Top-K incurs
the highest running time, followed by SG, while Fixed Inter-
val is the simplest and it incurs the shortest running time. In
addition, the model Mone has a smaller running time,
because the vehicles are only shared within the same route.
Accordingly, its search space for the best sequence is much
smaller than the other two models. Consistent with our
expectation, the model Mf requires the longest running
time as its search space is the largest among the three mod-
els considered in this work. However, we want to highlight
that SG, though requiring a longer running time, is able to
achieve the best performance with a running time very
affordable (e.g., it can be completed within an hour for a
passenger database that contains over 3 million of trip data
and a bus network that has 5000+ bus stops and 400+ bus
routes).

TABLE 4
Transitlink Frequency Information on Exam Route 7

Route 7 Frequency (Minutes)

Period Direction 1 Direction 2

06:30 - 08:30 9-11 8-11
08:31 - 16:59 6-13 8-12
17:00 - 19:00 9-12 7-13
After 19:00 8-13 11-13

TABLE 5
Minimum Number of Vehicles Required to Operate

Actual Scenarioes

Period Min Avg Max

0630 - 0830 3356 2860 2444
0831 - 1659 3265 2373 1842
1700 - 1900 3031 2549 2153
after 1900 2460 1993 1668
va 3356 2860 2444

Fig. 10. Comparison with the modified actual scenario.

Fig. 11. Running time of different algorithms.



6 CONCLUSION

In this paper,we study theproblemof bus schedulingunder the
constraint of limited physical vehicles.We consider not only the
number of satisfied passengers within a given waiting time
threshold but also the bus service operational cost as our optimi-
zation objectives and formulate PASS and COST. We propose
two different algorithms to perform the scheduling and several
optimization techniques to further reduce the time complexity
of our algorithms. A comprehensive evaluation based on a real
passenger demand dataset has been performed to demonstrate
the advantages of our algorithms. In the near future, we would
like to propose a prediction model that is able to predict the
travel demand from the passengers based on historical demand
data to provide input to our algorithms in real-time with high
accuracy to further enhance thework presented in this paper.
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